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OF SARCOIDOSIS BASED ON THE FRACTAL ANALYSIS OF CT CHEST 

IMAGES 
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Abstract. CT images corresponding to the cross-sections of the patients’ upper torso were analysed. The data set included the healthy class and 3 classes 

of cases affected by sarcoidosis. It was a state involving only the trachea – Sick(1), a state including trachea and lung parenchyma – Sick(2) and a state 

involving only lung parenchyma – Sick(3). Based on a fractal analysis and a feature selection by linear stepwise regression, 4 descriptors were obtained, 
which were later used in the classification process. These were 2 fractal dimensions calculated by the variation and box counting methods, lacunarity 

calculated also with the box counting method and the intercept parameter calculated using the power spectral density method. Two descriptors were 

obtained as a result of a gray image analysis, and 2 more were the effect of a binary image analysis. The effectiveness of the descriptors was verified using 
8 popular classification methods. In the process of classifier testing, the overall classification accuracy was 90.97%, and the healthy cases were detected 

with the accuracy of 100%. In turn, the accuracy of recognition of the sick cases was: Sick(1) – 92.50%, Sick(2) – 87.50% and Sick(3) – 90.00%. In the 

classification process, the best results were obtained with the support vector machine and the naive Bayes classifier. The results of the research have 

shown the high efficiency of a fractal analysis as a tool for the feature vector extraction in the computer aided diagnosis of sarcoidosis. 
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KONSTRUKCJA WEKTORA CECH W DIAGNOSTYCE SARKOIDOZY NA PODSTAWIE ANALIZY 

FRAKTALNEJ OBRAZÓW CT KLATKI PIERSIOWEJ 

Streszczenie. Przeprowadzono analizę obrazów CT górnej części tułowia pacjentów. Zbiór danych zawierał klasę pacjentów zdrowych i 3 klasy 

przypadków dotkniętych sarkoidozą. Był to stan obejmujący tylko tchawicę – Sick(1), stan obejmujący tchawicę i miąższ płucny – Sick(2) i stan obejmujący 

tylko miąższ płucny – Sick(3). Na podstawie analizy fraktalnej oraz selekcji cech metodą liniowej regresji krokowej otrzymano 4 deskryptory, które później 
wykorzystano w procesie klasyfikacji. Były to 2 wymiary fraktalne obliczone za pomocą metod variation i box counting, lakunarność obliczona również za 

pomocą metody box counting oraz parametr intercept obliczony za pomocą metody widmowej gęstości mocy. W wyniku analizy obrazu szarego otrzymano 

2 deskryptory, a 2 kolejne były efektem analizy obrazu binarnego. Skuteczność deskryptorów zweryfikowano za pomocą 8 popularnych metod klasyfikacji. 
W procesie testowania klasyfikatorów, ogólna dokładność klasyfikacji wyniosła 90,97%, a przypadki zdrowe wykryto z dokładnością 100%. Z kolei, 

dokładność rozpoznania przypadków chorych była następująca: Sick(1) – 92,50%, Sick(2) – 87,50% i Sick(3) – 90,00%. W procesie klasyfikacji, najlepsze 

wyniki uzyskano za pomocą maszyny wektorów nośnych i naiwnego klasyfikatora Bayesa. Wyniki badań pokazały wysoką skuteczność analizy fraktalnej 
jako narzędzia do ekstrakcji wektora cech w komputerowej diagnostyce sarkoidozy. 

Słowa kluczowe: fraktale, sarkoidoza, tomografia komputerowa, analiza tekstury obrazu 

Introduction 

Sarcoidosis is a disease that attacks the body's immune 

system. A characteristic feature of sarcoidosis is a presence of 

inflammatory papules, called granulomas, which are on various 

organs and are not absorbed [1]. Sarcoidosis mainly affects the 

lungs and lymph nodes of the cavities, which are located in the 

mediastinum, i.e. in the part of the body which is located within 

the chest protected by the bony armor created by the ribs and the 

sternum [2, 9]. As a part of diagnostics of the disease, lung 

imaging is primarily performed. On this basis, there are 5 stages of 

sarcoidosis on which the treatment depends. However, to confirm 

the diagnosis, morphological examinations are performed, 

allowing the presence of characteristic granulomas to be visible 

under the microscope [7, 27]. Neglect of treatment of sarcoidosis 

can lead to respiratory failure and irreversible changes in the 

lungs, which is why it is very important to detect the disease at an 

early stage. The use of the computer aided diagnosis system, 

which based on CT images would provide the physician with a 

second diagnostic opinion, could be of great benefit here. In the 

construction of such a system, a fractal analysis could be used. 

The results we present in the article, confirm the high 

effectiveness of this method in identifying of healthy cases and 

different categories of sick cases. It should be noted here, that we 

are not aware of the works of other authors, where CT images 

would be used in the computer aided diagnosis system for 

detecting of sarcoidosis. 

1. Material and methods 

1.1. Material 

CT images corresponding to the cross-sections of the patients’ 

upper torso have been used. The data set included the class of 

healthy cases and 3 classes of cases diagnosed with sarcoidosis. 

These 3 kind of sick cases included only a trachea, a trachea and a 

pulmonary parenchyma, and only a lung parenchyma. The ground 

truth of whether a given CT image belongs to the healthy or sick 

person was determined by a pulmonologist (an expert in the field) 

based on clinical tests. Each category contained images belonging 

to 15 patients. In most cases, 4 areas of interest (ROIs) were 

identified for each patient (2 for each lung). ROIs were selected 

manually and their size of 80x150 piksels was determined in such 

a way that they would present the lesion area as accurately as 

possible (Fig. 1). 

1.2. Fractal analysis 

A computer representation of a medical image (e.g. 

radiological, ultrasound or computer tomography) is an image 

matrix where greyscale (intensity) levels corresponding to 

elements x, y form a more or less complex surface (Fig. 2). There 

are many algorithms for estimating the fractal dimension of such 

surfaces. In this paper, methods based on the power spectral 

density [10, 28], triangular prism surface area [8, 15] and variation 

[13, 30] were applied, as well as the box counting method [17, 

24], which utilised a binary image in the analysis process. The 

aforementioned methods gave good results in other studies 

performed by the authors in which the subject of analysis was a 

flame area [26] and thyroid ultrasound images [19]. 

1.3. Image segmentation 

The grey images to be analyzed using the box counting 

method were segmented. As a result of this process, binary images 

were obtained that were used to calculate the fractal dimension 

and lacunarity. The results of several segmentation methods were 

compared, including: local and global Otsu thresholding [23], 

local Bradley thresholding [3], level set method, adaptive 

thresholding and active contour method. The basic criterion for the 
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segmentation quality was a faithful reproduction of disease areas, 

visible in the CT images in the form of bright spots (Fig. 1). 

The best results were achieved using the global Otsu thresholding 

method. Therefore, in further studies, this method was selected 

for segmentation of grey images. In order to improve the quality 

of images after segmentation, binary images were subjected 

to operations of closing (dilation + erosion) and noise removal 

(removal of objects smaller than 10 pixels). Exemplary 

segmentation results are shown in Fig. 3. 

1.4. Feature selection 

Feature selection is a very important process because a 

properly chosen set of discriminating features allows one to build 

a high accuracy classifier [20–22]. In this study, a linear stepwise 

regression method was used for feature selection. This method 

involves the systematic addition and elimination of features 

to the set of input attributes given to the input of the linear 

classifier model depending on their statistical impact on the result 

of the system operation. 

The influence of a feature on the operation of the system is 

measured by the factor with which it enters the linear model. The 

method starts from the start-up model, comparing its performance 

when increasing or decreasing the number of input attributes 

selected from the full set of potential diagnostic features. At every 

step (after adding or subtracting a specific attribute), the F-

Snedecor statistics are determined for the training set. On the basis 

of a comparison of the p-value of this statistic with the assumed 

p_enter tolerance, a decision is made whether a specified feature 

should be entered into the set of features or not. In turn, as a result 

of comparing the p-value of the F statistic with the assumed 

p_remove tolerance, a decision is made to remove (or not) a 

specified feature from the current set of features. If the specified 

feature is not in the current set of input attributes, the null 

hypothesis is tested that its effect on the model's operation is zero. 

If the hypothesis is not confirmed as a result of the calculation, the 

attribute is added to the current set of attributes. Conversely, if a 

particular feature is in the model's input attribute set, the 

hypothesis is tested that its effect is zero. If this hypothesis is not 

confirmed, the feature remains in the attribute collection, but if 

confirmed, it is deleted. 

 a)  

 b)  

 c)  

 d)  

Fig. 1. ROIs characteristic for the 4 analyzed categories: a) healthy cases – Healthy; b) disease includes only a trachea – Sick(1); c) disease includes a trachea and a pulmonary 

parenchyma – Sick(2); d) disease includes only a pulmonary parenchyma – Sick(3) 
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 a) 

 
 b) 

 
 c) 

 
 d) 

 

Fig. 2. Sample ROIs and their representation in three-dimensional space: a) Healthy; b) Sick(1); c) Sick(2); d) Sick(3) 
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a) Healthy Sick(1) Sick(2) Sick(3)  

 
b) Healthy Sick(1) Sick(2) Sick(3) 

 
Fig. 3. Sample results of image segmentation for individual categories by the global Otsu thresholding method: a) grey images; b) binary images 

2. Results 

Images belonging to 4 categories of patients were subjected to 

fractal analysis to obtain feature descriptors. The following 

methods were used: power spectral density, triangular prism 

surface area, variation (filter 1, transect – first differences, transect 

– second differences) and box counting. On the basis of the power 

spectral density method, the fractal dimension and intercept of 

grey images were obtained. The box counting method allowed to 

estimate the fractal dimension and lacunarity of binary images. 

The effect of the triangular prism surface area and variation 

methods was the fractal dimension of grey images. 

The results obtained were analyzed for the occurrence of 

outliers and extreme values. This kind of observations have been 

removed from the data set. The final number of cases belonging to 

particular categories was as follows: Healthy – 50, Sick(1) – 50, 

Sick(2) – 58, Sick(3) – 60. Table 1 presents a summary of average 

values of individual descriptors and their standard deviation after 

removal outliers and extreme values. For a binary image, the 

fractal dimension is in the range of 1-2, and for the grey image in 

the range of 2-3 (except the power spectral density method for the 

class Healthy). These values are in line with the theoretical values 

for this type of images. This situation confirms that the analyzed 

images have fractal features and justifies the use of fractal analysis 

as a method for estimating the feature descriptors. 

Figure 4 presents box charts prepared on the basis of data from 

table 1. Observing the dispersion of values of variables defined in 

Table 1, it can be seen that relatively good separation of 

observations takes place only between cases belonging to the class 

Healthy and all the other cases of the sick category (Sick(1), 

Sick(2), Sick(3)). The best in this respect seem to be the PSD and 

Int variables estimated using the power spectral density method. 

Unfortunately, for observations of the sick category, no variable 

separates all classes of this category in an unambiguous way. One 

can only indicate a moderately good separation of one class of 

cases in relation to other classes of this category. One can give 2 

examples in this regard. The first one is the BC variable, which 

can be used to distinguish the class Sick(1) from the classes 

Sick(2) and Sick(3). The second example are variables Int and 

Var_FD, which can be used to distinguish the class Sick(3) from 

the classes Sick(1) and Sick(2). Box charts in figure 4 don’t 

suggest any variables that could be used to distinguish the class 

Sick(2) from the classes Sick(1) and Sick(3). 

Table 1. Mean value and standard deviation of fractal descriptors 

Image Method Descriptor 
Variable 

name 
Class Mean 

Std 

dev 

Grey Power 

spectral 

density 

Fractal 

dimension 

PSD Healthy 3.15 0.08 

Sick(1) 2.83 0.18 

Sick(2) 2.91 0.11 

Sick(3) 2.72 0.09 

Grey Power 

spectral 

density 

Intercept Int Healthy 21.76 0.47 

Sick(1) 23.29 0.98 

Sick(2) 23.64 0.40 

Sick(3) 24.43 0.36 

Grey Triangular 

prism 

surface 

area 

Fractal 

dimension 

TPSA Healthy 2.39 0.05 

Sick(1) 2.32 0.06 

Sick(2) 2.37 0.04 

Sick(3) 2.31 0.05 

Grey Variation 

(Filter 1) 

Fractal 

dimension 

Filter Healthy 2.68 0.04 

Sick(1) 2.57 0.07 

Sick(2) 2.60 0.05 

Sick(3) 2.49 0.06 

Grey Variation 

(Transect – 

first 

differences) 

Fractal 

dimension 

Var_FD Healthy 2.66 0.07 

Sick(1) 2.54 0.06 

Sick(2) 2.56 0.05 

Sick(3) 2.45 0.04 

Grey Variation 

(Transect – 

second 

differences) 

Fractal 

dimension 

Var_SD Healthy 2.51 0.10 

Sick(1) 2.36 0.05 

Sick(2) 2.40 0.09 

Sick(3) 2.28 0.05 

Binary Box 

counting 

Fractal 

dimension 

BC Healthy 1.01 0.10 

Sick(1) 1.10 0.08 

Sick(2) 1.42 0.15 

Sick(3) 1.46 0.11 

Binary Box 

counting 

Lacunarity Lac Healthy 0.68 0.08 

Sick(1) 1.09 0.22 

Sick(2) 0.91 0.27 

Sick(3) 0.83 0.22 

The results of the fractal analysis presented in Table 1 and 

figure 4 do not allow to indicate a set of descriptors that could be 

used in a system for automatic classification of the 4 analysed 

categories of observations. Therefore, the data were subjected to 

statistical analysis aimed at selecting features that would enable to 

build the classifier. A linear stepwise regression method was 

applied for this purpose. The stepwisefit function of the Matlab 

program was used, in which the aforementioned method was 

implemented. The built-in values of the F statistics tolerance 

thresholds were as follows: p_enter = 0.05 and p_remove = 0.1.  
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Table 2 presents the results obtained. The meaning of 

individual columns is as follows: 

 B – coefficients with which particular features affect the 

accuracy of model mapping. The greater the value (as to the 

module), the greater the influence of a given feature. 

 SE – standard deviation of the values of B coefficients for 

individual features. 

 PV – a p-value variable containing p statistic values for 

individual features. The smaller the value, the more difficult it 

is to reject the hypothesis about the low importance of a given 

feature. 

 Status – value 1 means that the given feature is included as the 

input attribute of the model, 0 – means its elimination. 

Table 2. Results of feature selection by linear stepwise regression 

Feature B SE PV Status 

PSD -0.4538 0.7979 0.5702 0 

Int 0.2719 0.0568 0.0000 1 

TPSA 1.2231 0.7954 0.1256 0 

Filter -2.3626 0.5089 0.0000 1 

Var_FD -0.7321 0.7476 0.3286 0 

Var_SD -0.5577 0.4419 0.2084 0 

BC 2.7786 0.2521 0.0000 1 

Lac 0.4693 0.1663 0.0052 1 

The results obtained show that the features Int, Filter, BC and 

Lac (the smallest p-value values) have the greatest influence on 

the model. They are marked in bold in Table 2. Also, the values of 

p statistics for individual features show a large difference in their 

impact on the result. 

A matrix scatter plot was made for variables selected using the 

linear stepwise regression method (Fig. 5). On the basis of this 

plot you can see that observations of the healthy category form a 

compact group, quite well separated from the observation of the 

sick category. Apparently this can be seen for the variable pairs 

Int-Lac and BC-Lac. Observations of the sick category have a 

larger dispersion of variable values compared to observations of 

the healthy category. Therefore, in the scatter plots you can not 

indicate clear groups of cases that would allow you to 

unequivocallly distinguish between different classes of the sick 

category. Nevertheless, in the scatter plots one can observe some 

areas in which observations of individual classes tend to cluster. 

It seems that this is best seen for the variables Filter-BC. The 

spatial chart gives better possibilities for observing cases 

clustering. Figure 6 shows such a graph for variables Filter-BC-

Lac. Admittedly, there are no separate groups of observations 

there, but there is a clear tendency to clustering of cases belonging 

to particular classes. This situation gives a base for the 

construction of classifiers. 

For this purpose, 4 features highlighted in bold in table 2 were 

used: Int, Filter, BC and Lac. Eight popular supervised learning 

methods were used [4–6, 11, 12, 14, 16, 18, 25, 29]: artificial 

neural network with multilayer perceptron (MLP), decision tree 

(DT), K-nearest neighbors (K-NN), naive Bayes classifier (NBC), 

quadratic and linear discriminant analysis (QDA, LDA), random 

forests (RF), support vector machine (SVM). The full data set was 

randomly divided into a training, validation and test part. The size 

of each of these subsets was 1/3 of the full set. A combined 

training and validation sets were used for the final classifiers 

training. Testing was carried out using an independent test set. 

Training, validation and classifiers testing have been repeated 10 

times. An average value from all tests was taken as the final result 

of the testing process. The overall classification accuracy (ACC), 

classification sensitivity and classification specificity was used to 

assess the accuracy of classifiers. The overall classification 

accuracy is defined as the ratio of the number of samples correctly 

classified to the number of all analyzed samples. There were 4 

classes of cases in the study, therefore the other 2 measures were 

generalized to a classifier operating on the principle of "one 

specific class against all", i.e. assigning results to only one class or 

beyond it. Therefore, the classifier sensitivity means the 

probability of correct classification of the sample belonging to the 

selected class. In turn, the specificity is defined as the probability 

that samples belonging to other classes will not be assigned to the 

selected class. 

Figure 7 shows the average value of the overall classification 

accuracy obtained for the test set. The largest value, equal to 

90.97%, was achieved for the SVM classifier. Comparable 

accuracy was also obtained by the MLP classifier, for which ACC 

was equal to 90.83%. The difference from the SVM classifier was 

only 0.14%. It should be noted that ACC exceeded 82% for all 

classification methods.  
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Fig. 4. Dispersion of a mean value of individual variables. A title of each chart shows a name of a method used. A meaning of variables is explained in Table 1 
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The results regarding the estimation of the classification 

sensitivity (separately for each class) are shown in Table 3. For the 

class Healthy, the highest sensitivity of 100% was achieved for 4 

classifiers, i.e. SVM, NBC, LDA and 7-NN. For classes belonging 

to the sick category, the results obtained were as follows (the best 

classifier was given in brackets): Sick(1) – 92.50% (SVM); 

Sick(2) – 87.50% (MLP); Sick(3) – 90.00% (NBC). 

Table 3. Classification sensitivity 

 Classifier Healthy Sick(1) Sick(2) Sick(3) 

SVM 100 92.50 86.50 87.00 

MLP 99.38 91.88 87.50 86.50 

QDA 98.75 82.50 85.00 85.00 

NBC 100 80.63 80.00 90.00 

RF 95.63 90.63 80.00 84.50 

LDA 100 75.00 84.00 83.50 

7-NN 100 81.25 79.00 80.50 

DT 93.13 80.63 74.00 83.00 

Table 4 presents the classification specificity for each of the 4 

observation classes. For the class Healthy, the best result (100%) 

was obtained for SVM and NBC classifiers. A similar specificity 

value (99.82%) was also provided by the MLP classifier. In turn, 

for the other classes the results were as follows: Sick(1) – 97.86% 

(SVM); Sick(2) – 95.19% (MLP and LDA); Sick(3) – 96.15% 

(NBC). 

Table 4. Classification specificity 

Classifier Healthy Sick(1) Sick(2) Sick(3) 

SVM 100 97.86 94.81 95.00 

MLP 99.82 97.68 95.19 94.81 

QDA 98.39 97.32 92.88 94.42 

NBC 100 94.46 92.31 96.15 

RF 98.57 95.54 94.42 94.04 

LDA 94.82 95.89 95.19 94.62 

7-NN 97.14 95.54 92.31 94.23 

DT 98.93 94.82 89.62 92.50 

 

 

Fig. 5. Scatter plots for the variables selected by the linear stepwise regression  method. Variables of the specified symbols are described in Table 1 

3. Discussion 

The study used 8 fractal descriptors estimated by various 

methods. Their values confirm the fractal nature of the studied 

CT images (Table 1) and justify the use of fractal analysis as a 

research tool. Using the linear stepwise regression method, 4 

descriptors were selected from this set for constructing 

classifiers. These were: intercept – calculated using the power 

spectral density method; 2 fractal dimensions – calculated by 

the variation and box counting methods; lacunarity – also 

calculated using the box counting method. The first 2 

descriptors (Int, Filter) were calculated based on a grey image 

analysis, while the next 2 (BC, Lac) based on a binary image. 

Table 5 gives a summary of the best results obtained while 

classifiers testing. The highest overall classification accuracy 

was obtained for the SVM classifier (ACC=90.97%). In the 

case of classification sensitivity and specificity, the test results 

depend on the class of observation. The best results have been 
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achieved here for the class Healthy. Both sensitivity and 

specificity are at the level of 100%. Healthy cases are the 

easiest to distinguish from the other classes, because they not 

contain large, bright areas corresponding to the disease state 

(Fig. 1a). Taking into account the Sick cases, the best accuracy 

was achieved for the class Sick(1), where the disease state 

includes the trachea (Fig. 1b). The sensitivity was 92.50% here 

and the specificity was 97.86%. 

Table 5. A summary of the best classification results 

Index Class Value (%) Classifier 

ACC All classes 90.97 SVM 

Classification 

sensitivity 

Healthy 100 SVM, NBC, LDA, 7-NN 

Sick(1) 92.50 SVM 

Sick(2) 87.50 MLP 

Sick(3) 90.00 NBC 

Classification 

specificity 

Healthy 100 SVM, NBC 

Sick(1) 97.86 SVM 

Sick(2) 95.19 MLP, LDA 

Sick(3) 96.15 NBC 

 

 

Fig. 6. Spatial scatter plot for the variables Filter-BC-Lac 
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Fig. 7. Overall classification accuracy. The meaning of the classifier symbols is as follows: SVM – support vector machine; MLP – artificial neural network with multilayer 

perceptron; QDA – quadratic discriminant analysis; NBC – naive Bayes classifier; RF – random forests; LDA – linear discriminant analysis; 7-NN – K-nearest neighbours 

for K=7; DT – decision tree 

The second place in terms of classification accuracy is 

occupied by the class Sick(3), for which the disease state includes 

pulmonary parenchyma (fig. 1d). For this class of observations, 

the sensitivity was at the level of 90.00%, and the specificity was 

96.15%. The worst results were obtained for the class Sick(2), 

where the disease state includes both trachea and pulmonary 

parenchyma (fig. 1c). In this case, the sensitivity was 87.50%, and 

the specificity was 95.19%. The class Sick(2) has proved to be the 

most difficult to classify because it includes symptoms occuring 

both in Sick(1) and Sick(3) class. The effectiveness of the SVM 

and NBC classifiers is also worth noting. Out of 9 classification 

accuracy indicators, the SVM classifier turned out to be the best in 

5 cases, and the NBC classifier in 4 ones (table 5). Such results 

provide the basis for the use of these classifiers in a computer 

system for the automatic diagnosing of sarcoidosis. 

The results obtained also show that in the case of observations 

of the sick category, for each of the classes, the classification  

sensitivity is a few percent worse than the specificity. These 

differences for the classes Sick(1), Sick 2) and Sick(3) are 

respectively 5.36%, 7.69% and 6.16%. This means that the 

probability of a correct classification of observations belonging to 

a given class is lower than the probability that observations 

belonging to other classes will not be assigned to a given class. 

Unfortunately, this relation between the values of both 

classification quality parameters is not beneficial for the patient 

from a medical point of view. Therefore, further research is 

required to increase the classification sensitivity at least to the 

level of specificity. It seems that good results would be obtained 

by combine the effects of fractal analysis with the results of other 

methods for calculating the feature descriptors of image textures, 

e.g. autoregression model, wavelet transform and statistical 

methods (greyscale histogram, co-occurrence matrix, higher-order 

statistics, run-length matrix, matrix gradient) [14]. 

The results obtained are difficult to compare with the results 

of other authors, because (as noted in the introduction) there are 

no known publications regarding the automatic detection of 

sarcoidosis based on CT images. The advantages of the presented 

method include the fact that it is non-invasive and offers relatively 

high accuracy in recognizing cases belonging to particular classes. 

Let us remind that the worst of the results (87.50%), concerning 

the classification sensitivity of the class Sick(2), was at a 

relatively high level. Another advantage is the fact that the method 

is based on only a few features selected solely on the basis of the 

fractal analysis. This situation should simplify the construction of 

the future computer system. On the other hand, a certain drawback 

of the applied method of analysis is the fact that there is a lack of 

standardization of methods for estimating the fractal dimension. 

Consequently, the values of this parameter for the same image, 

estimated by different methods, are similar but not identical. In 

addition, the estimation range of the regression line slope can be 
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determined in various ways, which influences the value of the 

estimated parameter. Finally, the presented method must be tested 

on data sets of a larger size so as to obtain statistical significance 

of the results. Let us recall that the number of observations for 

particular classes was: Healthy – 50, Sick(1) – 50, Sick(2) – 58, 

Sick(3) – 60. The tests carried out showed that in order to obtain 

statistical significance, the number of individual subsets should 

exceed 100 observations. Future studies should also consider the 

impact of changes in volume, turnover and ROI position on 

classification results. Despite the problems indicated, the fractal 

analysis seems to be an interesting tool in the study of CT image 

textures. The relatively high classification accuracy achieved 

thanks to fractal descriptors gives the basis for their use in a 

computer system for the automatic diagnosis of sarcoidosis. 

4. Conclusions 

The research has shown the high effectiveness of the fractal 

analysis as a tool for the feature vector extraction in diagnosis of 

sarcoidosis. The following results were obtained: overall 

classification accuracy – 90.97%; classification sensitivity – 100% 

(Healthy), 92.50% (Sick(1)), 87.50% (Sick(2)), 90.00% (Sick(3)); 

classification specificity – 100% (Healthy), 97.86% (Sick(1)), 

95.19% (Sick(2)), 96.15% (Sick(3)). Achieving high classification 

accuracy was possible due to the simultaneous use of fractal 

descriptors of grey and binary images. These were: intercept – 

calculated using the power spectral density method; 2 fractal 

dimensions – calculated by the variation and box counting 

methods; lacunarity – also calculated using the box counting 

method. Fractal analysis can be an alternative approach in studies 

of CT image textures aimed at automatic diagnosis of sarcoidosis. 

Its results, combined with such classification methods as support 

vector machine or naive Bayes classifier, give interesting 

possibilities in the construction of an automated computer system 

that could help the physician in the preliminary diagnosis of 

difficult cases based on CT images. Thanks to this, the doctor 

would have a quick and objective additional opinion that would be 

very valuable at the initial diagnosis stage. In the case of 

sarcoidosis, this is particularly important because the detection of 

the disease at an early stage increases the patient's chances for 

effective therapy. 
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