# Differential Transform Method for Solving Mathematical Model of SEIR and SEI Spread of Malaria 

Abioye Adesoye Idowu ${ }^{\text {a* }}$,Ibrahim Mohammed Olanrewaju ${ }^{\text {b }}$, Peter Olumuyiwa James ${ }^{\text {c }}$,Amadiegwu Sylvanus ${ }^{\text {d }}$,Oguntolu Festus Abiodun ${ }^{\text {e }}$<br>${ }^{\text {a,d }}$ Department of Mathematics, School of General Studies, Maritime Academy of Nigeria, Oron, Akwa Ibom State, Nigeria<br>${ }^{b, c}$ Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria<br>${ }^{e}$ Department of Mathematics, Federal University of Technology, Minna, Nigeria<br>${ }^{a}$ Email: abioyeadesoye@gmail.com , ${ }^{b}$ Email: moibraheem@yahoo.com, ${ }^{c}$ Email: peterjames4real@gmail.com<br>, ${ }^{d}$ Email: amadiegwusylvanus@yahoo.com, ${ }^{e}$ Email: festus.tolu@futminna.edu.ng

## Abstract

In this paper, we use Differential Transformation Method (DTM) to solve two dimensional mathematical model of malaria human variable and the other variable for mosquito. Next generation matrix method was used to solve for the basic reproduction number $R_{0}$ and we use it to test for the stability that whenever $R_{0}<1$ the disease-free equilibrium is globally asymptotically stable otherwise unstable. We also compare the DTM solution of the model with Fourth order Runge-Kutta method (R-K 4) which is embedded in maple 18 to see the

Keywords:Malaria; SEIR;SEI; Differential Transformation Method; Runge-Kutta method; Reproduction number.

[^0]
## 1. Introduction

Differential Transformation Method is one of the methods used to solve differential equations and it was derived from Taylor series expansion. It is also a semi-analytical method of solving both linear and nonlinear system of ordinary differential equations (ODE) to obtain approximate series of solutions. [17] was the first scientist to introduce this method and he used it to solve both linear and nonlinear initial value problems in electrical circuit analysis. This method has been used to solve problems in Mathematics and Physics [6], Fractional DifferentialAlgebraic Equations[16], Fourth-order Parabolic Partial Differential Equations[12], Fractional-order integrodifferential equations[10], Differential Equation[11] and problems in epidemic models [1,3,14,20].

SIR epidemic model was first introduced by [8, 9], extended this work by introducing a two dimensional model with one variable human and the other variable for mosquito. [2] introduced exposed class in human that is SEIR (Susceptible-Exposed-Infectious-Recovered or Removed) model and this caused reduction to the long term prevalence on both infected humans and mosquitoes. [5] considered stability in SIR and SI model of malaria with relapse . [7] considered $S I_{s} I_{r} R$ and $S I$ model where $I_{s}$ and $I_{r}$ are drug sensitive malaria strains and drug resistant malaria strains respectively in a human population. [13] considered $S E I I_{d} R$ and $S E I$ model and $S I$ model where $I$ and $I_{d}$ are human with malaria symptoms and human with drug resistance symptoms. [16] studied simple SEIR model of malaria and [15] considered SEIR and SEI with non-linear forces of infection.

## 2. Model Formulation

Let $S_{h}, E_{h}, I_{h}$ and $R_{h}$ represent Susceptible, Exposed, Infected and Recovered in human (host) respectively, $S_{m}, E_{m}$ and $I_{m}$ represent Susceptible, Exposed, Infected and Recovered in mosquito (vector) respectively. All the variables are functions of $t$. The parameter $\Lambda$ is the recruitment rate of humans into the population, $\xi$ is the biting rate of mosquitoes, $b_{h}$ is the Probability of transmission of infection from an infectious humans to a susceptible mosquitoes, $\tau$ is the exposed rate to become infected in human, $\mu$ is the rate of natural death in human, $\varepsilon$ is the rate of recovery from infectious in humans, $\rho_{1}$ is the rate at which humans that loss their immunity moves from recovery state to susceptible, $\delta$ is the diseases induced death rate, $\rho_{2}$ is the rate at which the recovered human moved back to infectious class (that is Relapse), $\Gamma$ is the recruitment rate of mosquitoes into the population, $b_{m}$ is the Probability of transmission of infection from an infectious mosquito to a susceptible humans, $\eta$ is the rate of natural death in mosquito, $\alpha$ is the exposed rate to become infected in mosquito, $q$ is the number of mosquitoes per individual.

### 2.1 Basic Assumptions

The following assumptions are considered

- The population has a constant size.
- All parameters and variables are assumed to be positive.
- $E_{h}$ and $E_{m}$ are infected but not infectious.
- We assume that malaria is contacted only from infected mosquitoes.
- We assume that there is no permanent recovery after treatment.
- Entry into the population is through birth and exit is through natural death or malaria induced death.

The SEIR and SEI Relapse model with disease-induced death.


Figure 1: Flow chart of the model

### 2.2 Differential Equations of the Model

The diagram in figure 1 above is represented by the following differential equations.

$$
\begin{aligned}
& \frac{d S_{h}(t)}{d t}=\Lambda N-\frac{\kappa_{h} S_{h} I_{m}}{N}-\mu S_{h}+\rho_{1} R_{h} \\
& \frac{d E_{h}(t)}{d t}=\frac{\kappa_{h} S_{h} I_{m}}{N}-(\tau+\mu+\delta) E_{h} \\
& \frac{d I_{h}(t)}{d t}=\tau E_{h}+\rho_{2} R_{h}-(\varepsilon+\mu+\delta) I_{h}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d R_{h}(t)}{d t}=\varepsilon I_{h}-\left(\rho_{1}+\rho_{2}+\mu\right) R_{h} \\
& \frac{d S_{m}(t)}{d t}=\Gamma M-\frac{\kappa_{m} S_{m} I_{h}}{N}-\mu S_{m} \\
& \frac{d E_{m}(t)}{d t}=\frac{\kappa_{m} S_{m} I_{h}}{N}-(\alpha+\eta) E_{m} \\
& \frac{d I_{m}(t)}{d t}=\alpha E_{m}-\eta I_{m}
\end{aligned}
$$

Where $\kappa_{h}=\xi b_{h}$ and $\kappa_{m}=\xi b_{m}$

Let $N$ is the total population size for the humans and $M$ is the total population size for the mosquitoes. Where $M$ and $N$ are constant.

If the total population of human and the total population of mosquito are denoted by $N$ and $M$ respectively, then the total population of both human and mosquito at time $t$, can be described as

$$
\begin{align*}
& N=S_{h}(t)+E_{h}(t)+I_{h}(t)+R_{h}(t) \\
& M=S_{m}(t)+E_{m}(t)+I_{m}(t) \tag{2}
\end{align*}
$$

Where $N$ and $M$ are constants.

Introducing new variables to normalize the system (1) as follows:

$$
s_{h}=\frac{S_{h}(t)}{N}, x_{1}=\frac{E_{h}(t)}{N}, x_{2}=\frac{I_{h}(t)}{N}, x_{3}=\frac{R_{h}(t)}{N}, s_{m}=\frac{S_{m}(t)}{M}, y_{1}=\frac{E_{m}(t)}{M}, y_{2}=\frac{I_{m}(t)}{M}
$$

Where $s_{h}, x_{1}, x_{2}, x_{3}, s_{m}, y_{1}$, and $y_{2}$ are functions of $t$. System (1) becomes

$$
\begin{aligned}
& \frac{d s_{h}(t)}{d t}=\Lambda-\xi b_{h} s_{h} y_{2}-\mu s_{h}+\rho_{1} x_{3} \\
& \frac{d x_{1}(t)}{d t}=\xi b_{h} s_{h} y_{2}-(\tau+\mu+\delta) x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{2}(t)}{d t}=\tau x_{1}+\rho_{1} x_{3}-(\varepsilon+\mu+\delta) x_{2} \\
& \frac{d x_{3}(t)}{d t}=\varepsilon x_{2}-\left(\rho_{1}+\rho_{2}+\mu\right) x_{3} \\
& \frac{d s_{m}(t)}{d t}=\Gamma-\xi b_{m} s_{m} x_{2}-\mu s_{m} \\
& \frac{d y_{1}(t)}{d t}=\xi b_{m} s_{m} x_{2}-(\alpha+\eta) y_{1} \\
& \frac{d y_{2}(t)}{d t}=\alpha y_{1}-\eta y_{2}
\end{aligned}
$$

And equation (2) respectively becomes

$$
\begin{align*}
& s_{h}=1-x_{1}-x_{2}-x_{3} \\
& s_{m}=1-y_{1}-y_{2} \tag{4}
\end{align*}
$$

Equation (3) can be reduced by substituting equation (4) into it, to get

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=\kappa q\left(1-x_{1}-x_{2}-x_{3}\right) y_{2}-(\tau+\mu+\delta) x_{1} \\
& \frac{d x_{2}(t)}{d t}=\tau x_{1}+\rho_{2} x_{3}-(\varepsilon+\mu+\delta) x_{2} \\
& \frac{d x_{3}(t)}{d t}=\varepsilon x_{2}-\left(\rho_{1}+\rho_{2}+\mu\right) x_{3}
\end{aligned}
$$

$$
\frac{d y_{1}(t)}{d t}=\kappa\left(1-y_{1}-y_{2}\right) x_{2}-(\alpha+\eta) y_{1}
$$

$$
\frac{d y_{2}(t)}{d t}=\alpha y_{1}-\eta y_{2}
$$

This is 5 - dimensional system of non-linear differential equations.

### 2.3 Basic Properties of the Model

### 2.3.1 Positivity of Solution

The region $\Omega \subset \mathbf{R}_{+}^{5}$ is positively invariant for the basic model $(5)$ with non negative initial conditions in $\mathbf{R}_{+}^{5}$.

We considered the biological feasible solutions to show that
$\Omega=\left\{\left(x_{1}(t), x_{2}(t), x_{3}(t), y_{1}(t), y_{2}(t)\right) \in \mathbf{R}_{+}^{5}: x_{1}+x_{2}+x_{3} \leq 1, y_{1}+y_{2} \leq 1\right\}$
is positively invariant of $\mathbf{R}^{5}$ which is meaningful mathematically, biologically and epidemiologically in the domain $\Omega$.

The solutions of equation (5) with the initial conditions are all positive $\forall t>0$ and it is important in order to show that all variables have nonnegative.

## Lemma

If $x_{1}(0)>0, x_{2}(0)>0, x_{3}(0)>0, y_{1}(0)>0$ and $y_{2}(0)>0$ the solutions $x_{1}(t), x_{2}(t), x_{3}(t)$, $y_{1}(t)$ and $y_{2}(t)$ of equation (5) are positive $\forall t \geq 0$.

## Proof

From the initial conditions given, we can show that the solutions of the equation (5) are positive; if not, we assume a contradiction in a way there exists a first time $t_{1}$ such that
$x_{1}\left(t_{1}\right)=0 \quad x_{1}^{\prime}\left(t_{1}\right) \leq 0, \quad x_{2}\left(t_{1}\right) \geq 0, \quad x_{3}\left(t_{1}\right) \geq 0, \quad y_{1}\left(t_{1}\right) \geq 0$,
$y_{2}\left(t_{1}\right) \geq 0 \quad x_{2}\left(t_{1}\right)+x_{3}\left(t_{1}\right)+y_{1}\left(t_{1}\right)+y_{2}\left(t_{1}\right)>0 \quad x_{2}\left(t_{1}\right)>0$,
$x_{3}\left(t_{1}\right)>0, \quad y_{1}\left(t_{1}\right)>0, \quad y_{2}\left(t_{1}\right)>0 \quad t \in\left(0, t_{1}\right)$

There exist a $t_{2}$ such that
$x_{2}\left(t_{2}\right)=0 \quad x_{2}^{\prime}\left(t_{2}\right) \leq 0, \quad x_{1}\left(t_{2}\right) \geq 0, \quad x_{3}\left(t_{2}\right) \geq 0, \quad y_{1}\left(t_{2}\right) \geq 0$,
$y_{2}\left(t_{2}\right) \geq 0 \quad x_{1}\left(t_{2}\right)+x_{3}\left(t_{2}\right)+y_{1}\left(t_{2}\right)+y_{2}\left(t_{2}\right)>0 \quad x_{1}\left(t_{2}\right)>0$,
$x_{3}\left(t_{2}\right)>0, \quad y_{1}\left(t_{2}\right)>0, \quad y_{2}\left(t_{2}\right)>0 \quad t \in\left(0, t_{2}\right)$

There exist a $t_{3}$ such that
$x_{3}\left(t_{3}\right)=0 \quad x_{3}^{\prime}\left(t_{3}\right) \leq 0, \quad x_{1}\left(t_{3}\right) \geq 0, \quad x_{2}\left(t_{3}\right) \geq 0, \quad y_{1}\left(t_{3}\right) \geq 0$,
$y_{2}\left(t_{3}\right) \geq 0 \quad x_{1}\left(t_{3}\right)+x_{2}\left(t_{3}\right)+y_{1}\left(t_{3}\right)+y_{2}\left(t_{3}\right)>0 \quad x_{1}\left(t_{3}\right)>0$,
$x_{2}\left(t_{3}\right)>0, \quad y_{1}\left(t_{3}\right)>0, \quad y_{2}\left(t_{3}\right)>0 \quad t \in\left(0, t_{3}\right)$

There exist a $t_{4}$ such that
$y_{1}\left(t_{4}\right)=0 \quad y_{1}^{\prime}\left(t_{4}\right) \leq 0, \quad x_{1}\left(t_{4}\right) \geq 0, \quad x_{2}\left(t_{4}\right) \geq 0, \quad x_{3}\left(t_{4}\right) \geq 0$,
$y_{2}\left(t_{4}\right) \geq 0 \quad x_{1}\left(t_{4}\right)+x_{2}\left(t_{4}\right)+x_{3}\left(t_{4}\right)+y_{2}\left(t_{4}\right)>0 \quad x_{1}\left(t_{4}\right)>0$,
$x_{2}\left(t_{4}\right)>0, \quad x_{3}\left(t_{4}\right)>0, \quad y_{2}\left(t_{4}\right)>0 \quad t \in\left(0, t_{4}\right)$

There exist a $t_{5}$ such that
$y_{2}\left(t_{5}\right)=0 \quad y_{2}^{\prime}\left(t_{5}\right) \leq 0, \quad x_{1}\left(t_{5}\right) \geq 0, \quad x_{2}\left(t_{5}\right) \geq 0, \quad x_{3}\left(t_{5}\right) \geq 0$,
$y_{1}\left(t_{5}\right) \geq 0 \quad x_{1}\left(t_{5}\right)+x_{2}\left(t_{5}\right)+x_{3}\left(t_{5}\right)+y_{1}\left(t_{5}\right)>0 \quad x_{1}\left(t_{5}\right)>0$,
$x_{2}\left(t_{5}\right)>0, \quad x_{3}\left(t_{5}\right)>0, \quad y_{2}\left(t_{5}\right)>0 \quad t \in\left(0, t_{5}\right)$

From the first case we can say

$$
\begin{equation*}
x_{1}^{\prime}(t)=\kappa q\left(1-x_{2}-x_{3}\right) y_{2}>0 \tag{11}
\end{equation*}
$$

This is a contradiction meaning that $x_{1}(t)>0, t \geq 0$.

From the first case we can say

$$
\begin{equation*}
x_{2}^{\prime}(t)=\tau x_{1}+\rho_{2} x_{3}>0 \tag{12}
\end{equation*}
$$

This is a contradiction meaning that $x_{2}(t)>0, t \geq 0$.

From the first case we can say

$$
\begin{equation*}
x_{3}^{\prime}(t)=\varepsilon x_{2}>0 \tag{13}
\end{equation*}
$$

This is a contradiction meaning that $x_{3}(t)>0, t \geq 0$.

From the first case we can say

$$
\begin{equation*}
y_{1}^{\prime}(t)=\kappa\left(1-y_{2}\right) x_{2}>0 \tag{14}
\end{equation*}
$$

This is a contradiction meaning that $y_{1}(t)>0, t \geq 0$.
we say,

$$
\begin{equation*}
y_{2}^{\prime}(t)=\alpha y_{1}>0 \tag{15}
\end{equation*}
$$

This is a contradiction, meaning that $y_{2}(t)>0, t \geq 0$. Therefore, the solutions $x_{1}(t), x_{2}(t), x_{3}(t), y_{1}(t)$ and $y_{2}(t)$ of equation (5) is still positive $\forall t \geq 0$.

### 2.3.2 Disease Free Equilibrium (DFE)

For equilibrium point, let the right hand side of equation (5) be equal to zero. That is
$0=\kappa q\left(1-x_{1}-x_{2}-x_{3}\right) y_{2}-(\tau+\mu+\delta) x_{1}$
$0=\tau x_{1}+\rho_{2} x_{3}-(\varepsilon+\mu+\delta) x_{2}$
$0=\varepsilon x_{2}-\left(\rho_{1}+\rho_{2}+\mu\right) x_{3}$
$0=\kappa\left(1-y_{1}-y_{2}\right) x_{2}-(\alpha+\eta) y_{1}$
$0=\alpha y_{1}-\eta y_{2}$

By substituting $x_{1}=x_{1}^{*}, x_{2}=x_{2}^{*}, x_{3}=x_{3}^{*}, y_{1}=y_{1}^{*}$ and $y_{2}=y_{2}^{*}$ into the equation(16), we obtain the

Endemic equilibrium points as

$$
\begin{align*}
& x_{1}^{*}=\frac{\kappa q\left(1-x_{2}^{*}-x_{3}^{*}\right) y_{2}^{*}}{(\tau+\mu+\delta)+\kappa q y_{2}^{*}} \\
& x_{2}^{*}=\frac{\tau x_{1}^{*}+\rho_{2} x_{3}^{*}}{(\varepsilon+\mu+\delta)} \\
& x_{3}^{*}=\frac{\varepsilon x_{2}^{*}}{\left(\rho_{1}+\rho_{2}+\mu\right)}  \tag{17}\\
& y_{1}^{*}=\frac{\kappa\left(1-y_{2}^{*}\right) x_{2}^{*}}{(\alpha+\eta)+\kappa x_{2}^{*}} \\
& y_{2}^{*}=\frac{\alpha}{\eta} y_{1}^{*}
\end{align*}
$$

Therefore, equation (5) has shown that we can have two equilibriums in the non negative of $\mathbf{R}^{5}$ that is, the Disease Free Equilibrium (DFE) point $E_{0}=(0,0,0,0,0)$ and the Endemic Equilibrium point, $E_{1}=\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, y_{1}^{*}, y_{2}^{*}\right)$ which has been described in equation $(5)$. The basic reproduction number of the DFE that is $E_{0}$ can be derived by using next generation matrix method and it is shown in equation (18) below

$$
\begin{equation*}
R_{0}=\sqrt{\frac{\alpha \tau \kappa^{2} q\left(\rho_{1}+\rho_{2}+\mu\right)}{\eta(\alpha+\eta)(\tau+\mu+\delta)\left[(\varepsilon+\mu+\delta)\left(\rho_{1}+\rho_{2}+\mu\right)-\varepsilon \rho_{2}\right]}} \tag{18}
\end{equation*}
$$

### 2.4 Local Asymptotic Stability of Disease Free Equilibrium (DFE)

## Theorem 1

For Basic reproduction number $\left(R_{0}\right)$ less than one $\left(R_{0}<1\right)$, the disease free equilibrium $E_{0}$ is locally asymptotically stable. Otherwise, it is unstable.

Proof

If $e_{h}=\frac{d x_{1}(t)}{d t}, i_{h}=\frac{d x_{2}(t)}{d t}, r_{h}=\frac{d x_{3}(t)}{d t}, e_{m}=\frac{d y_{1}(t)}{d t}$ and $i_{m}=\frac{d y_{2}(t)}{d t}$ then the system in equation (5)
linearised for the disease free equilibrium (DFE) is given by
$e_{h}=\kappa q y_{2}-(\tau+\mu+\delta) x_{1}$
$i_{h}=\tau x_{1}+\rho_{2} x_{3}-(\varepsilon+\mu+\delta) x_{2}$
$r_{h}=\varepsilon x_{2}-\left(\rho_{1}+\rho_{2}+\mu\right) x_{3}$
$e_{m}=\kappa x_{2}-(\alpha+\eta) y_{1}$
$i_{m}=\alpha y_{1}-\eta y_{2}$

The Characteristic equation of the polynomial of the above equation, that is $\left|\mathbf{J}\left(E_{0}\right)-\lambda I\right|=0$ where $\lambda$ is the eigenvalue and $I$ is the Identity matrix is given by

$$
\begin{equation*}
\lambda^{5}+A_{4} \lambda^{4}+A_{3} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}\left(1-R_{0}^{2}\right)=0 \tag{20}
\end{equation*}
$$

## Where

$$
\begin{aligned}
& A_{4}=a_{11}+a_{22}+a_{33}+a_{44}+a_{55} \\
& A_{3}=a_{11} a_{22}+a_{33}\left(a_{11}+a_{22}\right)+\left(a_{11}+a_{22}+a_{33}\right)\left(a_{44}+a_{55}\right)+\left(a_{44} a_{55}-\varepsilon \rho_{2}\right) \\
& A_{2}=a_{11} a_{22}\left(a_{33}+a_{44}+a_{55}\right)+a_{33} a_{44}\left(a_{11}+a_{22}+a_{55}\right)+a_{55}\left(a_{11}+a_{22}\right)\left(a_{33}+a_{44}\right)-\varepsilon \rho_{2}\left(a_{11}+a_{44}+a_{55}\right) \\
& A_{1}=a_{44} a_{55}\left[a_{11} a_{22}+a_{33}\left(a_{11}+a_{22}\right)\right]+a_{11} a_{22} a_{33}\left(a_{44}+a_{55}\right)-\varepsilon \rho_{2}\left[a_{11}\left(a_{44}+a_{55}\right)+a_{44} a_{55}+\alpha \tau \kappa^{2} q\right] \\
& A_{0}=a_{11} a_{44} a_{55}\left(a_{22} a_{33}-\varepsilon \rho_{2}\right)
\end{aligned}
$$

Using Routh-Hurwitz criterion, we discover that all roots of characteristics equation(20) have negative real part and show that $A_{0}>0, A_{2}>0, A_{3}>0$ and $A_{4}>0$. Therefore, the disease free equilibrium $E_{0}$ is locally asymptotically stable.

Table 1: Description of Parameters of the model

| S/N | Parameter | Description | Value | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\Lambda N$ | Recruitment rate of humans | 1.2 | [18] |
| 2 | $\beta_{h}$ | Infection rate of humans | 0.00638 | [15] |
| 3 | $\tau$ | Developing rate of exposed in humans to infected | 0.05 | [15] |
| 4 | $\varepsilon$ | Recovery rate | 0.003704 | [5] |
| 5 | $\rho_{1}$ | Loss of immunity rate | 0.0146 | [5] |
| 6 | $\rho_{2}$ | Relapse rate | 0.004 | [5] |
| 7 | $\mu$ | Natural death rate of human | 0.03 | [18] |
| 8 | $\delta$ | Disease-induced death | 0.089 | [18] |
| 9 | $\beta_{m}$ | Infection rate of mosquitoes | 0.0696 | [16] |
| 10 | $\Gamma M$ | Recruitment rate of mosquitoes | 0.7 | [16] |
| 11 | $\eta$ | Natural death rate of mosquitoes | 0.1429 | [5] |
| 12 | $\alpha$ | Developing rate of exposed in mosquitoes to infected | 0.083 | [16] |
| 13 | $\xi$ | Biting rate of Mosquitoes | 0.29 | [16] |
| 14 | $b_{h}$ | Probability of transmission of infection from an infectious mosquitoes to a susceptible humans | 0.022 | [16] |
| 15 | $b_{m}$ | Probability of transmission of infection from an infectious humans to a susceptible mosquitoes | 0.24 | [16] |
| 16 | $N$ | Total population size for the human | 1.0 | [5] |
| 17 | M | Total population size for the mosquitoes | 1.5 | [5] |
| 18 | $q$ | Number of mosquitoes per individual | 1.5 | [5] |

## 3. Differential Transform Method (DTM)

The DTM can be derived from Taylor series expansion and it is a semi-analytical method of solving both linear and nonlinear system of ordinary differential equations (ODE) to obtain approximate series of solutions. The differential transform of the $\mathrm{k}^{\text {th }}$ derivative of a function $f(t)$ is given by;

$$
\begin{equation*}
F(k)=\frac{1}{k!}\left(\frac{d^{k} f(t)}{d t^{k}}\right)_{t=t_{0}} \tag{21}
\end{equation*}
$$

Where $f(t)$ is the original function and $\mathrm{F}(\mathrm{k})$ the transformed function.

The inverse transformation is defined as follows;

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} t^{k} F[k] \tag{22}
\end{equation*}
$$

Substituting Equation (21) into equation (22), we obtain

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty}\left[\frac{t^{k}}{k!}\left(\frac{d^{k} f(t)}{d t^{k}}\right)\right]_{t=t_{0}} \tag{23}
\end{equation*}
$$

It is shown from equation (5) that the DTM is derived from Taylor series expansion and it does not find numerical value for derivatives.

## Basic rules of Differential Transform Method (DTM)

Given the arbitrary functions $f(t), g(t)$ and $h(t)$ then the basic rules for manipulating differential transform method are as follows:

Rule 1: $f(t)=g(t) \pm h(t)$ then, $F[k]=G[k] \pm H[k]$

Rule 2: $f(t)=\alpha g(t)$ then, $F[k]=\alpha G[k] \quad \alpha$ is a constant

Rule 3: $\quad f(t)=\frac{d}{d x} g(t)$ then,$F[k]=(k+1) G[k+1]$

Rule 4: $\quad f(t)=\frac{d^{2}}{d x^{2}} g(t)$ then, $F[k]=(k+1)(k+2) G[k+2]$

Rule 5: $\quad f(t)=\frac{d^{n}}{d t^{n}} g(t)$ then, $F[k]=\frac{k!}{(k+n)!} G[k+n]$

Rule 6: $f(t)=g(t) h(t)$ then, $F[k]=\sum_{i=0}^{k} G[i] H[k-i]$

Rule 7: $f(t)=\frac{g(t)}{h(t)}$ then,$F[k]=\sum_{i=0}^{k} \frac{G[i]}{H[k-i]}$

Rule 8: $f(t)=t^{a}$ then $\mathrm{F}[\mathrm{k}]=\delta(\mathrm{k}-\mathrm{a})$ where $\delta(\mathrm{k}-\mathrm{a})= \begin{cases}1, & k=a \\ 0, & k \neq a\end{cases}$

Rule 9: $f(t)=e^{a t}$, then $\mathrm{F}[\mathrm{k}]=\frac{\mathrm{a}^{k}}{k!}$

Rule 10: $f(t)=(1+t)^{a}$, then $F[k]=\frac{a(a-1) \ldots(a-k+1)}{k!}$

Rule 11: $f(t)=\sin (\alpha t+\beta)$, then $F[k]=\frac{\alpha^{k}}{k!} \sin \left(\frac{\pi}{2} k+\beta\right)$

Rule 12: $f(t)=\cos (\alpha t+\beta)$, then $F[k]=\frac{\alpha^{k}}{k!} \cos \left(\frac{\pi}{2} k+\beta\right)$

Rule 13: $f(x)=\sinh (a x)$, then $F[k]=\frac{1}{2 k!}\left(a^{k}-(-a)^{k}\right)$

Rule 14: $f(x)=\cosh (a x)$, then $F[k]=\frac{1}{2 k!}\left(a^{k}+(-a)^{k}\right)$

## 4. Numerical Solution and Results

## Solution of the Model using Differential Transformation Method (DTM)

Let $S_{h}(k), X_{1}(k), X_{2}(k), X_{3}(k), S_{m}(k), Y_{1}(k)$ and $Y_{2}(k)$ represent the differential transform of the equation (2) and by applying the basic rules of DTM, each of the equation (2) has recurrence relation as follows:

$$
\begin{aligned}
& S_{h}(k+1)=\frac{1}{k+1}\left[\Lambda \delta(k)-q \kappa_{h}\left\{\sum_{i=0}^{k} S_{h}(k-i) Y_{2}(i)\right\}-\mu S_{h}(k)+\rho_{1} X_{3}(k)\right] \\
& X_{1}(k+1)=\frac{1}{k+1}\left[q \kappa_{h}\left\{\sum_{i=0}^{k} S_{h}(k-i) Y_{2}(i)\right\}-(\tau+\mu+\delta) X_{1}(k)\right] \\
& X_{2}(k+1)=\frac{1}{k+1}\left[\tau X_{1}(k)+\rho_{2} X_{3}(k)-(\varepsilon+\mu+\delta) X_{2}(k)\right] \\
& X_{3}(k+1)=\frac{1}{k+1}\left[\varepsilon X_{2}(k)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(k)\right]
\end{aligned}
$$

$$
\begin{aligned}
& S_{m}(k+1)=\frac{1}{k+1}\left[\Gamma \delta(k)-\kappa_{m}\left\{\sum_{i=0}^{k} S_{m}(k-i) X_{2}(i)\right\}-\eta S_{m}(k)\right] \\
& Y_{1}(k+1)=\frac{1}{k+1}\left[\kappa_{m}\left\{\sum_{i=0}^{k} S_{m}(k-i) X_{2}(i)\right\}-(\alpha+\eta) Y_{1}(k)\right] \\
& Y_{2}(k+1)=\frac{1}{k+1}\left[\alpha Y_{1}(k)-\eta Y_{2}(k)\right]
\end{aligned}
$$

with the initial condition, where $S_{h}(0)=0.83, X_{1}(0)=0.08, X_{2}(0)=0.07, \quad X_{3}(0)=0.02$, $S_{m}(0)=0.7, Y_{1}(0)=0.2$ and $Y_{2}(0)=0.2$ according to [18]. Using the initial conditions above and the value of parameters in the Table 2, the results of iterations of differential transform of the equation (1) are obtained through Maple 2016 version. That is, when $\mathrm{k}=0$, the above equations become

$$
\begin{aligned}
& S_{h}(1)=\Lambda-q \kappa_{h} S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0) \\
& X_{1}(1)=q \kappa_{h} S_{h}(0) Y_{2}(0)-(\tau+\mu+\delta) X_{1}(0) \\
& X_{2}(1)=\tau X_{1}(0)-(\varepsilon+\mu+\delta) X_{2}(0)+\rho_{2} X_{3}(0) \\
& X_{3}(1)=\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0) \\
& S_{m}(1)=\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0) \\
& Y_{1}(1)=\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0) \\
& Y_{2}(1)=\alpha Y_{1}(0)-\eta Y_{2}(0)
\end{aligned}
$$

When $\mathrm{k}=1$, we have

$$
\begin{aligned}
S_{h}(2)= & -\frac{1}{2} \kappa_{h} q\left\{S_{h}(0)\left(\alpha Y_{1}(0)-\eta Y_{2}(0)\right)+\left(\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right) Y_{2}(0)\right\}- \\
& \frac{1}{2} \mu\left\{\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right\}+\frac{1}{2} \rho_{1}\left\{\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}(2)=\frac{1}{2} \kappa_{h} q\left\{S_{h}(0)\left(\alpha Y_{1}(0)-\eta Y_{2}(0)\right)+\left(\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right) Y_{2}(0)\right\}- \\
& \frac{1}{2}(\tau+\mu+\delta)\left\{q \kappa_{h} S_{h}(0) Y_{2}(0)-(\tau+\mu+\delta) X_{1}(0)\right\} \\
& X_{2}(2)=\frac{1}{2} \tau\left\{\kappa_{h} q S_{h}(0) Y_{2}(0)-(\tau+\mu+\delta) X_{1}(0)\right\}+\frac{1}{2} \rho_{2}\left\{\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\}- \\
& \frac{1}{2}(\varepsilon+\mu+\delta)\left\{\tau X_{1}(0)+\rho_{2} X_{3}(0)-(\varepsilon+\mu+\delta) X_{2}(0)\right\} \\
& X_{3}(2)=\frac{1}{2} \varepsilon\left\{\tau X_{1}(0)+\rho_{2} X_{3}(0)-(\varepsilon+\mu+\delta) X_{2}(0)\right\}-\frac{1}{2}\left(\rho_{1}+\rho_{2}+\mu\right)\left\{\varepsilon X_{2}(0)-\right. \\
& \left.\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\} \\
& S_{m}(2)=-\frac{1}{2} \kappa_{m}\left\{S_{m}(0)\left(\tau X_{1}(0)+\rho_{2} X_{3}(0)-(\varepsilon+\mu+\delta) X_{2}(0)\right)+\left(\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\right.\right. \\
& \left.\left.\eta S_{m}(0)\right) X_{2}(0)\right\}-\frac{1}{2} \mu\left(\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0)\right) \\
& Y_{1}(2)=\frac{1}{2} \kappa_{m}\left\{S_{m}(0)\left(\tau X_{1}(0)+\rho_{2} X_{3}(0)-(\varepsilon+\mu+\delta) X_{2}(0)\right)+\left(\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\right.\right. \\
& \left.\left.\eta S_{m}(0)\right) X_{2}(0)\right\}-\frac{1}{2}(\alpha+\eta)\left\{\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0)\right\} \\
& Y_{2}(2)=\frac{1}{2} \alpha\left\{\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0)\right\}-\frac{1}{2} \eta\left\{\alpha Y_{1}(0)-\eta Y_{2}(0)\right\}
\end{aligned}
$$

And so on for $\mathrm{k}=2,3,4 \ldots$

We can now obtain the differential transform solution series as follows:
$S_{h}(t)=S_{h}(0)+\left[\Lambda-q \kappa_{h} S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right] t+\left[-\frac{1}{2} \kappa_{h} q\left\{S_{h}(0)\left(\alpha Y_{1}(0)-\right.\right.\right.$

$$
\begin{aligned}
& \left.\left.\eta Y_{2}(0)\right)+\left(\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right) Y_{2}(0)\right\}-\frac{1}{2} \mu\left\{\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\right. \\
& \left.\left.\mu S_{h}(0)+\rho_{1} X_{3}(0)\right\}+\frac{1}{2} \rho_{1}\left\{\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\}\right] t^{2}+\cdots \\
& X_{1}(t)=X_{1}(0)+\left[q \kappa_{h} S_{h}(0) Y_{2}(0)-(\tau+\mu+\delta) X_{1}(0)\right] t+\left[\frac { 1 } { 2 } \kappa _ { h } q \left\{S_{h}(0)\left(\alpha Y_{1}(0)-\eta Y_{2}(0)\right)+\right.\right. \\
& \left.\left(\Lambda-\kappa_{h} q S_{h}(0) Y_{2}(0)-\mu S_{h}(0)+\rho_{1} X_{3}(0)\right) Y_{2}(0)\right\}-\frac{1}{2}(\tau+\mu+\delta)\left\{q \kappa_{h} S_{h}(0) Y_{2}(0)\right. \\
& \left.\left.-(\tau+\mu+\delta) X_{1}(0)\right\}\right] t^{2}+\cdots \\
& X_{2}(t)=X_{2}(0)+\left[\tau X_{1}(0)-(\varepsilon+\mu+\delta) X_{2}(0)+\rho_{2} X_{3}(0)\right] t+\left[\frac { 1 } { 2 } \tau \left\{\kappa_{h} q S_{h}(0) Y_{2}(0)-\right.\right. \\
& \left.(\tau+\mu+\delta) X_{1}(0)\right\}+\frac{1}{2} \rho_{2}\left\{\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\}-\frac{1}{2}(\varepsilon+\mu+\delta) \\
& \left.\left\{\tau X_{1}(0)+\rho_{2} X_{3}(0)-(\varepsilon+\mu+\delta) X_{2}(0)\right\}\right] t^{2}+\cdots \\
& X_{3}(t)=X_{3}(0)+\left[\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right] t+\left[\frac { 1 } { 2 } \varepsilon \left\{\tau X_{1}(0)+\rho_{2} X_{3}(0)-\right.\right. \\
& \left.\left.(\varepsilon+\mu+\delta) X_{2}(0)\right\}-\frac{1}{2}\left(\rho_{1}+\rho_{2}+\mu\right)\left\{\varepsilon X_{2}(0)-\left(\rho_{1}+\rho_{2}+\mu\right) X_{3}(0)\right\}\right] t^{2}+\cdots \\
& S_{m}(t)=S_{m}(0)+\left[\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0)\right] t+\left[-\frac{1}{2} \kappa_{m}\left\{S _ { m } ( 0 ) \left(\tau X_{1}(0)+\rho_{2} X_{3}(0)-\right.\right.\right. \\
& \left.\left.(\varepsilon+\mu+\delta) X_{2}(0)\right)+\left(\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0)\right) X_{2}(0)\right\}-\frac{1}{2} \mu(\Gamma- \\
& \left.\left.\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0)\right)\right] t^{2}+\cdots \\
& Y_{1}(t)=Y_{1}(0)+\left[\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0)\right] t+\left[\frac { 1 } { 2 } \kappa _ { m } \left\{S _ { m } ( 0 ) \left(\tau X_{1}(0)+\rho_{2} X_{3}(0)\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-(\varepsilon+\mu+\delta) X_{2}(0)\right)+\left(\Gamma-\kappa_{m} S_{m}(0) X_{2}(0)-\eta S_{m}(0)\right) X_{2}(0)\right\}-\frac{1}{2}(\alpha+\eta) \\
& \left.\left\{\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0)\right\}\right] t^{2}+\cdots \\
& Y_{2}(t)=Y_{2}(0)+\left[\alpha Y_{1}(0)-\eta Y_{2}(0)\right] t+\left[\frac{1}{2} \alpha\left\{\kappa_{m} S_{m}(0) X_{2}(0)-(\alpha+\eta) Y_{1}(0)\right\}\right. \\
& \left.\quad-\frac{1}{2} \eta\left\{\alpha Y_{1}(0)-\eta Y_{2}(0)\right\}\right] t^{2}+\cdots
\end{aligned}
$$

Using the following values $\Lambda=1.2, \kappa_{h}=0.00638, \Gamma=0.7, \mu=0.03, q=1.5, \rho_{1}=0.0146$, $\rho_{2}=0.004, \tau=0.05, \delta=0.089, \varepsilon=0.003704, \kappa_{m}=0.0696, \alpha=0.083$ and $\quad \eta=0.1429$. We obtain the differential transform solution series as follows

$$
\begin{aligned}
& S_{h}(t)= 0.83+1.174597690 t-0.01819538748 t^{2}+0.0001841729807 t^{3}+ \\
& 0.000003497073788 t^{4}-0.0000006346815766 t^{5}+0.00000004987487762 t^{6}- \\
& 0.000000002784442912 t^{7}+0.0000000001154782360 t^{8}-3.337449766 \times 10^{-12} t^{9}+ \\
& 4.151959351 \times 10^{-14} t^{10}+2.087513226 \times 10^{-15} t^{11}+\cdots \\
& X_{1}(t)= 0.08-0.012725690 t+0.001646540080 t^{2}-0.00009493055327 t^{3}- \\
& 0.000000868278935 t^{4}+0.0000006431329762 t^{5}-0.00000006482083322 t^{6}+ \\
& 0.000000004135739122 t^{7}-0.0000000001924002480 t^{8}+6.564943952 \times 10^{-12} t^{9}-
\end{aligned}
$$

$$
1.424321951 \times 10^{-13} t^{10}-1.3326384 \times 10^{-17} t^{11}+\cdots
$$

$$
X_{2}(t)=0.07-0.00450928 t-0.0000429143434 t^{2}+0.00002920954574 t^{3}-
$$

$$
0.000002082862206 t^{4}+0.00000004245588104 t^{5}+4.489970860 \times 10^{-9} t^{6}-
$$

$$
5.416878483 \times 10^{-10} t^{7}+3.415782323 \times 10^{-11} t^{8}-1.534707551 \times 10^{-12} t^{9}+
$$

$5.166238760 \times 10^{-14} t^{10}-1.223942376 \times 10^{-15} t^{11}+\cdots$

$$
\begin{aligned}
X_{3}(t)= & 0.02-0.00071272 t+0.000008967909440 t^{2}-1.982650422 \times 10^{-7} t^{3}+ \\
& 2.945695961 \times 10^{-8} t^{4}-1.829305969 \times 10^{-9} t^{5}+4.102680892 \times 10^{-11} t^{6}+
\end{aligned}
$$

$$
2.090992737 \times 10^{-12} t^{7}-2.635042547 \times 10^{-13} t^{8}+1.548076489 \times 10^{-14} t^{9}-
$$

$$
6.436921943 \times 10^{-16} t^{10}+2.024008403 \times 10^{-17} t^{11}+\cdots
$$

$$
S_{m}(t)=0.7+0.5965596 t-0.04396755654 t^{2}+0.002228830777 t^{3}-0.00008569977010 t^{4}+
$$

$$
0.000002424178504 t^{5}-3.411109724 \times 10^{-8} t^{6}-1.048723261 \times 10^{-9} t^{7}+
$$

$$
7.734082631 \times 10^{-11} t^{8}-1.36765112 \times 10^{-13} t^{9}-2.982275032 \times 10^{-13} t^{10}+
$$

$$
2.825688864 \times 10^{-14} t^{11}+\cdots
$$

$$
Y_{1}(t)=0.2-0.0417696 t+0.006061249445 t^{2}-0.0005909215832 t^{3}+0.00003944708700 t^{4}-
$$

$$
0.000001757098465 t^{5}+4.253000307 \times 10^{-8} t^{6}+3.72572990 \times 10^{-10} t^{7}-
$$

$$
6.912853686 \times 10^{-11} t^{8}+6.43890935 \times 10^{-13} t^{9}+2.856363805 \times 10^{-13} t^{10}-
$$

$$
3.024857484 \times 10^{-14} t^{11}+\cdots
$$

$$
Y_{2}(t)=0.1+0.00231 t-0.001898487900 t^{2}+0.0002581258750 t^{3}-0.00002148316974 t^{4}+
$$

$$
0.000001268810635 t^{5}-5.452536872 \times 10^{-8} t^{6}+1.617380778 \times 10^{-9} t^{7}-
$$

$$
2.502501938 \times 10^{-11} t^{8}-2.401770322 \times 10^{-13} t^{9}+8.776424550 \times 10^{-15} t^{10}+
$$

$$
2.041242592 \times 10^{-15} t^{11}+\cdots
$$

Table 2: For Human Population Model
Comparison Between Fourth Order Runge-kutta and Differential Transformation Methods

| TIME <br> day $(\mathrm{s})$ | $\mathrm{R}-\mathrm{K} 4$ | $\mathrm{~S}[\mathrm{~h}](\mathrm{t})$ | DTM | $\mathrm{R}[\mathrm{h}](\mathrm{t})$ | $\mathrm{E}[\mathrm{h}](\mathrm{t})$ | $\mathrm{E}[\mathrm{h}](\mathrm{t})$ | $\mathrm{I}[\mathrm{h}](\mathrm{t})$ | $\mathrm{I}[\mathrm{h}](\mathrm{t})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.83000000 | 0.83000000 | 0.08000000 | 0.08000000 | 0.07000000 | 0.07000000 | 0.02000000 | 0.02000000 |
| 1 | 1.98658939 | 1.98658939 | 0.06882563 | 0.06882563 | 0.06547498 | 0.06547498 | 0.01929608 | 0.01929608 |
| 2 | 3.10792572 | 3.10792572 | 0.06037835 | 0.06037836 | 0.06101172 | 0.06101172 | 0.01860926 | 0.01860926 |
| 3 | 4.19516726 | 4.19516725 | 0.05412525 | 0.05412527 | 0.05671848 | 0.05671848 | 0.01793917 | 0.01793917 |
| 4 | 5.24946239 | 5.24946238 | 0.04959382 | 0.04959383 | 0.05266733 | 0.05266732 | 0.01728577 | 0.01728577 |
| 5 | 6.27192851 | 6.27192854 | 0.04638242 | 0.04638240 | 0.04890145 | 0.04890145 | 0.01664924 | 0.01664924 |
| 6 | 7.26364128 | 7.26364157 | 0.04416012 | 0.04415986 | 0.04544188 | 0.04544184 | 0.01602983 | 0.01602983 |
| 7 | 8.22563024 | 8.22563207 | 0.04266084 | 0.04265922 | 0.04229322 | 0.04229301 | 0.01542787 | 0.01542788 |
| 8 | 9.15887825 | 9.15888703 | 0.04167510 | 0.04166734 | 0.03944841 | 0.03944738 | 0.01484364 | 0.01484367 |
| 9 | 10.06432297 | 10.06435781 | 0.04104103 | 0.04101055 | 0.03689256 | 0.03688831 | 0.01427737 | 0.01427748 |
| 10 | 10.94285942 | 10.94297848 | 0.04063590 | 0.04053289 | 0.03460582 | 0.03459067 | 0.01372922 | 0.01372962 |

Table 3: For Mosquito Population Model
Comparison Between Fourth Order Runge-kutta and Differential Transformation Methods

| TIME <br> day(s) | R-K 4 | DTM | R-K 4 | DTM | R-K 4 | DTM |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | S[m t$)$ | $\mathrm{S}[\mathrm{m}](\mathrm{t})$ | $\mathrm{E}[\mathrm{m}](\mathrm{t})$ | $\mathrm{E}[\mathrm{m}](\mathrm{t})$ | $\mathrm{I}[\mathrm{m}](\mathrm{t})$ | $\mathrm{I}[\mathrm{m}](\mathrm{t})$ |
| 0 | 0.700000000 | 0.700000000 | 0.200000000 | 0.200000000 | 0.100000000 | 0.100000000 |
| 1 | 1.254737592 | 1.254737563 | 0.163738439 | 0.163738461 | 0.100649387 | 0.100649371 |
| 2 | 1.733783749 | 1.733783701 | 0.136556069 | 0.136556104 | 0.098784662 | 0.098784638 |
| 3 | 2.147769990 | 2.147769946 | 0.116087161 | 0.116087191 | 0.095344834 | 0.095344812 |
| 4 | 2.505793834 | 2.505793821 | 0.100557912 | 0.100557913 | 0.090985315 | 0.090985298 |
| 5 | 2.815639333 | 2.815639629 | 0.088651091 | 0.088650740 | 0.086155906 | 0.086155929 |
| 6 | 3.083969370 | 3.083972205 | 0.079397010 | 0.079393798 | 0.081159016 | 0.081159354 |
| 7 | 3.316491478 | 3.316509067 | 0.072087382 | 0.072067609 | 0.076192626 | 0.076194764 |
| 8 | 3.518099781 | 3.518184125 | 0.066208340 | 0.066113811 | 0.071381646 | 0.071391813 |
| 9 | 3.692995818 | 3.693330192 | 0.061389124 | 0.061015014 | 0.066800565 | 0.066840394 |
| 10 | 3.844791057 | 3.845933674 | 0.057363291 | 0.056086661 | 0.062489624 | 0.062624100 |



Figure 2: The graph of Susceptible Human against Time for both DTM and R-K 4

——DTM Graph • * R-K 4 Graph

Figure 4: The graph of Infected Human
Time for both DTM and R-K 4


Figure 3: The graph of Exposed Human against Time for both DTM and R-K 4


Figure 5: The graph of Recovered Humanagainst against Time for both DTM and R-K 4



Figure 8: The graph of Infected Mosquito against Time for both DTM and R-K 4

## 5. Conclusion

Mathematical model of malaria is built on system of ordinary differential equation (ODE). Next generation matrix method was used to solve for the basic reproduction number $R_{0}$ and we use it to test for the stability that whenever $R_{0}<1$ the disease-free equilibrium is globally asymptotically stable otherwise unstable. These models were solved using DTM. The Solution of DTM compared favorably with the solution obtained by using classical fouth-other Runge-Kuta method. The solution of the two methods follows the same pattern and
behavior.

## References

[1] M. Z. Ahmad., D. Alsarayreh, A. Alsarayreh \& I. Qaralleh. (2017, February). "Differential Transformation Method (DTM) for solving SIS and SI epidemic models", SainsMalaysiana, 46(10), pp. 2007-2017, http://dx.doi.org/10.17576/jsm-2017-4610-40
[2] R. M. Anderson \& R. M. May (1991)."Infectious diseases of Humans: Dynamics and Control", New York, NY, Oxford University Press, December, 1992.ISBN 0-19-854599-1.
[3] F. S. Akinboro, S. Alao \& F. O. Akinpelu (2014, March). "Numerical Solution of SIR Model using Differential Transformation Method and Variational Iteration Method" ,Gen. Math. Notes, 22(2), 8292.
[5] H.-F. Huo \& Q.-M.Qui (2014, February)."Stability of a Mathematical Model of Malaria Trans- mission with Relapse",Hindawi Publishing Corporation Abstract and Applied analysis, 2014(1) Article ID 289349, 9 pages, http://dx.doi.org/10.1155/2014/289349.
[6] B. Ibis, M. Bayram \& G. Agargun. (2011). "Applications of Fractional Differential Transform Method to Fractional Differential-Algebraic Equations", European Journal of Pure and Applied Mathematics, 4(2), 129-141, ISSN 1307-5543.
[7] T. Julius, D.-M. Senelani \& N. Farai. (2014, April)."A mathematical model for the transmission and spread of drug sensitive and resistant malaria strains within a human population", Hindawi Publishing Corporation, ISRN Biomathematics, Article ID 636973, pp. 1-12, http://dx.doi.org/10.1155/2014/636973.
[8] W. O. Kermack, W. O \& A. G. McKendrick. (1927, August). "A contribution to the mathematical theory of epidemics", Proceeding of the Royal Society of London. Series A, Containing papers of a Mathematical and Physical Character, 115 (772): 700-721.
[9] G. Macdonald..The Epidemiology and control of malaria, Oxford University press, London, 1957.
[10] G. Methi (2016, June). "Solution of Differential Equation Using Differential Transform Method", Asian Journal of Mathematics \& Statistics, 9(13), pp 1-5
[11] F. Mirzaee (2011, April). "Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations", Applied Mathematical Sciences, 5(70), 3465-3472.
[12] D. Nazari \& S. Shahmorad. (2010, January)."Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions", Journal of Computational and Applied Mathematics, 234, 883-891.
[13] K. O. Okosun \& O. D. Makinde (2011, September)."Modelling the impact of drug resistance in malaria", Available online at http://www.academicjournals.org/IJPS, DOI: 10.5897/IJPS 10.542, ISSN 1992-1950.
[14] O. J. Peter \& M. O. Ibrahim. (2017). Application of Differential Transform Method in Solving a Typhoid Fever Model. International Journal of Mathematical analysis and Optimization.1(1),250-260.
[15] S. Olaniyi \& O. S. Olabiyi (2013, August)."Mathematical Model for Malaria Transmission Dynamics in Human and Mosquito Populations with Nonlinear Forces of Infection", International Journal of Pure and Applied Mathematics 88(1), 125-156, doi: http://dx.doi.org/10.12732/ijpam.v88i1.10.
[16] M. A. E. Osman, K. K. Adu \& C. Yang (2017, November)."A Simple SEIR Mathematical Model of Malaria Transmission", Asian Research Journal of Mathematics 7(3): 1-22, Article no.ARJOM.37471, ISSN: 2456-477X.
[17] B. Soltanalizadeh (2012). "Application of Differential Transformation Method for Solving a Fourthorder Parabolic Partial Differential Equations", International Journal of Pure and Applied Mathematics, Vol. 78(3), 299-308, ISSN: 1311-8080 (printed version).
[18] J. K. Zhou Differential Transformation and its Applications for Electrical Circuits.Huazhong University Press, Wuhan, China. (1986).
[19] M. Altaf Khan., A. Wahid., S. Islam., I. Khan., S.Shafie, \& T. Gul. (2015). Stability analysis of an SEIR epidemic model with non-linear saturated incidence and temporary immunity. Int. J. Adv. Appl. Math. and Mech. 2(3), 1 - 14.
[20] O. J. Peter., M. O. Ibrahim ., F. A. Oguntolu.,O. B. Akinduko.,\& S. T. Akinyemi. (2018). Direct and Indirect Transmission Dynamics of Typhoid Fever Model by Differential Transform Method. ATBU, Journal of Science, Technology \& Education (JOSTE); 6 (1), 167-177.


[^0]:    * Corresponding author.

    E-mail address: abioyeadesoye@gmail.com.

