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INTRODUCTION 

 

Nowadays, microelectronics, computer technologies and the entire computer 

science industry have become one of the main components of world scientific and 

technological progress. The influence of computer technology on all spheres of 

human activity continues to expand in breadth and depth. Computers are used not 

only for performing complex calculations, but also for managing production 

processes, education tasks, healthcare or environmental related issues etc. It’s 

possible due to the fact that computers are able to process any type of information: 

digital, text, tabular, graphical, visual and audible. 

Just like each building, each computer has a visible structure, referred to as its 

architecture. The architecture of a building can be examined at various levels of 

details, like the number of stories, the room size, the doors and windows location and 

so on. Take a look at a computer’s architecture at similar levels of detail of basic 

hardware elements, which in turn depends on the type of the computer. 

The methodical tutorial includes the basic questions of computer architecture, 

the arithmetic and logical foundations of the computer. In the first chapter of tutorial 

some important concepts related to computer architecture are introduced with special 

emphasis on those processor nodes that perform data conversion operations (simple 

arithmetic operations). The following chapters explain in detail the arithmetical 

foundations of computing. The study of various computer systems used in computing 

and arithmetical operations is very important for understanding how information 

processing is performed in computing machines. 

The main aim of this methodical tutorial is to help students with the self-

education. The examples and tasks discussed will help to effectively master the study 

material. Questions for self-monitoring are recommended for students to test 

knowledge. 
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1 INTRODUCTION TO COMPUTER ARCHITECTURE 

 

Everybody knows what a computer is. The box that stands on your desk, runs 

your programs and, sometimes, crashes at the wrong time. Inside that box is the 

electronics that runs your software, stores your information, and helps to create a 

connection to the world. It's all about information processing. 

Computer systems are divided into two separate categories. The first, and most 

obvious, is the desktop computer. The second category is the embedded computer, a 

computer that is integrated into another system with the purposes of controlling 

and/or monitoring. Embedded computers are far more numerous than desktop 

systems, but far less obvious. Each person on average has one or two computers. But, 

such a person may not know that he or she has 30 or more embedded computers, 

hidden inside TVs, VCRs, remote controls, washing machines, cell phones, air 

conditioners, game consoles, ovens, toys, and a lot of other devices. 

This chapter describes computer architecture in general. It is applicable to both 

embedded and desktop computers, because the primary difference between an 

embedded machine and a general-purpose computer is its application. The basic 

principles of operation and the underlying architectures are fundamentally the same.  

Both have a processor, memory, and, often, several forms of input and output. 

The primary difference lies in their intended use and in the user control degree over 

the loading and launching software. Desktop computers can run a variety of 

application programs, with system resources are orchestrated by an operating system. 

By running different application programs, the functionality of the desktop computer 

is changing. In contrast, the embedded computer is normally dedicated to a specific 

task. The embedded computer may or may not have an operating system, and rarely 

provide the user with the ability to arbitrarily install new software. Embedded 

hardware is often simpler than a desktop system, but it can also be far more 

complicated too. An embedded computer can be implemented in a single chip with 

just a few support components, and its purpose may be similar to a controller for a 

garden-watering system. Alternatively, the embedded computer may be a distributed 
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parallel machine with 150 processors, which is responsible for all the flight and 

control systems of a commercial jet. No matter how many diverse with embedded 

hardware excite, the underlying principles of design are the same. 

This chapter introduces some important concepts related to computer 

architecture, with special emphasis on those processor nodes that perform data 

conversion operations (simple arithmetic operations). 

Basically, a computer is a machine designed to process, store, and retrieve data. 

Data may be represented as numbers in a spreadsheet, characters in the text 

document, dots of color in an image, waveforms of sound, or the state of some 

system, such as an air conditioner or a player.  

Everything that a computer does, from web browsing to printing, involves 

moving and processing numbers. The electronics of a computer is nothing more than 

a system designed to hold, move, and change the numbers. 

A computer system is composed of many parts, both hardware and software. At 

the heart of the computer is the processor, the hardware that executes the computer 

programs. The computer also has memory, often several different types in one 

system. The memory is used to store programs while the processor is running them, 

as well as store the data that the programs are manipulating with. The computer also 

has devices for storing data, or exchanging data with the outside world. Such as 

allowing to input the text via a keyboard, to display information on a screen, or to 

move programs and data to or from a disk drive. 

The processor is the most important part of a computer, the component around 

which everything else is centered. In essence, the processor is the computing part of 

the computer. The processor is an electronic device capable of manipulating data 

(information) in a way specified by a sequence of instructions. The instructions are 

also known as opcodes or machine code. This sequence of instructions may be altered 

to suit the application, and, therefore, computers are programmable. 

The processor by itself is incapable to perform any task successfully. It requires 

memory (for program and data storage), support logic, and at least one input/output 
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device (I/O device) used to transfer data between the computer and the outside world. 

The basic computer system is shown in Figure 1.1. 

Such computer architecture is known as a Von Neumann machine, named after 

John Von Neumann, one of the originators of the concept. With very few exceptions, 

nearly all modern computers follow this form. Von Neumann computers can be 

named control-flow computers. The steps taken by the computer are governed by the 

sequential control of a program. In other words, the computer follows a step-by-step 

program that governs its operation. 

 

Figure 1.1 – Basic computer system 

 

The memory of the computer system contains both the instructions that the 

processor executes and manipulates data. The memory of a computer system is never 

empty. It always contains something, whether it be instructions, meaningful data, or 

just the random garbage that appeared in the memory when the system powered up. 

Instructions are read (fetched) from memory, while data is both read from and written 

to memory, as shown in Figure 1.2. 
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Figure 1.2 – Data flow 

 

This form of computer architecture is known as a von Neumann machine, 

named after John von Neumann, one of the originators of the concept. With very few 

exceptions, nearly all modern computers follow this form. Von Neumann computers 

are what can be termed control-flow computers. The steps taken by the computer are 

governed by the sequential control of a program. In other words, the computer 

follows a step-by-step program that governs its operation. 

The classic von Neumann machine has several distinctive characteristics: 

- there is no real difference between the data and instructions; 

- the data has no intrinsic value; 

- data and instructions share the same memory; 

- memory is a linear (one-dimensional) array of storage locations. 

There are some interesting non von Neumann architectures, such as the 

massively parallel Connection Machine [8], the dataflow architecture [5], the graph 

reduction machine [6] and the neural networks [7]. 

There are two main types of architectures: Princeton, often called the von 

Neumann architecture, and Harvard. The difference between them is that in the 

classic von Neumann architecture of the computer programs and data are stored in the 

common operating memory and transmitted to the processor on a single channel (data 

bus and control), while Harvard architecture requires the use of separate address 

spaces for storing commands and data, as well as separate transmission streams for 

commands and data (Fig. 1.2, 1.3). 
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Figure 1.3 – Harvard architecture 

 

The advantages of von Neumann architecture:  

– simplification of the microprocessor device, since it only accesses common 

RAM; 

– the use of a single memory area allows you to quickly redistribute resources 

between program and data areas, which significantly increases the flexibility of the 

microprocessor. 

The advantages of Harvard architecture: 

– the small areas use of data memory contributes to the acceleration of 

information retrieval in memory and increases the speed of the microprocessor; 

– the presence of a separate data bus and command bus also allows you to 

increase the speed of the microprocessor; 

– it is possible to organize parallel execution of programs (each memory is 

connected to the processor by a separate bus, which allows doing the current 

command simultaneously with reading/writing data while the current command 

performs the selection and decoding of the next command). 

The disadvantage of the Harvard architecture is the complexity of the 

microprocessor architecture and the need to generate additional control signals for the 

instruction memory and data memory. 

The modern approach suggests that von Neumann principles still underlie the 

construction of single-processor computers, although they have been significantly 

modified. Multiprocessor computer systems capable of parallel computing are based 

on the Harvard architecture. 
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The set of functional blocks (devices) and the connections between them are 

called the functional structure of the computer. More details about the functional 

structure of modern computers can be found in [1, 2, 4]. The functional structure of 

the computer determines its specific composition at a certain level of detail (devices, 

blocks, nodes, etc.) and describes all internal connections. However, the structure of 

the computer should be distinguished from its architecture. Under this term is 

understood a set of logical and physical organization principles of the computer (Fig. 

1.4). 

 

  

Figure 1.4 – The main components of computer architecture 

 

The fundamental principles of computer logic are also formulated by von 

Neumann. Including: 

– the use of a binary number system for encoding information in a computer, 

– software management of the computer, 

– memory uniformity, 

– memory addressing. 

The processor workflow should be described. There are six basic types of access 

that a processor can perform with external chips. The processor can write data to 

memory or write data to an I/O device, read data from memory or read data from an 

I/O device, read instructions from memory, and perform internal manipulation of data 

within the processor. In many systems, writing data to memory is functionally 
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identical to writing data to an I/O device. Similarly, reading data from memory 

constitutes the same external operation as reading data from an I/O device, or reading 

an instruction from memory. In other words, the processor makes no distinction 

between memory and I/O. 

The internal data storage of the processor is known as its registers. The 

processor has a limited number of registers, and these are used to hold the current 

data/operands that the processor is manipulating. 

The Arithmetic Logic Unit (ALU) performs the internal arithmetic manipulation 

of data in the processor. The instructions that are read and executed by the processor 

control the data flow between the registers and the ALU. The instructions also control 

the arithmetic operations performed by the ALU via the ALU's control inputs.  

Whenever instructed by the processor, the ALU performs an operation (typically 

one of addition, subtraction, NOT, AND, OR, XOR, shift left/right, or rotate 

left/right) on one or more values. These values, called operands, are typically 

obtained from two registers, or from one register and a memory location. Thereafter, 

the result of the operation is placed back into a given destination register or memory 

location. The status outputs indicate any special attributes about the operation, such 

as whether the result was zero, negative, or if an overflow or carry occurred. Some 

processors have separate units for multiplication and division, and for bit shifting, 

providing faster operation and increased throughput. 

Each architecture has its own unique ALU features, and this can vary greatly 

from one processor to another. However, there are just thematic variations, and each 

has the common characteristics described above. 
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2 NUMERAL SYSTEMS 

 

2.1 Number systems used in computer calculations  

A number system (NS) is a set of symbols and rules intended to represent 

numbers. The number systems may be classified into positional and nonpositional.  

In ancient times, people used to count on their fingers. When the fingers become 

insufficient for counting, stones, pebbles or sticks were used to indicate the values. 

This method of counting is called the nonpositional number system. It was very 

difficult to perform arithmetic operations with such a number system, as it had no 

symbol for zero. The most common nonpositional number system is the "Roman 

number system". In this system, only a few characters are used to represent the 

numbers, for example, I, V, X, L (for fifty), C (for hundred) and so on. Moreover, 

since it is very difficult to perform the addition or any other arithmetic operations in 

this system, no logical or positional techniques are used in this system. An interesting 

analysis of nonpositional systems can be found in [10]. In computers, positioning 

systems are used. 

A positional system is a system for numbers representation by an ordered set of 

numerals symbols (called digits) in which the value of a numeral symbol depends on 

its position. For each position a unique symbol or a limited set of symbols is used. 

In a positional system with a base N, the number A is a sequence of digits: 


−

−

−−

−

−

−−−−−− 
1

2

2

1

121021 ..........
m

k=i

i

i

k

k

m

m

m

mkmmN Na=Na++Na+Na=aaaaaa=A ,  

where ia  is the i-th digit of the number A; k is the number of digits in the fractional 

part of the number A; m is the number of digits in the integer part of the number A; N 

is the base of the number system. 

For any number system, if the number system's base (also called the radix) is 

known, then can be discovered how many digits are used in creating written numbers 

in that system.  
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For any number system that has a base b, the first b non-negative numbers are 

represented by the digits themselves. For base b=10 (decimal), the first 10 numbers 

are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Numbers beyond the first b numbers are represented 

by writing multiple digits, and associating each digit with a place value. As you 

know, the number that follows 9 is 10, and writing 10 uses two digits: '1' and '0'. The 

'1' occupies the "tens" place and the '0' occupies the "ones" place. That's 1 "ten" and 0 

"one". Counting continues with 11, 12, 13, ... , 18, 19, and finally 20, which is 2 

"tens" and 0 "ones".  After reaching the number 99 in the score, the next number in 

the sequence will require the addition of a third place, a place “one hundred” to the 

left, for the number 100: 1 “hundred”, 0 “ten” and 0 “one”. 

Each place in a decimal number is associated with a power of ten, as we have 

seen. The right-most position is associated with 

"ones" or 100. The position to the left is 

associated with "tens" or 101. The position to the 

left of that is associated with "hundred" or 102. A 

value of a digit position is 10n , where n – is a 

spot of each digit, as shown in this diagram: 

Any number can be written as a sum of products of powers of 10. Consider the 

number '327.' Suppose we wrote it down in the 

diagram shown above, like this: 

We can write the number '327' as a sum of 

products of powers of ten as follows:  

012 107102103327  ++= .     

This is the number '327' written in an expanded notation. It means exactly the 

same thing as writing '327' - it's just longer. This kind of notation is much more 

specific than just writing '327' because the base is given. When you see the number 

'327' written, you assume the base is 10. With computers, you can't always assume 

the base is 10. In fact, many times the base will be 2, 8, or even 16! The expanded 

notation is the only way to be sure which number is exactly considered.  
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Let's expand the diagram of place values and include a decimal point and places 

to the right of it. Here is how it would look: 

Obviously, the place values become negative 

powers of ten, counting backwards from zero. This is 

logical, and easy to remember. The rule about 

writing any number in expanded notation still works, 

also, without any modification. For example, the 

number '43.57' would be written as:  

2101 10710510310443.57 −−  +++= . 

 

In the binary number system, the base consists of 2 numbers: 0, 1. The 

weighted values for each position are determined as follows: 

 

 27 26 25 24 23 22 21 20 2-1 2-2  

… 128 64 32 16 8 4 2 1 0.5 0.25 … 

 

The binary system underlies modern technology of electronic digital computers. 

Computer memory comprises small elements that may only be in two states - off/on - 

that are associated with digits 0 and 1. Such an element is said to represent one bit - 

binary digit. 

Counting in binary is just like counting in decimal. Each byte is comprised of 

four bits which, in binary notation, will describe adequately a number between 1 and 

10 (the number 10 corresponding to the dialed zero). Real numbers can also be 

represented using binary notation by interpreting digits past the decimal point as 

negative powers of two. 

In addition to the binary representation, digital computers use the octal and 

hexadecimal number systems. Considering an octal or hexadecimal number is much 

shorter than the respective binary number. Also binary code can be directly converted 

into octal or hexadecimal form, because the radices in the octal and hexadecimal 

notation are integer powers of two. 
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The following table shows the numbers from 1 to 16 which are recorded in 

different numeral systems. 

Table 2.1 – Correspondence of numbers in different number systems. 

Numeral system 

Decimal Binary Octal Hexadecimal Binary-decimal 

0 0 0 0 0000 0000 

1 1 1 1 0000 0001 

2 10 2 2 0000 0010 

3 11 3 3 0000 0011 

4 100 4 4 0000 0100 

5 101 5 5 0000 0101 

6 110 6 6 0000 0110 

7 111 7 7 0000 0111 

8 1000 10 8 0000 1000 

9 1001 11 9 0000 1001 

10 1010 12 A 0001 0000 

11 1011 13 B 0001 0001 

12 1100 14 C 0001 0010 

13 1101 15 D 0001 0011 

14 1110 16 E 0001 0100 

15 1111 17 F 0001 0101 

16 10000 20 10 0001 0110 

... ... ... ... ... 

32 100000 40 20 0011 0010 

 

The sequence of actions for converting numbers from one number system to 

another is the same in all cases. In order to convert an integer N expressed in the 

radix p to a number system in the radix q, the number must consecutively be divided 

by the radix q until the last quotient is less than q. Then in the system to the radix q, 

the number N will be presented as an ordered set of residuals, the most significant 

digit in N being the last quotient. 

The conversion form from number system to another is fully described in [11]. 

 

2.2 Conversion of a number from one number system to another. Examples  

Example 2.1 Convert 99 decimal into the binary system. The decimal number is 

consecutively divided by 2:  
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divide 99 by 2 – get the quotient 49 and the remainder 1; 

divide 49 by 2 – get the quotient 24 and the remainder 1; 

divide 24 by 2 – get the quotient 12 and the remainder 0; 

divide 12 by 2 – get the quotient 6 and the remainder 0; 

divide 6 by 2 – get the quotient 3 and the remainder 0; 

divide 3 by 2 – get the quotient 1 and the remainder 1. 

The arrow shows the direction in which the number 

should be read. Thus, the binary equivalent of 99 

decimal is   9910 = 11000112 . 

  

  

In converting a fraction expressed in the radix p to a number system in the radix 

q, the fraction is consecutively multiplied by the radix q, only the fractional part 

being multiplied at each step. In the q-nary system, the fraction will be represented by 

an ordered sequence of the integer parts of the products, where the most significant 

digit is the first digit of the product. 

 

Example 2.2 Convert 0.8125 decimal to binary form. The 

fraction is consecutively multiplied by 2: 

The arrow indicates the direction in which the number should be 

read. Thus, the binary equivalent of 0.8125 decimal is 0.1101. In 

the case of a mixed decimal number, it is first separated into the 

integer and fractional parts, and each part is then converted as 

already explained. 

          

 

Example 2.3 Let's bring the number 15010 to the octal basis. 

We first find the largest power of 8 that is smaller than our number. Here, this is 82 or 

64 (83 is 512). We count how many groups of 64 we can take from 150. This is 2, so 

the first digit in our base-8 number is 2. We have now accounted for 128 out of 150, 

so we have 22 left over. The largest power of 8 that is smaller than 22 is 81 (that is, 

8). How many groups of 8 can be taken from 22? Two groups again, and thus our 
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second digit is 2. Finally, we are left with 6, and can obviously take 6 groups of one 

from this, our final digit. We end up with 2268. 

 

In fact, it can be made clearer with math steps: 

1. 150/82 = 2 remainder 22, 

2. 22/81 = 2 remainder 6, 

3. 6/80 = 6. 

 

Example 2.4 Base-16 is also commonly used in computer programming, so it is 

very important to understand. The figure shows the correspondence of the symbols of 

the hexadecimal system and their values in the decimal system.  

Except these extra digits, hexadecimal is just like any other base. For example, 

let's convert 3D16 to base-10. Following our previous rules, we have: 

10

01

16 61134816131633 =+=+=D   . 

So 3D16 is equal to 6110. Notice how we use D's value of 13 in our calculation. 

 

Example 2.5 We can convert from base-10 to base-16 similar to the way we did 

with base-8. Let's convert 69610 to base-16. First, we find the largest power of 16 that 

is less than 69610. This is 162, or 296. Then: 

1) 696/162 = 2 remainder 184, 

2) 184/161 = 11 remainder 8, 

3) 8/161 = 8 remainder 0. 

We have to replace 11 with its digit representation B, and we get 2B816. 

Feel free to try some more conversions for practice.  

 

2.3 Exercises  

2.3.1. Numbers in Table 1.2 in a given numeral system are represented in 

different numeral systems. Select a task from Table 2.2 according to your number in 

the group list. Present the results as shown in Table 2.3. 
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Table 2.2 – Individual tasks 

Option 

Numeral system 

Option 

Numeral system 

Deci

mal 
Binary Octal 

Hexade

cimal 

Deci

mal 
Binary Octal 

Hexadec

imal 

1 234 1110111 234 A34 16 269 11001110 262 2C9 

2 432 10010111 432 B32 17 805 11100011 705 80D 

3 567 11001011 567 C67 18 675 11000110 675 2F5 

4 543 10110011 543 543 19 931 10011001 731 9E1 

5 786 10101011 756 7FF 20 873 11011011 773 87A 

6 469 1111001 463 46A 21 764 11001001 764 764 

7 897 10001110 736 A197 22 231 10010111 207 F31 

8 438 11011010 437 4A38 23 345 11011101 345 34D 

9 291 10010010 261 2B11 24 456 10101111 456 4F6 

10 658 11101110 657 6E8 25 678 11101110 671 678 

11 386 10000111 376 2B86 26 765 10111011 765 1A65 

12 987 10111001 765 3E87 27 891 11111101 561 A91 

13 876 11100010 654 A76 28 588 10000111 555 B88 

14 564 01101100 564 B64 29 677 10011111 677 A177 

15 368 10010011 366 3A8 30 483 10011000 443 1B83 

 

Table 2.3 - Example of a table to fill in the results of option 30 of Table 2.2 

№ Decimal Binary Octal Hexadecimal Binary-decimal 

1 483 ? ? ? ? 

2 ? 10011000 ? ? ? 

3 ? ? 443 ? ? 

4 ? ? ? 1B83 ? 

 

 

2.3.2 Example of progress for option number 30 from Table 2.2. 

a) Translation number 483 of their decimal system into binary NS. 

Solution: 

 

 

Answer: 

 

48310   →   1111000112  

This result should be entered into 

Table 2.3 (at the intersection of line 

1 and column 2). 
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Checking the result.  

Ponderable coefficient 28 27 26 25 24 23 22 21 20 

Number 1 1 1 1 0 0 0 1 1 

10

015678 483113264128256212121212121 =+++++=+++++  . 

 

b) Translate number 483 in decimal NS into octal NS:     48310   →   ?8 . 

Solution: let's show two ways: 

1) We perform a division 

operation:  

 

2) Divide binary number into triads from 

right to left and give each triad the 

corresponding octal number (see Table 2.1): 

48310  →  1111000112 ,   

111.100.0112  →  7438 

 

Checking the result:                7*82+4*81+3*80=7*64+4*8+3=48310 

Answer:  7438, this result should be entered into Table 2.3 (at intersection of line 

1 and column 3). 

 

c) Translate number 48310 into hexadecimal NS:  48310   →   ?16 . 

Solution: Divide binary number into tetrads (4) from right to left and transform 

each tetrad into the corresponding hexadecimal number: 

48310  →  1111000112 ,   0001.1110.0011  → 1E316 

Checking the result:     1E316 –> 1*162 + 14*161 + 3*160 = 256+ 224 +3 = 48310 

Answer:  1E316, this result should be entered into Table 2.3 (at the intersection 

of line 1 and column 4). 

 

d) Translate number 48310  into binary-decimal NS: 48310   →   ?2-10. 

Solution: Translate each decimal figure into the corresponding binary tetrad: 

4   8   3     →  0100  1000  0011. 
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Answer:  100100000112-10 – this result should be entered into Table 1.3 (at the 

intersection of line 1 and column 5). 

 

2.4 Control questions 

1. Explain non-positional and positional numeral systems, give examples of non-

positional and positional numbers. 

2. Define the notion of "numerical system", "the basis of the numerical system". 

3. What is base 10? Binary? Hexadecimal?  

4. How can you convert from one base to another?  

5. Determine the maximum positive number that can still be placed in one, two, 

four, or eight bytes. 

6. What operation must be performed to convert an integer part from one s / h to 

another:  

a) dividing;  

b) subtraction;  

c) multiplication; 

d) adding? 
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3 REPRESENTATIONS IN OPERATIONAL MEMORY. 

LOGICAL OPERATIONS 

 

3.1 Representation of information in a computer  

Information (command and data: numeric, textual, graphical, etc.) is encoded 

with binary digits 0 and 1. Therefore, various types of information placed in 

computer memory are practically undetectable, identification is possible only with the 

execution of the program, according to its logic and to the context. For example, the 

phrase “Hello world!” In binary code encoded in Windows-1251 looks like this: 

1011100101100011100011000011101100111111 1111001000  

1000011111000000001110100000001110111011000010  

 

Each type of information has formats – units-structural information encoded 

with binary digits 0 and 1. The basic unit is 1 bit. A bit is the smallest piece of 

information obtained when choosing between two equiprobable events.  

The minimum unit of information in the computer is 1 byte, which is equal to 8 

adjacent bits. The string of bits making up a byte is processed as a unit by a 

computer. A byte can represent the equivalent of a single character, such as the letter 

'B', a comma, or a percentage sign, or it can represent a number from 0 to 255. 

Usually, all data formats used in the computer are multiples of a byte, i.e. consist 

of an integer number of bytes. 

A computer word, like a byte, is a group of fixed number of bits processed as a 

unit, which varies from computer to computer but is fixed for each computer. The 

length of a computer word is 2 bytes for 16-bit operating systems, 4 bytes for 32-bit 

operating systems, and 8 bytes for most 64-bit operating systems (in some cases 4 is 

also possible considering the difference in data models). 

Special types of memory units are used to measure large amounts of 

information. The table shows the different sizes of memory: 
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Table 3.1 – Special types of memory units 

Name Short name Number of bytes Number of bytes approx 

Bit  - 1 bit = 1/8b  

Nibble - 4 bit = 1/2b  

Byte b  = 1b 1b 

Kilo Byte K or Kb  = 1024b b 

Mega Byte Mb  = 1024Kb b 

Giga Byte Gb  = 1024Mb b 

Tera Byte Tb  = 1024Gb b 

Peta Byte Pb  = 1024Tb b 

Exa Byte Eb  = 1024Pb b 

Zetta Byte Zb  = 1024Eb b 

Yotta Byte Yb  = 1024Zb b 

 

 

3.2. Typical computer registers 

The processor handles all information in the computer. Information from the 

memory enters processor registers.  

The registers are intended for storing multi-digit codes of data commands, 

addressing and processing arithmetic and logical operations on them. The 

microprocessor contains the following groups of registers: general registers, segment 

registers, a command pointer and flags. For example, microprocessors Intel 8086 

contain twelve programmable addressable registers with a width of 16 bits, which are 

combined into three groups: data registers; register-pointers and segment registers. 

The data registers and index registers are grouped under the general name “General 

Purpose Registers” (fig. 2.1). In addition to these registers, there are two other 

registers (status and control registers): an instruction pointer and a flag register. 

The register consists of two parts – the high-order half and the lower half – each 

its has of 8 bits. For example, AH – high AX – high-order half of 8 bits, AL – low 

AX – lower half of 8 bits. 

02
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6105760481 

302
910

402
1210

502
1510

602
1810

702
2110

802
2410



24 
 

 

Figure 3.1 – General Purpose Registers [13] 

 

Four data registers (AX, BX, CX and DX) can be used by a programmer for 

temporary storing any objects: operands of logical and arithmetic operations; address 

components; pointers on the main memory cells.  

Some of these registers have a strict functional purpose, which are indicated in 

the right column in the fig 2.1. This provides compact coding and memory savings. 

Each bit of register information is stored in a memory device with a storage that 

is called a trigger. When a signal is applied to the trigger input, it is set to 0 or 1.  

This state is stored until a new signal is inputted to the port or the voltage is 

disconnected. The union of eight, sixteen or more triggers is a functional node, called 

a register. Except triggers, the register includes additional schemes that ensure:  

– setting the register to zero; 

– reception of the transfer of codes; 

– shift the code left and right to the required number of digits; 

– boolean logical operations, etc.  

A counter is a combination node that calculates the number of input signals 

received at its port. There are adding or subtracting counters. 
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The operating node performing the arithmetic addition of the number codes is 

called the adder. The addition is performed bitwise, taking into consideration the 

carry bit from the previous digit. 

A combinational logic circuit that converts the input code into a signal on only 

one of the outputs is called a decoder. Usually decoders are used to convert binary 

code to decimal. 

More information can be found in the book "Structured Computer Organization" 

[12] and many other books. 

 

3.3 Representation of numerical information in a computer 

The computer uses three types of numbers: fixed point, floating point and 

binary-decimal representation for integers. Integers are the simplest numeric data that 

a computer operates with. There are two representations for integers: unsigned (only 

for non-negative integers) and signed.  

For unsigned numbers, the range of number values is determined by the 

inequation:   

120 2 − nA , 

where n is the number of bits assigned to the representation of the number. For 

example, for n = 8, unsigned integers can be represented from the range [0 - 255]. 

For numbers with a sign, the range of values change is determined by the 

inequation: 

( ) ( )1212 1

2

1 −+−− −− nn A . 

When n = 8, you can represent signed integers from the range: [-127; +127], since 

one bit is assigned to the sign.  

Positive numbers have “0” value of sign digit, negative ones have “1” value. 

The length of the standard integer type most commonly coincides with the size 

of the computer word on the targeted platform. Many computer languages offer a 

choice between short, long and a standard length (int). 
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The representation of the whole type on different data models may change. 

Short int is 1-2 bytes, int is 2-4 bytes and longint is 4-8 bytes. Also in some 

languages, the data type is a longlong, which is 8 bytes long. 

Consider the representation of an integer in one byte. The bits are numbered in a 

byte from right to left (as in the figure below).  

In computing the least significant bit (LSB) is the bit position in a binary 

integer, which giving the units value. The LSB is sometimes referred to as the low-

order bit or right-most bit, due to the convention in positional notation of writing less 

significant digits further to the right. It is similar to the least significant digit of a 

decimal integer, which is the digit in the position one (right-most). The most 

significant bit (MSB, also called the high-order bit) is the bit, positioned in a binary 

number, which is having the greatest value. The MSB is sometimes referred to as the 

high-order bit or left-most bit due to the convention in positional notation of writing 

more significant digits further to the left. In conventional Intel bit ordering, MSB is 

numbered 7 and LSB is numbered 0: 

 

MSB       LSB 

7 6 5 4 3 2 1 0 

 

Unsigned numbers have only one representation: significant digits are stored in 

all bits, from the low-order bit to the high-order bit. For example, the number “99” is 

written as follows:  

 

Bit’s number: 7 6 5 4 3 2 1 0 

number 0 1 1 0 0 0 1 1 

 

An n-bit signed binary number consists of two parts: one part denoting the sing 

of the number and another part denoting the magnitude of the number. The MSB is 

always a sign bit, which denotes the sign of the number and the convention is that 0 

and 1 denote “+” and “-“, respectively. The remaining (n-1) bit denotes the 

magnitude of the number. For example, the number "+99" has the representation: 
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 sing        

 MSB       LSB 

Bit’s number: 7 6 5 4 3 2 1 0 

number 0 1 1 0 0 0 1 1 

 

The three best-known methods of extending the binary numeral system to 

represent signed numbers are: sign-and-magnitude, ones' complement and two's 

complement. 

In "sign and magnitude" approach or signed magnitude representation (SMR), a 

number's sign is represented with a sign bit: setting MSB to 0 for a positive number 

or positive zero, and setting it to 1 for a negative number or negative zero. The 

remaining bits in the number indicate the magnitude (or absolute value). For 

example, in an eight-bit byte, only seven bits represent the magnitude can be ranged 

from 0000000 (010) to 1111111 (12710). Thus, number “-99” can be represented once 

the sign bit (the eighth bit) is added as: 

 

Bit’s number:  7 6 5 4 3 2 1 0 

Positive number “99” 0 1 1 0 0 0 1 1 

Negative number “-99” 1 1 1 0 0 0 1 1 

 

The complement of a number is the number, which is added to the original and 

will make it equal to a multiple of the base number system. 

The complement of a number can be used as a representation of that number as a 

negative and positive number that represents a negative. It is a method, which can be 

used to make substruction easier for machines. Consequently, complements are used 

in digital computers for simplifying the substruction operation and for the logical 

operation.  

For every base r system, there are two types of complements: rs complement 

and (r - 1)s complement. For decimal r = 10, we have 9s and 10s complement. For 

binary r = 2, we have 1’s and 2’s complement. For octal r = 8, we have 7s and 8s 

complement. For hexadecimal r = 16, we have 9’s and 15’s complements. 
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The 1’s complement. Positive numbers are the same in both sequence, but we 

need to define the negative numbers in the system. All the negative numbers have the 

binary MSB = 1, which is helpful in identifying the sign of the number. In addition, 

the sign bit allows to divide the counting sequence evenly between positive and 

negative numbers. 

To form the negative of any number, first of all complement all the bits of that 

number. This result is known as the one’s complement of the original number. This 

requires changing every logic 1 bit in a number to logic 0, and every logic 0 bit to 

logic 1. For instance, let us find the 1’s complement of 0011 0110 in binary:  

 

Bit’s number 

 
7 6 5 4 3 2 1 0 

Unsigned  number  0 0 1 1 0 1 1 0 

1’s complement   1 1 0 0 1 0 0 1 

 

The 2’s complement. We do not just place 1 in the MSB of a binary number to 

make it negative. We must take the 2’s complement of the number. Taking the 2’s 

complement of the number will cause the MSB to become 1.  

To obtain the 2’s complement of a number, there is a two-step process: 

1. Take the 1’s complement of the number by changing every logic 1 bit in the 

number to logic 0 bit, and change every logic 0 bit to logic 1 bit.  

2. Add 1 to the 1’s complement of the binary number. Now, we have the 2’s 

complement of the original number. Here, we can notice that the MSB has become 1.  

Both 1’s and 2’s complements of ‘001101102‘ are shown in the following table: 

 

Bit’s number  7 6 5 4 3 2 1 0 

Unsigned  number  0 0 1 1 0 1 1 0 

1’s complement   1 1 0 0 1 0 0 1 

2’s complement   1 1 0 0 1 0 1 10 

 

What is the difference between 1’s complement and 2’s complement?  The main 

difference is that 1’s complement has two representations of zero: '00000000', which 

is a positive zero (+0) and '11111111', which is a negative zero (-0); whereas in 2’s 
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complement, there is only one representation for zero – '00000000' (+0) because if  1 

is added to '11111111' (-1), it’s '00000000' which is the same as positive zero. This is 

the reason why 2’s complement is generally used. Another difference is that while 

adding numbers using 1’s complement, first of all binary addition is done and then 

added an end-around carry value. Thus, 2’s complement has only one value for zero 

and doesn’t require carry values. 

 

3.4 Bitwise operations. Logical operations   

Logical commands are mainly used to manipulate binary values. Logical 

commands are called logical because they act according to the rules of formal logic, 

rather than arithmetic. They change bit values in registers or memory cells. 

The logical operations in the computer: inverting (NOT), logical addition OR, 

logical multiplication AND, exclusive XOR. These operations are performed on bits. 

Table 3.1 – Bitwise Logical Operations 

Operation Description Bit1 Bit2 Result bit 

Not Inverting 
0  1 

1  0 

And Multiplication 

0 

 

0 

 

0 

 0 

 

1 

 

0 

 1 

 

0 

 

0 

 1 

 

1 

 

1 

 

Or Addition 

0 

 

0 

 

0 

 0 

 

1 

 

1 

 1 

 

0 

 

1 

 1 

 

1 

 

1 

 

Xor Exclusive 

0 

 

0 

 

0 

 0 

 

1 

 

1 

 1 

 

0 

 

1 

 1 

 

1 

 

0 

  

Logical operations AND, OR, XOR are performed on two operands, and the 

NOT operation is performed on one operand. 

The AND operation is useful for filtering, masking, or setting to nil. It sets the 

result bit to 1 for each position where both operands contain “1”, otherwise the result 

bit is reset to 0. 
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The OR operation sets the result bit to 1 for each position where at least one of 

the two operands contains 1. In positions, where both operands contain 0, the result 

bit is 0. This command is usually used to set bit to 1. 

The XOR (OR exclusive) operation is a modification of the OR operation. This 

operation sets a result bit to 0 when both operands are equal. This name of this 

operation is given because it excludes combination of 1&1 bits. This command is 

usually used to invert a bit. 

The NOT command is used if it is necessary to invert all bits of a number. 

The commands for manipulating bits (bitwise operations) are divided into two 

groups: logical commands and shift commands. The shift commands are in turn 

applied to linear and rotate shift instructions.  

 

3.5 Examples of problem solving 

Example 3.1   Invert number A10 = 27 

 

Bit’s number 7 6 5 4 3 2 1 0 

А10 =  27 0 0 0 1 1 0 1 1 

Operation NOT NOT NOT NOT NOT NOT NOT NOT 

Result 1 1 1 0 0 1 0 0 

 

Example 3.2  Set the value of the 2nd and 3rd bits of the number “27” to 1. 

To do this let's execute the bitwise logical addition (the logical operation OR) of 

the given number and the number, in which “1” only in the second and third bits: 

 

Bit’s number 7 6 5 4 3 2 1 0 

А10 =  27 0 0 0 1 1 0 1 1 

Operation OR OR OR OR OR OR OR OR 

Mask 0 0 0 0 1 1 0 0 

Result 0 0 0 1 1 1 1 1 

 

Example 3.3 Reset the 3rd bit of the number “27” to 0.  

To do this it’s needed to perform the logical multiplication operation on a 

number containing zero in third bit. 



31 
 

Bit’s number 7 6 5 4 3 2 1 0 

А10 =  27 0 0 0 1 1 0 1 1 

Operation AND AND AND AND AND AND AND AND 

Mask 1 1 1 1 0 1 1 1 

Result 0 0 0 1 0 0 1 1 

 

Example 3.4 Define the value of the 0-th bit of the number “38”.  

To do this it’s needed to perform the bitwise logical multiplication (logical 

AND) of a given number and a number whose only 1 in the first bit. 

 

Bit’s number 7  6  5  4  3  2  1  0  

А10 =  38 0  0  1  0  0  1  1  0  

Operation AND AND AND AND AND AND AND AND 

Mask 0  0  0  0  0 0  0  1 

Result 0  0  0  0  0  0  0  0  

 

Example 3.5 Invert the 5-th bit of the number “38”.  

To invert the 5-th bit the mask is overlay: in the 5-th bit is 1, and in the other bits 

– 0; then it’s needed to perform the XOR operation. 

 

Bit’s number 7 6 5 4 3 2 1 0 

D = 38 0 0 1 0 0 1 1 0 

Operation XOR XOR XOR XOR XOR XOR XOR XOR 

Mask 0 0 1 0 0 0 0 0 

Result 0 0 0 0 0 1 1 0 

 

3.6 Exercises 

3.6.1 Select a task from table 1 according to your number in the group list. 

Table 3.2 – Individual task 

Option 

number. 

Decimal 

number 

Bit number (n) 

to be seted. 

Bit number (k) to 

be determined. 

Bit number (m)  

to be reseted 

Bit number (p) 

to be inversed 

1 2 3 4 5 6 

1 65 1 4 0 5 

2 30 2 5 1 6 

3 16 3 6 2 7 

4 25 4 7 3 0 

5 55 5 0 4 1 

6 63 6 1 5 2 
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Continue Tab.3.2 

1 2 3 4 5 6 

7 94 7 2 6 3 

8 83 0 3 7 4 

9 43 1 4 0 5 

10 64 2 5 1 6 

11 97 3 6 2 7 

12 84 4 7 3 0 

13 11 5 0 4 1 

14 26 6 1 5 2 

15 68 7 2 6 3 

16 12 0 3 7 4 

17 33 1 4 0 5 

18 44 2 5 1 6 

19 28 3 6 2 7 

20 46 4 7 3 0 

21 35 5 0 4 1 

22 56 6 1 5 2 

23 34 7 2 6 3 

24 48 0 3 7 4 

25 67 1 4 0 5 

26 81 2 5 1 6 

27 96 3 6 2 7 

28 98 4 7 3 0 

29 37 7 0 5 1 

30 23 5 1 4 6 

 

1) For a decimal number (positive and negative), it’s needed to get its binary 

representation in three formats: the sign-magnitude representation (SMR) or direct 

code, 1’s complement notation and 2’s complement notation. Use a field with a 

length of 1 byte to represent the code. 

2) Perform bitwise logical operations to the sign–magnitude representation of a 

positive number in such order:  

– invert the received binary number;  

– set the selected bit; 

– determine the value of the selected bit; 

– reset the selected bit; 

– invert the selected bit. 
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3) Perform the same logical operations for a negative number in the 2’s 

complement code. 

 

3.6.2 Process of obtaining results for variant 30 from table 3.2 

a) For number ‘2310’ we have: 

 +23 -23 

Bit’s number 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

SMR 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 

1′s complement  0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 

2′s complement  0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 

 

For a positive number, SMR, 1’s complement and 2’s complement codes are the 

same.  

 

b) We perform the operation NOT to invert a binary number (flip all the bits): 

Bit’s number 7 6 5 4 3 2 1 0 

А10 =  +23 0 0 0 1 0 1 1 1 

Operation NOT NOT NOT NOT NOT NOT NOT NOT 

Result 1 1 1 0 1 0 0 0 

 

c) Set the value of the 5-th bit of the number 23 to 1. 

Perform logic operation OR for this number and number, that have 1 only at 5-th 

bit –    10

5 322 = . 

  7 6 5 4 3 2 1 0 

А10 =  +23  0 0 0 1 0 1 1 1 

Operation OR         

Mask = 32  0 0 1 0 0 1 0 0 

Result = 55  0 0 1 1 0 1 1 1 

 

d) Determine the value of the first bit of the number 23. 

Perform logic operation AND for this number and the number, that have 1 only 

in bit 1 –    10

1 22 =  
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  7 6 5 4 3 2 1 0 

А10 =  +23  0 0 0 1 0 1 1 1 

Operation AND         

Mask = 2  0 0 0 0 0 0 1 0 

Result = 2  0 0 0 0 0 0 1 0 

 

Let's go through another example for a better understanding. Define the 5-th bit 

in the binary number. To do this it’s needed to perform logic operation AND with a 

mask –   10

5 322 =  

  7 6 5 4 3 2 1 0 

А10 =  +23  0 0 0 1 0 1 1 1 

Operation AND         

Mask = 32  0 0 1 0 0 0 0 0 

Result = 0  0 0 0 0 0 0 0 0 

 

e) Reset the 4-th bit of number 23. 

Perform logic operation AND for this number and the number that have 0 only 

in 4-th bit. 

  7 6 5 4 3 2 1 0 

А10 =  +23  0 0 0 1 0 1 1 1 

Operation AND         

Mask = 237  1 1 1 0 1 1 1 1 

Result = 7  0 0 0 0 0 1 1 1 

 

f) Inverse 6-th bit of number 23. 

Perform logic operation XOR for this number and number that have 1 only in  

6-th bit –   10

6 642 = .  

 

  7 6 5 4 3 2 1 0 

А10 =  +23  0 0 0 1 0 1 1 1 

Operation XOR         

Mask = 64  0 1 0 0 0 0 0 0 

Result = 87  0 1 0 1 0 1 1 1 
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3.7 Control questions 

1. Are there sign–magnitude, 1’s complement, and 2’s complement codes for a 

positive and a negative number? 

2. Rules of performing bitwise logical operations that are used in this laboratory 

work. 

3. Why masks are needed when performing bitwise logical operations? 

4 Use 2’s complement code for number ‘-5’. Reset the 7-th bit. What number is 

it? 

5. Why registers of microprocessor are divided into groups? List functional 

destinations of: ALU registers; segment registers. 

6. Arrange the following units of memory in ascending order of their capacity: 

terabyte, petabyte, megabyte and gigabyte. 



36 
 

4 ADDITION OF INTEGER BINARY NUMBERS 

 

4.1 Adding binary numbers 

All modern computers are equipped with a well-developed command system, 

the implementation of which may include tens and hundreds of machine operations. 

However, the implementation of any operation is based on the use of simple micro-

operations, such as addition and displacement. This allows you to have a single 

arithmetic-logical device for performing any operations related to information 

processing. 

Previously we talked about different representations of numbers in binary code: 

the sign-magnitude representation or direct code, ones’ complement notation and 

two’s complement notation. 

The sign-magnitude representation is used to represent numbers in the 

computer's memory, as well as when performing operations of multiplication and 

division. The ones’ complement and two’s complement codes are used to perform the 

subtraction operation, which is replaced by the addition of numbers with different 

signs: )( baba −+=− . 

The direct code of a binary number coincides in the image with the record of the 

number itself. The sign bit value for positive numbers is 0, and for negative numbers 

– 1. The one’s complement code for a positive number is the same as the direct code. 

For a negative number, all digits of the number are replaced by the opposite ones (1 

by 0, 0 by 1), and unit is entered in the sign bit. In the future, when writing the code, 

we agree to separate the signed bit from the digital ones with a comma. 

For example, for the number +1101 the direct code is 0,0001101, for the number 

-1101 the direct code is 1,0001101. 

The 1’s complement code for a positive number is the same as SMR code. For a 

negative number, all digits of the number are replaced by the opposite ones (1 by 0, 0 

by 1), and unit is entered in the sign bit. 
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For example: for the number +1101 – SMR code is 0,0001101; the 1’s 

complement code is 0,0001101. For the number -1101, SMR code is 1,0001101; the 

1’s complement code is 1,1110010. 

The two’s complement code of positive number matches the ones’ complement 

code. For a negative number, the calculation of the 2’s complement is formed in two 

steps: take the ones' complement of number and add one to the result. 

 

For example: for the number +1101 : 
0,0001101

complement s2'

0,0001101

complement s1'

0,0001101

SMR
.  

 

For the number -1101 : 
1,1110011

complement s2'

1,1110010

complement s1'

1,0001101

SMR
. 

 

Computers perform addition in the binary number system. Table 4.1 shows the 

rules for adding binary digits ai and bi of the same order, taking into consideration the 

possible displacement of Pi-1 from the previous lower order and the possible 

displacement of Pi to the next higher order. 

 

Table 4.1 - Rules for adding binary digits 

The value of i-th bits of 

numbers A, B and shifting from the 

previous order Pi-1 
Order of the sum Si Shifting to the next order Рi 

аi bi Pi-1 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Consider addition of the two numbers: 
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10

0123

2

10

10
0123

2

0123

2

12202120211010

8

4

202121200110

202021200100
100

=+++=

+
=+++=

=+++=
+

− carries

 

 

The subtraction operation is reduced to the addition operation by converting 

numbers to the reverse or additional code according to Table 4.2. 

Table 4.2 – Rules of conversion the subtraction operation into add operation 

Required Operation  Required Conversion 

А+В  А+В  

А-В  А+(-В)  

-А+В  (-А)+В  

-А-В  (-А)+(-В)  

 

 

Consider another example of addition: 

10

0123

2

10

10
0123

2

0123

2

2202120200010

14

4

202121211110

202021200100
100

=+++=

+
=+++=

=+++=
+

− carries

 

 

The result, 2, is arithmetically incorrect. The problem here is that the addition 

has produced carry beyond the fourth bit. Since this is not taken into account in the 

result, the answer is wrong. The concept of overflow arises. 

Overflow of the bit grid can lead to the transfer of a unit to a sign bit, which will 

lead to an incorrect result. A positive number resulting from an arithmetic operation 

can be perceived as negative, since "1" appears in the sign digit and vice versa. For 

example:   

X = 0,11011110       Y = 0,1101100     X + Y = 1,1001010 , 

X and Y are codes of positive numbers, but in the process of addition, “1” appeared 

in the sign digit, which means the code of a negative number.  
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To recognize the overflow of the bit grid in a computer, modified sign-

magnitude (direct), 1’s complement (reverse), and 2’s complement codes are used. In 

these codes, the sign is encoded in two digits: the combination of ‘00’ corresponds to 

the plus sign and the combination of ‘11’ to the minus sign. The indicator of overflow 

in the modified code is the difference between digits in sign digits. It is '01' or '10' in 

the sign bits.  

To cope with overflow, it’s needed to normalize the number. Addition of 

numbers in modified codes is no different from addition in ordinary forms of 1’s or 

2’s complement codes. However, when adding numbers in the additional code, the 

resulting carry unit in the sign digit is discarded, and when adding numbers in the 

reverse code, the resulting carry unit in the sign bit is added to the least significant bit 

of the code sum. 

Consider example of addition: add two numbers: A10 = +16, B10 = -7 in 1’s and 

2’s complement codes. 

According to the table, the transformation A + (- B) is necessary, in which the 

second term is converted taking into consideration the sign. Use byte to represent 

numbers. 

1’s complement form of B:  11 111000;  

2’s complement form of B:  11 001000.  

 

Addition in  

1’s complement code 

Addition in  

2’s complement code 

Check  up 

00100100

001000001

11100011

01000000

1

1

1

1

=

+
=

=
+

=

cm

cm

cm

сm

C

C

B

A

 

00100100

001000001

11100111

01000000

2

2

2

2

=

=

=
+
=

cm

cm

cm

сm

C

C

B

A

 

 

 

 

921211001 03

210 =+==C  

 

Addition of binary numbers is carried out sequentially, bitwise in accordance 

with the rules (Table 4.1). 

When adding numbers, the following rules must be observed: 
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1) The subtraction operation is replaced by the addition operation with a 

negative number. 

2) The terms must have the same number of bits. To align the bit grid of terms, 

insignificant zeros is added to the left of the integer. 

3) Sign bits participate in addition in the same way as significant ones.   

4) The necessary code transformations are made with the change of signs of 

numbers. The assigned insignificant zeros change their value during transformations 

as a general rule. 

5) When converting a transfer unit from a high-order sign bit, in the case of 

using 1’s complement form code, this unit is added to the lowest bit. When using 2’s 

complement form code, the transfer unit is lost. The sign of the result is generated 

automatically, the result is presented in the code in which the original terms are 

presented. 

6) In order to check the result, it is converted into the SMR format. 

 

4.2 Exercises 

From Table 4.3, according to your number in the group list, select the values A 

and B, which are given: one – in the two’s complement, and the second – in the ones’ 

complement code, for the representation use a field of 1 byte (8 bits). When writing a 

code, we agree on separating the sign digit of the number with a comma from other 

digits. 

Table 4.3 – Individual tasks 

Variant   
C 

(2’s complement) 

D 

(1’s complement) 
Variant  

C 

(2’s complement) 

D 

(1’s complement) 

1 2 3 4 5 6 

1 1,110111 0,110111 16 0,1101010 1,110110 

2 1,1010111 0,10111 17 0,000111 1,1110001 

3 1,1110110 0,101011 18 1,11111 0,110000 

4 0,101011 1,1011001 19 0,1001011 1,100110 

5 0,1111101 1,10111 20 0,01011 1,1011011 

6 0,100111 1,0111101 21 1,1011001 0,1100100 

7 1,1001111 0,100010 22 0,11011 1,1001011 

8 0,1001100 1,1101101 23 1,0111100 0,1101 
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Continue Tab.4.3 

1 2 3 4 5 6 

9 1,0111 0,100010 24 0,101110 1,1010111 

10 0,10111 1,101110 25 0,1101101 1,110 

11 0,1101011 1,100011 26 1,1111 0,1011101 

12 1,100011 0,111001 27 0,1001011 1,111101 

13 1,01110 0,111010 28 0,111011 1,100111 

14 0,110001 1,0110110 29 1,111 0,101111 

15 1,10111 0,10011 30 0,1011 1,1100000 

 

 

For your variant, get decimal, binary, sign-magnitude, ones’ complement and 

two’s complement codes for + C, -C, + D and -D, and fill in the Table, as shown in 

Table 4.4 for variant 30. 

Table 4.4 – Example codes for variant 30 from Table 4.1 

Codes +C –C +D –D 

Decimal +11 –11 +31 –31 

Binary +1011 –1011 +11111 –11111 

SMR (Direct)  0,0001011 1,0001011 0,0011111 1,0011111 

1’s complement (Inverse) 0,0001011 1,1110100 0,0011111 1,1100000 

2’s complement 

(Complement) 

0,0001011 1,1110101 0,0011111 1,1100001 

 

 

Over the numbers C and D manually perform the addition operations in the 

modified one’s compliment and two’s complement codes, alternately using the "+" 

and "-" characters before each of these numbers, namely: 

+ D + (+ C),  + D + (- C),  -D + (+ C),  -D + (- C). 

 

Convert the result of the calculations in a sing-magnitude code, and then 

translate it into decimal code and perform a check. Obtained addition results are 

demonstrated as shown for variant 30 in Table 4.2. 

 



42 
 

Table 4.5 – Example results (for variant 30 from Table 4.2) 

Numbers in different 

codes 

Addition of numbers with 

different signs 
Result  

Result in 

SMR 

Result in 

decimal 

code 

C in decimal code (+11) 
In two’s 

complement 

code 

+C + (–D) 1,1101100 1,0010100 –20 

D in decimal code (–31) +C + (+D) 0,0101010 0,0101010 +42 

C in SMR (0,0001011) –C + (–D) 1,1010110 1,0101010 –42 

D in SMR (1,0011111) –C + (+D) 0,0010100 0,0010100 +20 

C in 1’s complement 

code (0,0001011) 

In ones’ 

complement 

code 

+C + (–D) 1,1101011 1,0010100 –20 

D in 1’s complement 

code (1,1100000) 
+C + (+D) 0,0101010 0,0101010 +42 

C in 2’s complement 

code (0,0001011) 
–C + (–D) 1,1010101 1,0101010 –42 

D in 2’s complement 

code (1,1100001) 
–C + (+D) 0,0010100 0,0010100 +20 

 

 

4.3 Process of obtaining results 

The operation of adding two numbers using a modified 1’s complement and a 

modified 2’s complement code for numbers D = 3810 and C = 1710 is performed. 

Calculate the values of the following expressions: 

( ) ( ) ( ) ( )СDСDСDСD −+−+−−++++ ,,, . 

The following terms are used in the text below: SMR – sign-magnitude (direct) 

representation; 1c – ones’ complement code; m1c – modified ones’ complement 

code; 2c – two’s complement code; m2c – modified two’s complement code. 

 

Perform the above operations using a modified ones’ compliment code. 

1) ( ) 551738 =+=+++= CDA  

Both terms are positive, therefore their SMR and 1’s complement code coincide. 

 

11011100

01000100

10011000

1

1

1

=

=
+
=

cm

cm

cm

A

C

D

 

Two zeros in signed digits indicate that the number is 

positive, and the 1’s complement code of representation of 

answer is coincided with the SMR. The received answer is 

converted to the decimal number system and the correctness 
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of the answer is checked: 5522222 54210

10 =++++=A  

 

2) ( ) 211738 =−=−++= CDA  

Note that the 1’s complement code of the second term is different from its SMR. 

 

01010100

010100100

01000111

10011000

1

1

1

1

=

+
=

=
+
=

cm

cm

cm

cm

A

A

C

D

 

We got the overflow of the bit grid and correction 

needed. The resulting '1' of carry in the sign digit is added to 

the least significant bit of the sum of codes to correct 

overflow. 

In the received answer, two zeros are in signed digits and 

indicate that the number is positive, so the SMR code 

coincides with the 1’s complement code.  

Let's check up: ( ) 21222 420

10 =++=A   

 

3) ( ) 211738 −=+−=++−= CDA  

Note that the 1’s complement code of the first term is different from its SMR. 

 

10101011

01000100

01100111

1

1

1

=

=
+
=

сm

сm

сm

A

C

D

 

Two units in sign digits indicate that the number is 

negative. To convert it into SMR, we invert the significant 

digits of the number A: 01010111=mSMRA . 

Let's check up: ( ) 21222 420

10 −=++−=A . 

 

4) ( ) 551738 −=−−=−+−= CDA  

 

00100011

000111111

10111011

11001011

1

1

1

1

=

+
=

=
+
=

cm

cm

cm

cm

A

A

C

D

 

We got the overflow of the bit grid and correction 

needed. The ‘1’ was added to the least significant bit of the 

sum of codes to correct overflow. Two units in sign digits 

indicate that the number is negative. We invert the significant 

digits of the number A: 11011111=mSMRA  

Let's check up: ( ) 5522222 54210

10 −=++++−=A . 
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Let’s perform an operation in a modified two’s complement code: 

 

5) ( ) 551738 =+=+++= CDA  

Both terms are positive, therefore their SMR and 2’s complement code coincide. 

 

11011100

01000100

10011000

2

2

2

=

=
+
=

cm

cm

cm

A

C

D

 

Two zeros in signed digits indicate that the number is 

positive, the 2’s complement code of the answer matches the 

SMR, it is 11011100=mSMRA . 

Let's check up:  5522222 54210

10 =++++=A . 

 

6) ( ) 211738 =−=−++= CDA  

Note that the 2’s complement code of the second term is different from its SMR. 

 

01010100

10111111

10011000

2

2

2

=

=
+
=

cm

cm

cm

A

C

D

 

Two zeros in sign digits indicate that the number is 

positive, SMR coincides with the 2’s complement code, it is 

01010100=mSMRA . 

Let's check up:  21222 420

10 =++=A . 

 

7) ( ) 211738 −=+−=++−= CDA  

Note that the 2’s complement code of the first term is different from its SMR. 

 

10101111

01000100

01101011

2

2

2

=

=
+

=

cm

cm

cm

A

C

D

 

Two units in sign digits indicate that the number is 

negative. To convert it into SMR, we invert the significant 

digits of the number and add 1 to the least significant bit: 

 

01010111

1
10100011

=

+

mSMRA

 

 

Let's check up: ( ) 21222 420

10 −=++−=A . 
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8) ( ) 551738 −=−−=−+−= CDA  

 

00100111

10111111

01101011

2

2

2

=

=
+

=

cm

cm

cm

A

C

D

 

Two units in sign digits indicate that the number is 

negative. To convert it into SMR, we invert the significant 

digits of the number and add 1 to the least significant bit: 

 

11011111

1
11011011

=

+

mSMRA

 

 

Let's check up: ( ) 5522222 54210

10 −=++++−=A . 

 

 

4.4 Control questions 

1. What is the difference between sign-magnitude representation, ones’ 

complement code and two’s complement code in computer for positive and negative 

numbers? 

2. What happens to the unit of transfer from a higher character digit when 

performing the addition operation in ones’ complement form and two’s complement 

form codes? 

3. What is the sign of a bit grid overflow when performing an add operation? 

4. How is a digit grid overflow corrected? 
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5 ADDITION AND SUBTRACTION OF FLOATING-POINT NUMBERS  

 

5.1 Floating-point representation 

In floating-point representation, the computer must be able to represent the 

numbers and has an ability to operate on them in such a way, that the position of the 

binary point is variable and automatically adjusted as computation proceeds, for the 

accommodation of very large integers and very small fractions. In this case, the 

binary point is said to be the float, and the numbers are called the floating point 

numbers. 

Numbers are too large for standard integer representations or have fractional 

components, which are usually represented in scientific notation, such a form 

commonly used by scientists and engineers. When we use Scientific Notation in a 

decimal, we write numbers in the following form:   

onentmantissa exp10/ −+ . 

In this form, there is an optional sign which indicates whether the overall 

number is positive or negative, followed by a mantissa (also known as a significand). 

It is a real (fractional) number, which in turn is multiplied by a number base (or 

radix) raised by an exponent. As we know, in decimal this number base is 10. 

Examples: 
2331 1042.1,10,1035.3,1025.4 −− −
. 

Floating-point representation is essentially scientific notation applied to binary 

numbers. In binary, the only real difference is that the number base equals 2 instead 

of 10. We would therefore write floating-point numbers in the following form: 

onentmantissa exp2/ −+ . 

When we write numbers in scientific notation (whether they be binary or 

decimal) we can write them in various ways. In decimal we could write 

12 1015,105.1   and 
010150  , but still all these numbers have exactly the same 

value. This provides flexibility, which also, unfortunately leads to confusion. In order 

to try and resolve this confusion a common set of rules known as normalized 
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scientific notation are used to define how numbers are normally written in scientific 

notation. 

In the normalized form we have a single key rule: we choose an exponent so that 

the absolute value of the mantissa remains greater than or equal to 1, but less than the 

number base. Let’s look at a couple of examples!  

If we had the decimal number 500  and wanted to write it in scientific notation 

we can write it as either 
010500  or 

11050 . In normalized form though, we would 

apply the rule above and move the radix point so that only a single digit, greater than 

or equal to 1 and less than (in this case) 10 were to the left of the radix point. This 

case means moving our radix point two places to the left so we had: 
2100.5  . 

Examples of normalized floating-point numbers: ,1023456789.1 1+  

1210987654321.9 − , 
0100.5 + . These are not normalized examples: 

1103.11 +  

(significand is greater than radix (=10); 
71000003.0 −  (significand < radix ); 

2
1

100.4 −  (exponent not integer). 

Let’s look at a slightly more complicated example, this time in binary. What if 

we had the binary number 21.10 ? Again, we apply the rules: we need to have a 

mantissa that is greater than or equal to 1 and less than our number base (which this 

time is 2). That would mean our mantissa would need to be 
1201.1  . To get back to 

our original number we would need to move our radix point 1 place to the right. What 

does a right side mean? That means the exponent is positive. 

The following example is a little more tricky: we want to write the number '

2111.0 ' in normalized scientific notation. Again, we apply the rules. We need a 

mantissa greater than or equal to 1 and less than 2: 
?211.1  . Now, to go back to our 

original number we need to move our radix point 1 place to the left. That means our 

exponent is negative. That gives us: 
1211.1 − . 
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5.2 Converting from decimal to binary (repetition of previous training) 

Like a slight reminder, check out a couple of examples of converting floating-

point numbers from decimal to binary radix. In order to make it, please, follow a 

simple iterative procedure: 

1) multiply the number by exponent; 

2) separately select the integer part of the number and translate it into binary 

code; 

3) start with the decimal fraction: the fractional part is multiplied by 2; 

4) separate the  integer part of the intermediate result (it is '0' or '1'); 

5) stop if the fractional part of the intermediate result is 0 (terminated binary) or 

a result you’ve seen before (repeating binary); 

6) repeat from step 3 with the fractional part of the result until the result reaches 

0 or starts to repeat; 

7) record the integer part and  the fractional part of the result. 

 

Example 5.1. Let’s convert the number 
1104625.3   follow the steps below. 

  Let’s write the number without exponent:   625.34104625.3 1 = . 

  Let’s convert separately with the 3410, which equals 1000102 . 

  Separately convert the fractional part: 

2 ×.625 = 1.25 (save the integer part), 

2 ×.25 = 0.5 (no integer part to save), 

2 ×.50 = 1.00 (save the integer part). 

Let’s write them left to right in order: 210 101.100010625.34 =  . 

 

Example 5.2. Let’s convert the number  
11023125.1  . 

  3125.121023125.1 1 =  

  210 110012 =  
     

0.15.2
5.025.2
25.1625.2

625.03125.2

=
=
=
=

 

Let’s write the binary number:  210 0101.11003125.12 = . 
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5.3 IEEE 754 Representations 

Floating-point numbers are used everywhere in modern computing. Whether it 

be the percentage of the market that have been upgraded to the latest version of iOS, 

the current position and orientation of your iPhone in space or the amount of money 

flowing into your bank account. As a result of such a wide use, the format, storing 

floating-point numbers in memory, has been standardized by the Institute of 

Electrical and Electronic Engineers. It is called the IEEE 754 standard. 

This standard defines a number of different binary representations that can be 

used to store floating-point numbers in memory:  

– half precision – uses 16-bits of storage in total; 

– single precision – uses 32-bits of storage in total; 

– double precision – uses 64-bits of storage in total; 

– quadruple precision – uses 128-bits of storage in total. 

In each of these cases, their basic structure is, as follows:  

( ) onentsign
mantissa exp21 − . 

When it comes to a storedge of floating-point numbers in memory, only three 

critical parts of that basic structure are stored: sign, exponent, mantissa. The fig 5.1 

below shows how these parts are stored in memory. The most significant bit is the 

sign bit. 

 

 

Figure 5.1 – Floating-point representation  

 

All four binary representations defined in the IEEE 754 standard and have the 

most significant bit, as a sign bit and use it to store the sign of the overall number. If 

the sign bit is clear (a value of 0) the overall number is positive. If the bit is set (a 

value of 1) the number is negative.  
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The exponent represents the power to which the mantissa will be raised. There 

is always a fixed number of exponent bits when storing a floating point representation 

in memory, and the exact number of bits which use is defined by the particular IEEE 

754 representation (single precision, double precision etc). 

In all cases, the exponents in each of these representations need to be able to 

represent both positive exponents (in order to represent very large numbers) and 

negative exponents (in order to represent very small numbers). To avoid the 

complications of the need to store the exponents in two’s complement format, 

something called an exponent bias is used. 

Exponent bias is where the value stored for the exponent is offset from the 

actual exponent value by a bias. The bias is simply a number that is added to the 

exponent to ensure that the value that is stored is always positive. The table below 

shows the number of bits used for the exponent in each of the formats, the allowed 

range of values the different exponents which can be applied the bias along with the 

allowed values after applying the bias: 

Table 5.1 – Characteristics of standard formats 

Representat

ion 
Bits 

Normal Range 

(Pre Bias) 
Bias 

Modified Range 

(Post Bias) 
Notes 

Half 

Precision 

(2 bytes) 

5 -14 to +15 +15 +1 to +30 

Biased values of 0 (all bits 

clear) and 31 (all bits set) 

have special meaning. 

Single 

Precision 

(4 bytes) 

8 -126 to +127 +127 +1 to +254 

Biased values of 0 (all bits 

clear) and 255 (all bits set) 

have special meaning. 

Double 

Precision 

(8 bytes) 

11 
-1022 to 

+1023 
+1023 +1 to +2046 

Biased values of 0 (all bits 

clear) and 2047 (all bits 

set) have special meaning. 

Quadruple 

Precision 

(16 bytes) 

15 
-16382 to 

+16383 
+16383 +1 to +32766 

Biased values of 0 (all bits 

clear) and 32767 (all bits 

set) have special meaning. 

 

 

Exponent bias can be calculated by the formula: ( ) pт +−− 12 1
, m – the number 

of bits allocated to represent the order, p – actual order of normalized number.  
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Examples of exponents in short floating point which uses 8-bits for the 

exponent, which we want to range from -128 to +127 (single precision): 

– the exponent is 135, then 135 = 135-127 = 8, therefore we have 28 ; 

– the exponent is 120, then 120 = 120-127 = -7, therefore we have 2-7 . 

In the IEEE 754 representations, the mantissa is expressed in normalized form. 

The formats follow the same rules for normalization as we saw with Scientific 

Notation, and put the radix point after the first non-zero digit.   

As we are expressing our numbers in binary, we knowing that the first non-zero 

digit will always be a 1 (after all we can only have 1’s or 0’s). Taking this into 

consideration, we are able to drop that first bit, simply assuming it is there, and 

instead gain an additional (implicit) bit of precision. When numbers are stored, we 

only store the part of the mantissa that represents the fractional part of the number, 

the part to the right of the radix point. This is provided by the IEEE 754 standard.  

In accordance with this standard, the highest binary digit (the whole part) of the 

mantissa of a real number in the normalized form is always ′1′. In this case, the entire 

mantissa is unnecessary to be stored in the memory. 

Let's look at some examples.  

1) Number 125.3010 −=A  must be written in 4 bytes: 

 
4

2 21110001.1001.11110 +−=−=A . 

Mantissa   =   1110001.1 ,   frac  =  1110001 ,   = 104p   

bias is      ( ) 210

18 100000111314127412 ==+=+−−
. 

Binary float-point representation is 

   
frac

sign

00000000000000000000000100011000

exp . 

 

2) Given the bit string: 00000000000000000000101000001000 . 

What floating point number does it represent? 

We see that this is a positive, normalized number. 
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                                102 12810000000 =      exp = 128−127 = 1. 

So, this number is: 102

1

2 25.301.112101.1 == . 

 

3) Representing values 210 0111.11004375.12 −=−  



   







00000000000000000111100000011001

21000111.10111.1100

1273

22

+

−=−

 

 

5.4 Rules for adding a floating-point format numbers 

The basic rules for adding (subtracting) numbers of a floating-point format can 

be formulated as follows: 

• to add two floating-point values, they have to be aligned so that they have the 

same exponent and the same grid of the mantissa: 

    – shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1; 

    – shifting the mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1. 

• after addition, the sum may need to be normalized; 

• potential errors include overflow, underflow and inexact results. 

Decimal example: ?1063.21025.3 13 =+ −
 

The first step – aligning decimal points, the second step – adding: 

333 10250263.310000263.01025.3 =+ . 

The third step – normalizing the result: already normalized! 

The binary example: ?10025.0 =+  

1. Convert into binary in short representation (2 bytes) 

  
fraction1251272-

-2

2210 00000000000000000000000 01111101 0  21.00.01  0.25
=+

==

 

  
fraction1331276

6

210 00000000000001001000000 10000101 0  21.10011100100  100
=+

==
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2. Align radix points, it's needed to shift the mantissa from the first term to the 

right, because its exponent is smaller. Choose to shift the 0.25, in order to increase its 

exponent. Shift by ( 10222 810000111110110000101 ==−  ) 8 places. 

  
00000000000000000000000 11110011 0

125

     (original value) 

  
00000000000000000000100 01111011 0

126

     (shifted 1 place) 

Note that hidden bit is shifted into MSB (most significant bit) of mantissa. 

  
00000000000000000000010 11111011 0

127

(shifted 2 places) 

  
00000000000000000000001 00000100 0

128

(shifted 3 places) 

  
00000000000000000001000 00000100 0

129

(shifted 4 places 

  
00000000000000000100000 10000100 0

130

(shifted 5 places) 

  
00000000000000000010000 00001100 0

131

(shifted 6 places) 

  
00000000000000000001000 00010100 0

132

(shifted 7 places) 

  
00000000000000010000000 10010100 0

133

(shifted 8 places) 

3. Add of mantissas 

00000000000000010001001.1

)100(00000000000000000001100.1

)(0.2500000000000000010000000.0

10

10

+
 

4. Normalize the result – get the "hidden bit" to be a 1. The example is already 

normalized.   Result is  

102

127133

2

133

25.10001.1100100210001001.100...0000010001100 00101100 0 === −

    

Check out the four-step algorithm (fig. 5.2) and, afterwards, the example. 
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Figure 5.2 – Floating-point addition 

 

Consider the example with 4-digit precision: ( )4375.05.0 −+   

and binary form:     ( )2

2

1

2 2110.12000.1 −− −+ .  
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1. Align binary points, shift number with smaller exponent:  

( )1

2

1

2 2111.020.1 −− −+ . 

2. Add significands: 

( ) 1

2

1

2

1

2 2001.02111.02000.1 −−− =−+  

3. Normalize result and check for over/underflow:  

4

2 20.1 − – with no over/underflow. 

4. Round and renormalize if necessary:        

10

4

2 0625.020.1 = −   

 

5.5 Floating-point precision and rounding 

Often due to the small amount of binary digits allocated for storing the mantissa, 

there is a fractional part representation error of the output number in the binary 

system. It is calculated by the formulas: 

 

absolute error Δ relative error δ 

outputinput XX −= , ( ) %100/ = outputX , 

 

where inputX – input number , outputX – output number. 

All fraction bits are significant for relative precision. Relative precision for 

floating-point numbers of a single precision format is approx 2– 23 because we have 

23 bits in the mantissa. That is equivalent to 6 decimal digits of precision: 

63.0232log23 10  .  

For double precision we have 52 bits in the mantissa and approx 16 decimal 

digits of precision: 163.0522log52 10  . 

The floating-point addition associative is not associative. Its need to beware! 

Look at the example: 

Associativity law for the addition: ( ) ( ) CBACBA ++=++ . 
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Let 
23107.2 −=A , 

23107.2 =B   and 0.1=C  in single precision format. 

( ) ( ) 0.0107.2107.20.1107.2107.2 23232323 =+−=++−=++ CBA  

( ) ( ) 0.10.10.00.1107.2107.2 2323 =+=++−=++ CBA  

The result is approximate... Why the smaller number disappeared? 

 

Arithmetic operations on floating-point values compute results that cannot be 

represented in the given amount of precision. So, the result should be rounded. There 

are many ways of rounding. They each have "correct" uses, and exist for different 

reasons. The goal is to compute the round result, which is as "correct" as possible. 

There are even arguments about what is really correct. 

Rounding in binary system is similar, but it still may cause some difficulties. 

The biggest challenge is rounding fractions. For example, it may not be obvious right 

away why the fraction 0.11101 when rounded to 2 places after the decimal point 

results in the integer 1.  

There are five rounding methods, as defined by the IEEE-754 standard, and 

most of them are pretty straightforward. The first two rounds to a nearest value (ties 

to even and ties away from zero); the others are called directed roundings: towards 

zero, towards positive infinity and towards negative infinity. These rules are easier to 

understand using decimal system as an example (Table 5.2).  

Table 5.2 – Example of rounding to integers using the IEEE 754 rules 

Mode/Example value +11.5 +12.5 -11.5 -12.5 

to nearest, ties to even +12.0 +12.0 -12.0 -12.0 

to nearest, ties away from zero +12.0 +13.0 -12.0 -13.0 

toward 0 +11.0 +12.0 -11.0 -12.0 

toward + +12.0 +13.0 -11.0 -12.0 

toward - +11.0 +12.0 -12.0 -13.0 
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During rounding towards 0 (also called truncation) it’s needed to figure out how 

many bits (digits) are available and take that majority bits for the result and throw 

away the rest. This influences on making the represented value closer to 0. Example: 

the number is ‘0.7783’. If 3 decimal places available then we have ‘0.778’; if 2 

decimal places available then we have ‘0.77’. 

Round up – regardless of the value, round towards +∞. Rounded result is close, 

but not less than true result. Example: rounding ‘1.23’ if 2 decimal places gives ‘1.3’; 

‘-2.86’ if 2 decimal places – ‘-2.8’. 

Round down – regardless of the value, round towards −∞. Rounded result is 

close, but not bigger than true result. Example: rounding ‘1.23’ if 2 decimal places 

gives ‘1.2’; ‘-2.86’ if 2 decimal places – ‘-2.9’. 

Examples for binary numbers, rounding to 2 digits after radix point:   

• Round towards zero (truncate): 22 11.11101.1  , 22 00.1001.1  ,  

                                                22 11.11101.1 −− , 22 00.1001.1 −− ; 

• Round up: 22 00.101101.1  , 22 01.1001.1  ; 

• Round down: 22 11.11101.1  , 22 00.1001.1  . 

 

Directed roundings are pretty straightforward! 'The round to the nearest' and 'ties 

to even' rules usually is pretty hard to understand as directed roundings. The general 

rules of rounding come from comparing the original number and the middle between 

two rounding options. 

The general rule during rounding binary fractions to the n-th place prescribes to 

check the digit following the n-th place in the number. If it’s a 0, then the number 

should always be rounded down. If, instead, the digit is 1 and any of the following 

digits are also 1, then the number should be rounded up. If, however, all of the 

following digits are 0s, then a tie breaking rule must be applied and usually it’s the 

‘ties to even’. This rule says that the number should be rounded to the number that 

has 0 at the n-th place. 
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To demonstrate those rules in action let’s round some numbers to 2 places after 

the radix point: 

• 0.11001 – rounds down to 0.11, because the digit at the 3-rd place is 0; 

• 0.11101 – rounds up to 1.00, because the digit at the 3-rd place is 1 and there 

are following digits of 1 (5-th place); 

• 0.11100 – rounds to 0.11 – apply the ‘ties to even’ tie breaker rule and round 

up because the digit at 3-rd place is 1 and the following digits are all 0’s; 

• 22 00.101111.1  , 22 11.11101.1  , 22 00.1001.1  ; 

• 22 11.11101.1 −−  (1/4 of the way between), 22 00.1001.1 −− . 

 

5.6 Exercises 

Select a task from Table 5.3 according to your number in the group list. 

Table 5.1 – Individual task 

Option  A10 B10 Option  A10 B10 

1 16.53 –36.29 16 36.63 –57.75 

2 23.47 53.67 17 –59.97 37.73 

3 –65.38 15.74 18 38.12 68.59 

4 42.89 33.52 19 –71.17 39.93 

5 –76.74 17.44 20 40.14 –56.65 

6 –32.19 –80.88 21 –72.27 43.36 

7 99.57 –15.97 22 44.51 –69.96 

8 51.68 28.79 23 63.85 46.64 

9 –35.49 77.39 24 –48.84 –18.81 

10 64.25 –19.43 25 61.16 50.15 

11 –47.31 29.34 26 –52.29 28.82 

12 20.52 45.78 27 26.63 54.47 

13 30.32 –55.56 28 58.85 –24.42 

14 67.76 31.41 29 22.72 60.76 

15 34.54 –87.77 30 –70.73 21.12 

 

 

1) Convert numbers A10 and B10 into SMR form of binary numbers. Consider 

representation precision with 5 numbers after a comma. 



59 
 

2) Represent obtained binary numbers in a normalized floating-point format in 2 

bytes (fig. 5.1 and top examples).  

3) Determine which exponent is the smaller exponent. Align the grids of the 

mantissas. 

4) Get the 1’s complement and 2’s complement codes for BBAA −+−+ ,,, . 

5) Manually calculate the values of the following expressions in 2’s complement 

forms: 

( ) ( ) ( ) ( )BABABABA −+−++−−+++++ ,,, . 

6) Normalize the answer to normal exponential form and convert the results to 

decimal. 

7) Check up result. 

 

 

5.7 Control questions 

1. How many bits are in half precision, single precision double precision and 

quadruple precision formats? 

2. How does the transfer unit from the most significant sign digit taken into 

account when adding in the two’s complement code? 

3. Represent the number NA += 5.410  (N is your number in the group list) in 

the single precision format (4 bytes). 

4. Operation features of addition in a two’s complement modified code during 

overflow of the bit grid. 
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6  MULTIPLICATION OF BINARY NUMBERS 

 

6.1 Commonly rules 

Multiplication of two fixed point binary number in signed-magnitude 

representation (SMR) is done by the process of successive shift and add operation. 

In the multiplication process bits of the multiplier are considered and the least 

significant bit considers first. If the multiplier bit is 1, the multiplicand is copied or 0 

is copied. The numbers copied down in successive lines are shifted one position to 

the left from the previous number. Afterwards, when numbers are added, their sum 

form the product. The sign of the product is determined from the sign of the 

multiplicand and multiplier. If they are alike, sign of the product is positive, 

otherwise - negative. 

 

For example 1, let's multiply +12 by +15, which in binary will be 1100 by 1111. 

( )
( )

00101101

0011

0011

0011

0011

1111
0011

ultiplierM

dultiplicanM


; 

102 18010110100 = ; 101010 1801512 = .  

The answer is correct. 

 

So. When multiplying numbers in SMR: 

1. Sign and significant bits are processed separately. To determine the sign of 

the result, the sign bits of the operands are summed using the operation XOR. 

2. Multiplication of numbers is done step by step adding the shifted value of the 

multiplicand and partial sum with a non-zero bit of the corresponding bit of the 

multiplier. 
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When we are multiplying numbers in 2’s complement form: 

1. The number of bits of a multiplicand is increased by the number of the bits of 

a multiplier. Insignificant zeros are added to the left of the multipliers. 

2. Multiplicand and multiplier are represented in two’s complement codes. 

3. The result sign is obtained automatically. 

4. Multiplication of numbers is made step by step by adding the shifted value of 

the multiplicand and partial sum if there is a non-zero bit in the corresponding bit of 

the multiplier. 

5. If multiplier is a negative number, we need to do a correction. And when 

multiplying the multiplicand A by the sign bit of the multiplier B, we must sum with 

negative A (-A) in 2’s complement code (but don't positive A). 

 

Example 2. Multiply A * (-B) in the 2’s complement code, А=10, В=13. 

 

Number +A -A +B -B 

Decimal  10 -10 13 -13 

Binary  1010 -1011 1101 -1101 

SMR (1 byte) 0,1010 1,1010 0,1101 1,1101 

2’s complement 0,1010 1,0110 0,1101 1,0011 

 

When multiplied by the sign bit, we write the multiplicable A as -A is written in 

2’s complement form (step 5) 

( )
( )

01111110,1

0110,1
0000

0000

0101

0101

1100
0101

,1
0000,0

BultiplierM

AdultiplicanM

, 

 

Inversion:   1,10000001 +1 = 1,10000010 

Check up: 0,100000102=13010 
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6.2 Floating-point multiplication 

• Multiplying floating point values does not requires re-alignment - realigning 

may lead to loss of significance.  

• After multiplication, the product may need to be normalized. 

• Potential errors include overflow, underflow and inexact results. 

The figure 6.1 shows the multiplication algorithm. 

 

Figure 6.1 – Multiplication algorithm  
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Example 6.1 on decimal values given in scientific notation:  

?105.0100.3 21 = −−

  

It’s the simple algorithm: multiply mantissas and add exponents.   

3)2(121 105.1105.00.3105.0100.3 −−+−−− ==  

 

Example 6.2 in binary. 
5104=A , 

601012=B . 

Multiply A2=0 10000100 0100 and B2=1 00111100 1100. 

The used mantissa is only 4 bits. Also, in the floating-point format the mantissa 

and the exponent are separate numbers. 

1. Add the blased exponents of the two numbers: 

)127675(00000011

)12767(

)1275(

00111100

00100001

+−=

+−=

+=
+

,  

subtracting the bias from the sum to get the new exponent: 

)65(10000010
)127'1(

)127675(
00000001
00000011

=

+−=
+

resultdecimal
tocomploments

 

2. Multiply the significands: mantissas multiplication and don't forget the hidden 

bit 

00001100

0000

0010

0010

0000

0000

0011

0010


,    becomes   00110000. 

Put the result back together (and add sign bit):   1 110 0000 0  011 0000 

3. No need to normalize the product. 

4. Round the significand to the appropriate number of bits.  No need to round! 
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5. This is the value stored:     1 11000000  0110000 

 

6.3 Exercises 

1) Choose the task from the Table 6.1 according to your number in group list. 

Table 6.1 – Individual task 

Variant  multiplicand  

А10 

Multiplier   

В 10 

Variant  multiplicand 

А10 

Multiplier В 

10 

1 16 –36 16 3 –27 

2 28 33 17 –5 17 

3 –25 15 18 8 20 

4 12 33 19 –4 19 

5 –36 17 20 4 –26 

6 –32 –10 21 –17 13 

7 9 –15 22 14 –19 

8 11 28 23 23 6 

9 –35 27 24 –8 –5 

10 4 –19 25 21 2 

11 –7 29 26 –5 28 

12 20 15 27 3 35 

13 30 –5 28 9 –12 

14 6 14 29 13 6 

15 34 –8 30 –7 21 

 

2) Convert numbers A10 and B10 into binary code in SMR and 2’s complement 

codes. Use numbers +А2, +В2, –А2, and –В2. 

3) Perform multiplication of binary numbers A2 and B2. Use 2’s complement 

code for different combinations: (+А2, +В2), (+А2, –В2), (–А2, +В2) and (–А2, –В2). 

 

6.4 Control questions 

1. Features of multiplying integer binary numbers with a sign in SMR and 2’s 

complement form. 

2. What does the term "partial sum" mean? 

3. If the multiplicand or multiplier is a negative number, what should in mind 

when performing a multiplication operation? 
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7 DIVISION OF BINARY NUMBERS  

 

Division algorithms are divided into two main categories: slow division and fast 

division. Slow division algorithms produce one digit of the final quotient per 

iteration. Examples of slow division include restoring, non-performing restoring, 

non-restoring, and SRT division. Fast division methods start with a close 

approximation to the final quotient and produce twice as many digits of the final 

quotient on each iteration. Newton-Raphson and Goldschmidt algorithms fall into this 

category. We consider the simplest algorithms. 

 

7.1 Division of fixed-point numbers 

The division operation is performed by shifting operations and adding 2’s 

complement code to the adder. Division schemes with remainder recovery (restoring 

division) and without remainder recovery (non-restoring division) are distinguished. 

 

The non-restoring division is performed according to the following scheme: 

1. Equalize the bit grid of the dividend and divider (divisor). 

2. If the dividend A > 0, then A = A - B. If the resulting difference А > 0, then 

increase by one the value of the integer part of the quotient C and go to step 3, 

otherwise finish the formation of the integer part of the quotient and go to step 4. 

3. Repeat step 2 until the resulting difference A is less than 0. 

4. Perform a linear shift of A by one digit to the left. 

5. If A> 0, then find A = A - B, otherwise A = A + B. 

6. If A> 0, then assign 1 to the i-th order of fractional part, otherwise assign 0. 

7. If the number of fractional digits is less than the required number, then go 

back to step 4. 

8. Done. Doing decimal conversion. 
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Example 7.1 Find the result of dividing BAC /=  according to the algorithm 

without reconstruct a remainder: А = 10, В = 3. Find the three digits of the fractional 

part. 

Step 1. Get binary values and aligned the bit grid. 

  

Number +A +B -B 

Decimal  10 3 -3 

Binary  1010 0011 -0011 

SMR (1 byte) 0,1010 0,0011 1,0011 

Modified 2’s 

complement 
00,1010 00,0011 11,1101 

 

Steps 2-3. Find the integer part of the quotient C. Perform the current 

subtraction operation until the result becomes negative or zero: 

 

 

0011100

110111

101000
)2



+

 0010000

110111

011100
)2



+
 

0000100

110111

010000
)2



+
 

0111011

110111

000100
)2



+
 

 increment C increment C increment C fix point 

002 =C  3)      012 =C  3)      102 =C  3)      112 =C  3)      .112 =C  

 

Steps 4-6. We proceed to the search for the fractional part.  

4|) Shift one bit to the left of the last value of A.  Now 110011'2 =scA . 

5) Since, A<0  then scscsc BAA '2'2'2 +−= .   

0111111

001100

110011



+
 

6) The result is negative, so the next bit of the fractional part is zero: 0.112 =C   

Continue from step 4. 

4) Shift one bit to the left, now 111011'2 =scA . 

5) Since, A<0  then scscsc BAA '2'2'2 +−= .       
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0000100

001100

111011



+

.  

6) The result is positive, so the next bit of the fractional part is one: 01.112 =C  

Continue from step 4. 

4) Shift one bit to the left, now 0010000'2 =scA . 

5) Since, A>0  then )( '2'2'2 scscsc BAA −++= .       

0111111

110111

001000



+

.  

6) The result is negative, so the next bit of the fractional part is 0: 010.112 =C  

Step 7-8. After conversion to decimal code, the result is 2510.310 =C . 

 

The result contains the absolute error :  

08233.02510.333333.3expected =−=−= factCC . 

Error occurred due to the small number of digits in the quotient. 

 

The restoring division is performed according to the following scheme: 

1. Equalize the bit grid of the dividend and divisor. 

2. If the dividend A > 0, then A = A - B. If the resulting difference А > 0, then 

increase by one the value of the integer part of the quotient C and go to step 3, 

otherwise finish the formation of the integer part of the quotient and go to step 4. 

If the value A = 0 is obtained, then increase the value of the integer part of the 

quotient C by 1, complete the formation of the quotient, fixing the position of the 

comma, which separates the integer part of the quotient from its fractional part equal 

to 0 in this case, and proceed to the step 9. 

3. Repeat step 2 until the resulting difference A is less than 0. 

4. Recover the remainder A = A + B. 

5. Perform a linear shift of A by one digit to the left. 
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6. Find A = A - B. 

7. If A < 0, then assign 0 to the i-th digit of the fractional part and go to step 4. 

Otherwise assign 1 the i-th fractional part and go to step 5. 

8. If the number of fractions is sufficient or A = 0, then the formation of the 

fractional part is completed. 

9. Done. 

 

Example 7.2  Find the result of dividing BAC /=  according by the algorithm 

of division with recovery of the remainder: А = 12, В = 5. Find the three digits of the 

fractional part. 

Let's put in that  4.2expected=C . 

Step 1. Get binary values and aligned the bit grid. 

  

Number +A +B -B 

Decimal  12 5 -5 

Binary  1100 0101 -0101 

SMR (1 byte) 0,1100 0,0101 1,0101 

Modified 2’s 

complement 
00,1100 00,0101 11,1011 

 

Steps 2-3. Find the integer part of the quotient C. 

Perform the current subtraction operation until the result becomes negative or 

zero:  

 

0011100

101111

110000
)2



+

 
0001000

110111

011100
)2



+
 

0110111

110111

001000
)2



+
 

 increment C increment C fix comma 

0002 =C
 

3)  0012 =C  3)  0102 =C  3)  .0102 =C  

 

The calculation of the integer part is completed.  

Steps 4-6.  

4) Reconstruct the remainder: scscsc BAA '2'2'2 += , 110111'2 =scA . 
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001000

010100

110111
+

 

5) Shift one bit to the left in A, now 010000'2 =scA . 

6) Since, A>0  then we do )( '2'2'2 scscsc BAA −++= .       

0111111

101111

010000



+
 

7) The result is negative, so the next bit of the fractional part is zero: 0.102 =C . 

Repeat the steps from 4-th step. 

4) Reconstruct the remainder: scscsc BAA '2'2'2 += ,. 

010000

010100

111111
+

,           010000'2 =scA . 

5) Shift one bit to the left in A, now 100000'2 =scA . 

6) Since, A>0  then we do )( '2'2'2 scscsc BAA −++= .       

0001100

101111

100000



+
 

7) The result is positive, so the next bit of the fractional part is one: 01.102 =C  

Repeat the steps from 5-th step. 

5) Shift one bit to the left in A, now 011000'2 =scA . 

6) Since A>0  then we do )( '2'2'2 scscsc BAA −++= .       

0000100

101111

011000



+
 

7) The result is positive, so the next bit of the fractional part is one: 011.102 =C  

8) The number of digits after the point is enough. Done. 

After conversion to decimal code, the result is 
34510.210 =factC

. 
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The result contains the absolute error :  

0549.034510.24.2expected =−=−= factCC . 

Error occurred due to the small number of digits in the quotient. 

 

7.2 Division of binary floating-point numbers  

If A and B are given in normalized form: 

pA

AMA 2= , pB

BMB 2= , 

where AM , BM  are mantissas, and pA and pB are orders of numbers A and B, then 

their quotient will be equal to  

( ) pBpA

BA

pB

B

pA

A MMMMС −== 222 . 

In the division of floating-point numbers, their mantissa is divided as a fixed-

point number, and the orders are subtracted. Potential errors of the float-point 

division include overflow, underflow, inexact results and attempts to divide by zero. 

Afterwards, the division operation for floating-point numbers is performed in 

five stages.   

1 stage. Definition of the quotient by adding modulo two signed digits of the 

operands. 

2 stage. Division of the mantissa operand modules according to the rules for 

dividing fixed-point numbers. 

3 stage. Determining the order of the quotient by subtracting the order of the 

divisor from the order of the dividend. 

4 stage. Normalization of the result and its rounding. 

5 stage. Signing the mantissa result.  

The first two stages completely coincide with the rules for dividing numbers 

with a fixed point. The third step is the usual addition in 1’s complement codes. 
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When dividing normalized numbers, denormalization of the result is possible 

only to the left and only by one digit. And due to the fact, the mantissa of any 

normalized number lies within:  nМ −− − 212 1 . 

Then the smallest and largest possible value of the quotient of the mantissa are 

equal, respectively: 

1
1

min 2
21

2 −

−

−


−

=
nСМ , ( ) 222

2

21 1

1max −=
−

= −−

−

−
n

n

CМ , 

i.e., the mantissa of the quotient lies within   22 1 −

CM . 

Therefore, at the fourth stage, it may be necessary to normalize the mantissa of 

the quotient by shifting it to the right by one bit and increasing the order of the 

quotient by one. If, before division, shift the dividend by one digit to the right, then at 

the fourth stage, it may be necessary to normalize the results to the left by one bit. 

 

Example 7.3.  Get 
6105 −−=A , 

5108 −=B  

 
mantissasign

SMRA 101111000111

exp


=

, 

 
mantissasign

SMRB 110011010110

exp


=

 

1 stage. Definer of quotient’ sign: 101 =  

2 stage. Mantissas division by one of the methods shown above. It turned out:  

1101,00= BAC MMM  

3 stage. Determining the order of quotient:  

0111111

'11010000
1001111

comps
SMR

 

Convert into true exponent: 11111102 = 12610 ,        126-127=-1 

4 stage. The quotient is received the normalized, so only the rounding of the 

mantissa is performed:    111,0=CM  
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5 stage. Result:  
mantissasign

SMRМ 111011110111

exp


= , in decimal it is  

1100.7 −−

. 

7.3 Exercises 

1) Perform a manual division of the two given pairs of numbers, using the 

scheme restoring and non-restoring division.  

Table 7.1 – Individual tasks 

 restoring 

division 

method 

non-

restoring 

division 

method 

 restoring 

division 

method 

non-

restoring 

division 

method 

 restoring 

division 

method 

non-

restoring 

division 

method 

V
ar

ia
n
t 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

V
ar

ia
n
t 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

V
ar

ia
n
t 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

D
iv

id
en

d
 

А
1

0
 

D
iv

is
o
r 

 

В
 1

0
 

1 23 7 33 10 11 17 4 27 8 21 28 9 22 6 

2 24 5 34 11 12 18 5 28 9 22 29 7 43 14 

3 25 7 35 8 13 19 6 29 8 23 30 8 44 13 

4 26 8 36 10 14 20 6 30 9 24 31 7 25 6 

5 27 6 37 9 15 21 6 31 8 25 32 6 26 7 

6 28 6 38 8 16 22 5 32 9 26 33 9 27 7 

7 29 8 39 9 17 23 8 17 5 27 34 8 12 3 

8 30 9 40 12 18 24 7 18 4 28 35 9 13 4 

9 31 8 41 13 19 25 8 19 5 29 36 8 14 4 

10 32 7 42 12 20 26 6 20 5 30 37 9 19 4 

 

2) The result of the division must be shown in SMR and decimal codes. 

 

7.4 Control questions 

1. Why does the quotient value obtained after division according to the above 

schemes not always coincide with the expected one? 

2. What is the difference of the division scheme without restoration and division 

scheme with the restoration? 

3. Draw a diagram of the algorithm performing a division during the formation 

of the integer part of the quotient. 

4. Draw a diagram of the algorithm performing a division without recovery, as 

well as with recovery during the formation of fractional part of the quotient.  
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