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Abstract 

Statistics Indonesia (BPS) calculates poverty indicators (Head Count Ratio, Poverty Gap, and Poverty Severity) 

using National Socio-Economic Survey (Susenas). Susenas is only designed to estimate province and 

municipality/regency area level, whereas the government requires estimation until smaller area level (sub-

district and village). Estimating poverty indicators directly from Susenas for the smaller area often leads to 

inaccurate estimates. To solve this problem, BPS usually conduct additional survey called Regional Socio-

Economic Survey (Suseda) by increasing number to the original sample (called oversampling) but with the very 

high cost. Therefore, we proposed small area estimation technique which based on the unit level model using 

Population Census 2010 (SP2010) as the population auxiliary variables and household per-capita expenditure 

(Susenas 2015) as the response variable. We utilized robust M-quantile regression model which robust to the 

outlier using three weight functions (Huber, Hampel, and Tukey Bisquare). Our results provide evidence that M-

quantile model is more accurate than direct estimates with oversampling. 
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1. Introduction 

The national survey has the important role in country development. The main objective of the national survey is 

to estimate a parameter of the population. The national survey only provides limited information and only 

estimates the large population or sub-population as stated by [1]. The national survey has large variance and low 

accuracy in estimating smaller area level (such as sub-district or village). This is due to the insufficient of the 

sample in estimating the small area level. The solution to overcoming the low-accuracy problem toward direct 

estimation is increasing the number of samples (called by oversampling) or utilizing the small area estimation 

technique (SAE) with the original sample only [2]. 

Oversampling has two benefits i.e to provides more accurate estimates and to overcomes the non-response [3]. 

But oversampling is inefficient, it needs extra time, high human resource, and high cost. To overcome the 

inefficient of oversampling, we can use the small area estimation technique with utilize the original sample only. 

We also called it “indirect estimation” or model-based estimation. Rao stated that indirect estimation can be 

implemented by "borrowing information" or “utilizing additional variables (auxiliary/explanatory variables)” 

obtained from other areas in the same survey, from the same area in the previous survey, or other variables 

related to variables that are of concern to small areas [4]. 

In Indonesia country, the poverty indicators are officially calculated through the National Socio-Economic 

Survey (Susenas) which be conducted by the national statistical office (BPS-Statistics Indonesia) for estimation 

of national, province, and district/regency level only [5]. Because of the decentralization of regional 

development, the government requires the indicators until the smaller area (sub-districts and villages level). So 

that, some BPS branch/representative office conducted an additional survey (Regional Socio-Economic Survey/ 

Suseda). 

This study used indirect estimation technique with M-quantile models which do not depend on strong 

distributional assumption and automatically provide outlier robust inference [6,7,8]. M-quantile uses M-

estimator that gives small weight to the outliers (and the residual) and ignores the assumptions in the least 

squares method (OLS). Some popular M-estimators which able to be utilized in M-quantile model are Huber, 

Tukey Bisquare, and Hampel weight function. Some M-quantile studies more often use Huber weight function 

than the other such as the researches in [2,9]. This our study will evaluate the accuracy of estimate using M-

quantile with three weight functions and direct estimation (with original sample and oversample) at the sub-

district area level. 

This study also has some constraints and limitations such as (1) The interest area of this study is only for Musi 

Rawas regency (at South Sumatera province). We don’t estimate the national level of Indonesia. (2) The 

analysis uses the data sources which come from Susenas (March 2015), Suseda (September 2015) and 

Population Census 2010. (3) This study estimates poverty indicator until sub-district only. (4) Estimation 

technique uses the assumption that the sampling design is based on simple random sampling (SRS). It is 

different with national statistical office (BPS-Statistics Indonesia) which use multistage random sampling as the 

sampling design of Susenas officially. (5) Oversampling is a term that means increasing the number of samples. 
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(6) The original sample is a term of the sample without oversampling. (7) This study is the applied statistical 

theory based on the real data. We don’t discuss the statistical formula in detail. 

2. Methodology 

2.1. Data Sources  

We use three main data sources from census and survey in Musi Rawas Regency, these are Susenas (March 

2015), Suseda (September 2015), and Population Census 2010 (SP2010). We determined household per-capita 

expenditure as the response variable (Y), while the auxiliary variables (X) in the indirect estimation using three 

variables from SP2010. Initially, there are eight selected variables, then using stepwise method, we filter three 

most significant variables, these are: (1) the number of household members (X1), (2) working field of head of 

household (X2), and (3) working status of head of household (X3). We get household per-capita expenditure 

data from Susenas 2015 (in rupiah unit), while the number of household members data, we get from Susenas 

2015 and SP2010 (in individual unit). Working field (divided into 19 categories) and working status of head of 

household (divided into 6 categories) are also gotten from Susenas 2015 and SP2010. 

2.2. Direct Estimation  

The initial step of this research is the exploration of the response variable and its distribution pattern. 

Furthermore, we determine the poverty line based on official release from Statistics Indonesia (BPS) 

publication. In the final step, we calculate sub-district area-level poverty indicators estimate and its RRMSE. 

We estimate the poverty indicator using direct estimation either original sample or oversampling through Foster 

formula [10] below: 

P�α,d
Dir = 1

nd
∑ �

t−𝐲𝐲jd
t
�
α

I(𝐲𝐲jd ≤ t)nd
j=1  (1) 

Where d is sub-district (d = 1,2,….,14); α is Sensitivity parameter (0 for HCR 1 for PG, 2 for PS ); 𝐲𝐲jd  is 

Household per-capita expenditure unit j in area (sub-district) d; t is poverty line (in rupiah); nd is number of 

samples in sub-district d; I(𝐲𝐲jd ≤ t) is indicator function for each unit under poverty line. I�𝐲𝐲jd ≤ t� = 1 if 

𝐲𝐲jd ≤ t and I�𝐲𝐲jd ≤ t� = 0 if 𝐲𝐲jd > t. 

RMSE (  Pα,d
Dir ) of the direct estimate is calculated using the bootstrap method on resampling with 100 

replacement (B = 100). The bootstrap method produces P�α,d
∗B  which is used to calculate the RMSE of direct 

estimate by a formula:  

RMSE� �Pα,d
Dir� = �B−1 ∑ �P�α,d

∗B − P�α,d
Dir�2B

b=1  (2) 

2.3. M-quantile Model  

The next step is estimating the poverty indicator and its RRMSE using indirect estimation method (M-quantile 
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model). The M-quantile has the general equation 𝐲𝐲�jd = 𝐗𝐗jdT 𝛃𝛃ψ(qjd) with 𝐲𝐲jd,𝐗𝐗jd ∈ 𝐬𝐬d (from Susenas data) in the 

quantile value qjd = (0,01, … 0,99) where 𝐗𝐗jd is auxiliary variable matrices, include vector 1. 

𝛃𝛃�ψ(qjd) is the regression coefficient estimate in a qjd value. The first step in modeling is getting qjd value using 

interpolation. The second step is to calculate the area M-quantile coefficient (θ�d). Then, calculate estimates 𝛃𝛃�ψ 

based on the area M-quantile coefficient (θ�d) using 𝐲𝐲�jd = 𝐗𝐗jdT 𝛃𝛃�ψ(θ�d) formula through Iterative Reweighted 

Least Squares (IRLS) procedure. In iteration-0, we calculate initial estimate β� (0) using OLS formula 𝐲𝐲�jd = 𝐗𝐗jdT 𝛃𝛃� 

. The value of β�(0) is used to calculate residual 𝐫𝐫jd(0) and initial scaled value s(0).   The next step, we use weight 

function w(u)  which will be implemented toward scaled residual u =
𝐫𝐫jd(0)

s(0)  to get initial weight wjd
(0)  and 

matrix 𝐖𝐖(0). 

In the next step, wjd
(0) was used in first iteration (get new estimate 𝛃𝛃�(1)) until get matrix 𝐖𝐖(𝟏𝟏).  Finally, we get 

general formula for regression estimate from iteration process in the following way: 

Β�(iter) = �𝐗𝐗𝐓𝐓𝐖𝐖(iter−𝟏𝟏)𝐗𝐗�
−𝟏𝟏
𝐗𝐗𝐓𝐓𝐖𝐖(iter−𝟏𝟏)𝐘𝐘 (3) 

The IRLS procedure was running until there is convergence state. The convergence is stated when the 

percentage of change of the residual is less than ε value. When it convergence, we get the estimate as M-

quantile regression coefficients. Convergence criteria is formulated as  �
∑ �𝐞𝐞𝑗𝑗𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1)−𝐞𝐞𝑗𝑗𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�

2𝑛𝑛𝑗𝑗
𝑗𝑗𝑗𝑗=1

∑ 𝐞𝐞𝑗𝑗𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1)2𝑛𝑛𝑗𝑗
𝑗𝑗𝑗𝑗=1

< ε. Where ε 

value is the positive small number, usually is 0,0001.  

After getting 𝛃𝛃�ψ , we calculate the residual 𝐞𝐞jd = 𝐲𝐲jd − 𝐲𝐲�jd  and construct a model 𝐲𝐲�kd = 𝐗𝐗kdT 𝛃𝛃�ψ�θ�d� + 𝐞𝐞jd∗  

where 𝐞𝐞jd∗  is the random sample with replacement of size nd in residual 𝐞𝐞jd and 𝐗𝐗kd  is the matrix of auxiliary 

variables from population census 2010. We used Monte Carlo simulation with 50 iterations, and each iteration 

we calculate HCR, PG, and PS estimates based on the poverty formula by Foster and his colleagues [10]: 

P�α,d
L = 1

Nd
∑ �t−𝐲𝐲�kd

t
�
α

I(𝐲𝐲�kd ≤ t)Nd
i=1  (4) 

So we get final HCR, PG, and PS estimates from the average of the previous simulation 

P�α,d = 1
L
∑ P�α,d

∗LL
l=1   (5) 

In calculating RMSE, we initially generate population bootstrap U∗b, where each population bootstrap U∗b we 

calculate P�α,d
∗b  estimate. Then each U∗bwe took 100 U∗r sample bootstrap with simple random sampling without 

replacement as much small area sample number nd∗ = nd  to calculate P�α,d
∗br estimate. Bias and variance estimate 

are  defined as: 
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B��P�α,d� = B−1R−1 ∑ ∑ �P�α,d
∗br − P�α,d

∗b �R
r=1

B
b=1  (6) 

V��P�α,d� = B−1R−1 ∑ ∑ �P�α,d
∗br − P��α,d

∗br�
2

R
r=1

B
b=1  (7) 

So the RMSE is defined as: 

RMSE� �P�α,d� = �B��P�α,d�
2 + V��P�α,d� (8) 

2.4. Accuracy Comparison 

Then, we compare all estimation technique using RRMSE which can be computed as 

RRMSE� �P�α,d� = RMSE� �P�α,d�
P�α,d

x100%      (9) 

3. Result and Discussion 

3.1. Data Exploration 

Musi Rawas is one of the regencies in South Sumatera Province in Indonesia. In 2015, Musi Rawas Regency 

consists of 14 sub-districts and 199 villages with 97.313 households.  

In the Susenas March 2015, there were 504 household samples which were distributed in 48 villages. In the 

Suseda September 2015, there were 1.199 households which were distributed in 131 villages. The combination 

of Susenas and Suseda had the total of the sample is 1.703 households. 

 Poverty line 2015 of Musi Rawas is 342.956 rupiah. In this study, the oversampling has a meaning the 

combination of Susenas and Suseda samples and oversampling is only used in direct estimation. Table 1 shows 

the descriptive statistics of household per-capita expenditure variables. 

Table 1: Household per-capita expenditure (rupiah) 

Data Mean Median Std. Dev Min Max 

Without versampling 647 751 547 516 407 918 191 097 3 507 652 

Oversampling 640 368 573 953 313 455 169 313 3 507 651 

 

According to table 1, the mean and median of oversampling data are only slightly different with the 

nonoversampling data. The standard deviation of oversampling data is smaller than without oversampling data, 

meaning that the variance of oversampling data is smaller. Boxplot 1 shows the differences in data distribution. 
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Figure 1:  Household per-capita expenditure (left: original sample, right: oversample 

The distribution pattern of household per-capita expenditure in Musi Rawas Regency is not symmetric and skew 

to the right (positive skewness). Outliers are above the boxplot, with the longer top whisker. The outliers will 

produce bad estimation if we utilize the least square method. So that, the using of robust estimation is necessary 

as the best alternative method. 

3.2. Comparison of Estimation Technique 

In direct estimation, the calculation of the HCR, PG, and PS estimate in each sub-district d only used yjd from 

the sample group. In M-quantile model, Susenas 2015 data was used as the response variables. The calculation 

of poverty indicator estimator HCR, PG, and PS and its RRMSE using M-quantile required auxiliary variables. 

In this study, we used Population Census 2010 data (SP2010) as the auxiliary variables in the household unit 

level. This study also used three weight functions for M-quantile model. The three functions are Huber, Hampel, 

and Tukey Bisquare. The three functions have an effect to the estimate of the unit M-quantile coefficient  (𝑞𝑞𝑗𝑗𝑗𝑗), 

the sub-district area M-quantile coefficient (𝜃𝜃�𝑗𝑗), and sub-district regression coefficient (𝛃𝛃�𝜓𝜓,𝑗𝑗). 

According to the table 2, there are two sub-districts (Jayaloka and Suka Karya) which have HCR estimate is 0%. 

It is potentially not represented the reality of poverty in general, maybe because the sample has no incidence of 

poor category (yjd ≤ t). Most HCR direct estimates (with oversampling) produce lower percentage than direct 

estimates (without oversampling) and indirect M-quantile model.  

Three weight functions in M-quantile model produce estimates which are close each other. The mean HCR 

estimates using Huber, Hampel, and Tukey Bisquare weight functions are 15.58%, 15.70%, and 15.91%, 

respectively. M-quantile produced greater mean HCR estimate than the direct estimation with oversampling, but 

smaller than direct estimation without oversampling. The advantage of M-quantile is the ability to estimate HCR 

which is 0% if using direct estimation (ie Jayaloka and Suka Karya sub-districts). The mean, standard deviation, 

and median HCR estimate using M-quantile are smaller than direct estimation without oversampling. 
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Table 2: Head count ratio (HCR) by sub-distrct (%) 

Sub-district 

M-quantil model Direct estimation 

Huber Hampel Tukey   Bisquare Without Oversampling Over- 
Sampling 

STL Ulu 25.12 25.89 25.28 20.00 5.00 
Selangit 21.34 21.49 21.19 20.00 27.27 
Sumber Harta 15.84 15.78 16.68 26.67 7.50 
Tugumulyo 9.03 9.04 8.91 19.32 11.90 
Purwodadi 23.48 23.93 25.18 43.33 15.97 
Muara Beliti 16.85 17.07 16.84 10.00 1.82 
TP Kepungut 19.07 18.81 20.83 60.00 12.00 
Jayaloka 4.35 4.35 3.55 0.00 0.00 
Suka Karya 7.29 7.56 6.79 0.00 0.00 
Muara Kelingi 9.34 9.44 8.74 6.67 1.82 
BTS Ulu 15.61 15.80 16.1 16.67 5.17 
Tuah Negeri 12.89 12.73 13.03 13.33 3.64 
Muara Lakitan 4.68 4.89 4.18 6.35 2.80 
Megang Sakti 13.73 13.56 13.91 23.88 10.88 
Meana 15.58 15.70 15.91 22.18 8.81 
Mediana 15.73 15.79 16.39 19.66 6.34 
Regency Level 13.63 13.67 13.44 17.46 7.63 

a Not involving jayaloka and suka karya sub-district 

 

Statistics Indonesia has released PG estimate is 2.06%. This value is under of M-quantile estimate or direct 

estimate without oversampling. The poverty gap in direct estimation with oversampling is smaller because may 

be the mostly household samples which be taken in Suseda have per-capita expenditure above the poverty line. 

Poverty gap is the mean shortfalls of the total population from the poverty line (counting the nonpoor as having 

zero shortfall), expressed as a percentage of the poverty line.  

STL Ulu Sub-district has the highest poverty gap if calculated using M-quantile, while Selangit sub-district has 

the highest poverty gap using direct estimation with oversampling. Table 3 shows that M-quantile model was 

able to produce poverty gap which is not 0% for Jayaloka and Suka Karya sub-districts.  

The poverty gap in direct estimation is always smaller than indirect estimation result. The mean poverty gap 

using direct estimation with oversampling is 1.33% and without oversampling is 3.65%. Three weight function 

on M-quantil gives poverty gap estimate close to each other. There are 5.13%, 5.14%, and 4.87% for Huber, 

Hampel, and Tukey Bisquare weight function, respectively. 
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Table 3: Poverty gap (PG) by sub-district (%) 

Sub-district 

M-quantil model Direct estimation 

Huber Hampel Tukey   Bisquare Without Over-sampling Over- 
Sampling 

STL Ulu 8.63 8.84 8.11 2.73 0.68 
Selangit 7.93 7.87 7.28 2.18 3.82 
Sumber Harta 4.89 4.86 4.79 5.19 1.38 
Tugumulyo 2.82 2.80 2.53 2.66 1.77 
Purwodadi 7.22 7.34 7.29 9.59 3.36 
Muara Beliti 5.52 5.55 5.07 2.14 0.39 
TP Kepungut 6.79 6.59 6.84 10.63 1.20 
Jayaloka 1.44 1.41 1.15 0.00 0.00 
Suka Karya 2.18 2.25 1.90 0.00 0.00 
Muara Kelingi 3.10 3.12 2.70 0.69 0.19 
BTS Ulu 4.91 4.96 4.73 2.36 0.73 
Tuah Negeri 4.11 4.03 3.82 0.59 0.16 
Muara Lakitan 1.57 1.64 1.37 1.58 0.70 
Megang Sakti 4.09 4.02 3.90 3.50 1.59 

Meana 5.13 5.14 4.87 3.65 1.33 
Mediana 4.90 4.91 4.76 2.51 0.97 
Regency Level 4.31 4.31 3.91 2.80 1.16 

a Not involving jayaloka and suka karya sub-district 

 

The largest poverty severity (PS) estimate is Purwodadi sub-district in direct estimation with oversampling and 

STL Ulu in M-quantile. This high poverty severity indicates the high imbalances of household per-capita 

expenditure among the poor population. The smallest poverty severity is Muara Kelingi sub-district in direct 

estimation with oversampling and Muara Lakitan Sub-district in M-quantil.  

There are two sub-districts which have PS 0% ie Jayaloka and Suka Karya sub-districts. That value is due to the 

inexistence of poverty incidence (HCR = 0%). The advantages of M-quantil is the ability to produce PS estimate 

which in the direct estimate is 0% (Jayaloka and Suka Karya sub-districts).  

The mean PS estimate from all sub-districts in direct estimation was 0.90 percent for non-oversampling, 0.32 for 

oversampling, and M-quantil using Huber, Hampel and Tukey Bisquare function are 2.85%, 2.83%, and 2.56% 

respectively.  

Table 5 summarizes the mean RRMSE for HCR, PG, and PSE estimates in direct estimation without 

oversampling, direct estimation with oversampling, and M-quantile model.  
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Table 4: Poverty severity (PS) by sub-district (%) 

Sub-district 

M-quantil model Direct estimation 

Huber Hampel Tukey   Bisquare Without Over-sampling Over- 
Sampling 

STL Ulu 4.88 4.97 4.35 0.62 0.16 
Selangit 4.78 4.70 4.17 0.41 1.00 
Sumber Harta 2.59 2.56 2.41 1.36 0.35 
Tugumulyo 1.52 1.50 1.30 0.51 0.36 
Purwodadi 3.73 3.77 3.56 2.41 0.82 
Muara Beliti 3.04 3.05 2.63 0.48 0.09 
TP Kepungut 3.96 3.81 3.75 2.99 0.31 
Jayaloka 0.82 0.79 0.64 0.00 0.00 
Suka Karya 1.16 1.20 0.97 0.00 0.00 
Muara Kelingi 1.76 1.76 1.47 0.09 0.02 
BTS Ulu 2.65 2.66 2.41 0.62 0.19 
Tuah Negeri 2.25 2.18 1.98 0.05 0.01 
Muara Lakitan 0.91 0.94 0.78 0.54 0.24 
Megang Sakti 2.10 2.05 1.90 0.73 0.33 

Meana 2.85 2.83 2.56 0.90 0.32 
Mediana 2.62 2.61 2.41 0.58 0.27 
Regency Level 2.30 2.30 1.95 0.66 0.28 

a Not involving jayaloka and suka karya sub-district 

 

Table 5: Mean RRMSE of Poverty Indicator Estimates (%) 

Estimation technique HCR PG PS 

Direct estimation 

  Without versampling 39.20 48.84 57.21 

 With Oversampling 38.29 47.20 55.94 

Indirect estimation (M-quantile) 

  Huber 32.87 43.44 51.44 

  Hampel 32.08 42.77 51.63 

  Tukey Bisquare 36.30 51.82 64.00 

 

In general, M-quantil model produces smallest mean RRMSE (HCR, PG, PS) than direct estimation either with 

or without oversampling. The weight function which produces smallest mean RRMSE (HCR) is Hampel as well 
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as the mean RRMSE (PG). However, the weight function that produces the smallest mean the RRMSE (PS) is 

Huber function. This empirical study has shown that M-quantil is more feasible to use. The oversampling in 

Suseda is able in increasing the accuracy using direct estimates, but it has lower accuracy than M-quantile 

approach. 

4. Conclusion 

In direct estimation result, there are two sub-districts which have 0% for poverty indicator estimates (HCR, PG, 

and PS) either without or with oversampling. It indicates that oversampling only increase the accuracy of the 

estimation. On the contrary, M-quantile is able to calculate the poverty indicator estimate of some sub-district 

which have 0% if we use direct estimation. Based on mean RRMSE, M-quantil shows more accurate estimates 

than direct estimation either without or with oversampling. We should also select appropriate weight function to 

produce more accurate estimate. Our result shows that Huber and Hampel weight functions were better than 

tukey bisquare weight function because they give lower mean RRMSE. Based on this research, we conclude that 

the ability of m-quantile can overcome the additional survey (with oversample data). Oversampling is not 

necessary to be conducted again because of its inefficiency in terms of human resources, cost, and time.  

5. Recommendation 

Further research is necessary for estimating poverty indicator until village area level, even household level. 

Moreover, we can utilize the household and individual weight value to increase the accuracy of estimates. We 

also recommend to further researcher, to utilize estimation technique based on multistage random sampling as 

Statistics Indonesia (BPS) designed officially. Beside that, we recommend to implement this M-quantile model 

to other area which has data characteristics similarity so the model will give strong evidence in term of the 

accuracy and benefit. 
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