
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

«ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Gavrylenko S., Khatsko N.

FUNDAMENTALS OF COMPUTER SYSTEMS

ARCHITECTURE

The study guide for the students of

121 – "Software Engineering" and 123 – "Computer Engineering"

for full-time and distance education

Харків

НТУ «ХПІ»

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic National Technical University "Kharkiv Polytechnic Institute"...

https://core.ac.uk/display/249365673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

«ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Gavrylenko S., Khatsko N.

FUNDAMENTALS OF COMPUTER SYSTEMS

ARCHITECTURE

The study guide for the students of

121 – "Software Engineering" and 123 – "Computer Engineering"

for full-time and distance education

Затверджено

редакційно-видавничою

радою

НТУ «ХПІ», протокол № 2

від 17 травня 2019р.

Харків

НТУ «ХПІ»

2019

УДК 004.2; 004.6; 519.6

Г 12

Рецензенти:

О.С. Назаров, к.т.н., доцент, заступник декана факультету комп’ютерних

наук Харківського національного університету радіоелектроніки;

Є.В. Танько, канд. пед. наук, доц. кафедри іноземних мов НТУ «ХПІ».

Розглянуто базові принципи архітектури компьютерних систем, питання

подання інформації в різних системах числення, виконання логічних та

арифметичних операцій. В кожному розділі наведена необхідна теоретична

інформація, приклади представлення інформації та приклади виконання

арифметичних та логічних операцій, приведені завдання для самостійного

виконання та контрольні запитання.

Розраховано на студентів спеціальностей 121 – «Інженерія програмного

забезпечення» та 123 – «Комп’ютерна інженерія» денної та дистанційної форм

навчання.

Gavrylenko S., Khatsko N.

Г 12 Fundamentals of computer systems architecture / Gavrylenko S., Khatsko N.

– Kharkiv : NTU “KhPI”, 2019. – 75 p.

ISBN 978-966-8944-91-8

In the study guide "Fundamentals of computer systems architecture" the

questions of presentation of information in different systems of calculation, execution

of logical and arithmetic operations are considered. Each chapter provides the

necessary theoretical information, examples of presentation of information and

examples of execution of arithmetic and logical operations, given tasks for self-

execution and control questions.

For the students of specialties 121 – “Software Engineering” and 123 –

“Computer Engineering”.

УДК 004.2; 004.6; 519.6

ISBN 978-966-8944-91-8 © Гавриленко С.Ю., Хацько Н.Є., 2019

© НТУ «ХПІ», 2019

3

TABLE OF CONTENTS

INTRODUCTION. ... 5

1 INTRODUCTION TO COMPUTER ARCHITECTURE 6

2 NUMBER SYSTEMS USED IN COMPUTER CALCULATIONS 13

2.1 Number systems used in computer calculations ... 13

2.2 Conversion of a number from one number system to another. Examples 17

2.3 Exercises .. 18

2.4 Control questions ... 21

3 REPRESENTATION IN OPERATIONAL MEMORY.

LOGICAL OPERATIONS ... 22

3.1 Representation of information in a computer ... 22

3.2 Typical computer registers .. 23

3.3 Representation of numerical information in a computer 25

3.4 Bitwise operations. Logical operations ... 29

3.5 Examples of problem solving .. 30

3.6 Exercises .. 31

3.7 Control questions ... 35

4 ADDITION OF INTEGER BINARY NUMBERS .. 36

4.1 Adding binary numbers .. 36

4.2 Exercises .. 40

4.3 Process of obtaining results ... 42

4.4 Control questions ... 45

5 ADDITION AND SUBTRACTION OF FLOATING-POINT NUMBERS 46

5.1 Floating-point representation .. 46

5.2 Converting from decimal to binary (repetition of previous training) 48

5.3 IEEE 754 Representations ... 49

5.4 Rules for adding of a floating-point format numbers 52

5.5 Floating-point precision and rounding .. 55

5.6 Exercises .. 58

4

5.7 Control questions ... 59

6 MULTIPLICATION OF BINARY NUMBERS .. 60

6.1 Commonly rules .. 60

6.2 Floating-point multiplication .. 62

6.3 Exercises .. 64

6.4 Control questions ... 64

7 DIVISION OF BINARY NUMBERS .. 65

7.1 Division of fixed-point numbers ... 65

7.2 Division of binary floating-point numbers .. 70

7.3 Exercises .. 72

7.4 Control questions ... 72

BIBLIOGRAPHY .. 73

5

INTRODUCTION

Nowadays, microelectronics, computer technologies and the entire computer

science industry have become one of the main components of world scientific and

technological progress. The influence of computer technology on all spheres of

human activity continues to expand in breadth and depth. Computers are used not

only for performing complex calculations, but also for managing production

processes, education tasks, healthcare or environmental related issues etc. It’s

possible due to the fact that computers are able to process any type of information:

digital, text, tabular, graphical, visual and audible.

Just like each building, each computer has a visible structure, referred to as its

architecture. The architecture of a building can be examined at various levels of

details, like the number of stories, the room size, the doors and windows location and

so on. Take a look at a computer’s architecture at similar levels of detail of basic

hardware elements, which in turn depends on the type of the computer.

The methodical tutorial includes the basic questions of computer architecture,

the arithmetic and logical foundations of the computer. In the first chapter of tutorial

some important concepts related to computer architecture are introduced with special

emphasis on those processor nodes that perform data conversion operations (simple

arithmetic operations). The following chapters explain in detail the arithmetical

foundations of computing. The study of various computer systems used in computing

and arithmetical operations is very important for understanding how information

processing is performed in computing machines.

The main aim of this methodical tutorial is to help students with the self-

education. The examples and tasks discussed will help to effectively master the study

material. Questions for self-monitoring are recommended for students to test

knowledge.

6

1 INTRODUCTION TO COMPUTER ARCHITECTURE

Everybody knows what a computer is. The box that stands on your desk, runs

your programs and, sometimes, crashes at the wrong time. Inside that box is the

electronics that runs your software, stores your information, and helps to create a

connection to the world. It's all about information processing.

Computer systems are divided into two separate categories. The first, and most

obvious, is the desktop computer. The second category is the embedded computer, a

computer that is integrated into another system with the purposes of controlling

and/or monitoring. Embedded computers are far more numerous than desktop

systems, but far less obvious. Each person on average has one or two computers. But,

such a person may not know that he or she has 30 or more embedded computers,

hidden inside TVs, VCRs, remote controls, washing machines, cell phones, air

conditioners, game consoles, ovens, toys, and a lot of other devices.

This chapter describes computer architecture in general. It is applicable to both

embedded and desktop computers, because the primary difference between an

embedded machine and a general-purpose computer is its application. The basic

principles of operation and the underlying architectures are fundamentally the same.

Both have a processor, memory, and, often, several forms of input and output.

The primary difference lies in their intended use and in the user control degree over

the loading and launching software. Desktop computers can run a variety of

application programs, with system resources are orchestrated by an operating system.

By running different application programs, the functionality of the desktop computer

is changing. In contrast, the embedded computer is normally dedicated to a specific

task. The embedded computer may or may not have an operating system, and rarely

provide the user with the ability to arbitrarily install new software. Embedded

hardware is often simpler than a desktop system, but it can also be far more

complicated too. An embedded computer can be implemented in a single chip with

just a few support components, and its purpose may be similar to a controller for a

garden-watering system. Alternatively, the embedded computer may be a distributed

7

parallel machine with 150 processors, which is responsible for all the flight and

control systems of a commercial jet. No matter how many diverse with embedded

hardware excite, the underlying principles of design are the same.

This chapter introduces some important concepts related to computer

architecture, with special emphasis on those processor nodes that perform data

conversion operations (simple arithmetic operations).

Basically, a computer is a machine designed to process, store, and retrieve data.

Data may be represented as numbers in a spreadsheet, characters in the text

document, dots of color in an image, waveforms of sound, or the state of some

system, such as an air conditioner or a player.

Everything that a computer does, from web browsing to printing, involves

moving and processing numbers. The electronics of a computer is nothing more than

a system designed to hold, move, and change the numbers.

A computer system is composed of many parts, both hardware and software. At

the heart of the computer is the processor, the hardware that executes the computer

programs. The computer also has memory, often several different types in one

system. The memory is used to store programs while the processor is running them,

as well as store the data that the programs are manipulating with. The computer also

has devices for storing data, or exchanging data with the outside world. Such as

allowing to input the text via a keyboard, to display information on a screen, or to

move programs and data to or from a disk drive.

The processor is the most important part of a computer, the component around

which everything else is centered. In essence, the processor is the computing part of

the computer. The processor is an electronic device capable of manipulating data

(information) in a way specified by a sequence of instructions. The instructions are

also known as opcodes or machine code. This sequence of instructions may be altered

to suit the application, and, therefore, computers are programmable.

The processor by itself is incapable to perform any task successfully. It requires

memory (for program and data storage), support logic, and at least one input/output

8

device (I/O device) used to transfer data between the computer and the outside world.

The basic computer system is shown in Figure 1.1.

Such computer architecture is known as a Von Neumann machine, named after

John Von Neumann, one of the originators of the concept. With very few exceptions,

nearly all modern computers follow this form. Von Neumann computers can be

named control-flow computers. The steps taken by the computer are governed by the

sequential control of a program. In other words, the computer follows a step-by-step

program that governs its operation.

Figure 1.1 – Basic computer system

The memory of the computer system contains both the instructions that the

processor executes and manipulates data. The memory of a computer system is never

empty. It always contains something, whether it be instructions, meaningful data, or

just the random garbage that appeared in the memory when the system powered up.

Instructions are read (fetched) from memory, while data is both read from and written

to memory, as shown in Figure 1.2.

9

Figure 1.2 – Data flow

This form of computer architecture is known as a von Neumann machine,

named after John von Neumann, one of the originators of the concept. With very few

exceptions, nearly all modern computers follow this form. Von Neumann computers

are what can be termed control-flow computers. The steps taken by the computer are

governed by the sequential control of a program. In other words, the computer

follows a step-by-step program that governs its operation.

The classic von Neumann machine has several distinctive characteristics:

- there is no real difference between the data and instructions;

- the data has no intrinsic value;

- data and instructions share the same memory;

- memory is a linear (one-dimensional) array of storage locations.

There are some interesting non von Neumann architectures, such as the

massively parallel Connection Machine [8], the dataflow architecture [5], the graph

reduction machine [6] and the neural networks [7].

There are two main types of architectures: Princeton, often called the von

Neumann architecture, and Harvard. The difference between them is that in the

classic von Neumann architecture of the computer programs and data are stored in the

common operating memory and transmitted to the processor on a single channel (data

bus and control), while Harvard architecture requires the use of separate address

spaces for storing commands and data, as well as separate transmission streams for

commands and data (Fig. 1.2, 1.3).

10

Figure 1.3 – Harvard architecture

The advantages of von Neumann architecture:

– simplification of the microprocessor device, since it only accesses common

RAM;

– the use of a single memory area allows you to quickly redistribute resources

between program and data areas, which significantly increases the flexibility of the

microprocessor.

The advantages of Harvard architecture:

– the small areas use of data memory contributes to the acceleration of

information retrieval in memory and increases the speed of the microprocessor;

– the presence of a separate data bus and command bus also allows you to

increase the speed of the microprocessor;

– it is possible to organize parallel execution of programs (each memory is

connected to the processor by a separate bus, which allows doing the current

command simultaneously with reading/writing data while the current command

performs the selection and decoding of the next command).

The disadvantage of the Harvard architecture is the complexity of the

microprocessor architecture and the need to generate additional control signals for the

instruction memory and data memory.

The modern approach suggests that von Neumann principles still underlie the

construction of single-processor computers, although they have been significantly

modified. Multiprocessor computer systems capable of parallel computing are based

on the Harvard architecture.

11

The set of functional blocks (devices) and the connections between them are

called the functional structure of the computer. More details about the functional

structure of modern computers can be found in [1, 2, 4]. The functional structure of

the computer determines its specific composition at a certain level of detail (devices,

blocks, nodes, etc.) and describes all internal connections. However, the structure of

the computer should be distinguished from its architecture. Under this term is

understood a set of logical and physical organization principles of the computer (Fig.

1.4).

Figure 1.4 – The main components of computer architecture

The fundamental principles of computer logic are also formulated by von

Neumann. Including:

– the use of a binary number system for encoding information in a computer,

– software management of the computer,

– memory uniformity,

– memory addressing.

The processor workflow should be described. There are six basic types of access

that a processor can perform with external chips. The processor can write data to

memory or write data to an I/O device, read data from memory or read data from an

I/O device, read instructions from memory, and perform internal manipulation of data

within the processor. In many systems, writing data to memory is functionally

12

identical to writing data to an I/O device. Similarly, reading data from memory

constitutes the same external operation as reading data from an I/O device, or reading

an instruction from memory. In other words, the processor makes no distinction

between memory and I/O.

The internal data storage of the processor is known as its registers. The

processor has a limited number of registers, and these are used to hold the current

data/operands that the processor is manipulating.

The Arithmetic Logic Unit (ALU) performs the internal arithmetic manipulation

of data in the processor. The instructions that are read and executed by the processor

control the data flow between the registers and the ALU. The instructions also control

the arithmetic operations performed by the ALU via the ALU's control inputs.

Whenever instructed by the processor, the ALU performs an operation (typically

one of addition, subtraction, NOT, AND, OR, XOR, shift left/right, or rotate

left/right) on one or more values. These values, called operands, are typically

obtained from two registers, or from one register and a memory location. Thereafter,

the result of the operation is placed back into a given destination register or memory

location. The status outputs indicate any special attributes about the operation, such

as whether the result was zero, negative, or if an overflow or carry occurred. Some

processors have separate units for multiplication and division, and for bit shifting,

providing faster operation and increased throughput.

Each architecture has its own unique ALU features, and this can vary greatly

from one processor to another. However, there are just thematic variations, and each

has the common characteristics described above.

13

2 NUMERAL SYSTEMS

2.1 Number systems used in computer calculations

A number system (NS) is a set of symbols and rules intended to represent

numbers. The number systems may be classified into positional and nonpositional.

In ancient times, people used to count on their fingers. When the fingers become

insufficient for counting, stones, pebbles or sticks were used to indicate the values.

This method of counting is called the nonpositional number system. It was very

difficult to perform arithmetic operations with such a number system, as it had no

symbol for zero. The most common nonpositional number system is the "Roman

number system". In this system, only a few characters are used to represent the

numbers, for example, I, V, X, L (for fifty), C (for hundred) and so on. Moreover,

since it is very difficult to perform the addition or any other arithmetic operations in

this system, no logical or positional techniques are used in this system. An interesting

analysis of nonpositional systems can be found in [10]. In computers, positioning

systems are used.

A positional system is a system for numbers representation by an ordered set of

numerals symbols (called digits) in which the value of a numeral symbol depends on

its position. For each position a unique symbol or a limited set of symbols is used.

In a positional system with a base N, the number A is a sequence of digits:

−

−

−−

−

−

−−−−−−
1

2

2

1

121021
m

k=i

i

i

k

k

m

m

m

mkmmN Na=Na++Na+Na=aaaaaa=A ,

where ia is the i-th digit of the number A; k is the number of digits in the fractional

part of the number A; m is the number of digits in the integer part of the number A; N

is the base of the number system.

For any number system, if the number system's base (also called the radix) is

known, then can be discovered how many digits are used in creating written numbers

in that system.

14

For any number system that has a base b, the first b non-negative numbers are

represented by the digits themselves. For base b=10 (decimal), the first 10 numbers

are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Numbers beyond the first b numbers are represented

by writing multiple digits, and associating each digit with a place value. As you

know, the number that follows 9 is 10, and writing 10 uses two digits: '1' and '0'. The

'1' occupies the "tens" place and the '0' occupies the "ones" place. That's 1 "ten" and 0

"one". Counting continues with 11, 12, 13, ... , 18, 19, and finally 20, which is 2

"tens" and 0 "ones". After reaching the number 99 in the score, the next number in

the sequence will require the addition of a third place, a place “one hundred” to the

left, for the number 100: 1 “hundred”, 0 “ten” and 0 “one”.

Each place in a decimal number is associated with a power of ten, as we have

seen. The right-most position is associated with

"ones" or 100. The position to the left is

associated with "tens" or 101. The position to the

left of that is associated with "hundred" or 102. A

value of a digit position is 10n , where n – is a

spot of each digit, as shown in this diagram:

Any number can be written as a sum of products of powers of 10. Consider the

number '327.' Suppose we wrote it down in the

diagram shown above, like this:

We can write the number '327' as a sum of

products of powers of ten as follows:

012 107102103327 ++= .

This is the number '327' written in an expanded notation. It means exactly the

same thing as writing '327' - it's just longer. This kind of notation is much more

specific than just writing '327' because the base is given. When you see the number

'327' written, you assume the base is 10. With computers, you can't always assume

the base is 10. In fact, many times the base will be 2, 8, or even 16! The expanded

notation is the only way to be sure which number is exactly considered.

15

Let's expand the diagram of place values and include a decimal point and places

to the right of it. Here is how it would look:

Obviously, the place values become negative

powers of ten, counting backwards from zero. This is

logical, and easy to remember. The rule about

writing any number in expanded notation still works,

also, without any modification. For example, the

number '43.57' would be written as:

2101 10710510310443.57 −− +++= .

In the binary number system, the base consists of 2 numbers: 0, 1. The

weighted values for each position are determined as follows:

 27 26 25 24 23 22 21 20 2-1 2-2

… 128 64 32 16 8 4 2 1 0.5 0.25 …

The binary system underlies modern technology of electronic digital computers.

Computer memory comprises small elements that may only be in two states - off/on -

that are associated with digits 0 and 1. Such an element is said to represent one bit -

binary digit.

Counting in binary is just like counting in decimal. Each byte is comprised of

four bits which, in binary notation, will describe adequately a number between 1 and

10 (the number 10 corresponding to the dialed zero). Real numbers can also be

represented using binary notation by interpreting digits past the decimal point as

negative powers of two.

In addition to the binary representation, digital computers use the octal and

hexadecimal number systems. Considering an octal or hexadecimal number is much

shorter than the respective binary number. Also binary code can be directly converted

into octal or hexadecimal form, because the radices in the octal and hexadecimal

notation are integer powers of two.

16

The following table shows the numbers from 1 to 16 which are recorded in

different numeral systems.

Table 2.1 – Correspondence of numbers in different number systems.

Numeral system

Decimal Binary Octal Hexadecimal Binary-decimal

0 0 0 0 0000 0000

1 1 1 1 0000 0001

2 10 2 2 0000 0010

3 11 3 3 0000 0011

4 100 4 4 0000 0100

5 101 5 5 0000 0101

6 110 6 6 0000 0110

7 111 7 7 0000 0111

8 1000 10 8 0000 1000

9 1001 11 9 0000 1001

10 1010 12 A 0001 0000

11 1011 13 B 0001 0001

12 1100 14 C 0001 0010

13 1101 15 D 0001 0011

14 1110 16 E 0001 0100

15 1111 17 F 0001 0101

16 10000 20 10 0001 0110

...

32 100000 40 20 0011 0010

The sequence of actions for converting numbers from one number system to

another is the same in all cases. In order to convert an integer N expressed in the

radix p to a number system in the radix q, the number must consecutively be divided

by the radix q until the last quotient is less than q. Then in the system to the radix q,

the number N will be presented as an ordered set of residuals, the most significant

digit in N being the last quotient.

The conversion form from number system to another is fully described in [11].

2.2 Conversion of a number from one number system to another. Examples

Example 2.1 Convert 99 decimal into the binary system. The decimal number is

consecutively divided by 2:

17

divide 99 by 2 – get the quotient 49 and the remainder 1;

divide 49 by 2 – get the quotient 24 and the remainder 1;

divide 24 by 2 – get the quotient 12 and the remainder 0;

divide 12 by 2 – get the quotient 6 and the remainder 0;

divide 6 by 2 – get the quotient 3 and the remainder 0;

divide 3 by 2 – get the quotient 1 and the remainder 1.

The arrow shows the direction in which the number

should be read. Thus, the binary equivalent of 99

decimal is 9910 = 11000112 .

In converting a fraction expressed in the radix p to a number system in the radix

q, the fraction is consecutively multiplied by the radix q, only the fractional part

being multiplied at each step. In the q-nary system, the fraction will be represented by

an ordered sequence of the integer parts of the products, where the most significant

digit is the first digit of the product.

Example 2.2 Convert 0.8125 decimal to binary form. The

fraction is consecutively multiplied by 2:

The arrow indicates the direction in which the number should be

read. Thus, the binary equivalent of 0.8125 decimal is 0.1101. In

the case of a mixed decimal number, it is first separated into the

integer and fractional parts, and each part is then converted as

already explained.

Example 2.3 Let's bring the number 15010 to the octal basis.

We first find the largest power of 8 that is smaller than our number. Here, this is 82 or

64 (83 is 512). We count how many groups of 64 we can take from 150. This is 2, so

the first digit in our base-8 number is 2. We have now accounted for 128 out of 150,

so we have 22 left over. The largest power of 8 that is smaller than 22 is 81 (that is,

8). How many groups of 8 can be taken from 22? Two groups again, and thus our

18

second digit is 2. Finally, we are left with 6, and can obviously take 6 groups of one

from this, our final digit. We end up with 2268.

In fact, it can be made clearer with math steps:

1. 150/82 = 2 remainder 22,

2. 22/81 = 2 remainder 6,

3. 6/80 = 6.

Example 2.4 Base-16 is also commonly used in computer programming, so it is

very important to understand. The figure shows the correspondence of the symbols of

the hexadecimal system and their values in the decimal system.

Except these extra digits, hexadecimal is just like any other base. For example,

let's convert 3D16 to base-10. Following our previous rules, we have:

10

01

16 61134816131633 =+=+=D .

So 3D16 is equal to 6110. Notice how we use D's value of 13 in our calculation.

Example 2.5 We can convert from base-10 to base-16 similar to the way we did

with base-8. Let's convert 69610 to base-16. First, we find the largest power of 16 that

is less than 69610. This is 162, or 296. Then:

1) 696/162 = 2 remainder 184,

2) 184/161 = 11 remainder 8,

3) 8/161 = 8 remainder 0.

We have to replace 11 with its digit representation B, and we get 2B816.

Feel free to try some more conversions for practice.

2.3 Exercises

2.3.1. Numbers in Table 1.2 in a given numeral system are represented in

different numeral systems. Select a task from Table 2.2 according to your number in

the group list. Present the results as shown in Table 2.3.

19

Table 2.2 – Individual tasks

Option

Numeral system

Option

Numeral system

Deci

mal
Binary Octal

Hexade

cimal

Deci

mal
Binary Octal

Hexadec

imal

1 234 1110111 234 A34 16 269 11001110 262 2C9

2 432 10010111 432 B32 17 805 11100011 705 80D

3 567 11001011 567 C67 18 675 11000110 675 2F5

4 543 10110011 543 543 19 931 10011001 731 9E1

5 786 10101011 756 7FF 20 873 11011011 773 87A

6 469 1111001 463 46A 21 764 11001001 764 764

7 897 10001110 736 A197 22 231 10010111 207 F31

8 438 11011010 437 4A38 23 345 11011101 345 34D

9 291 10010010 261 2B11 24 456 10101111 456 4F6

10 658 11101110 657 6E8 25 678 11101110 671 678

11 386 10000111 376 2B86 26 765 10111011 765 1A65

12 987 10111001 765 3E87 27 891 11111101 561 A91

13 876 11100010 654 A76 28 588 10000111 555 B88

14 564 01101100 564 B64 29 677 10011111 677 A177

15 368 10010011 366 3A8 30 483 10011000 443 1B83

Table 2.3 - Example of a table to fill in the results of option 30 of Table 2.2

№ Decimal Binary Octal Hexadecimal Binary-decimal

1 483 ? ? ? ?

2 ? 10011000 ? ? ?

3 ? ? 443 ? ?

4 ? ? ? 1B83 ?

2.3.2 Example of progress for option number 30 from Table 2.2.

a) Translation number 483 of their decimal system into binary NS.

Solution:

Answer:

48310 → 1111000112

This result should be entered into

Table 2.3 (at the intersection of line

1 and column 2).

20

Checking the result.

Ponderable coefficient 28 27 26 25 24 23 22 21 20

Number 1 1 1 1 0 0 0 1 1

10

015678 483113264128256212121212121 =+++++=+++++ .

b) Translate number 483 in decimal NS into octal NS: 48310 → ?8 .

Solution: let's show two ways:

1) We perform a division

operation:

2) Divide binary number into triads from

right to left and give each triad the

corresponding octal number (see Table 2.1):

48310 → 1111000112 ,

111.100.0112 → 7438

Checking the result: 7*82+4*81+3*80=7*64+4*8+3=48310

Answer: 7438, this result should be entered into Table 2.3 (at intersection of line

1 and column 3).

c) Translate number 48310 into hexadecimal NS: 48310 → ?16 .

Solution: Divide binary number into tetrads (4) from right to left and transform

each tetrad into the corresponding hexadecimal number:

48310 → 1111000112 , 0001.1110.0011 → 1E316

Checking the result: 1E316 –> 1*162 + 14*161 + 3*160 = 256+ 224 +3 = 48310

Answer: 1E316, this result should be entered into Table 2.3 (at the intersection

of line 1 and column 4).

d) Translate number 48310 into binary-decimal NS: 48310 → ?2-10.

Solution: Translate each decimal figure into the corresponding binary tetrad:

4 8 3 → 0100 1000 0011.

21

Answer: 100100000112-10 – this result should be entered into Table 1.3 (at the

intersection of line 1 and column 5).

2.4 Control questions

1. Explain non-positional and positional numeral systems, give examples of non-

positional and positional numbers.

2. Define the notion of "numerical system", "the basis of the numerical system".

3. What is base 10? Binary? Hexadecimal?

4. How can you convert from one base to another?

5. Determine the maximum positive number that can still be placed in one, two,

four, or eight bytes.

6. What operation must be performed to convert an integer part from one s / h to

another:

a) dividing;

b) subtraction;

c) multiplication;

d) adding?

22

3 REPRESENTATIONS IN OPERATIONAL MEMORY.

LOGICAL OPERATIONS

3.1 Representation of information in a computer

Information (command and data: numeric, textual, graphical, etc.) is encoded

with binary digits 0 and 1. Therefore, various types of information placed in

computer memory are practically undetectable, identification is possible only with the

execution of the program, according to its logic and to the context. For example, the

phrase “Hello world!” In binary code encoded in Windows-1251 looks like this:

1011100101100011100011000011101100111111 1111001000

1000011111000000001110100000001110111011000010

Each type of information has formats – units-structural information encoded

with binary digits 0 and 1. The basic unit is 1 bit. A bit is the smallest piece of

information obtained when choosing between two equiprobable events.

The minimum unit of information in the computer is 1 byte, which is equal to 8

adjacent bits. The string of bits making up a byte is processed as a unit by a

computer. A byte can represent the equivalent of a single character, such as the letter

'B', a comma, or a percentage sign, or it can represent a number from 0 to 255.

Usually, all data formats used in the computer are multiples of a byte, i.e. consist

of an integer number of bytes.

A computer word, like a byte, is a group of fixed number of bits processed as a

unit, which varies from computer to computer but is fixed for each computer. The

length of a computer word is 2 bytes for 16-bit operating systems, 4 bytes for 32-bit

operating systems, and 8 bytes for most 64-bit operating systems (in some cases 4 is

also possible considering the difference in data models).

Special types of memory units are used to measure large amounts of

information. The table shows the different sizes of memory:

23

Table 3.1 – Special types of memory units

Name Short name Number of bytes Number of bytes approx

Bit - 1 bit = 1/8b

Nibble - 4 bit = 1/2b

Byte b = 1b 1b

Kilo Byte K or Kb = 1024b b

Mega Byte Mb = 1024Kb b

Giga Byte Gb = 1024Mb b

Tera Byte Tb = 1024Gb b

Peta Byte Pb = 1024Tb b

Exa Byte Eb = 1024Pb b

Zetta Byte Zb = 1024Eb b

Yotta Byte Yb = 1024Zb b

3.2. Typical computer registers

The processor handles all information in the computer. Information from the

memory enters processor registers.

The registers are intended for storing multi-digit codes of data commands,

addressing and processing arithmetic and logical operations on them. The

microprocessor contains the following groups of registers: general registers, segment

registers, a command pointer and flags. For example, microprocessors Intel 8086

contain twelve programmable addressable registers with a width of 16 bits, which are

combined into three groups: data registers; register-pointers and segment registers.

The data registers and index registers are grouped under the general name “General

Purpose Registers” (fig. 2.1). In addition to these registers, there are two other

registers (status and control registers): an instruction pointer and a flag register.

The register consists of two parts – the high-order half and the lower half – each

its has of 8 bits. For example, AH – high AX – high-order half of 8 bits, AL – low

AX – lower half of 8 bits.

02
102

3101024

202
6105760481

302
910

402
1210

502
1510

602
1810

702
2110

802
2410

24

Figure 3.1 – General Purpose Registers [13]

Four data registers (AX, BX, CX and DX) can be used by a programmer for

temporary storing any objects: operands of logical and arithmetic operations; address

components; pointers on the main memory cells.

Some of these registers have a strict functional purpose, which are indicated in

the right column in the fig 2.1. This provides compact coding and memory savings.

Each bit of register information is stored in a memory device with a storage that

is called a trigger. When a signal is applied to the trigger input, it is set to 0 or 1.

This state is stored until a new signal is inputted to the port or the voltage is

disconnected. The union of eight, sixteen or more triggers is a functional node, called

a register. Except triggers, the register includes additional schemes that ensure:

– setting the register to zero;

– reception of the transfer of codes;

– shift the code left and right to the required number of digits;

– boolean logical operations, etc.

A counter is a combination node that calculates the number of input signals

received at its port. There are adding or subtracting counters.

25

The operating node performing the arithmetic addition of the number codes is

called the adder. The addition is performed bitwise, taking into consideration the

carry bit from the previous digit.

A combinational logic circuit that converts the input code into a signal on only

one of the outputs is called a decoder. Usually decoders are used to convert binary

code to decimal.

More information can be found in the book "Structured Computer Organization"

[12] and many other books.

3.3 Representation of numerical information in a computer

The computer uses three types of numbers: fixed point, floating point and

binary-decimal representation for integers. Integers are the simplest numeric data that

a computer operates with. There are two representations for integers: unsigned (only

for non-negative integers) and signed.

For unsigned numbers, the range of number values is determined by the

inequation:

120 2 − nA ,

where n is the number of bits assigned to the representation of the number. For

example, for n = 8, unsigned integers can be represented from the range [0 - 255].

For numbers with a sign, the range of values change is determined by the

inequation:

() ()1212 1

2

1 −+−− −− nn A .

When n = 8, you can represent signed integers from the range: [-127; +127], since

one bit is assigned to the sign.

Positive numbers have “0” value of sign digit, negative ones have “1” value.

The length of the standard integer type most commonly coincides with the size

of the computer word on the targeted platform. Many computer languages offer a

choice between short, long and a standard length (int).

26

The representation of the whole type on different data models may change.

Short int is 1-2 bytes, int is 2-4 bytes and longint is 4-8 bytes. Also in some

languages, the data type is a longlong, which is 8 bytes long.

Consider the representation of an integer in one byte. The bits are numbered in a

byte from right to left (as in the figure below).

In computing the least significant bit (LSB) is the bit position in a binary

integer, which giving the units value. The LSB is sometimes referred to as the low-

order bit or right-most bit, due to the convention in positional notation of writing less

significant digits further to the right. It is similar to the least significant digit of a

decimal integer, which is the digit in the position one (right-most). The most

significant bit (MSB, also called the high-order bit) is the bit, positioned in a binary

number, which is having the greatest value. The MSB is sometimes referred to as the

high-order bit or left-most bit due to the convention in positional notation of writing

more significant digits further to the left. In conventional Intel bit ordering, MSB is

numbered 7 and LSB is numbered 0:

MSB LSB

7 6 5 4 3 2 1 0

Unsigned numbers have only one representation: significant digits are stored in

all bits, from the low-order bit to the high-order bit. For example, the number “99” is

written as follows:

Bit’s number: 7 6 5 4 3 2 1 0

number 0 1 1 0 0 0 1 1

An n-bit signed binary number consists of two parts: one part denoting the sing

of the number and another part denoting the magnitude of the number. The MSB is

always a sign bit, which denotes the sign of the number and the convention is that 0

and 1 denote “+” and “-“, respectively. The remaining (n-1) bit denotes the

magnitude of the number. For example, the number "+99" has the representation:

27

 sing

 MSB LSB

Bit’s number: 7 6 5 4 3 2 1 0

number 0 1 1 0 0 0 1 1

The three best-known methods of extending the binary numeral system to

represent signed numbers are: sign-and-magnitude, ones' complement and two's

complement.

In "sign and magnitude" approach or signed magnitude representation (SMR), a

number's sign is represented with a sign bit: setting MSB to 0 for a positive number

or positive zero, and setting it to 1 for a negative number or negative zero. The

remaining bits in the number indicate the magnitude (or absolute value). For

example, in an eight-bit byte, only seven bits represent the magnitude can be ranged

from 0000000 (010) to 1111111 (12710). Thus, number “-99” can be represented once

the sign bit (the eighth bit) is added as:

Bit’s number: 7 6 5 4 3 2 1 0

Positive number “99” 0 1 1 0 0 0 1 1

Negative number “-99” 1 1 1 0 0 0 1 1

The complement of a number is the number, which is added to the original and

will make it equal to a multiple of the base number system.

The complement of a number can be used as a representation of that number as a

negative and positive number that represents a negative. It is a method, which can be

used to make substruction easier for machines. Consequently, complements are used

in digital computers for simplifying the substruction operation and for the logical

operation.

For every base r system, there are two types of complements: rs complement

and (r - 1)s complement. For decimal r = 10, we have 9s and 10s complement. For

binary r = 2, we have 1’s and 2’s complement. For octal r = 8, we have 7s and 8s

complement. For hexadecimal r = 16, we have 9’s and 15’s complements.

28

The 1’s complement. Positive numbers are the same in both sequence, but we

need to define the negative numbers in the system. All the negative numbers have the

binary MSB = 1, which is helpful in identifying the sign of the number. In addition,

the sign bit allows to divide the counting sequence evenly between positive and

negative numbers.

To form the negative of any number, first of all complement all the bits of that

number. This result is known as the one’s complement of the original number. This

requires changing every logic 1 bit in a number to logic 0, and every logic 0 bit to

logic 1. For instance, let us find the 1’s complement of 0011 0110 in binary:

Bit’s number

7 6 5 4 3 2 1 0

Unsigned number 0 0 1 1 0 1 1 0

1’s complement 1 1 0 0 1 0 0 1

The 2’s complement. We do not just place 1 in the MSB of a binary number to

make it negative. We must take the 2’s complement of the number. Taking the 2’s

complement of the number will cause the MSB to become 1.

To obtain the 2’s complement of a number, there is a two-step process:

1. Take the 1’s complement of the number by changing every logic 1 bit in the

number to logic 0 bit, and change every logic 0 bit to logic 1 bit.

2. Add 1 to the 1’s complement of the binary number. Now, we have the 2’s

complement of the original number. Here, we can notice that the MSB has become 1.

Both 1’s and 2’s complements of ‘001101102‘ are shown in the following table:

Bit’s number 7 6 5 4 3 2 1 0

Unsigned number 0 0 1 1 0 1 1 0

1’s complement 1 1 0 0 1 0 0 1

2’s complement 1 1 0 0 1 0 1 10

What is the difference between 1’s complement and 2’s complement? The main

difference is that 1’s complement has two representations of zero: '00000000', which

is a positive zero (+0) and '11111111', which is a negative zero (-0); whereas in 2’s

29

complement, there is only one representation for zero – '00000000' (+0) because if 1

is added to '11111111' (-1), it’s '00000000' which is the same as positive zero. This is

the reason why 2’s complement is generally used. Another difference is that while

adding numbers using 1’s complement, first of all binary addition is done and then

added an end-around carry value. Thus, 2’s complement has only one value for zero

and doesn’t require carry values.

3.4 Bitwise operations. Logical operations

Logical commands are mainly used to manipulate binary values. Logical

commands are called logical because they act according to the rules of formal logic,

rather than arithmetic. They change bit values in registers or memory cells.

The logical operations in the computer: inverting (NOT), logical addition OR,

logical multiplication AND, exclusive XOR. These operations are performed on bits.

Table 3.1 – Bitwise Logical Operations

Operation Description Bit1 Bit2 Result bit

Not Inverting
0 1

1 0

And Multiplication

0

0

0

 0

1

0

 1

0

0

 1

1

1

Or Addition

0

0

0

 0

1

1

 1

0

1

 1

1

1

Xor Exclusive

0

0

0

 0

1

1

 1

0

1

 1

1

0

Logical operations AND, OR, XOR are performed on two operands, and the

NOT operation is performed on one operand.

The AND operation is useful for filtering, masking, or setting to nil. It sets the

result bit to 1 for each position where both operands contain “1”, otherwise the result

bit is reset to 0.

30

The OR operation sets the result bit to 1 for each position where at least one of

the two operands contains 1. In positions, where both operands contain 0, the result

bit is 0. This command is usually used to set bit to 1.

The XOR (OR exclusive) operation is a modification of the OR operation. This

operation sets a result bit to 0 when both operands are equal. This name of this

operation is given because it excludes combination of 1&1 bits. This command is

usually used to invert a bit.

The NOT command is used if it is necessary to invert all bits of a number.

The commands for manipulating bits (bitwise operations) are divided into two

groups: logical commands and shift commands. The shift commands are in turn

applied to linear and rotate shift instructions.

3.5 Examples of problem solving

Example 3.1 Invert number A10 = 27

Bit’s number 7 6 5 4 3 2 1 0

А10 = 27 0 0 0 1 1 0 1 1

Operation NOT NOT NOT NOT NOT NOT NOT NOT

Result 1 1 1 0 0 1 0 0

Example 3.2 Set the value of the 2nd and 3rd bits of the number “27” to 1.

To do this let's execute the bitwise logical addition (the logical operation OR) of

the given number and the number, in which “1” only in the second and third bits:

Bit’s number 7 6 5 4 3 2 1 0

А10 = 27 0 0 0 1 1 0 1 1

Operation OR OR OR OR OR OR OR OR

Mask 0 0 0 0 1 1 0 0

Result 0 0 0 1 1 1 1 1

Example 3.3 Reset the 3rd bit of the number “27” to 0.

To do this it’s needed to perform the logical multiplication operation on a

number containing zero in third bit.

31

Bit’s number 7 6 5 4 3 2 1 0

А10 = 27 0 0 0 1 1 0 1 1

Operation AND AND AND AND AND AND AND AND

Mask 1 1 1 1 0 1 1 1

Result 0 0 0 1 0 0 1 1

Example 3.4 Define the value of the 0-th bit of the number “38”.

To do this it’s needed to perform the bitwise logical multiplication (logical

AND) of a given number and a number whose only 1 in the first bit.

Bit’s number 7 6 5 4 3 2 1 0

А10 = 38 0 0 1 0 0 1 1 0

Operation AND AND AND AND AND AND AND AND

Mask 0 0 0 0 0 0 0 1

Result 0 0 0 0 0 0 0 0

Example 3.5 Invert the 5-th bit of the number “38”.

To invert the 5-th bit the mask is overlay: in the 5-th bit is 1, and in the other bits

– 0; then it’s needed to perform the XOR operation.

Bit’s number 7 6 5 4 3 2 1 0

D = 38 0 0 1 0 0 1 1 0

Operation XOR XOR XOR XOR XOR XOR XOR XOR

Mask 0 0 1 0 0 0 0 0

Result 0 0 0 0 0 1 1 0

3.6 Exercises

3.6.1 Select a task from table 1 according to your number in the group list.

Table 3.2 – Individual task

Option

number.

Decimal

number

Bit number (n)

to be seted.

Bit number (k) to

be determined.

Bit number (m)

to be reseted

Bit number (p)

to be inversed

1 2 3 4 5 6

1 65 1 4 0 5

2 30 2 5 1 6

3 16 3 6 2 7

4 25 4 7 3 0

5 55 5 0 4 1

6 63 6 1 5 2

32

Continue Tab.3.2

1 2 3 4 5 6

7 94 7 2 6 3

8 83 0 3 7 4

9 43 1 4 0 5

10 64 2 5 1 6

11 97 3 6 2 7

12 84 4 7 3 0

13 11 5 0 4 1

14 26 6 1 5 2

15 68 7 2 6 3

16 12 0 3 7 4

17 33 1 4 0 5

18 44 2 5 1 6

19 28 3 6 2 7

20 46 4 7 3 0

21 35 5 0 4 1

22 56 6 1 5 2

23 34 7 2 6 3

24 48 0 3 7 4

25 67 1 4 0 5

26 81 2 5 1 6

27 96 3 6 2 7

28 98 4 7 3 0

29 37 7 0 5 1

30 23 5 1 4 6

1) For a decimal number (positive and negative), it’s needed to get its binary

representation in three formats: the sign-magnitude representation (SMR) or direct

code, 1’s complement notation and 2’s complement notation. Use a field with a

length of 1 byte to represent the code.

2) Perform bitwise logical operations to the sign–magnitude representation of a

positive number in such order:

– invert the received binary number;

– set the selected bit;

– determine the value of the selected bit;

– reset the selected bit;

– invert the selected bit.

33

3) Perform the same logical operations for a negative number in the 2’s

complement code.

3.6.2 Process of obtaining results for variant 30 from table 3.2

a) For number ‘2310’ we have:

 +23 -23

Bit’s number 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SMR 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1

1′s complement 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0

2′s complement 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1

For a positive number, SMR, 1’s complement and 2’s complement codes are the

same.

b) We perform the operation NOT to invert a binary number (flip all the bits):

Bit’s number 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation NOT NOT NOT NOT NOT NOT NOT NOT

Result 1 1 1 0 1 0 0 0

c) Set the value of the 5-th bit of the number 23 to 1.

Perform logic operation OR for this number and number, that have 1 only at 5-th

bit – 10

5 322 = .

 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation OR

Mask = 32 0 0 1 0 0 1 0 0

Result = 55 0 0 1 1 0 1 1 1

d) Determine the value of the first bit of the number 23.

Perform logic operation AND for this number and the number, that have 1 only

in bit 1 – 10

1 22 =

34

 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation AND

Mask = 2 0 0 0 0 0 0 1 0

Result = 2 0 0 0 0 0 0 1 0

Let's go through another example for a better understanding. Define the 5-th bit

in the binary number. To do this it’s needed to perform logic operation AND with a

mask – 10

5 322 =

 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation AND

Mask = 32 0 0 1 0 0 0 0 0

Result = 0 0 0 0 0 0 0 0 0

e) Reset the 4-th bit of number 23.

Perform logic operation AND for this number and the number that have 0 only

in 4-th bit.

 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation AND

Mask = 237 1 1 1 0 1 1 1 1

Result = 7 0 0 0 0 0 1 1 1

f) Inverse 6-th bit of number 23.

Perform logic operation XOR for this number and number that have 1 only in

6-th bit – 10

6 642 = .

 7 6 5 4 3 2 1 0

А10 = +23 0 0 0 1 0 1 1 1

Operation XOR

Mask = 64 0 1 0 0 0 0 0 0

Result = 87 0 1 0 1 0 1 1 1

35

3.7 Control questions

1. Are there sign–magnitude, 1’s complement, and 2’s complement codes for a

positive and a negative number?

2. Rules of performing bitwise logical operations that are used in this laboratory

work.

3. Why masks are needed when performing bitwise logical operations?

4 Use 2’s complement code for number ‘-5’. Reset the 7-th bit. What number is

it?

5. Why registers of microprocessor are divided into groups? List functional

destinations of: ALU registers; segment registers.

6. Arrange the following units of memory in ascending order of their capacity:

terabyte, petabyte, megabyte and gigabyte.

36

4 ADDITION OF INTEGER BINARY NUMBERS

4.1 Adding binary numbers

All modern computers are equipped with a well-developed command system,

the implementation of which may include tens and hundreds of machine operations.

However, the implementation of any operation is based on the use of simple micro-

operations, such as addition and displacement. This allows you to have a single

arithmetic-logical device for performing any operations related to information

processing.

Previously we talked about different representations of numbers in binary code:

the sign-magnitude representation or direct code, ones’ complement notation and

two’s complement notation.

The sign-magnitude representation is used to represent numbers in the

computer's memory, as well as when performing operations of multiplication and

division. The ones’ complement and two’s complement codes are used to perform the

subtraction operation, which is replaced by the addition of numbers with different

signs:)(baba −+=− .

The direct code of a binary number coincides in the image with the record of the

number itself. The sign bit value for positive numbers is 0, and for negative numbers

– 1. The one’s complement code for a positive number is the same as the direct code.

For a negative number, all digits of the number are replaced by the opposite ones (1

by 0, 0 by 1), and unit is entered in the sign bit. In the future, when writing the code,

we agree to separate the signed bit from the digital ones with a comma.

For example, for the number +1101 the direct code is 0,0001101, for the number

-1101 the direct code is 1,0001101.

The 1’s complement code for a positive number is the same as SMR code. For a

negative number, all digits of the number are replaced by the opposite ones (1 by 0, 0

by 1), and unit is entered in the sign bit.

37

For example: for the number +1101 – SMR code is 0,0001101; the 1’s

complement code is 0,0001101. For the number -1101, SMR code is 1,0001101; the

1’s complement code is 1,1110010.

The two’s complement code of positive number matches the ones’ complement

code. For a negative number, the calculation of the 2’s complement is formed in two

steps: take the ones' complement of number and add one to the result.

For example: for the number +1101 :
0,0001101

complement s2'

0,0001101

complement s1'

0,0001101

SMR
.

For the number -1101 :
1,1110011

complement s2'

1,1110010

complement s1'

1,0001101

SMR
.

Computers perform addition in the binary number system. Table 4.1 shows the

rules for adding binary digits ai and bi of the same order, taking into consideration the

possible displacement of Pi-1 from the previous lower order and the possible

displacement of Pi to the next higher order.

Table 4.1 - Rules for adding binary digits

The value of i-th bits of

numbers A, B and shifting from the

previous order Pi-1
Order of the sum Si Shifting to the next order Рi

аi bi Pi-1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Consider addition of the two numbers:

38

10

0123

2

10

10
0123

2

0123

2

12202120211010

8

4

202121200110

202021200100
100

=+++=

+
=+++=

=+++=
+

− carries

The subtraction operation is reduced to the addition operation by converting

numbers to the reverse or additional code according to Table 4.2.

Table 4.2 – Rules of conversion the subtraction operation into add operation

Required Operation Required Conversion

А+В А+В

А-В А+(-В)

-А+В (-А)+В

-А-В (-А)+(-В)

Consider another example of addition:

10

0123

2

10

10
0123

2

0123

2

2202120200010

14

4

202121211110

202021200100
100

=+++=

+
=+++=

=+++=
+

− carries

The result, 2, is arithmetically incorrect. The problem here is that the addition

has produced carry beyond the fourth bit. Since this is not taken into account in the

result, the answer is wrong. The concept of overflow arises.

Overflow of the bit grid can lead to the transfer of a unit to a sign bit, which will

lead to an incorrect result. A positive number resulting from an arithmetic operation

can be perceived as negative, since "1" appears in the sign digit and vice versa. For

example:

X = 0,11011110 Y = 0,1101100 X + Y = 1,1001010 ,

X and Y are codes of positive numbers, but in the process of addition, “1” appeared

in the sign digit, which means the code of a negative number.

39

To recognize the overflow of the bit grid in a computer, modified sign-

magnitude (direct), 1’s complement (reverse), and 2’s complement codes are used. In

these codes, the sign is encoded in two digits: the combination of ‘00’ corresponds to

the plus sign and the combination of ‘11’ to the minus sign. The indicator of overflow

in the modified code is the difference between digits in sign digits. It is '01' or '10' in

the sign bits.

To cope with overflow, it’s needed to normalize the number. Addition of

numbers in modified codes is no different from addition in ordinary forms of 1’s or

2’s complement codes. However, when adding numbers in the additional code, the

resulting carry unit in the sign digit is discarded, and when adding numbers in the

reverse code, the resulting carry unit in the sign bit is added to the least significant bit

of the code sum.

Consider example of addition: add two numbers: A10 = +16, B10 = -7 in 1’s and

2’s complement codes.

According to the table, the transformation A + (- B) is necessary, in which the

second term is converted taking into consideration the sign. Use byte to represent

numbers.

1’s complement form of B: 11 111000;

2’s complement form of B: 11 001000.

Addition in

1’s complement code

Addition in

2’s complement code

Check up

00100100

001000001

11100011

01000000

1

1

1

1

=

+
=

=
+

=

cm

cm

cm

сm

C

C

B

A

00100100

001000001

11100111

01000000

2

2

2

2

=

=

=
+
=

cm

cm

cm

сm

C

C

B

A

921211001 03

210 =+==C

Addition of binary numbers is carried out sequentially, bitwise in accordance

with the rules (Table 4.1).

When adding numbers, the following rules must be observed:

40

1) The subtraction operation is replaced by the addition operation with a

negative number.

2) The terms must have the same number of bits. To align the bit grid of terms,

insignificant zeros is added to the left of the integer.

3) Sign bits participate in addition in the same way as significant ones.

4) The necessary code transformations are made with the change of signs of

numbers. The assigned insignificant zeros change their value during transformations

as a general rule.

5) When converting a transfer unit from a high-order sign bit, in the case of

using 1’s complement form code, this unit is added to the lowest bit. When using 2’s

complement form code, the transfer unit is lost. The sign of the result is generated

automatically, the result is presented in the code in which the original terms are

presented.

6) In order to check the result, it is converted into the SMR format.

4.2 Exercises

From Table 4.3, according to your number in the group list, select the values A

and B, which are given: one – in the two’s complement, and the second – in the ones’

complement code, for the representation use a field of 1 byte (8 bits). When writing a

code, we agree on separating the sign digit of the number with a comma from other

digits.

Table 4.3 – Individual tasks

Variant
C

(2’s complement)

D

(1’s complement)
Variant

C

(2’s complement)

D

(1’s complement)

1 2 3 4 5 6

1 1,110111 0,110111 16 0,1101010 1,110110

2 1,1010111 0,10111 17 0,000111 1,1110001

3 1,1110110 0,101011 18 1,11111 0,110000

4 0,101011 1,1011001 19 0,1001011 1,100110

5 0,1111101 1,10111 20 0,01011 1,1011011

6 0,100111 1,0111101 21 1,1011001 0,1100100

7 1,1001111 0,100010 22 0,11011 1,1001011

8 0,1001100 1,1101101 23 1,0111100 0,1101

41

Continue Tab.4.3

1 2 3 4 5 6

9 1,0111 0,100010 24 0,101110 1,1010111

10 0,10111 1,101110 25 0,1101101 1,110

11 0,1101011 1,100011 26 1,1111 0,1011101

12 1,100011 0,111001 27 0,1001011 1,111101

13 1,01110 0,111010 28 0,111011 1,100111

14 0,110001 1,0110110 29 1,111 0,101111

15 1,10111 0,10011 30 0,1011 1,1100000

For your variant, get decimal, binary, sign-magnitude, ones’ complement and

two’s complement codes for + C, -C, + D and -D, and fill in the Table, as shown in

Table 4.4 for variant 30.

Table 4.4 – Example codes for variant 30 from Table 4.1

Codes +C –C +D –D

Decimal +11 –11 +31 –31

Binary +1011 –1011 +11111 –11111

SMR (Direct) 0,0001011 1,0001011 0,0011111 1,0011111

1’s complement (Inverse) 0,0001011 1,1110100 0,0011111 1,1100000

2’s complement

(Complement)

0,0001011 1,1110101 0,0011111 1,1100001

Over the numbers C and D manually perform the addition operations in the

modified one’s compliment and two’s complement codes, alternately using the "+"

and "-" characters before each of these numbers, namely:

+ D + (+ C), + D + (- C), -D + (+ C), -D + (- C).

Convert the result of the calculations in a sing-magnitude code, and then

translate it into decimal code and perform a check. Obtained addition results are

demonstrated as shown for variant 30 in Table 4.2.

42

Table 4.5 – Example results (for variant 30 from Table 4.2)

Numbers in different

codes

Addition of numbers with

different signs
Result

Result in

SMR

Result in

decimal

code

C in decimal code (+11)
In two’s

complement

code

+C + (–D) 1,1101100 1,0010100 –20

D in decimal code (–31) +C + (+D) 0,0101010 0,0101010 +42

C in SMR (0,0001011) –C + (–D) 1,1010110 1,0101010 –42

D in SMR (1,0011111) –C + (+D) 0,0010100 0,0010100 +20

C in 1’s complement

code (0,0001011)

In ones’

complement

code

+C + (–D) 1,1101011 1,0010100 –20

D in 1’s complement

code (1,1100000)
+C + (+D) 0,0101010 0,0101010 +42

C in 2’s complement

code (0,0001011)
–C + (–D) 1,1010101 1,0101010 –42

D in 2’s complement

code (1,1100001)
–C + (+D) 0,0010100 0,0010100 +20

4.3 Process of obtaining results

The operation of adding two numbers using a modified 1’s complement and a

modified 2’s complement code for numbers D = 3810 and C = 1710 is performed.

Calculate the values of the following expressions:

() () () ()СDСDСDСD −+−+−−++++ ,,, .

The following terms are used in the text below: SMR – sign-magnitude (direct)

representation; 1c – ones’ complement code; m1c – modified ones’ complement

code; 2c – two’s complement code; m2c – modified two’s complement code.

Perform the above operations using a modified ones’ compliment code.

1) () 551738 =+=+++= CDA

Both terms are positive, therefore their SMR and 1’s complement code coincide.

11011100

01000100

10011000

1

1

1

=

=
+
=

cm

cm

cm

A

C

D

Two zeros in signed digits indicate that the number is

positive, and the 1’s complement code of representation of

answer is coincided with the SMR. The received answer is

converted to the decimal number system and the correctness

43

of the answer is checked: 5522222 54210

10 =++++=A

2) () 211738 =−=−++= CDA

Note that the 1’s complement code of the second term is different from its SMR.

01010100

010100100

01000111

10011000

1

1

1

1

=

+
=

=
+
=

cm

cm

cm

cm

A

A

C

D

We got the overflow of the bit grid and correction

needed. The resulting '1' of carry in the sign digit is added to

the least significant bit of the sum of codes to correct

overflow.

In the received answer, two zeros are in signed digits and

indicate that the number is positive, so the SMR code

coincides with the 1’s complement code.

Let's check up: () 21222 420

10 =++=A

3) () 211738 −=+−=++−= CDA

Note that the 1’s complement code of the first term is different from its SMR.

10101011

01000100

01100111

1

1

1

=

=
+
=

сm

сm

сm

A

C

D

Two units in sign digits indicate that the number is

negative. To convert it into SMR, we invert the significant

digits of the number A: 01010111=mSMRA .

Let's check up: () 21222 420

10 −=++−=A .

4) () 551738 −=−−=−+−= CDA

00100011

000111111

10111011

11001011

1

1

1

1

=

+
=

=
+
=

cm

cm

cm

cm

A

A

C

D

We got the overflow of the bit grid and correction

needed. The ‘1’ was added to the least significant bit of the

sum of codes to correct overflow. Two units in sign digits

indicate that the number is negative. We invert the significant

digits of the number A: 11011111=mSMRA

Let's check up: () 5522222 54210

10 −=++++−=A .

44

Let’s perform an operation in a modified two’s complement code:

5) () 551738 =+=+++= CDA

Both terms are positive, therefore their SMR and 2’s complement code coincide.

11011100

01000100

10011000

2

2

2

=

=
+
=

cm

cm

cm

A

C

D

Two zeros in signed digits indicate that the number is

positive, the 2’s complement code of the answer matches the

SMR, it is 11011100=mSMRA .

Let's check up: 5522222 54210

10 =++++=A .

6) () 211738 =−=−++= CDA

Note that the 2’s complement code of the second term is different from its SMR.

01010100

10111111

10011000

2

2

2

=

=
+
=

cm

cm

cm

A

C

D

Two zeros in sign digits indicate that the number is

positive, SMR coincides with the 2’s complement code, it is

01010100=mSMRA .

Let's check up: 21222 420

10 =++=A .

7) () 211738 −=+−=++−= CDA

Note that the 2’s complement code of the first term is different from its SMR.

10101111

01000100

01101011

2

2

2

=

=
+

=

cm

cm

cm

A

C

D

Two units in sign digits indicate that the number is

negative. To convert it into SMR, we invert the significant

digits of the number and add 1 to the least significant bit:

01010111

1
10100011

=

+

mSMRA

Let's check up: () 21222 420

10 −=++−=A .

45

8) () 551738 −=−−=−+−= CDA

00100111

10111111

01101011

2

2

2

=

=
+

=

cm

cm

cm

A

C

D

Two units in sign digits indicate that the number is

negative. To convert it into SMR, we invert the significant

digits of the number and add 1 to the least significant bit:

11011111

1
11011011

=

+

mSMRA

Let's check up: () 5522222 54210

10 −=++++−=A .

4.4 Control questions

1. What is the difference between sign-magnitude representation, ones’

complement code and two’s complement code in computer for positive and negative

numbers?

2. What happens to the unit of transfer from a higher character digit when

performing the addition operation in ones’ complement form and two’s complement

form codes?

3. What is the sign of a bit grid overflow when performing an add operation?

4. How is a digit grid overflow corrected?

46

5 ADDITION AND SUBTRACTION OF FLOATING-POINT NUMBERS

5.1 Floating-point representation

In floating-point representation, the computer must be able to represent the

numbers and has an ability to operate on them in such a way, that the position of the

binary point is variable and automatically adjusted as computation proceeds, for the

accommodation of very large integers and very small fractions. In this case, the

binary point is said to be the float, and the numbers are called the floating point

numbers.

Numbers are too large for standard integer representations or have fractional

components, which are usually represented in scientific notation, such a form

commonly used by scientists and engineers. When we use Scientific Notation in a

decimal, we write numbers in the following form:

onentmantissa exp10/ −+ .

In this form, there is an optional sign which indicates whether the overall

number is positive or negative, followed by a mantissa (also known as a significand).

It is a real (fractional) number, which in turn is multiplied by a number base (or

radix) raised by an exponent. As we know, in decimal this number base is 10.

Examples:
2331 1042.1,10,1035.3,1025.4 −− −
.

Floating-point representation is essentially scientific notation applied to binary

numbers. In binary, the only real difference is that the number base equals 2 instead

of 10. We would therefore write floating-point numbers in the following form:

onentmantissa exp2/ −+ .

When we write numbers in scientific notation (whether they be binary or

decimal) we can write them in various ways. In decimal we could write

12 1015,105.1 and
010150 , but still all these numbers have exactly the same

value. This provides flexibility, which also, unfortunately leads to confusion. In order

to try and resolve this confusion a common set of rules known as normalized

47

scientific notation are used to define how numbers are normally written in scientific

notation.

In the normalized form we have a single key rule: we choose an exponent so that

the absolute value of the mantissa remains greater than or equal to 1, but less than the

number base. Let’s look at a couple of examples!

If we had the decimal number 500 and wanted to write it in scientific notation

we can write it as either
010500 or

11050 . In normalized form though, we would

apply the rule above and move the radix point so that only a single digit, greater than

or equal to 1 and less than (in this case) 10 were to the left of the radix point. This

case means moving our radix point two places to the left so we had:
2100.5 .

Examples of normalized floating-point numbers: ,1023456789.1 1+

1210987654321.9 − ,
0100.5 + . These are not normalized examples:

1103.11 +

(significand is greater than radix (=10);
71000003.0 − (significand < radix);

2
1

100.4 − (exponent not integer).

Let’s look at a slightly more complicated example, this time in binary. What if

we had the binary number 21.10 ? Again, we apply the rules: we need to have a

mantissa that is greater than or equal to 1 and less than our number base (which this

time is 2). That would mean our mantissa would need to be
1201.1 . To get back to

our original number we would need to move our radix point 1 place to the right. What

does a right side mean? That means the exponent is positive.

The following example is a little more tricky: we want to write the number '

2111.0 ' in normalized scientific notation. Again, we apply the rules. We need a

mantissa greater than or equal to 1 and less than 2:
?211.1 . Now, to go back to our

original number we need to move our radix point 1 place to the left. That means our

exponent is negative. That gives us:
1211.1 − .

48

5.2 Converting from decimal to binary (repetition of previous training)

Like a slight reminder, check out a couple of examples of converting floating-

point numbers from decimal to binary radix. In order to make it, please, follow a

simple iterative procedure:

1) multiply the number by exponent;

2) separately select the integer part of the number and translate it into binary

code;

3) start with the decimal fraction: the fractional part is multiplied by 2;

4) separate the integer part of the intermediate result (it is '0' or '1');

5) stop if the fractional part of the intermediate result is 0 (terminated binary) or

a result you’ve seen before (repeating binary);

6) repeat from step 3 with the fractional part of the result until the result reaches

0 or starts to repeat;

7) record the integer part and the fractional part of the result.

Example 5.1. Let’s convert the number
1104625.3 follow the steps below.

 Let’s write the number without exponent: 625.34104625.3 1 = .

 Let’s convert separately with the 3410, which equals 1000102 .

 Separately convert the fractional part:

2 ×.625 = 1.25 (save the integer part),

2 ×.25 = 0.5 (no integer part to save),

2 ×.50 = 1.00 (save the integer part).

Let’s write them left to right in order: 210 101.100010625.34 = .

Example 5.2. Let’s convert the number
11023125.1 .

 3125.121023125.1 1 =

 210 110012 =

0.15.2
5.025.2
25.1625.2

625.03125.2

=
=
=
=

Let’s write the binary number: 210 0101.11003125.12 = .

49

5.3 IEEE 754 Representations

Floating-point numbers are used everywhere in modern computing. Whether it

be the percentage of the market that have been upgraded to the latest version of iOS,

the current position and orientation of your iPhone in space or the amount of money

flowing into your bank account. As a result of such a wide use, the format, storing

floating-point numbers in memory, has been standardized by the Institute of

Electrical and Electronic Engineers. It is called the IEEE 754 standard.

This standard defines a number of different binary representations that can be

used to store floating-point numbers in memory:

– half precision – uses 16-bits of storage in total;

– single precision – uses 32-bits of storage in total;

– double precision – uses 64-bits of storage in total;

– quadruple precision – uses 128-bits of storage in total.

In each of these cases, their basic structure is, as follows:

() onentsign
mantissa exp21 − .

When it comes to a storedge of floating-point numbers in memory, only three

critical parts of that basic structure are stored: sign, exponent, mantissa. The fig 5.1

below shows how these parts are stored in memory. The most significant bit is the

sign bit.

Figure 5.1 – Floating-point representation

All four binary representations defined in the IEEE 754 standard and have the

most significant bit, as a sign bit and use it to store the sign of the overall number. If

the sign bit is clear (a value of 0) the overall number is positive. If the bit is set (a

value of 1) the number is negative.

50

The exponent represents the power to which the mantissa will be raised. There

is always a fixed number of exponent bits when storing a floating point representation

in memory, and the exact number of bits which use is defined by the particular IEEE

754 representation (single precision, double precision etc).

In all cases, the exponents in each of these representations need to be able to

represent both positive exponents (in order to represent very large numbers) and

negative exponents (in order to represent very small numbers). To avoid the

complications of the need to store the exponents in two’s complement format,

something called an exponent bias is used.

Exponent bias is where the value stored for the exponent is offset from the

actual exponent value by a bias. The bias is simply a number that is added to the

exponent to ensure that the value that is stored is always positive. The table below

shows the number of bits used for the exponent in each of the formats, the allowed

range of values the different exponents which can be applied the bias along with the

allowed values after applying the bias:

Table 5.1 – Characteristics of standard formats

Representat

ion
Bits

Normal Range

(Pre Bias)
Bias

Modified Range

(Post Bias)
Notes

Half

Precision

(2 bytes)

5 -14 to +15 +15 +1 to +30

Biased values of 0 (all bits

clear) and 31 (all bits set)

have special meaning.

Single

Precision

(4 bytes)

8 -126 to +127 +127 +1 to +254

Biased values of 0 (all bits

clear) and 255 (all bits set)

have special meaning.

Double

Precision

(8 bytes)

11
-1022 to

+1023
+1023 +1 to +2046

Biased values of 0 (all bits

clear) and 2047 (all bits

set) have special meaning.

Quadruple

Precision

(16 bytes)

15
-16382 to

+16383
+16383 +1 to +32766

Biased values of 0 (all bits

clear) and 32767 (all bits

set) have special meaning.

Exponent bias can be calculated by the formula: () pт +−− 12 1
, m – the number

of bits allocated to represent the order, p – actual order of normalized number.

51

Examples of exponents in short floating point which uses 8-bits for the

exponent, which we want to range from -128 to +127 (single precision):

– the exponent is 135, then 135 = 135-127 = 8, therefore we have 28 ;

– the exponent is 120, then 120 = 120-127 = -7, therefore we have 2-7 .

In the IEEE 754 representations, the mantissa is expressed in normalized form.

The formats follow the same rules for normalization as we saw with Scientific

Notation, and put the radix point after the first non-zero digit.

As we are expressing our numbers in binary, we knowing that the first non-zero

digit will always be a 1 (after all we can only have 1’s or 0’s). Taking this into

consideration, we are able to drop that first bit, simply assuming it is there, and

instead gain an additional (implicit) bit of precision. When numbers are stored, we

only store the part of the mantissa that represents the fractional part of the number,

the part to the right of the radix point. This is provided by the IEEE 754 standard.

In accordance with this standard, the highest binary digit (the whole part) of the

mantissa of a real number in the normalized form is always ′1′. In this case, the entire

mantissa is unnecessary to be stored in the memory.

Let's look at some examples.

1) Number 125.3010 −=A must be written in 4 bytes:

4

2 21110001.1001.11110 +−=−=A .

Mantissa = 1110001.1 , frac = 1110001 , = 104p

bias is () 210

18 100000111314127412 ==+=+−−
.

Binary float-point representation is

frac

sign

00000000000000000000000100011000

exp .

2) Given the bit string: 00000000000000000000101000001000 .

What floating point number does it represent?

We see that this is a positive, normalized number.

52

 102 12810000000 = exp = 128−127 = 1.

So, this number is: 102

1

2 25.301.112101.1 == .

3) Representing values 210 0111.11004375.12 −=−

00000000000000000111100000011001

21000111.10111.1100

1273

22

+

−=−

5.4 Rules for adding a floating-point format numbers

The basic rules for adding (subtracting) numbers of a floating-point format can

be formulated as follows:

• to add two floating-point values, they have to be aligned so that they have the

same exponent and the same grid of the mantissa:

 – shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1;

 – shifting the mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1.

• after addition, the sum may need to be normalized;

• potential errors include overflow, underflow and inexact results.

Decimal example: ?1063.21025.3 13 =+ −

The first step – aligning decimal points, the second step – adding:

333 10250263.310000263.01025.3 =+ .

The third step – normalizing the result: already normalized!

The binary example: ?10025.0 =+

1. Convert into binary in short representation (2 bytes)

fraction1251272-

-2

2210 00000000000000000000000 01111101 0 21.00.01 0.25
=+

==

fraction1331276

6

210 00000000000001001000000 10000101 0 21.10011100100 100
=+

==

53

2. Align radix points, it's needed to shift the mantissa from the first term to the

right, because its exponent is smaller. Choose to shift the 0.25, in order to increase its

exponent. Shift by (10222 810000111110110000101 ==−) 8 places.

00000000000000000000000 11110011 0

125

 (original value)

00000000000000000000100 01111011 0

126

 (shifted 1 place)

Note that hidden bit is shifted into MSB (most significant bit) of mantissa.

00000000000000000000010 11111011 0

127

(shifted 2 places)

00000000000000000000001 00000100 0

128

(shifted 3 places)

00000000000000000001000 00000100 0

129

(shifted 4 places

00000000000000000100000 10000100 0

130

(shifted 5 places)

00000000000000000010000 00001100 0

131

(shifted 6 places)

00000000000000000001000 00010100 0

132

(shifted 7 places)

00000000000000010000000 10010100 0

133

(shifted 8 places)

3. Add of mantissas

00000000000000010001001.1

)100(00000000000000000001100.1

)(0.2500000000000000010000000.0

10

10

+

4. Normalize the result – get the "hidden bit" to be a 1. The example is already

normalized. Result is

102

127133

2

133

25.10001.1100100210001001.100...0000010001100 00101100 0 === −

Check out the four-step algorithm (fig. 5.2) and, afterwards, the example.

54

Figure 5.2 – Floating-point addition

Consider the example with 4-digit precision: ()4375.05.0 −+

and binary form: ()2

2

1

2 2110.12000.1 −− −+ .

55

1. Align binary points, shift number with smaller exponent:

()1

2

1

2 2111.020.1 −− −+ .

2. Add significands:

() 1

2

1

2

1

2 2001.02111.02000.1 −−− =−+

3. Normalize result and check for over/underflow:

4

2 20.1 − – with no over/underflow.

4. Round and renormalize if necessary:

10

4

2 0625.020.1 = −

5.5 Floating-point precision and rounding

Often due to the small amount of binary digits allocated for storing the mantissa,

there is a fractional part representation error of the output number in the binary

system. It is calculated by the formulas:

absolute error Δ relative error δ

outputinput XX −= , () %100/ = outputX ,

where inputX – input number , outputX – output number.

All fraction bits are significant for relative precision. Relative precision for

floating-point numbers of a single precision format is approx 2– 23 because we have

23 bits in the mantissa. That is equivalent to 6 decimal digits of precision:

63.0232log23 10 .

For double precision we have 52 bits in the mantissa and approx 16 decimal

digits of precision: 163.0522log52 10 .

The floating-point addition associative is not associative. Its need to beware!

Look at the example:

Associativity law for the addition: () () CBACBA ++=++ .

56

Let
23107.2 −=A ,

23107.2 =B and 0.1=C in single precision format.

() () 0.0107.2107.20.1107.2107.2 23232323 =+−=++−=++ CBA

() () 0.10.10.00.1107.2107.2 2323 =+=++−=++ CBA

The result is approximate... Why the smaller number disappeared?

Arithmetic operations on floating-point values compute results that cannot be

represented in the given amount of precision. So, the result should be rounded. There

are many ways of rounding. They each have "correct" uses, and exist for different

reasons. The goal is to compute the round result, which is as "correct" as possible.

There are even arguments about what is really correct.

Rounding in binary system is similar, but it still may cause some difficulties.

The biggest challenge is rounding fractions. For example, it may not be obvious right

away why the fraction 0.11101 when rounded to 2 places after the decimal point

results in the integer 1.

There are five rounding methods, as defined by the IEEE-754 standard, and

most of them are pretty straightforward. The first two rounds to a nearest value (ties

to even and ties away from zero); the others are called directed roundings: towards

zero, towards positive infinity and towards negative infinity. These rules are easier to

understand using decimal system as an example (Table 5.2).

Table 5.2 – Example of rounding to integers using the IEEE 754 rules

Mode/Example value +11.5 +12.5 -11.5 -12.5

to nearest, ties to even +12.0 +12.0 -12.0 -12.0

to nearest, ties away from zero +12.0 +13.0 -12.0 -13.0

toward 0 +11.0 +12.0 -11.0 -12.0

toward + +12.0 +13.0 -11.0 -12.0

toward - +11.0 +12.0 -12.0 -13.0

57

During rounding towards 0 (also called truncation) it’s needed to figure out how

many bits (digits) are available and take that majority bits for the result and throw

away the rest. This influences on making the represented value closer to 0. Example:

the number is ‘0.7783’. If 3 decimal places available then we have ‘0.778’; if 2

decimal places available then we have ‘0.77’.

Round up – regardless of the value, round towards +∞. Rounded result is close,

but not less than true result. Example: rounding ‘1.23’ if 2 decimal places gives ‘1.3’;

‘-2.86’ if 2 decimal places – ‘-2.8’.

Round down – regardless of the value, round towards −∞. Rounded result is

close, but not bigger than true result. Example: rounding ‘1.23’ if 2 decimal places

gives ‘1.2’; ‘-2.86’ if 2 decimal places – ‘-2.9’.

Examples for binary numbers, rounding to 2 digits after radix point:

• Round towards zero (truncate): 22 11.11101.1 , 22 00.1001.1 ,

 22 11.11101.1 −− , 22 00.1001.1 −− ;

• Round up: 22 00.101101.1 , 22 01.1001.1 ;

• Round down: 22 11.11101.1 , 22 00.1001.1 .

Directed roundings are pretty straightforward! 'The round to the nearest' and 'ties

to even' rules usually is pretty hard to understand as directed roundings. The general

rules of rounding come from comparing the original number and the middle between

two rounding options.

The general rule during rounding binary fractions to the n-th place prescribes to

check the digit following the n-th place in the number. If it’s a 0, then the number

should always be rounded down. If, instead, the digit is 1 and any of the following

digits are also 1, then the number should be rounded up. If, however, all of the

following digits are 0s, then a tie breaking rule must be applied and usually it’s the

‘ties to even’. This rule says that the number should be rounded to the number that

has 0 at the n-th place.

58

To demonstrate those rules in action let’s round some numbers to 2 places after

the radix point:

• 0.11001 – rounds down to 0.11, because the digit at the 3-rd place is 0;

• 0.11101 – rounds up to 1.00, because the digit at the 3-rd place is 1 and there

are following digits of 1 (5-th place);

• 0.11100 – rounds to 0.11 – apply the ‘ties to even’ tie breaker rule and round

up because the digit at 3-rd place is 1 and the following digits are all 0’s;

• 22 00.101111.1 , 22 11.11101.1 , 22 00.1001.1 ;

• 22 11.11101.1 −− (1/4 of the way between), 22 00.1001.1 −− .

5.6 Exercises

Select a task from Table 5.3 according to your number in the group list.

Table 5.1 – Individual task

Option A10 B10 Option A10 B10

1 16.53 –36.29 16 36.63 –57.75

2 23.47 53.67 17 –59.97 37.73

3 –65.38 15.74 18 38.12 68.59

4 42.89 33.52 19 –71.17 39.93

5 –76.74 17.44 20 40.14 –56.65

6 –32.19 –80.88 21 –72.27 43.36

7 99.57 –15.97 22 44.51 –69.96

8 51.68 28.79 23 63.85 46.64

9 –35.49 77.39 24 –48.84 –18.81

10 64.25 –19.43 25 61.16 50.15

11 –47.31 29.34 26 –52.29 28.82

12 20.52 45.78 27 26.63 54.47

13 30.32 –55.56 28 58.85 –24.42

14 67.76 31.41 29 22.72 60.76

15 34.54 –87.77 30 –70.73 21.12

1) Convert numbers A10 and B10 into SMR form of binary numbers. Consider

representation precision with 5 numbers after a comma.

59

2) Represent obtained binary numbers in a normalized floating-point format in 2

bytes (fig. 5.1 and top examples).

3) Determine which exponent is the smaller exponent. Align the grids of the

mantissas.

4) Get the 1’s complement and 2’s complement codes for BBAA −+−+ ,,, .

5) Manually calculate the values of the following expressions in 2’s complement

forms:

() () () ()BABABABA −+−++−−+++++ ,,, .

6) Normalize the answer to normal exponential form and convert the results to

decimal.

7) Check up result.

5.7 Control questions

1. How many bits are in half precision, single precision double precision and

quadruple precision formats?

2. How does the transfer unit from the most significant sign digit taken into

account when adding in the two’s complement code?

3. Represent the number NA += 5.410 (N is your number in the group list) in

the single precision format (4 bytes).

4. Operation features of addition in a two’s complement modified code during

overflow of the bit grid.

60

6 MULTIPLICATION OF BINARY NUMBERS

6.1 Commonly rules

Multiplication of two fixed point binary number in signed-magnitude

representation (SMR) is done by the process of successive shift and add operation.

In the multiplication process bits of the multiplier are considered and the least

significant bit considers first. If the multiplier bit is 1, the multiplicand is copied or 0

is copied. The numbers copied down in successive lines are shifted one position to

the left from the previous number. Afterwards, when numbers are added, their sum

form the product. The sign of the product is determined from the sign of the

multiplicand and multiplier. If they are alike, sign of the product is positive,

otherwise - negative.

For example 1, let's multiply +12 by +15, which in binary will be 1100 by 1111.

()
()

00101101

0011

0011

0011

0011

1111
0011

ultiplierM

dultiplicanM

;

102 18010110100 = ; 101010 1801512 = .

The answer is correct.

So. When multiplying numbers in SMR:

1. Sign and significant bits are processed separately. To determine the sign of

the result, the sign bits of the operands are summed using the operation XOR.

2. Multiplication of numbers is done step by step adding the shifted value of the

multiplicand and partial sum with a non-zero bit of the corresponding bit of the

multiplier.

61

When we are multiplying numbers in 2’s complement form:

1. The number of bits of a multiplicand is increased by the number of the bits of

a multiplier. Insignificant zeros are added to the left of the multipliers.

2. Multiplicand and multiplier are represented in two’s complement codes.

3. The result sign is obtained automatically.

4. Multiplication of numbers is made step by step by adding the shifted value of

the multiplicand and partial sum if there is a non-zero bit in the corresponding bit of

the multiplier.

5. If multiplier is a negative number, we need to do a correction. And when

multiplying the multiplicand A by the sign bit of the multiplier B, we must sum with

negative A (-A) in 2’s complement code (but don't positive A).

Example 2. Multiply A * (-B) in the 2’s complement code, А=10, В=13.

Number +A -A +B -B

Decimal 10 -10 13 -13

Binary 1010 -1011 1101 -1101

SMR (1 byte) 0,1010 1,1010 0,1101 1,1101

2’s complement 0,1010 1,0110 0,1101 1,0011

When multiplied by the sign bit, we write the multiplicable A as -A is written in

2’s complement form (step 5)

()
()

01111110,1

0110,1
0000

0000

0101

0101

1100
0101

,1
0000,0

BultiplierM

AdultiplicanM

,

Inversion: 1,10000001 +1 = 1,10000010

Check up: 0,100000102=13010

62

6.2 Floating-point multiplication

• Multiplying floating point values does not requires re-alignment - realigning

may lead to loss of significance.

• After multiplication, the product may need to be normalized.

• Potential errors include overflow, underflow and inexact results.

The figure 6.1 shows the multiplication algorithm.

Figure 6.1 – Multiplication algorithm

63

Example 6.1 on decimal values given in scientific notation:

?105.0100.3 21 = −−

It’s the simple algorithm: multiply mantissas and add exponents.

3)2(121 105.1105.00.3105.0100.3 −−+−−− ==

Example 6.2 in binary.
5104=A ,

601012=B .

Multiply A2=0 10000100 0100 and B2=1 00111100 1100.

The used mantissa is only 4 bits. Also, in the floating-point format the mantissa

and the exponent are separate numbers.

1. Add the blased exponents of the two numbers:

)127675(00000011

)12767(

)1275(

00111100

00100001

+−=

+−=

+=
+

,

subtracting the bias from the sum to get the new exponent:

)65(10000010
)127'1(

)127675(
00000001
00000011

=

+−=
+

resultdecimal
tocomploments

2. Multiply the significands: mantissas multiplication and don't forget the hidden

bit

00001100

0000

0010

0010

0000

0000

0011

0010

, becomes 00110000.

Put the result back together (and add sign bit): 1 110 0000 0 011 0000

3. No need to normalize the product.

4. Round the significand to the appropriate number of bits. No need to round!

64

5. This is the value stored: 1 11000000 0110000

6.3 Exercises

1) Choose the task from the Table 6.1 according to your number in group list.

Table 6.1 – Individual task

Variant multiplicand

А10

Multiplier

В 10

Variant multiplicand

А10

Multiplier В

10

1 16 –36 16 3 –27

2 28 33 17 –5 17

3 –25 15 18 8 20

4 12 33 19 –4 19

5 –36 17 20 4 –26

6 –32 –10 21 –17 13

7 9 –15 22 14 –19

8 11 28 23 23 6

9 –35 27 24 –8 –5

10 4 –19 25 21 2

11 –7 29 26 –5 28

12 20 15 27 3 35

13 30 –5 28 9 –12

14 6 14 29 13 6

15 34 –8 30 –7 21

2) Convert numbers A10 and B10 into binary code in SMR and 2’s complement

codes. Use numbers +А2, +В2, –А2, and –В2.

3) Perform multiplication of binary numbers A2 and B2. Use 2’s complement

code for different combinations: (+А2, +В2), (+А2, –В2), (–А2, +В2) and (–А2, –В2).

6.4 Control questions

1. Features of multiplying integer binary numbers with a sign in SMR and 2’s

complement form.

2. What does the term "partial sum" mean?

3. If the multiplicand or multiplier is a negative number, what should in mind

when performing a multiplication operation?

65

7 DIVISION OF BINARY NUMBERS

Division algorithms are divided into two main categories: slow division and fast

division. Slow division algorithms produce one digit of the final quotient per

iteration. Examples of slow division include restoring, non-performing restoring,

non-restoring, and SRT division. Fast division methods start with a close

approximation to the final quotient and produce twice as many digits of the final

quotient on each iteration. Newton-Raphson and Goldschmidt algorithms fall into this

category. We consider the simplest algorithms.

7.1 Division of fixed-point numbers

The division operation is performed by shifting operations and adding 2’s

complement code to the adder. Division schemes with remainder recovery (restoring

division) and without remainder recovery (non-restoring division) are distinguished.

The non-restoring division is performed according to the following scheme:

1. Equalize the bit grid of the dividend and divider (divisor).

2. If the dividend A > 0, then A = A - B. If the resulting difference А > 0, then

increase by one the value of the integer part of the quotient C and go to step 3,

otherwise finish the formation of the integer part of the quotient and go to step 4.

3. Repeat step 2 until the resulting difference A is less than 0.

4. Perform a linear shift of A by one digit to the left.

5. If A> 0, then find A = A - B, otherwise A = A + B.

6. If A> 0, then assign 1 to the i-th order of fractional part, otherwise assign 0.

7. If the number of fractional digits is less than the required number, then go

back to step 4.

8. Done. Doing decimal conversion.

66

Example 7.1 Find the result of dividing BAC /= according to the algorithm

without reconstruct a remainder: А = 10, В = 3. Find the three digits of the fractional

part.

Step 1. Get binary values and aligned the bit grid.

Number +A +B -B

Decimal 10 3 -3

Binary 1010 0011 -0011

SMR (1 byte) 0,1010 0,0011 1,0011

Modified 2’s

complement
00,1010 00,0011 11,1101

Steps 2-3. Find the integer part of the quotient C. Perform the current

subtraction operation until the result becomes negative or zero:

0011100

110111

101000
)2

+

 0010000

110111

011100
)2

+

0000100

110111

010000
)2

+

0111011

110111

000100
)2

+

 increment C increment C increment C fix point

002 =C 3) 012 =C 3) 102 =C 3) 112 =C 3) .112 =C

Steps 4-6. We proceed to the search for the fractional part.

4|) Shift one bit to the left of the last value of A. Now 110011'2 =scA .

5) Since, A<0 then scscsc BAA '2'2'2 +−= .

0111111

001100

110011

+

6) The result is negative, so the next bit of the fractional part is zero: 0.112 =C

Continue from step 4.

4) Shift one bit to the left, now 111011'2 =scA .

5) Since, A<0 then scscsc BAA '2'2'2 +−= .

67

0000100

001100

111011

+

.

6) The result is positive, so the next bit of the fractional part is one: 01.112 =C

Continue from step 4.

4) Shift one bit to the left, now 0010000'2 =scA .

5) Since, A>0 then)('2'2'2 scscsc BAA −++= .

0111111

110111

001000

+

.

6) The result is negative, so the next bit of the fractional part is 0: 010.112 =C

Step 7-8. After conversion to decimal code, the result is 2510.310 =C .

The result contains the absolute error :

08233.02510.333333.3expected =−=−= factCC .

Error occurred due to the small number of digits in the quotient.

The restoring division is performed according to the following scheme:

1. Equalize the bit grid of the dividend and divisor.

2. If the dividend A > 0, then A = A - B. If the resulting difference А > 0, then

increase by one the value of the integer part of the quotient C and go to step 3,

otherwise finish the formation of the integer part of the quotient and go to step 4.

If the value A = 0 is obtained, then increase the value of the integer part of the

quotient C by 1, complete the formation of the quotient, fixing the position of the

comma, which separates the integer part of the quotient from its fractional part equal

to 0 in this case, and proceed to the step 9.

3. Repeat step 2 until the resulting difference A is less than 0.

4. Recover the remainder A = A + B.

5. Perform a linear shift of A by one digit to the left.

68

6. Find A = A - B.

7. If A < 0, then assign 0 to the i-th digit of the fractional part and go to step 4.

Otherwise assign 1 the i-th fractional part and go to step 5.

8. If the number of fractions is sufficient or A = 0, then the formation of the

fractional part is completed.

9. Done.

Example 7.2 Find the result of dividing BAC /= according by the algorithm

of division with recovery of the remainder: А = 12, В = 5. Find the three digits of the

fractional part.

Let's put in that 4.2expected=C .

Step 1. Get binary values and aligned the bit grid.

Number +A +B -B

Decimal 12 5 -5

Binary 1100 0101 -0101

SMR (1 byte) 0,1100 0,0101 1,0101

Modified 2’s

complement
00,1100 00,0101 11,1011

Steps 2-3. Find the integer part of the quotient C.

Perform the current subtraction operation until the result becomes negative or

zero:

0011100

101111

110000
)2

+

0001000

110111

011100
)2

+

0110111

110111

001000
)2

+

 increment C increment C fix comma

0002 =C

3) 0012 =C 3) 0102 =C 3) .0102 =C

The calculation of the integer part is completed.

Steps 4-6.

4) Reconstruct the remainder: scscsc BAA '2'2'2 += , 110111'2 =scA .

69

001000

010100

110111
+

5) Shift one bit to the left in A, now 010000'2 =scA .

6) Since, A>0 then we do)('2'2'2 scscsc BAA −++= .

0111111

101111

010000

+

7) The result is negative, so the next bit of the fractional part is zero: 0.102 =C .

Repeat the steps from 4-th step.

4) Reconstruct the remainder: scscsc BAA '2'2'2 += ,.

010000

010100

111111
+

, 010000'2 =scA .

5) Shift one bit to the left in A, now 100000'2 =scA .

6) Since, A>0 then we do)('2'2'2 scscsc BAA −++= .

0001100

101111

100000

+

7) The result is positive, so the next bit of the fractional part is one: 01.102 =C

Repeat the steps from 5-th step.

5) Shift one bit to the left in A, now 011000'2 =scA .

6) Since A>0 then we do)('2'2'2 scscsc BAA −++= .

0000100

101111

011000

+

7) The result is positive, so the next bit of the fractional part is one: 011.102 =C

8) The number of digits after the point is enough. Done.

After conversion to decimal code, the result is
34510.210 =factC

.

70

The result contains the absolute error :

0549.034510.24.2expected =−=−= factCC .

Error occurred due to the small number of digits in the quotient.

7.2 Division of binary floating-point numbers

If A and B are given in normalized form:

pA

AMA 2= , pB

BMB 2= ,

where AM , BM are mantissas, and pA and pB are orders of numbers A and B, then

their quotient will be equal to

() pBpA

BA

pB

B

pA

A MMMMС −== 222 .

In the division of floating-point numbers, their mantissa is divided as a fixed-

point number, and the orders are subtracted. Potential errors of the float-point

division include overflow, underflow, inexact results and attempts to divide by zero.

Afterwards, the division operation for floating-point numbers is performed in

five stages.

1 stage. Definition of the quotient by adding modulo two signed digits of the

operands.

2 stage. Division of the mantissa operand modules according to the rules for

dividing fixed-point numbers.

3 stage. Determining the order of the quotient by subtracting the order of the

divisor from the order of the dividend.

4 stage. Normalization of the result and its rounding.

5 stage. Signing the mantissa result.

The first two stages completely coincide with the rules for dividing numbers

with a fixed point. The third step is the usual addition in 1’s complement codes.

71

When dividing normalized numbers, denormalization of the result is possible

only to the left and only by one digit. And due to the fact, the mantissa of any

normalized number lies within: nМ −− − 212 1 .

Then the smallest and largest possible value of the quotient of the mantissa are

equal, respectively:

1
1

min 2
21

2 −

−

−

−

=
nСМ , () 222

2

21 1

1max −=
−

= −−

−

−
n

n

CМ ,

i.e., the mantissa of the quotient lies within 22 1 −

CM .

Therefore, at the fourth stage, it may be necessary to normalize the mantissa of

the quotient by shifting it to the right by one bit and increasing the order of the

quotient by one. If, before division, shift the dividend by one digit to the right, then at

the fourth stage, it may be necessary to normalize the results to the left by one bit.

Example 7.3. Get
6105 −−=A ,

5108 −=B

mantissasign

SMRA 101111000111

exp

=

,

mantissasign

SMRB 110011010110

exp

=

1 stage. Definer of quotient’ sign: 101 =

2 stage. Mantissas division by one of the methods shown above. It turned out:

1101,00= BAC MMM

3 stage. Determining the order of quotient:

0111111

'11010000
1001111

comps
SMR

Convert into true exponent: 11111102 = 12610 , 126-127=-1

4 stage. The quotient is received the normalized, so only the rounding of the

mantissa is performed: 111,0=CM

72

5 stage. Result:
mantissasign

SMRМ 111011110111

exp

= , in decimal it is

1100.7 −−

.

7.3 Exercises

1) Perform a manual division of the two given pairs of numbers, using the

scheme restoring and non-restoring division.

Table 7.1 – Individual tasks

 restoring

division

method

non-

restoring

division

method

 restoring

division

method

non-

restoring

division

method

 restoring

division

method

non-

restoring

division

method

V
ar

ia
n
t

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

V
ar

ia
n
t

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

V
ar

ia
n
t

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

D
iv

id
en

d

А
1

0

D
iv

is
o
r

В
 1

0

1 23 7 33 10 11 17 4 27 8 21 28 9 22 6

2 24 5 34 11 12 18 5 28 9 22 29 7 43 14

3 25 7 35 8 13 19 6 29 8 23 30 8 44 13

4 26 8 36 10 14 20 6 30 9 24 31 7 25 6

5 27 6 37 9 15 21 6 31 8 25 32 6 26 7

6 28 6 38 8 16 22 5 32 9 26 33 9 27 7

7 29 8 39 9 17 23 8 17 5 27 34 8 12 3

8 30 9 40 12 18 24 7 18 4 28 35 9 13 4

9 31 8 41 13 19 25 8 19 5 29 36 8 14 4

10 32 7 42 12 20 26 6 20 5 30 37 9 19 4

2) The result of the division must be shown in SMR and decimal codes.

7.4 Control questions

1. Why does the quotient value obtained after division according to the above

schemes not always coincide with the expected one?

2. What is the difference of the division scheme without restoration and division

scheme with the restoration?

3. Draw a diagram of the algorithm performing a division during the formation

of the integer part of the quotient.

4. Draw a diagram of the algorithm performing a division without recovery, as

well as with recovery during the formation of fractional part of the quotient.

73

74

BIBLIOGRAPHY

1 Murdocca M. J., Heuring V. P. Principles of computer architecture. – NY :

Prentice Hall, 1999. – 640 p.

2 Марченко А.Г., Смикодуб Т.Г. Електронно-обчислювальні машини та

мікропроцесорні системи: Навчальний посібник. – Миколаїв : НУК, 2007.

– 176 с.

3 Dumas J. D. Computer Architecture: Fundamentals and Principles of

Computer Design. – Boca Raton : CRC Press, 2016. – 462 p.

4 Catsoulis J. Designing Embedded Hardware. : O'Reilly, 2005, – 400 p.

5 Veen A. H. Dataflow machine architecture. // ACM Computing Surveys. – 18

(4), 1986. pp. 365–396. doi:10.1145/27633.28055

6 Clarke T. J. W., Gladstone P., MacLean C., Norman A. C. SKIM – The S, K, I

Reduction Machine. // LISP Conference, 1980:– pp. 128-135

7 Hopfield J. J. Neural networks and physical systems with emergent collective

computational abilities. // Proceedings of the National Academy of science of the

USA. 1982. 79 (8). : –pp. 2554–-2558.

8 Blaise Barney Introduction to Parallel Computing. / Lawrence Livermore

National Laboratory [Електронний ресурс]. – Режим доступу:

https://computing.llnl.gov/tutorials/parallel_comp/

9 Irabashetti P. S. Parallel processing in processor organization // International

Journal of Advanced Research in Computer and Communication Engineering -Vol. 3,

Issue 1, 2014. ,– pp. 5150-5153.

10 Hollings Ch. An Analysis of Nonpositional Numeral Systems // The

Mathematical Intelligencer – 2009, Volume 31, pp 15–23.

11 Sargunar J. Introduction to Computer Science. – ITL Education Solutions

Limited. New Delhi : Pearson, - 2011. – 483 p.

12 Tanenbaum A. S., Austin T., Structured Computer Organization. – NJ :

Prentice Hall, 2013. – 800 p.

75

13 Plantz Robert G. Introduction to Computer Organization with x86-64

Assembly Language & GNU/Linux 2015. – 568p.

14 Dandamudi S.P. Fundamentals of Computer Organization and Design, -

Springer Verlag, 2003. –1061 p.

15 Tarnoff D. Computer Organization and Design Fundamentals.– 2007.– 408 p.

[Електронний ресурс]. – Режим доступу: http://www.cuc.ucc.ie/CS1101

/David%20Tarnoff.pdf

16 Stallings W. Computer Organization and Architecture, Design for

Performance - New Jersey : Pearson Education, Inc., 2016. – 864 p. [Електронний

ресурс]. – Режим доступу: http://home.ustc.edu.cn/~louwenqi/reference_books_

tools/Computer%20Organization%20and%20Architecture%2010th%20-20William%

20Stallings.pdf

17 Chalk B.S. Computer Organization and Architecture: an introduction. -

Basingstoke : Palgrave Macmillan, 2003.– 350 p.

76

Навчальне видання

ГАВРИЛЕНКО Світлана Юріївна

ХАЦЬКО Наталія Євгенівна

ОСНОВИ АРХІТЕКТУРИ КОМП’ЮТЕРНИХ СИСТЕМ

Навчально-методичний посібник з курсів «Основи комп’ютерної інженерії»,

«Основи архітектури програмних систем», «Комп’ютерна математика»

для студентів спеціальностей

«Інженерія програмного забезпечення» та «Комп’ютерна інженерія»

денної та дистанційної форм навчання

Англійською мовою

Відповідальний за випуск Годлевський М.Д.

Роботу до видання рекомендував Горілий О.В.

В авторській редакції

План 2019 р., поз. 92

Підп. до друку 08.11.19. Формат 60×84 1/16. Папір офсетний.

Riso-друк. Гарнітура Times New Roman. Ум. друк. арк.4.7

Наклад 50 прим. Зам. № 45/6 Ціна договірна.

Видавець Видавничий центр НТУ «ХПІ».

Свідоцтво про державну реєстрацію ДК № 5473 від 21.08.2017 р.

61002, Харків, вул. Кирпичова, 2

Надруковано у Видавництві "Курсор"

м. Харків, вул. Дмитрівська, 5

т. (057) 706-31-73

Свідоцтво про внесення до Державного реєстру суб'єктів видавничої справи

серія № 21 від 24.03.2000 р.

