New Sequence Spaces with Respect to a Sequence of Modulus Functions

Ömer Kişi ${ }^{\text {a* }}$, Erhan Güler ${ }^{\text {b }}$
${ }^{a, b}$ Department of Mathematics, Faculty of Science, Bartın University, 74100, Bartın, Turkey
${ }^{a}$ Email: okisi@bartin.edu.tr
${ }^{b}$ Email: eguler@bartin.edu.tr

Abstract

In this paper, we introduce the notions of A^{I}-invariant convergence, $A^{I^{*}}$-invariant convergence with respect to a sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of $A^{I \sigma}$ -Cauchy sequence and $A^{I_{\sigma}^{*}}$-Cauchy sequence. We basically study some connections between A^{I}-invariant statistical convergence and A^{I}-invariant lacunary statistical convergence with respect to a sequence of modulus functions and between strongly A^{I}-invariant convergence and A^{I}-invariant lacunary statistical convergence with respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of $I_{\sigma}-\lambda$ statistically convergence and A^{I}-invariant statistically convergence with respect to a sequence of modulus functions.

Keywords: Lacunary invariant statistical convergence; Invariant statistical convergence; modulus function.

1. Introduction

The notion of statistical convergence of sequences of numbers was introduced by Fast [12]. Later on, statistical convergence turned out to be one of the most active areas of research in summability theory after the works of [15,29].

[^0]The concept of lacunary statistical convergence was defined by [16]. Also, they gave the relationships between the lacunary statistical convergence and the Cesàro summability. Freedman and his colleagues established the connection between the strongly Cesàro summable sequences space σ_{1} and the strongly lacunary summable sequences space N^{θ} in their work [1] published in 1978. The idea of λ-statistical convergence was introduced and studied by [20] as an extension of the [V, λ] summability of Leindler [18]. The concept of I-convergence of real sequences is a generalization of statistical convergence which is based on the structure of the ideal I of subsets of the set of natural numbers. P. Kostyrko and his colleagues [26] introduced the concept of I-convergence of sequences in a metric space and studied some properties of this convergence. Several authors including [24,25,22,5], and some authors have studied invariant convergent sequences. Nuray and his colleagues [10], defined the concepts of σ-uniform density of subsets A of the set \mathbb{N}, I_{σ}-convergence and investigated relationships between I_{σ}-convergence and invariant convergence also I_{σ}-convergence and $\left[V_{\sigma}\right]_{p}$-convergence. The concept of strongly σ-convergence was defined by [21]. Reference [7] introduced the concepts of σ-statistical convergence and lacunary σ-statistical convergence and gave some inclusion relations. Recently, the concept of strongly σ convergence was generalized by [5]. Reference [30] investigated lacunary I-invariant convergence and lacunary I invariant Cauchy sequence of real numbers. The notion of a modulus function was introduced by Nakano [11]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that (i) $f(x)=0$ if and only if $x=0$, (ii) $f(x+y)=f(x)+f(y)$ for $x, y \geq 0$, (iii) f is increasing and (iv) f is continuous from the right at 0 . It follows that f must be continuous on $[0, \infty)$. Connor $[17,28,14,3,27,31]$ used a modulus function to construct sequence spaces. Now let \mathcal{S} be the space of sequence of modulus function $F=\left(f_{k}\right)$ such that $\lim _{x \rightarrow 0^{+}} \sup p_{k}(x)=0$. Throughout the paper we take $A=\left(a_{k i}\right)$ as an infinite matrix of complex numbers and the set of all modulus functions determined by F and it will be denoted by $F=\left(f_{k}\right) \in \mathcal{S}$ for every $k \in \mathbb{N}$. First we recall some of the basic concepts which we will be used in this paper. A number sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

In this case we write $s t-\lim x_{k}=L$. By a lacunary sequence we mean an increasing integer sequence $\theta=\left\{k_{r}\right\}$ such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$.

A sequence $x=\left(x_{k}\right)$ is said to be lacunary statistically convergent to the number L if for every $\varepsilon>0$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

In this case we write $S_{\theta}-\lim x_{k}=L$ or $x_{k} \rightarrow L\left(S_{\theta}\right)$. The strongly lacunary summable sequences space N^{θ}, which is defined by

$$
N_{\theta}=\left\{\left(x_{k}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{k}-L\right|=0\right\}
$$

Let $\lambda=\left(\lambda_{n}\right)$ be a non-decreasing sequence of positive real numbers tending to infinity such that $\lambda_{1}=1$ and $\lambda_{n+1} \leq \lambda_{n}+1$.

A sequence $x=\left(x_{k}\right)$ is said to be λ-statistically convergent or S_{λ}-convergent to L if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

where $I_{n}=\left[n-\lambda_{n}+1, n\right]$ for $n=1,2, \ldots$.

The generalized de la Valee-Pousin mean is defined by

$$
t_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} x_{k}
$$

where $I_{n}=\left[n-\lambda_{n}+1, n\right]$.

A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number L if $\lim _{n \rightarrow \infty} t_{n}(x)=L$. If $\lambda_{n}=n$, then (V, λ) summability reduces to $(C, 1)$-summability.

By an ideal on a set X we mean a non-empty family of subsets of X closed under taking finite unions and subsets of its elements. In other words, a non-empty set $I \subset 2^{\mathbb{N}}$ is called an ideal on \mathbb{N} if;
(i) For each $A, B \in I$ we have $A \cup B \in I$,
(ii) For each $A \in I$ and each $B \subseteq A$ we have $B \in I$.

If $\mathbb{N} \notin I$ then we say that this ideal is a proper ideal. Similarly an ideal is proper and also contains all finite subsets then we say that this ideal is admissible. Similarly, a non-empty set $\mathcal{F} \subset 2^{\mathbb{N}}$ is called a filter on \mathbb{N} if;
(i) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$,
(ii) (ii) For each $A \in \mathcal{F}$ and each $A \subseteq B$ we have $B \in \mathcal{F}$.

Proposition 1.1. If I is a non-trivial ideal in \mathbb{N}, then the family of sets

$$
\mathcal{F}(I)=\{M \subset \mathbb{N}:(\exists A \in I),(M=X \backslash A)\}
$$

is a filter in \mathbb{N} and it is called the filter associated with the ideal. Filter is a dual notion of ideal and generally we will use ideals in our proofs but if the notion is more familiar for filters, we will use the notion of filter. Let $x=$ $\left(x_{k}\right)$ be a real sequence. This sequence is said to be I-convergent to $L \in \mathbb{R}$ if for each $\varepsilon>0$ the set

$$
A_{\varepsilon}=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}
$$

belongs to I. In this definition the number L is I-limit of the x. An admissible ideal $I \subset 2^{\mathbb{N}}$ is said to have the property (AP) if for any sequence $\left\{A_{1}, A_{2}, ..\right\}$ of mutually disjoint sets of I, there is sequence $\left\{B_{1}, B_{2}, \ldots\right\}$ of sets such that each symmetric difference $A_{i} \Delta B_{i}(i=1,2, \ldots)$ is finite and $\bigcup_{i=1}^{\infty} B_{i} \in I$. Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^{m}(n)=\left(\sigma^{m-1}(n)\right), m=1,2, \ldots$ A continuous linear functional on l_{∞}, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if and only if, (i) $\phi(x) \geq 0$, for all sequences $x=\left(x_{n}\right)$ with $x_{n} \geq 0$ for all n; (ii) $\phi(e)=1$, where $\mathrm{e}=(1,1,1, \ldots)$; (iii) $\phi\left(x_{\sigma(n)}\right)=\phi(x)$ for all $x \in l_{\infty}$. The mapping ϕ are assumed to be one-to-one such that $\sigma^{m}(n) \neq n$ for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m.th iterate of the mapping σ at n. Thus, ϕ extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x)=\operatorname{limx}$, for all $x \in c$. In case σ is translation mapping $\sigma(n)=n+1$, the σ mean is often called a Banach limit and V_{σ}, the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences. It can be shown that

$$
V_{\sigma}=\left\{x=\left(x_{n}\right) \in l_{\infty}: \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{k=1}^{m} x_{\sigma^{k}(m)}=L\right\}, \text { uniformly in } m .
$$

A bounded sequence $x=\left(x_{k}\right)$ is said to be strongly σ-convergent to L if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|x_{\sigma^{k}(m)}-L\right|=0, \text { uniformly in } m
$$

In this case we write $x_{k} \rightarrow L\left[V_{\sigma}\right]$. By $\left[V_{\sigma}\right]$, we denote the set of all strongly σ-convergent sequences.

A sequence $x=\left(x_{k}\right)$ is σ-statistically convergent to L if for every $\varepsilon>0$,

$$
\lim _{m \rightarrow \infty} \frac{1}{m}\left|k \leq m:\left|x_{\sigma^{k}(n)}-L\right| \geq \varepsilon\right|, \text { uniformly in } n
$$

In this case, we write $S_{\sigma}-\lim x=L$ or $x_{k} \rightarrow L\left(S_{\sigma}\right)$.

Nuray and his colleagues [10] introduced the concepts of σ-uniform density and I_{σ}-convergence.

Let $A \subset \mathbb{N}$ and

$$
s_{n}=\min _{m}\left|A \cap\left\{\sigma(m), \sigma^{2}(m), \ldots, \sigma^{n}(m)\right\}\right|
$$

and

$$
S_{n}=\max _{m}\left|A \cap\left\{\sigma(m), \sigma^{2}(m), \ldots, \sigma^{n}(m)\right\}\right| .
$$

If the following limits exists

$$
\underline{V}(A)=\lim _{n \rightarrow \infty} \frac{s_{n}}{n}, \bar{V}(A)=\lim _{n \rightarrow \infty} \frac{S_{n}}{n}
$$

then they are called a lower and an upper σ-uniform density of the set A, respectively. If $\underline{V}(A)=\bar{V}(A)$, then
$V(A)=\underline{V}(A)=\bar{V}(A)$ is called the σ-uniform density of A.

Denote by I_{σ} the class of all $A \subset \mathbb{N}$ with $V(A)=0$.

A sequence $x=\left(x_{k}\right)$ is I_{σ} - convergent to the number L if for every $\varepsilon>0$,

$$
A_{\varepsilon}=\left\{k:\left|x_{k}-L\right| \geq \varepsilon\right\} \in I_{\sigma},
$$

that is $V\left(A_{\varepsilon}\right)=0$. In this case, we write $I_{\sigma}-\operatorname{limx}=L$.

Let $A=\left(a_{k i}\right)$ be an infinite matrix of complex numbers. We write $A x=\left(A_{k}(x)\right)$, if $A_{k}(x)=\sum_{i=1}^{\infty} a_{k i} x_{k}$ converges for each k.

In [19], the notion of $A^{I}-[V, \lambda]$ summability and $A^{I}-\lambda$ statistical convergence with respect to a sequence of modulus functions were introduced and some connections between $A^{I}-\lambda$ statistical convergence and A^{I} statistically convergence were studied.

2. Main Results

In this section, we will give some new concepts, give the relationship between them and establish some basic theorems.

Definition 2.1 The sequence $\left(x_{k}\right)$ is said to be A^{I}-invariant convergent to L with respect to a sequence of modulus functions if for every $\varepsilon>0$ the set,

$$
B(\varepsilon, x)=\left\{k: f_{k}\left(\left|A_{k}(x)-L\right|\right) \geq \varepsilon\right\}
$$

belongs to I_{σ}. In this case, we write $x_{k} \rightarrow L\left(I_{\sigma}{ }^{A}, F\right)$.

Definition 2.2 The sequence $\left(x_{k}\right)$ is said to be invariant convergent to L with respect to a sequence of modulus functions if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(A_{k}\left(x_{\sigma^{k}(m)}\right)\right)=L
$$

uniformly in m . In this case, we write $\left(x_{k}\right) \rightarrow L\left(V_{\sigma}{ }^{A}, F\right)$.
Theorem 2.1 Let $\left(x_{k}\right)$ is bounded sequence. If $\left(x_{k}\right)$ is A^{I}-invariant convergent to L with respect to a sequence of modulus functions, then $\left(x_{k}\right)$ is invariant convergent to L with respect to a sequence of modulus functions.

Proof Let $m, n \in \mathbb{N}$ be arbitrary and every $\varepsilon>0$. For each $x \in X$, we estimate

$$
t(m, n, x):=\left|\frac{f_{k}\left(A_{k}\left(x_{\sigma(m)}\right)\right)+f_{k}\left(A_{k}\left(x_{\sigma^{2}(m)}\right)\right)+\cdots+f_{k}\left(A_{k}\left(x_{\sigma^{n}(m)}\right)\right)}{n}-L\right| .
$$

Then, for each $x \in X$ we have $t(m, n, x) \leq t^{1}(m, n, x)+t^{2}(m, n, x)$, where

$$
t^{1}(m, n, x):=\frac{1}{n} \sum_{f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right)
$$

and

$$
t^{2}(m, n, x):=\frac{1}{n} \sum_{\substack{k, j=1 \\ f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right)<\varepsilon}}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) .
$$

Therefore, we have $t^{2}(m, n, x)<\varepsilon$, for each $x \in X$ and for every $m=1,2, \ldots$. The boundedness of $\left(x_{k}\right)$ is implies that there exist $M>0$ such that for each $x \in X$,

$$
f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right| \leq M, \quad(j=1,2, \ldots ; m=1,2, \ldots)\right)
$$

for all $k \in \mathbb{N}$. This implies that

$$
\begin{aligned}
\left.t^{1}(m, n, x) \leq \frac{M}{n} \right\rvert\, & \left\{1<j<n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \mid \\
& \leq M \cdot \frac{\max _{m}\left|\left\{1<j<n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|}{n}=M \frac{S_{n}}{n}
\end{aligned}
$$

Hence, $\left(x_{k}\right)$ is invariant convergent to L with respect to a sequence of modulus functions.

Definition 2.3 A sequence $x=\left(x_{k}\right)$ is said to be $A^{I^{*}}$-invariant convergent to $L \in X$ with respect to a sequence of modulus functions, if there exists a set $M=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\} \in \mathcal{F}\left(I_{\sigma}\right)$ such that

$$
\lim _{k \rightarrow \infty} f_{k}\left(A_{k}\left(x_{m_{k}}\right)\right)=L
$$

In this case, we write $x_{k} \rightarrow L\left(I_{\sigma}^{* A}, F\right)$.

Theorem 2.2 If a sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$ is $A^{I^{*}}$-invariant convergent to L, then this sequence is A^{I}-invariant convergent to L with respect to a sequence of modulus functions.

Proof. By assumption, there exists a set $H \in I_{\sigma}$ such that for $M=N \backslash H=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\} \in \mathcal{F}\left(I_{\sigma}\right)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f_{k}\left(A_{k}\left(x_{m_{k}}\right)\right)=L \tag{2.2.1}
\end{equation*}
$$

Let $\varepsilon>0$. By (2.2.1), there exists $k_{0} \in \mathbb{N}$ such that

$$
f_{k}\left(\left|A_{k}\left(x_{m_{k}}\right)-L\right|\right)<\varepsilon,
$$

for each $k>k_{0}$. Then, obviously

$$
\begin{equation*}
\left\{k \in \mathbb{N}: f_{k}\left|A_{k}(x)-L\right| \geq \varepsilon\right\} \subset H \cup\left\{m_{1}<m_{2}<\cdots<m_{k_{0}}\right\} . \tag{2.2.2}
\end{equation*}
$$

Since I_{σ} is admissible, the set on the right-hand side of (2.2.2) belongs to I_{σ}. So $x=\left(x_{k}\right)$ is A^{I}-invariant convergent to L with respect to a sequence of modulus functions.

Theorem 2.3 Let I_{σ} be an admissible ideal with property (AP). If a sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$ is A^{I}-invariant convergent to L, then this sequence is $A^{I^{*}}$-invariant convergent to L with respect to a sequence of modulus functions.

Proof. Suppose that I_{σ} satisfies condition (AP). Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$ is A^{I}-invariant convergent to L. Then

$$
\left\{k \in \mathbb{N}: f_{k}\left(\left|A_{k}(x)-L\right|\right) \geq \varepsilon\right\} \in I_{\sigma} .
$$

for each $\varepsilon>0$. Put

$$
E_{1}=\left\{k \in \mathbb{N}: f_{k}\left(\left|A_{k}(x)-L\right|\right) \geq 1\right\}
$$

and

$$
E_{n}=\left\{k \in \mathbb{N}: \frac{1}{n} \leq f_{k}\left(\left|A_{k}(x)-L\right|\right)<\frac{1}{n-1}\right\}
$$

for $n \geq 2$ and $n \in \mathbb{N}$. Obviously $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$. By condition (AP) there exists a sequence of sets
$\left\{F_{n}\right\}_{n \in \mathbb{N}}$ such that $E_{j} \Delta F_{j}$ are finite sets for $j \in \mathbb{N}$ and

$$
F=\bigcup_{j=1}^{\infty} F_{j} \in I_{\sigma} .
$$

It is sufficient to prove that for $M=\mathbb{N} \backslash \mathcal{F}, M=\left\{m=\left(m_{i}\right): m_{i}<m_{i+1}, i \in \mathbb{N}\right\} \in \mathcal{F}\left(I_{\sigma}\right)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f_{k}\left(A_{k}\left(x_{m_{k}}\right)\right)=L, k \in M \tag{2.3.1}
\end{equation*}
$$

Let $\lambda>0$. Choose $n \in \mathbb{N}$ such that $\frac{1}{n+1}<\lambda$. Then

$$
\left\{n \in \mathbb{N}: f_{k}\left(\left|A_{k}(x)-L\right|\right) \geq \lambda\right\} \subset \bigcup_{j=1}^{k+1} E_{j}
$$

Since $E_{j} \Delta F_{j}, j=1,2, \ldots, n+1$ are finite sets, there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(\bigcup_{j=1}^{k+1} F_{j}\right) \cap\left\{k \in \mathbb{N}: k>k_{0}\right\}=\left(\bigcup_{j=1}^{k+1} E_{j}\right) \cap\left\{k \in \mathbb{N}: k>k_{0}\right\} \tag{2.3.2}
\end{equation*}
$$

If $k>k_{0}$ and $k \notin F$, then $k \notin \bigcup_{j=1}^{n+1} F_{j}$ and by (2.3.2) $k \notin \bigcup_{j=1}^{n+1} E_{j}$.

But then $f_{k}\left(\left|A_{k}(x)-L\right|\right)<\frac{1}{n+1}<\lambda$; so (2.3.1) holds and we have $\lim _{k \rightarrow \infty} f_{k}\left(A_{k}\left(x_{m_{k}}\right)\right)=L$.

Now, we define the concepts of I-invariant Cauchy sequence and I^{*}-invariant Cauchy sequence of real numbers with respect to a sequence of modulus functions.

Definition 2.4 Let I_{σ} be an admissible ideal in \mathbb{N}. A sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ is said to be I_{σ}-Cauchy sequence if for each $\varepsilon>$ 0 , there exists a number $N=N(\varepsilon)$ such that

$$
A(x, \varepsilon)=\left\{k:\left|f_{k}\left(A_{k}\left(x_{k}\right)\right)-f_{k}\left(A_{k}\left(x_{N}\right)\right)\right| \geq \varepsilon\right\}
$$

belongs to I_{σ}.

Definition 2.5 Let I_{σ} be an admissible ideal in \mathbb{N}. A sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ is said to be I_{σ}^{*}-Cauchy sequence if there exists a set $M=\left\{m=\left(m_{i}\right): m_{i}<m_{i+1}, i \in \mathbb{N}\right\} \in \mathcal{F}\left(I_{\sigma}\right)$, such that

$$
\lim _{k, p \rightarrow \infty}\left|f_{k}\left(A_{k}\left(x_{m_{k}}\right)\right)-f_{k}\left(A_{k}\left(x_{m_{p}}\right)\right)\right|=0 .
$$

We give following theorems which show relationships between I_{σ}-convergence, I_{σ}-Cauchy sequence and I_{σ}^{*} Cauchy sequence.

Theorem 2.4 If a sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ is I_{σ}-convergent, then $\left(\mathrm{x}_{\mathrm{k}}\right)$ is an I_{σ}-Cauchy sequence.

Theorem 2.5 If a sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ is I_{σ}^{*}-Cauchy sequence, then $\left(\mathrm{x}_{\mathrm{k}}\right)$ is I_{σ}-Cauchy sequence.

Theorem 2.6 Let I_{σ} has property (AP). Then the concepts I_{σ}^{*}-Cauchy sequence and I_{σ}-Cauchy sequence coincides.

Definition 2.6 The sequence $\left(\mathrm{x}_{\mathrm{k}}\right)$ is said to be p-strongly invariant convergent to L with respect to a sequence of modulus functions, if for each $x \in X$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right)=0,
$$

uniformly in m, where $0<p<\infty$. In this case, we write $\left(x_{k}\right) \rightarrow L\left[V_{\sigma}^{A}, F\right]_{p}$.

Theorem 2.7 Let I_{σ} be an admissible ideal and $0<p<\infty$.
i. If $\left(x_{k}\right) \rightarrow L\left[V_{\sigma}^{A}, F\right]_{p}$, then $\left(x_{k}\right) \rightarrow L\left(I_{\sigma}^{A}, F\right)$.
ii. If $x \in m(X)$, the space of all bounded sequences of X and $\left(x_{k}\right) \rightarrow L\left(I_{\sigma}^{A}, F\right)$, then $\left(x_{k}\right) \rightarrow L\left[V_{\sigma}^{A}, F\right]_{p}$.
iii. If $x \in m(X)$, then $\left(x_{k}\right)$ is I_{σ}^{A}-convergent if and only if $\left(x_{k}\right) \rightarrow L\left[V_{\sigma}^{A}, F\right]_{p}$.

Proof. (i) Let $\varepsilon>0$ and $\left(x_{k}\right) \rightarrow L\left[V_{\sigma}^{A}, F\right]_{p}$. Then we can write

$$
\begin{aligned}
& \sum_{j=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right) \geq \sum_{j=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right) \\
& \geq \varepsilon_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon \\
&\left|\left\{j \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \varepsilon^{p} \cdot \max _{m}\left|\left\{j \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|,
\end{aligned}
$$

and

$$
\sum_{j=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right) \geq \varepsilon^{p} \cdot \frac{\max _{m}\left|\left\{1<j<n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|}{n}=\varepsilon^{p} \cdot \frac{S_{n}}{n}
$$

for every $m=1,2, \ldots$. This implies $\lim _{n \rightarrow \infty} \frac{s_{n}}{n}=0$ and so $\left(x_{k}\right) \rightarrow L\left(I_{\sigma}^{A}, F\right)$.
(ii) Suppose that $x \in m(X)$ and $\left(x_{k}\right) \rightarrow L\left(I_{\sigma}^{A}, F\right)$. Let $\varepsilon>0$. Since $\left(x_{k}\right)$ is bounded, $\left(x_{k}\right)$ implies that there exist $\mathrm{M}>0$ such that for each $x \in X$,

$$
f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \leq M,
$$

for all j and m. Then, we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{j=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right) \\
& \quad=\frac{1}{n}\left(\sum_{j_{j=1}^{p}}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|^{p}\right)\right. \\
& \left.\quad+\sum_{f_{k}\left(\left|A_{k}\left(x_{\sigma j} j_{(m)}\right)-L\right|\right) \geq \varepsilon}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|^{p}\right)\right) \\
& \quad f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right)<\varepsilon \\
& \quad \leq M \cdot \frac{\max _{m}\left|\left\{1<j<n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{j}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|}{n}+\varepsilon^{p}<M \cdot \frac{S_{n}}{n}+\varepsilon^{p},
\end{aligned}
$$

for each $x \in X$.

Hence, for each $x \in X$ we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|^{p}\right)=0,
$$

uniformly in m.
(iii) This is immediate consequence of (i) and (ii).

Definition 2.7 A sequence $x=\left(x_{k}\right)$ is said to be A^{I}-invariant lacunary statistically convergent to $\mathrm{L} \in \mathrm{X}$ with respect to a sequence of modulus functions, for each $\varepsilon>0$ and $\delta>0$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta\right\} \in I_{\sigma} \text {, uniformly in } m .
$$

Definition 2.8. A sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$ is said to be strongly A^{I}-invariant lacunary convergent to $\mathrm{L} \in \mathrm{X}$ with respect to a sequence of modulus functions, if, for each $\varepsilon>0$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \in I_{\sigma} \text {, uniformly in } m \text {. }
$$

We shall denote by $S_{\sigma \theta}^{A}(I, F), N_{\sigma \theta}^{A}(I, F)$ the collections of all A^{I}-invariant lacunary statistically convergent and strongly A^{I}-invariant lacunary convergent sequences, respectively.

Theorem 2.8 Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ki}}\right)$ be an infinite matrix of complex numbers, $\theta=\left\{\mathrm{k}_{\mathrm{r}}\right\}$ be a lacunary sequence and $\mathrm{F}=$ $\left(\mathrm{f}_{\mathrm{k}}\right)$ be a sequence of modulus function in S.
i. If $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{L}\left(N_{\sigma \theta}^{A}(I, F)\right)$ then $x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right)$.
ii. If $\mathrm{x} \in \mathrm{m}(\mathrm{X})$, the space of all bounded sequences of X and $x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right)$ then $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{L}\left(N_{\sigma \theta}^{A}(I, F)\right)$.
iii. $\quad S_{\sigma \theta}^{A}(I, F) \cap m(X)=N_{\sigma \theta}^{A}(I, F) \cap m(X)$.

Proof. (i) Let $\varepsilon>0$ and $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{L}\left(N_{\sigma \theta}^{A}(I, F)\right)$. Then we can write

$$
\begin{gathered}
\sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \sum_{\substack{f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
\geq \varepsilon .\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| .
\end{gathered}
$$

So for given $\delta>0$,

$$
\frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta \Leftrightarrow \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon . \delta,
$$

i.e.

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta\right\} \subset\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon . \delta\right\} .
$$

Since $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{L}\left(N_{\sigma \theta}^{A}(I, F)\right)$, the set on the right-hand side belongs to I_{σ} and so it follows that $x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right)$. (ii) Suppose that $\mathrm{x} \in \mathrm{m}(\mathrm{X})$ and $x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right)$.

Then we can assume that

$$
f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \leq M
$$

for each $x \in X$ and all k. Given $\varepsilon>0$, we get

$$
\begin{aligned}
& \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
& \quad=\frac{1}{h_{r}}\left(\sum_{\substack{k \in I_{r} \\
f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)\right. \\
& \left.\quad+\sum_{\substack{k \in I_{r} \\
f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)<\varepsilon}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)\right) \leq \frac{M}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|+\varepsilon .
\end{aligned}
$$

Note that

$$
A(\varepsilon)=\left\{r \in \mathbb{N}: \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \frac{\varepsilon}{M}\right\}
$$

belongs to I_{σ}. If $r \in(A(\varepsilon))^{c}$ then

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)<2 \varepsilon
$$

Hence

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq 2 \varepsilon\right\} \subset A(\varepsilon)
$$

and so belongs to I_{σ}. This shows that $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{L}\left(N_{\sigma \theta}^{A}(I, F)\right)$. This completes the proof. (iii) This is an immediate consequence of (i) and (ii).

Definition 2.9 The sequence $\left(x_{k}\right)$ is A^{I}-invariant statistically convergent to L if for each $\varepsilon>0$, for each $x \in X$ and $\delta>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{n}\left|\left\{k \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta\right\}
$$

belongs to I_{σ}. (denoted by $\left.x_{k} \rightarrow L\left(S\left(I_{\sigma}^{A}, F\right)\right)\right)$.

Theorem 2.9 If $\theta=\left\{k_{r}\right\}$ be a lacunary sequence with $\lim \inf f_{r} q_{r}>1$, then

$$
x_{k} \rightarrow L\left(S\left(I_{\sigma}^{A}, F\right)\right) \Leftrightarrow x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right) .
$$

Proof. Suppose first that $\lim \operatorname{in} f_{r} q_{r}>1$, then there exists a $\alpha>0$ such that $q_{r} \geq 1+\alpha$ for sufficiently large r,
which implies that $\frac{h_{r}}{k_{r}} \geq \frac{\alpha}{1+\alpha}$.

If $x_{k} \rightarrow L\left(S\left(I_{\sigma}^{A}, F\right)\right)$, then for every $\varepsilon>0$, for each $x \in X$ and for sufficiently large r, we have

$$
\begin{gathered}
\frac{1}{k_{r}}\left|\left\{k \leq k_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \frac{1}{k_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
\geq \frac{\alpha}{1+\alpha} \cdot \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| ;
\end{gathered}
$$

Then for any $\delta>0$, we get

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta\right\} \\
& \qquad \subseteq\left\{r \in \mathbb{N}: \frac{1}{k_{r}}\left|\left\{k \leq k_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \frac{\delta \alpha}{1+\alpha}\right\}
\end{aligned}
$$

belongs to I_{σ}. This completes the proof.

For the next result we assume that the lacunary sequence θ satisfies the condition that for any set $C \in \mathcal{F}\left(I_{\sigma}\right)$,

$$
\bigcup\left\{n: k_{r-1}<n \leq k_{r}, r \in C\right\} \in \mathcal{F}\left(I_{\sigma}\right) .
$$

Theorem 2.10 If $\theta=\left\{\mathrm{k}_{\mathrm{r}}\right\}$ be a lacunary sequence with $\lim \sup _{r} q_{r}<\infty$, then

$$
x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right) \Leftrightarrow x_{k} \rightarrow L\left(S\left(I_{\sigma}^{A}, F\right)\right) .
$$

Proof. If lim $\sup _{r} q_{r}<\infty$ then without any loss of generality we can assume that there exists a $0<M<\infty$ such that $q_{r}<M$ for all $r \geq 1$.

Suppose that $x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right)$ and for $\varepsilon, \delta, \delta_{1}>0$ define the sets

$$
C=\left\{r \in \mathbb{N}: \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|<\delta\right\}
$$

and

$$
T=\left\{n \in \mathbb{N}: \frac{1}{n}\left|\left\{k<n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|<\delta_{1}\right\} .
$$

It is obvious from our assumption that $C \in \mathcal{F}\left(I_{\sigma}\right)$, the filter associated with the ideal I_{σ}. Further observe that

$$
K_{j}=\frac{1}{h_{j}}\left|\left\{k \in I_{j}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|<\delta
$$

for all $j \in C$. Let $n \in \mathbb{N}$ be such that $k_{r-1}<n \leq k_{r}$ for some $r \in C$.

Now we have

$$
\begin{aligned}
& \frac{1}{n}\left|\left\{k \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \leq \frac{1}{k_{r-1}}\left|\left\{k \leq k_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
&=\frac{1}{k_{r-1}}\left|\left\{k \in I_{1}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|+\frac{1}{k_{r-1}}\left|\left\{k \in I_{2}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
&+\cdots+\frac{1}{k_{r-1}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
&=\frac{k_{1}}{k_{r-1}} \cdot \frac{1}{h_{1}}\left|\left\{k \in I_{1}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
&+\frac{k_{2}-k_{1}}{k_{r-1}} \cdot \frac{1}{h_{2}}\left|\left\{k \in I_{2}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|+\cdots \\
&+\frac{k_{r}-k_{r-1}}{k_{r-1}} \cdot \frac{1}{h_{r}}\left|\left\{k \in I_{r}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
&=\frac{k_{1}}{k_{r-1}} \cdot K_{1}+\frac{k_{2}-k_{1}}{k_{r-1}} \cdot K_{2}+\cdots+\frac{k_{r}-k_{r-1}}{k_{r-1}} \cdot K_{r} \leq\left\{\sup _{j \in C} K_{j}\right\} \cdot \frac{k_{r}}{k_{r-1}}<M \delta .
\end{aligned}
$$

Choosing $\delta_{1}=\frac{\delta}{M}$ and in view of the fact that $\bigcup\left\{n: k_{r-1}<n \leq k_{r}, r \in C\right\} \subset T$ where $C \in \mathcal{F}\left(I_{\sigma}\right)$.

It follows from our assumption on θ that the set T also belongs to $\mathcal{F}\left(I_{\sigma}\right)$ and this completes the proof of the theorem. Combining Theorem 2.9 and Theorem 2.10 we have,

Theorem 2.11 If $\theta=\left\{k_{r}\right\}$ be a lacunary sequence with $1<\liminf _{r} q_{r}<\limsup _{r} q_{r}<\infty$, then

$$
x_{k} \rightarrow L\left(S_{\sigma \theta}^{A}(I, F)\right) \Leftrightarrow x_{k} \rightarrow L\left(S\left(I_{\sigma}^{A}, F\right)\right)
$$

Proof. This is an immediate consequence of Theorem 2.9 and Theorem 2.10.

Definition 2.10 The sequence $x=\left(x_{k}\right)$ is said to be strongly Cesàro I_{σ}-summable to L with respect to a sequence of modulus functions, if for each $\varepsilon>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}
$$

belongs to I_{σ}. (denoted by $\left.\left(x_{k}\right) \rightarrow L\left[C_{1}^{A}\left(I_{\sigma}, F\right)\right]\right)$.

Definition 2.11 The sequence $x=\left(x_{k}\right)$ is said to be strongly λ_{I}-invariant convergent to L with respect to a sequence of modulus functions, if for each $\varepsilon>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}
$$

belongs to I_{σ}, where $I_{n}=\left[n-\lambda_{n}+1, n\right]$. (denoted by $\left(x_{k}\right) \rightarrow L\left(V_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$.
Theorem 2.12 If $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(I_{\sigma}, F\right)\right)$ is then $\left.\left(x_{k}\right) \rightarrow L\left[C_{1}^{A}\left(I_{\sigma}, F\right)\right]\right)$.
Proof Assume that $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(I_{\sigma}, F\right)\right)$ and $\varepsilon>0$. Then,

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)=\frac{1}{n} \sum_{k=1}^{n-\lambda_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)+\frac{1}{n} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
& \quad \leq \frac{1}{\lambda_{n}} \sum_{k=1}^{n-\lambda_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)+\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
& \quad \leq \frac{2}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right)
\end{aligned}
$$

and so,

$$
\left\{n \in \mathbb{N}: \frac{1}{n} \sum_{k=1}^{n} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \subseteq\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \frac{\varepsilon}{2}\right\} \in I_{\sigma} .
$$

Hence $\left.\left(x_{k}\right) \rightarrow L\left[C_{1}^{A}\left(I_{\sigma}, F\right)\right]\right)$.

Definition 2.12 The sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)$ is said to be $I_{\sigma}-\lambda$ statistically convergent to L with respect to a sequence of modulus functions, if for each $\varepsilon>0$, for each $\delta>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}}\left|k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right| \geq \delta\right\}
$$

belongs to I_{σ}. (denoted by $\left(x_{k}\right) \rightarrow L\left(S_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$.

Theorem 2.13 Let $\lambda=\left(\lambda_{n}\right)$ and I_{σ} is an admissible ideal in \mathbb{N}. If $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(\mathrm{I}_{\sigma}, \mathrm{F}\right)\right)$, then $\left(x_{k}\right) \rightarrow$ $L\left(S_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$.

Proof Assume that $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(I_{\sigma}, \mathrm{F}\right)\right)$ and $\varepsilon>0$. Then,

$$
\begin{gathered}
\sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \sum_{\substack{k \in I_{n} \\
f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
\geq \varepsilon .\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|
\end{gathered}
$$

and so,

$$
\frac{1}{\varepsilon . \lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| .
$$

Then for any $\delta>0$,

$$
\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta\right\} \subseteq\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon \delta\right\} .
$$

Since right hand belongs to I_{σ} then left hand also belongs to I_{σ} and this completes the proof

Theorem 2.14 Let $\lambda \in \Lambda$ and I_{σ} is an admissible ideal in \mathbb{N}. If $\left(x_{k}\right)$ is bounded and $\left(x_{k}\right) \rightarrow L\left(S_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$ then $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(\mathrm{I}_{\sigma}, \mathrm{F}\right)\right)$.

Proof Let $\left(x_{k}\right)$ is bounded sequence and $\left(x_{k}\right) \rightarrow L\left(S_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$. Then there is an M such that

$$
f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \leq M,
$$

for all k. For each $\varepsilon>0$,

$$
\begin{aligned}
& \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
&=\frac{1}{\lambda_{n}} \sum_{f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
&+\frac{1}{\lambda_{n}} \sum_{f_{k \in I_{n}}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \\
& \leq M \cdot \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \frac{\varepsilon}{2}\right\}\right|+\frac{\varepsilon}{2}
\end{aligned}
$$

Then,

$$
\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \subseteq\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \frac{\varepsilon}{2}\right\}\right| \geq \frac{\varepsilon}{2 M}\right\} \in I_{\sigma} .
$$

Therefore $\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \mathrm{L}\left(\mathrm{V}_{\lambda}^{\mathrm{A}}\left(I_{\sigma}, F\right)\right)$.

Theorem 2.15 If $\liminf \frac{\lambda_{n}}{n}>0$ then $\left(x_{k}\right) \rightarrow L\left(S^{A}\left(I_{\sigma}, F\right)\right)$ implies $\left(x_{k}\right) \rightarrow L\left(S_{\lambda}^{A}\left(I_{\sigma}, F\right)\right)$.

Proof Assume that $\operatorname{limin} f \frac{\lambda_{n}}{n}>0$ there exists a $\delta>0$ such that $\frac{\lambda_{n}}{n} \geq \delta$ for sufficiently large n.

For given $\varepsilon>0$ we have,

$$
\frac{1}{n}\left\{k \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \supseteq \frac{1}{n}\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} .
$$

Therefore,

$$
\begin{aligned}
& \frac{1}{n}\left|\left\{k \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \frac{1}{n}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
& \quad \geq \frac{\lambda_{n}}{n} \cdot \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \delta \cdot \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|
\end{aligned}
$$

then for any $\eta>0$ we get
$\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \eta\right\} \subseteq\left\{n \in \mathbb{N}: \frac{1}{n}\left|\left\{k \leq n: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \eta \delta\right\}$ $\in I_{\sigma}$
and this completes the proof.

Theorem 2.16 If $\lambda=\left(\lambda_{n}\right) \in \Delta$ be such that $\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=1$, then $S_{\lambda}^{A}\left(I_{\sigma}, F\right) \subset S^{A}\left(I_{\sigma}, F\right)$.

Proof Let $\delta>0$ be given. Since $\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=1$, we can choose $M \in \mathbb{N}$ such that $\left|\frac{\lambda_{n}}{n}-1\right|<\frac{\delta}{2}$, for all $n \geq m$. Now observe that, for $\varepsilon>0$,

$$
\begin{aligned}
\left.\frac{1}{n} \right\rvert\,\left\{k \leq n: f_{k}\left(\mid A_{k}\right.\right. & \left.\left.\left(x_{\sigma^{k}(m)}\right)-L \mid\right) \geq \varepsilon\right\} \mid \\
& =\frac{1}{n}\left|\left\{k \leq n-\lambda_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|+\frac{1}{n}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
& \leq \frac{n-\lambda_{n}}{n}+\frac{1}{n}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
& \leq 1-\left(1-\frac{\delta}{2}\right)+\frac{1}{n}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \\
& =\frac{\delta}{2}+\frac{1}{n}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right|
\end{aligned}
$$

for all $n \geq m$. Hence

$$
\begin{aligned}
\left\{n \in \mathbb{N}: \left.\frac{1}{n} \right\rvert\,\{k \leq n:\right. & \left.\left.f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\} \mid \geq \delta\right\} \\
& \subset\left\{n \in \mathbb{N}: \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}: f_{k}\left(\left|A_{k}\left(x_{\sigma^{k}(m)}\right)-L\right|\right) \geq \varepsilon\right\}\right| \geq \frac{\delta}{2}\right\} \cup\{1,2, \ldots, m\} .
\end{aligned}
$$

If $\left(x_{k}\right)$ is $I_{\sigma}-\lambda$ statistically convergent to L, then the set on the right hand side belongs to I_{σ} and so the set on the left hand side also belongs to I_{σ}. This shows that $\left(x_{k}\right)$ is I_{σ}-statistically convergent to L.

Acknowledgements

This work has supported by Bartın University-Scientific Research Projects Commission- (Project Number: BAP 2016-FEN-A-007).

References

[1] A. R. Freedman and J. J. Sember. "Densities and summability." Pacific J. Math., vol. 95, pp. 10-11, 1981.
[2] A. Nabiev, S. Pehlivan and M. Gürdal. "On I -Cauchy sequences." Taiwanese J. Math., vol. 11(2), pp. 569576, 2007.
[3] E. Kolk. "On strong boundedness and summability with respect to a sequence moduli." Tartu Ül. Toimetised. vol. 960, pp. 41-50, 1993.
[4] E. Savaş and P. Das. "A generalized statistical convergence via ideals." App. Math. Lett., vol. 24, pp. 826830, 2011.
[5] E. Savaş. "Some sequence spaces involving invariant means." Indian J. Math., vol. 31, pp. 1-8, 1989.
[6] E. Savaş. "Strong σ-convergent sequences." Bull. Calcutta Math., vol. 81, pp. 295-300, 1989.
[7] E. Savaş and F. Nuray. "On σ-statistically convergence and lacunary σ-statistically convergence." Math. Slovaca. vol. 43(3), pp. 309-315, 1993.
[8] E. Savaş. "On generalized A -difference strongly summable sequence spaces defined by ideal convergence on a real n-normed space." J. Inequal. Appl. 2012.
[9] F. Nuray and E. Savaş. "Invariant statistical convergence and A -invariant statistical convergence." Indian J. Pure Appl. Math., vol. 10, pp. 267-274, 1994.
[10] F. Nuray, H. Gök and U. Ulusu. " I_{σ}-convergence." Math. Commun., vol. 16, pp. 531-538, 2011.
[11] H. Nakano. "Concave modular." J. Math. Soc. Jpn., vol. 5, pp. 29-49, 1953.
[12] H. Fast. "Sur la convergence statistique." Colloq. Math., vol. 2, pp. 241-244, 1951.
[13] I. J. Schoenberg. "The integrability of certain functions and related summability methods." Amer. Math. Monthly, vol. 66, pp. 361-375, 1959.
[14] I. J. Maddox. "Sequence spaces defined by a modulus." Math. Proc. Cambridge Philos. Soc., vol. 100, pp. 161-166, 1986.
[15] J. A. Fridy. "On statistical convergence." Analysis, vol. 5, pp. 301-313, 1985.
[16] J. A. Fridy and C. Orhan. "Lacunary statistical convergence." Pacific Journal of Mathematics, vol. 160(1), pp. 43-51, 1993.
[17] J. S. Connor. "On strong matrix summability with respect to a modulus and statistical convergence." Canad. Math. Bull., vol. 32, pp. 194-198, 1989.
[18] L. Leindler. "Uber die de la Vall'ee-Pousnsche Summierbarkeit allge meiner orthogonalreihen." Acta Math. Acad. Sci. Hungarica, vol. 16, pp. 375-387, 1965.
[19] M. Gürdal, U. Yamancı and S. Saltan. " A^{I}-statistical convergence with respect to a sequence of modulus functions." Contemporary Analysis and Applied Mathematics, vol. 2 (1), pp.136-145, 2014.
[20] M. Mursaleen. " λ - Statistical Convergence." Math. Slovaca, vol. 50 (1), pp. 111-115, 2000.
[21] M. Mursaleen. "Matrix transformation between some new sequence spaces." Houston J. Math., vol. 9, pp. 505-509, 1983.
[22] M. Mursaleen. "On finite matrices and invariant means." Indian J. Pure and Appl. Math., vol. 10, pp. 457460, 1979.
[23] P. Das, E. Savas and S. Kr. Ghosal. "On generalizations of certain summability methods using ideals." Appl. Math. Lett., vol. 24, pp. 1509-1514, 2011.
[24] R. A. Raimi. "Invariant means and invariant matrix methods of summability." Duke Math. J., vol. 30, pp. 81-94, 1963.
[25] P. Schaefer. "Infinite matrices and invariant means." Proc. Amer. Math. Soc., vol. 36, pp. 104-110, 1972.
[26] P. Kostyrko, M. Macaj and T. Salat. "I -convergence." Real Anal. Exchange, vol. 26 (2), pp. 669-686, 2000.
[27] S. Pehlivan and B. Fisher. "On some sequence spaces." Indian J. Pure Appl. Math., vol. 25 (10), pp. 10671071, 1994.
[28] T. Bilgin. "Lacunary strong A-convergence with respect to a modulus." Mathematica, vol. XLVI(4), pp. 39-46, 2001.
[29] T. Salàt. "On statistically convergent sequences of real numbers." Math. Slovaca, vol. 30, pp. 139-150, 1980.
[30] U. Ulusu and F. Nuray. "Lacunary I_{σ}-convergence." (Under review).
[31] W. H. Ruckle. "FK spaces in which the sequence of coordinate vectors is bounded." Canadian J. Math., vol. 25, pp. 973-978, 1973.

[^0]: * Corresponding author.

