
p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2019      41 

artykuł recenzowany/revised paper IAPGOS, 2/2019, 41–45 

DOI: 10.5604/01.3001.0013.2546 

PULVERIZED COAL COMBUSTION ADVANCED CONTROL TECHNIQUES 

Konrad Gromaszek 
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science 

Abstract. The paper describes the selected methods of adaptive control of the pulverized coal combustion process overview with various types of 

prognostic models. It was proposed to use a class of control methods that are relatively well established in industrial practice. The presented approach 
distinguishes the use of an additional source of information in the form of signals from an optical diagnostic system and models based on selected deep 

structures of recurrent networks. The research aim is to increase the efficiency of the combustion process in the power boiler, taking into account the EU 

emission standards, leading in consequence to sustainable energy and sustainable environmental engineering. 
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ZAAWANSOWANE METODY STEROWANIA PROCESEM SPALANIA PYŁU WĘGLOWEGO  

Streszczenie. W artykule opisano wybrane metody adaptacyjnego sterowania przeglądem procesu spalania pyłu węglowego z wykorzystaniem określonych 

modeli prognostycznych. Zaproponowano użycie metod, które są stosunkowo dobrze znane w praktyce przemysłowej. Przedstawione podejście wyróżnia 

wykorzystanie dodatkowego źródła informacji w postaci sygnałów z optycznego systemu diagnostycznego i modeli opartych na strukturach sieci głębokich. 

Badania mają na celu zwiększenia efektywności procesu spalania w kotle energetycznym, z uwzględnieniem norm emisji UE, prowadząc w konsekwencji do 

zrównoważonej energii i zrównoważonej inżynierii środowiska. 

Słowa kluczowe: sterowanie procesem algorytmy adaptacyjne, sztuczne sieci neuronowe  

Introduction 

The combustion process, as already mentioned, in particular, 

carried out in industrial conditions, is characterized by very high 

complexity. This is due to the nature of the phenomena accompa-

nying the process as well as the difficult measurement conditions, 

including the unavailability of specific quantities and the impact 

of high temperature, vibration, and dustiness on measuring and 

recording devices. The issues discussed in this monograph, regard-

less of trends in the pulverized coal combustion in the power 

industry, raise a number of intensive issues, developed many 

research works. It attempts to control one of the most challenging 

processes using analytical, heuristic and hybrid methods. The 

conducted research is in line with the directions of searching for 

algorithms for non-linear processes that will be numerically relia-

ble, robust and, above all, will allow meeting technological limita-

tions in the conditions of the uncertainty of model parameters 

1. Combustion process modelling 

In commercial power plants, many subsystems can be distin-

guished, which include: supply of fuel, water, fuel combustion 

(combustion chamber), steam generating system, turbine and 

generator system, and boiler safety system. Hence, developing a 

holistic (comprehensive) model of such a complicated process is a 

tough challenge. For this reason, in general, decomposition takes 

place, i.e., a division into smaller parts, describing specific subsys-

tems or modules, due to the implemented functions or specific 

tasks. An unquestionable advantage of modularity is the simplifi-

cation of the analysis and validation of the proposed solutions. 

The starting point for the classical mathematical model's devel-

opment is the description of the physical and physicochemical 

phenomena of a given system using the principle of energy con-

servation, thermal balance and mass balance [7]. Based on the 

mathematical description of the phenomena occurring in the boil-

ers [8], a mathematical model of the combustion chamber was 

developed and used to compare various constructional solutions. 

Unfortunately, in most cases, there was a lack of consistency 

between the measurement data for specific measurement condi-

tions and the variables necessary for the model use. This required 

further research in the field of parametric identification of the 

process based on the collected data. 

In the practical diagnostics and control algorithms, the detailed 

and simultaneously noncompliant models are desirable, due to the 

strong non-linearity, complexity and high dynamics of the com-

bustion process. The heuristic methods presented in the mono-

graph allow for effective finding approximate solutions, from 

which the final result is calculated later. The limitation of these 

solutions is the lack of direct knowledge about the state of the 

model and the lack of knowledge about the response of the neural 

model to the non-standard range of input signals.  Lack of direct 

knowledge about the model's condition and lack of knowledge 

about the neural model's response to the non-standard range of 

input signals is a limitation of this type of solution. 

This mainly applies to methods of deep learning. In addition to 

class selection, structure and learning methods, there are also 

opportunities to influence the learning process through regulariza-

tion techniques and more effective activation functions. Recursive 

neural networks (RNNs) are modelled on the behaviour of many 

occurring in nature many cells with content-addressable memory, 

capable of capturing the whole sequence of information, given as 

fragments. While forward networks trigger their neurons in one 

direction, RNNs use strong feedback. RNNs model non-linear 

dynamic systems whose phase space dynamics is determined by a 

significant number of locally stable nodes [4]. 

During long-term context storage, RNN gradients can become 

difficult to remove because they use their feedback to memorize 

the structure of the last inputs. Similarly, backwardly propagating 

error signals over time can have large values (causing oscillations 

of weights) or recede (making it difficult to determine slow-

change weights). These changes during the backward propagation 

errors depend exponentially on the value of the weights [1, 2]. 

2. Modern approaches 

The classic structure of a multi-layer perceptron and the long 

short-term memory (LSTM) was used for neural combustion 

process modelling in the monograph The advantage of LSTM is 

that it truncates gradients in the network, wherever it is harmless, 

and at the same time enforces continuous error flows in individual 

multiplicative units (MUs). The continuous error flow is regulated 

by nonlinear MUs that learn to open or close gates in a cell. The 

diagram of such a structure is shown in Figure 1.  

They are structures whose forgetting gates allow for precise learn-

ing in time. 

The analysis of the combustion process in coal-fired boilers 

reveals three main factors that adversely affect the boiler efficien-

cy. These include the level of slagging and contamination of heat-

ing surfaces and measuring instruments, heat losses due to exhaust 

gases as well as a large share of unburnt coal. The possibility of 

assessing combustion quality is significant for proper operation of 

the power boiler [6]. Considering the combustion process in pul-

verized coal boilers, it should be noted that: chemical reactions, 

heat transfer efficiency, flame stability as well as the intensity of 

NOx and CO formation have the significant influence on it. The 

burners and the fuel delivery method have a crucial influence on 
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the combustion aerodynamics. Low-emission coal burners use the 

reduction properties of a rich pulverized coal flame by organizing 

sub-stoichiometric combustion zones using air staging or fuel 

staging. This, in turn, may worsen the combustion stability and 

increase the loss of the flame. 

  

Fig. 1. The Long Short-Term Memory (LSTM) single cell model 

Taking into account these factors and significant ecological 

aspects, there is a need to develop a combustion process control 

system that will optimize boiler operation based on information 

obtained from conventional equipment and will take into account 

innovative techniques to assess the quality of the process. From 

the technological side, an important parameter is to ensure flame 

stability and detection of emergency states. Therefore, the control 

system should be enriched with flame diagnostic information 

using vision technologies or fiber optic probes. Quantitative in-

formation on the concentration of nitrogen oxides, carbon oxides, 

and sulphur dioxide is equally essential in order to meet normative 

limitations. 

Continuous measurement of the dust flow in dust-conductors 

will undoubtedly bring valuable information about the input pa-

rameters of the process, but it is difficult to measure. Similarly 

considering the process output, it would be crucial to obtain in-

formation online about the content of flammable parts in ash and 

slag (especially the organic carbon content). To obtain this infor-

mation, it is necessary to carry out measurements on the real 

object using expensive measuring equipment.  

The use of this information in the solutions proposed in the 

monograph was possible thanks to the research carried out at the 

Institute of Power Engineering in Warsaw, on the experimental 

stand for testing the combustion process with a heat output of 0.5 

MW using a coal burner.  The layout of the station, in the configu-

ration for the co-firing process testing, is shown in Figure 2. 

 

Fig. 2. Diagram illustrating the experimental stand for testing combustion processes 

The central element of the station is a cylindrical combustion 

chamber, the inner part of which is covered with insulating mate-

rial, and the external one is cooled with air. The front wall of the 

combustion chamber is cooled by water. A dust burner is installed 

in the front wall axis. The auxiliary oil burner is used to heat the

station before the ignition of pulverized fuel. The primary air is 

supplied to the coal burner in the amount of 250 m3N/h and sec-

ondary air - up to 500 m3N/h. 

The identification of combustion process model parameters for 

a single low-emission burner was an essential element of the 

control system synthesis, including both diagnostic information 

and those from the optical flame monitoring system. In order to 

develop a mathematical model of the process, carried out with the 

use of a single low-emission burner, the measurements were car-

ried out on the IEN test stand. The experiments included the stabi-

lization of the working point of the laboratory stand at different 

powers, different types of fuel (including coal and biomass) and 

exchangeable three types of low-emission burners. Measurements 

of process variables were made at 1Hz. The registered values 

include multi-point measurements of exhaust gas concentrations 

(NOx, O2, CO, CO2), measurements of temperatures, pressures, 

and flows as well as levels of air fans. Optical measurements on 

the flame were made at 1kHz. 

The initial stage of work included the analysis of selected, reg-

istered input and output quantities. For the synthesis of multidi-

mensional models (MIMO), the vectors of input signals describing 

the secondary air flow, fuel output and output signal vectors in-

cluding NOx concentration, CO and chamber temperature respec-

tively were determined. The data were divided into training and 

testing sets, using a 70% and 30% distribution respectively. Using 

the System Identification Toolbox, parameters were identified for 

parametric models in the state space. The tested object was treated 

as a serial structure. Thus, the outputs of the models on the first 

level were the inputs for the second-level models and described 

the relationships between the NOx and CO concentrations, the 

temperature in the chamber and the corresponding values at the 

appropriate measurement point. Using the Matlab / Simulink 

platform tools, the MPC controller was designed, in order to test 

the credibility of the models obtained. Such an approach allows 

imposing boundaries on outputs and control signals, that interfered 

signals and prediction and control horizons. Thus, it allows check-

ing the models in the context of normative restrictions (e.g. re-

garding NOx emissions). 

The Simulink diagram of pulverized coal combustion process 

control system is presented in Figure 3. It allows modifications of 

the used models and the design of MPC controllers. 

 

Fig. 3. Simulink diagram of the tested control system 

As part of the conducted tests, taking into account the NOx 

emission standards restrictions (300 ppm), the best results in the 

sense of NRMSE were obtained for the low emission coal burner 

first (D1M1_4s6) and third (D3M1_4s3) model. Figure 4 gives an 

example of the analysis of the obtained results, for models P1 for 

with test data from the combustion process. 

In the case of selected models (P2), compliance with emission 

limits was achieved with the occurring oscillations (D2M1_4s5), 

and in the case of (D2M1_4s6) - they were unsuccessful. The 

serial configuration yielded the best results in combination with 

model structures (D2M2_4s4 and D2M2_4s10). 
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3. Pulverized coal combustion and co-combustion 

with biomass process using optical signals from 

the flame 

Combustion tests were carried out on the Institute of Power 

Engineering test bench. A low-emission NOx burner mounted 

horizontally on the front wall of the chamber with a diameter of 

0.1 m. Previously prepared pulverized coal was stored in the 

bunker and delivered by a feeder. In case of biomass fuel, the coal 

dust was mixed with biomass (mainly with straw) in appropriate 

proportions. 

There are inspection holes on both sides of the combustion 

chamber, allowing observation of the combustion process and 

providing data acquisition capability. As part of the research, a 

fast camera with a CMOS sensor was placed near the nozzle of the 

burner. The camera enabled image recording with a resolution of 

1280  1024 pixels at a rate of 500 frames per second. The 0.7 m 

length borescope with camera set was used to record flame imag-

es. The optical system was cooled with a water jacket. In order to 

avoid contamination of the probe's lens, purified air purge was 

used. This operation was important due to the image registration 

but introduced minor disturbances in the area near the burner. 

The course of the experiment required proper preparation, 

therefore the research was divided into several stages. Initially, the 

combustion chamber was heated with heating oil. After reaching 

the appropriate temperature level, pulverized coal was introduced 

into the burner with the primary air. The next phase was switching 

off the oil burner and introducing a mixture of coal and biomass. 

The coefficient of excess air was determined by the secondary air 

flow [3]. 

During the tests, nine variants were assumed, in which the 

thermal power (Pth) and the excess air coefficient (λ) were set 

independently for the known biomass content. It should be noted 

that λ is defined as the quotient of the combustion air weight 1 kg 

of fuel to the stoichiometric air mass. 

The measurements were carried out for three heat power val-

ues (250 kW, 300 kW, and 400 kW) at the object output and the 

specified values of the excess air factor λ, equal to 0.65, 0.75 and 

0.85, respectively. Besides, the tests included two fuel mixtures 

containing 10% and 20% straw-based biomass. The studies as-

sumed fixed parameters of biomass physical properties (like parti-

cle size, natural humidity, etc.) as well as all image acquisition 

parameters (such as frame rate and time of exposure). 

For the measurements carried out, an attempt was made to de-

termine the optical parameters of the flame that can be used during 

diagnostics and control of the combustion process. 

It was assumed that due to the need to develop an online con-

trol algorithm, the images from the camera were transformed by 

conversion to an 8-bit grayscale. The area of the flame in each 

frame of the obtained sequence was determined based on the 

amplitude of the pixels to distinguish the flame from other record-

ed objects in the field of view of the borescope. Thus, the sum of 

all bright pixels in the analysed flame determined its area. The 

coordinates (x, y) of the flame field center were calculated as the 

mean value of the coordinates of the lines or columns of all the 

pixels in the flame region, respectively. Flame contour length is 

defined as the sum of all envelope pixels, assuming that the dis-

tance between two adjacent contour points parallel to the coordi-

nate axis has the value 1. 

In the proposed solution, the classic approach is supplemented 

with information about the flame based on selected image parame-

ters registered with a fast camera. 

 

Fig. 4. Comparison of P1 model responses for test data from the combustion process 
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As a result of the analysis, there was the relationship between 

the parameters describing changes in the flame image and the 

temperature of the flue gases and the amount of secondary air. 

Primary air is mainly used to supply coal dust to the nozzle of the 

burner, while secondary air is used to change the conditions of the 

combustion process (deviation from stoichiometry). The input 

parameters, such as the amount of fuel in the form of a coal-

biomass mixture and air flows, were changed several times during 

tests to create different states of the combustion process. 

An adaptive control seems to be a reasonable approach in case 

of incomplete knowledge about the controlled object or its rapid 

changes in operation. 

The nonlinear autoregressive network with exogenous inputs 

(NARX) is a dynamic network with reverse connections including 

several layers. The NARX model is based on a linear ARX model, 

which is widely used in modeling time series. In the NARX model 

equation, each subsequent value of the dependent output signal is 

determined relative to the previous values of the output signal 

vector and the previous values of the independent (exogenous) 

input signal. The NARX model can be implemented using a for-

ward-facing neural network to approximate a specific function. 

This implementation also allows for a vector ARX model in which 

input and output data can be multidimensional. 

The outputs of the NARX network can be considered as an es-

timation of the results of the modeled non-linear dynamic system 

that are transmitted to the neural network input using feedback 

within the standard NARX architecture. Since the result is availa-

ble during network training, it is possible to create a serial-parallel 

architecture (see [5]), in which the actual output is used instead of 

the estimated result. The custom architecture used for further 

analysis is the adaptive control algorithm (MRAC). This control 

architecture has two subnets. One subnet is a controlled process 

model, and the other subnet is a controller.  

The trained NARX model can be used both to create the entire 

MRAC system and incorporate it inside the controller structure. In 

order for the closed loop MRAC system to respond in the same 

way as the reference model (used to generate data), the weights 

from the trained network should be placed in the MRAC system. 

The training of the MRAC system took much longer than training 

the NARX model because dynamic backward propagation was 

used in the network. After training procedures, the MRAC net-

work was verified using test data. Two MRAC systems have been 

designed and compared. The first of them used a standard set of 

input vectors based on measurements, quantitatively describes the 

secondary air flow, the amount of fuel and vectors describing the 

air temperature in the chamber, recorded in the first measuring 

point, respectively. The second scheme used the secondary air 

flow control signal and the selected flame area descriptors. These 

optical information-based descriptors were determined using the 

Otsu method and the contour length.  Figure 5 shows the system 

response to the input setpoint of the system in both cases: with 

standard measurements (a) and after using optical measurements 

in the form of a contour length vector for the flame descriptor (b). 

The simulation results shown in Figure 6 show that the output of 

the developed model follows the reference input with the correct, 

suppressed response, even if the input sequence was not the same 

as the input sequence in the training data. The steady state reaction 

may have an oscillating course at each stage, but this can be im-

proved by using a larger training set and perhaps more neurons in 

the hidden layer. From the obtained results of the proposed adap-

tive control algorithm, it can be concluded that the constraints 

imposed on the values of control signals ensure stabilization of the 

process. 

Nevertheless, the boundaries imposed on the signals will be a 

limitation also for the control system, because sudden changes in 

the process parameters may require the rapid reaction. 

As mentioned above, imposing boundaries on signals can be a 

way to guarantee stability. The analyzed control system was sub-

jected to a rapid step change of load, that illustrated the critical 

situation that may occur in case of an unexpected change in sys-

tem parameters. 

The algorithm took into account all the imposed boundaries, both 

on the controls and the outputs. The obtained results confirm its 

robustness, and thus the possibility of implementation in real 

systems. Boiler combustion efficiency and NOx emission are 

usually chosen as the main parameters of the target function in 

control with the SSN model. The neural model enables the map-

ping of dependencies between control parameters and outputs for 

different operating conditions.  As a result, the control algorithm 

can be used as an advisory system for the operator or directly to 

control the combustion process in the boiler.  

 

Fig. 5. The response of the modeled boiler control system using (a) the input data vector (b) the input data extended with optical information 
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4. Hybrid methods 

The attempt to solve the problem of identification and control 

of the strongly non-linear phenomenon related to the pulverized 

coal and biomass co-combustion was undertaken in the book 

"Advanced control techniques of pulverized coal combustion 

control". 

The dynamics of this process is too complex to be modeled with a 

limited number of differential equations. Therefore, three selected 

structures of deep neural networks were considered for research: 

MLP, simple recursive network, and Long Short-Term Memory 

cells. Due to the unusually high variability of signals, the use of 

individual AI models is usually associated with getting stuck in 

local minima, and this leads to suboptimal solutions. It excludes 

obtaining satisfactory performance of the model in diagnostics and 

control tasks. However, in order to eliminate these limitations, 

hybrid algorithms are becoming more popular [10,11]. There are 

two main trends in the construction of hybrid models. One of them 

is a combination of several predictors, where their prediction 

results constitute a composite for final prediction. 

5. Conclusion 

Denote The results of tests and analyses presented in the mon-

ograph do not solve all of the problems associated with combus-

tion process control. The issues of combustion dynamics with 

more detailed parametric stability analysis as well as conditions of 

turbulence require improvement. The control system may include 

other optical signals, including flame color and extension of hy-

brid methods with the use of fuzzy algorithms. According to the 

author, advanced control algorithms will be further developed and 

used in a wide range not only in industrial installations. One can 

risk the statement that these methods will shift towards the hybrid-

ization of artificial intelligence methods with other approaches. 
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