
 

International Journal of Sciences: 
Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
http://gssrr.org/index.php?journal=JournalOfBasicAndApplied 

--------------------------------------------------------------------------------------------------------------------------- 

132 
 

Application of Bayesian Nonlinear Structural Equation 

Modeling for Exploring Relationships on Residential 

Satisfaction in Turkey 

İlkay ALTINDAĞ* 

Department of Banking, Faculty of Applied Sciences, Necmettin Erbakan University, 42060, Konya, Turkey 

Email: ialtindag@konya.edu.tr 

 

Abstract 

We introduce a Bayesian Nonlinear Structural Equation Modeling framework to explore the relationships on 

residential satisfaction in Turkey. The structural equation model (SEM) is a multivariate statistical method that 

allows assessment of relationships between observed and latent variables. SEM includes methods for regression, 

path analysis and factor analysis. SEM is widely used to examine the inter-relationships between latent and 

observed variables in psychological, social and medical research. Generally, linear relationships between 

observed and latent variables are modeled in SEM. Recent years, modeling of nonlinear relationship in SEM get 

attract great attention in the literature. A Bayesian approach to SEM may enable models that reflect hypotheses 

based on complex theory. The Bayesian approach analyses a general structural equation model that 

accommodates the general nonlinear terms of latent variables and covariates. In this study we make Bayesian 

non-linear structural equation modeling analysis for Residential Satisfaction. 

Keywords: Bayesian Structural Equation Modeling; Latent Variables; Path Analysis; Residential Satisfaction. 

1. Introduction 

Structural equation modeling (SEM) is a extensive statistical modeling tool for analyzing multivariate data 

involving complex relationships between and among variables [25].  
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SEM is a statistical method designed to test a conceptional or theoretical model. SEM includes confirmatory 

factor analysis, path analysis, path modeling, and latent growth modeling. One of the main advantages of SEM 

is that it can be used to examine the relationship between multiple measures and latent structures. It is also 

applicable to both experimental and non-experimental data, as well as cross-sectional and longitudinal data. 

SEM implements a confirmatory (hypothesis testing) approach to the multivariate analysis of a structural theory 

that predicts causal relationships between multiple variables [34]. 

Although SEMs are most widely used in studies involving latent variables such as quality of life, happiness or 

stress, they provide a comprehensive framework for covariance structure modeling. SEM's basic advantages are 

flexibility, latent variable modeling, dealing with error and testing models and theory. Consequently, they have 

become increasingly used outside of the traditional social science applications [19]. 

Many theories in social and behavioral sciences not only assume linear effects between variables, but also 

nonlinear relationships. The nonlinear effects most frequently investigated are interaction effects. These effects 

indicate that the relationship between a predictor and a criterion variable is weakened or strengthened dependent 

on the values of the second predictor variable (also called the moderator variable).  An important common 

feature of SEM and many traditional statistical methods are based on linear models. For this reason, the 

frequently used assumption when using the SEM method; the relationship between observed and latent variables 

is linear. However, SEM is becoming increasingly popular in the modeling of the nonlinear relationship [42]. 

The fundamental hypothesis tested for SEM is given by: 

(1) 

 

where ∑  is the population covariance matrix of observed variables, θ  is a vector that contains the model 

parameters, and ( )θ∑  is the covariance matrix written as a function of θ . The relationship with ( )θ∑  and ∑  

is the basic identification for model assessment, model estimate and model definition [12]. 

The iterative methods similar to the factor analysis are applied in the computational process of SEM. The most 

widely used software in the SEM method are AMOS [6], EQS [8,9] and LISREL [27]. In addition software are 

CALIS [24], LISCOMP [36], SEPATH (Statistica), Mx [38], Mplus [37], TETRAD [41] and WinBUGS (MRC 

Biostatistics Unit, 1989). Many Bayesian applications to SEM and factor analysis facilitated by WINBUGS 

package [16, 29]. We use WinBUGS program in this study. WinBUGS is statistical software for Bayesian 

analysis using Markov chain Monte Carlo (MCMC) methods. It is based on the BUGS (Bayesian inference 

Using Gibbs Sampling) project started in 1989.   

When the observed variables are multivariate normal and hypothetical model is specified correctly, it can be 

analytically derived that different estimation methods such as maximum likelihood (ML), generalized least 

squares (GLS), and weighted least squares (WLS) will produce estimates that converge to the same optimum 

and have similar asymptotic properties [13,14]. In recent years, the Bayesian method has been applied to 

( )θ∑ = ∑
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analyze many advanced SEMs useful for socio-psychological and practical medical research. Bayesian method 

is straightforward to diverge from standard assumptions often built into classical estimation methods. The 

Bayesian method statistical development is based on raw observations rather than the sample covariance matrix. 

This provides a number of advantages. For instance, the Bayesian method allows the use of genuine prior 

information in addition to the information that is available in observed data for producing results; it provides 

better statistics for goodness of fit and model comparison, and also other useful statistics such as the mean and 

percentiles of the posterior distribution; and it can give more reliable results for small samples [17, 31]. 

Nowadays Bayesian methods have been proposed by a many of authors. SEMs with mixed continuous and 

discrete variables [18,46,53], nonlinear SEMs [7,32,50], multilevel SEMs [2,26,31], semiparametric SEMs 

[46,54], SEMs with missing data [44], longitudinal SEMs [20,47,48,57], among others. Moreover, the Bayesian 

SEM has actually been applied to substantive real research in various disciplines: such as engineering, 

marketing research, genetics, ecology, diabetic studies and time series [3,5,23,26,45,56,58]. 

There are several considerable differences between the Bayesian and frequentist methods. Unlike the classical 

SEM in which the calculation algorithm is developed based on the sample covariance matrix, Bayesian SEM 

focuses on the use of raw observations instead of sample covariance matrix and implements some powerful 

tools for statistical computation [50]. 

The Bayes method requires that prior distributions be specified for each of the model unknowns, including the 

latent variables and the parameters from the measurement and structural models. Frequentist, generally assume 

normal distributions for the latent variables, but do not specify priors for mean or covariance parameters. Prior 

plays an important role since the posterior distributions on which the Bayesian inferences are based depend on 

the likelihood of both previous distribution and the data. Especially, specification of the prior ensures for the 

incorporation of substantive information about structural relationships, which may be available from previous 

studies or social science theory. If this information is not available, vague priors can be selected. While the 

sample size increases, the posterior distribution will be driven less by the prior, and frequentist and Bayesian 

estimates will tend to agree closely [19].  The main objective of this study we illustrate the value of the Bayesian 

SEM for developing a model which describes the Residential Satisfaction of an individual living in all provinces 

of Turkey. 

2. Data and Instrument 

The analysis is applied on a data set obtained from the Life Satisfaction Survey (LSS) that took place in Turkey. 

LSS was organized by the Turkish Statistical Institute in the year 2013.  This survey is the most recent LSS 

covered all cities in Turkey. 

LSS emerged for the first time as a module of the Household Budget Survey in 2003 in order to measure 

individuals' perceptions of general happiness and social values, measure their satisfaction with the main 

components of life and public services, and identify changes over time [52]. 

All private households of the Republic of Turkey have been included in Turkish citizens and foreign citizens 
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aged 18 years and over. Institutional population (dormitories, rest homes for elderly persons, special hospitals, 

military barracks and recreation quarters for officers etc.) are not covered [52]. The survey is designed to give 

estimates in Turkey-rural-urban level in previous years. For the first time in 2013, it is designed to give 

estimates at the provincial level. The sample size of the survey in 2013 are calculated to estimate based on 

Nomenclature of Territorial Units for Statistics (NUTS) Level 3 (81 provinces) [52]. In this study, Bayesian 

SEM analysis has been done to the Residence Satisfaction (RS) using LSS. Bayesian SEM analysis was 

performed this survey to a random sample of 2124 individuals. The concept of Residential satisfaction is related 

to the qualities of housing and neighborhood, the accessibility of the household to different services and 

facilities, and economical opportunities and social networks. This concept has been an important research topic 

in disciplines such as geography, sociology, psychology and planning for a long time. There are two main 

reasons why this topic is popular. First, residential satisfaction is considered an important component of the 

overall quality of life of individuals. Second, subjective evaluations of individuals' homes and neighborhoods 

determine how they respond to the housing environment and form the basis of public action demands. If the 

individual is not satisfied with their current home or neighborhood, their relocation can be considered often and 

they can be actually moved to a different one. For this reason, information about the factors that shape 

residential satisfaction is critical for a better understanding of the household mobility decision process. 

Satisfaction with one’s residential situation shows that there are no complaints and there is a high degree of 

agreement between real and desirable situations [28,39]. The RS which is assumed to be related to Work Life 

and Gain Satisfaction (WLGS), Personal Relationship Satisfaction (PRS) and Public Utility Satisfaction (PUS) 

could also be measured directly based on certain indicators. RS scale scores which measures two dimension: 

residence apartment, residence district; WLGS scale scores which measures six dimension: satisfaction of job, 

salary, monthly household income, social life, individual free time and duration to go to work; PRS scale scores 

which measures four dimension: relationships of relatives, friends, neighbors and colleagues; PUS scale scores 

which measures six dimension: services of medical, security, forensic, educational, Social Security Institution 

and transportation. 

3. Linear Structural Equation Models 

Structural equation modeling is a multivariate statistical analysis method used to analyze structural 

relationships. This method is a combination of factor analysis and multiple regression analysis. In the 

Confirmatory Factor Analysis (CFA) model, correlations between latent factors can be assessed by their 

covariance matrix; nevertheless, latent variables are never regressed on other variables. The main purpose of 

linear SEMs is to generalize the CFA model to assess how latent variables affect each other in various ways 

[30]. SEM consists of two parts, the measurement equation and the structural equation. 

3.1. Measurement Equation 

The measurement equations test the accuracy of the proposed measurements by evaluating the relationship 

between latent variables and their respective indicators. Let ( )1, ,
T

py y= y  be a 1p×  vector of observed 

variables that have been selected for the analysis, and let ( )1, ,
T

qω ω ω=  be a 1q×  vector of latent variables 
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that are related to the observed variables in y. The link between the observed variables and all the latent 

variables in ω  is defined by the following measurement equation: 

ω ε= Λ +y                                                                                                   (2) 

where Λ  is a  p q×  matrix of unknown factor loadings, and ε  is a 1p×  random vector of measurement 

(residual) errors. Here, ε  is distributed as [ ]0,N εΨ  where εΨ  is a diagonal matrix. Let ( ), ,
TT Tω η ξ= where 

η  and ξ  are  1 1q ×  and ( )2 1 1q q q= − ×  random vector which respectively contain the outcome and explanatory 

latent variables in ω  [50]. 

Therefore, linear SEMs are formulated as a CFA model that provides a linear structural equation of latent 

factors. 

3.2. Structural Equation 

Structural equations provide an assessment of hypothesized relationships between latent variables, thus allowing 

statistical hypotheses to be tested for study. The effects of ( )21, ,
T

qξ ξ ξ=  on ( )11, ,
T

qη η η=  are assesed by 

the following structural equation:  

η η ξ δ= Π +Γ +                                                                                           (3) 

where Π  and Γ  are matrices of unknown coefficients and δ  is a residual vector which is distributed as 

[ ]0, .N δ  It is assumed that ξ  is distributed as [ ]0,N Φ  and that ε  and δ  are independent. Moreover, it is 

assumed that I −Π  is a positive constant which does not involve elements in .Π  Eqs. (1) and (2) define the 

most basic linear SEM [29]. A linear SEM diagram is shown in Figure 1. 

 

Figure 1: Path diagram associated with the linear SEM 
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4. Nonlinear Structural Equation Models 

Let , , , ,y ε ω ηΛ  and ξ  random vectors and parameters with the same definitions as in Eqs. (2) and (3).  There is 

no difference in the measurement equation and the structural equation is formulated as follows. 

( )η η ξ δ= Π +ΓΓ +                                                                                (4) 

where ,Π Γ  and δ  are given Eq. (3), and ( ) ( ) ( )( )1 , ,
T

tF f fξ ξ ξ=   is a 1t ×  vector-valued function with 

nonzero, known, and linearly independent differentiable functions 1, , tf f  and 2t q≥ . Let { }, 1, ,iy y i n= =   

be the observed data set with a sample size n, where the iy  are modeled through nonlinear SEM with variables 

iη  and iξ , and measurement errors iε  and iδ  [49]. 

5. Bayesian Structural Equation Modeling Approach 

In this chapter, we further explain Bayesian SEM, taking into account a standard linear SEM defined by (1) and 

(2).  Let  ( )1, , nY y y=   and  ( )1, , ,nω ω ω=   and θ  let be the vector of unknown parameters in 

, , , ,εΛ Ψ Π Γ Φ  and εΨ . In the posterior analysis, the observed data Y  are augmented with the matrix of latent 

variable ,Ω  and consider the joint posterior distribution [ ], / Yθ Ω .  In order to achieve the aim, a sequence of 

random observations from the joint posterior distribution [ ], / Yθ Ω , will be generated through the Gibbs 

sampler. The Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm that generates a sequence of 

random observations from the full conditional posterior distribution of unknown model parameters, when direct 

sampling is difficult [55]. 

The Gibbs sampler operation starts with the initial start values set to ( ) ( ) ( )( )0 0 0, ,Yθ Ω and then performs the 

simulation for ( ) ( ) ( )( )1 1 1, , .Yθ Ω
 

At the rth iteration, by making use of the current values ( ) ( ) ( )( ), ,r r rYθ Ω , the Gibbs sampler is performed as 

follows: 

(i) Generate ( )1r+Ω from the conditional distribution ( ) ( )( )\ ,r rYθΩ  

(ii) Generate ( )1rθ + from the conditional distribution ( ) ( )( )1\ ,r rYθ +Ω  

(ii) Generate ( )( )1rY + from the conditional distribution ( ) ( )( )1 1\ ,r rp Y θ+ +Ω  

Under mild regularity conditions, the samples are close to the desired posterior distribution. When determining 
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the posterior distribution, the prior distribution selection should be made for ( ), εΛ Ψ  and Φ . In this study, the 

prior distribution for these three parameters is taken via the following conjugate type distribution [55]. 

Let kεψ be the kth diagonal element of εψ  and kΛ be the kth row of Λ . Then suppose that: 

( )1
0 0,k k kGammaε ε εψ a β− �                              (5) 

( )\k kεψΛ � ( )0 0,k k ykN HεψΛ                                       (6) 

( )1
0 0,qW R ρ−Φ �                                     (7) 

where ( ),Gamma  is the gamma distribution, qW  is an q dimensional Wishart distribution, parameters 

0 0 0 0, , , ,k k kε ε εa β ρΛ  positive definite matrix 0 ykH  and 0R  are hyperparameters which are assumed to be 

described by an uninformative prior distribution [33,55].  

 5.1. Bayesian model comparison 

Comparing the models and testing various hypotheses in the SEM is an important statistical inference. In a 

structural equation modeling, a classical approach to hypothesis testing is to use significance tests based on p 

values determined by asymptotic distributions of test statistics. Nevertheless, as pointed out in the statistical 

literature [10,11], the p-value of a significance test related to only the type-I error in the hypothesis test is a 

measure of evidence against the null model, but not a means of supporting the null model. For complex SEMs, it 

is often difficult to obtain asymptotic distributions of these test statistics. Furthermore, significance tests cannot 

be applied to test nested hypotheses or to compare nonnested models [50]. 

In this section, we describe two well-known model comparison statistics, Deviance Information Criterion (DIC) 

and Bayesian Information Criteria, which do not have the above mentioned problems [43,51]. 

Bayesian Information Criterion (BIC) 

In this section, the Bayesian information criterion (BIC) or the Schwarz criterion (also SBC, SBIC) of the model 

selection criteria are illustrated. The model with the lowest BIC value is preferred. 

Suppose that the observed data Y with a sample size of n appears under one of the 1M  and 0M competing 

models according to the probability densities ( )1|p Y M  and ( )0|p Y M , respectively. 

 For 0,1.k =  A simple approximation of 102 log B  which does not depend on the prior density is the following 

Schwarz criterion *S : 
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( ) ( ) ( )*
10 1 1 0 1 02 log 2 2 log | , log | logB S p Y M p Y M d d nθ ≅ = − − − 

                                  (8) 

where 1θ   and 0θ  are ML estimates of 1θ  and 0θ  under 1M  and 0M , respectively, 1d  and 0d  are the 

dimensions of 1θ , 0θ and n is the sample size [43]. Minus *S  is the following well-known Bayesian information 

criterion (BIC) which used to compare 1M  and 0M  

*
10 10 012 2 log 2logBIC S B B= − ≅ − =                                                                       (9) 

For each , 0,1,kM k =  Lee (2007) defined 

( )2log | , log .k k k kBIC p Y M d nθ= − +                                                           (10) 

then 10 0 12 log .B BIC BIC= −  Hence, the model kM  with the smaller kBIC value is selected [29]. 

Akaike Information Criterion (AIC) 

The Akaike information criterion used to compare the model kM  is given as follows: 

( )2log | , 2k k k kAIC p Y M dθ= − +                                (11) 

which does not depend on the sample size n. The interpretation of kAIC  is similar to kBIC . Therefore, kM  is 

selected if its kAIC is smaller. When comparing Equations (10) and (11), it appears that the BIC tends to prefer 

simpler models than those selected by the AIC [1,29]. 

Deviance Information Criterion (DIC) 

An alternative goodness of fit and model comparison test statistic is the deviance information criterion (DIC). 

This statistic is considered as a generalization of the AIC. Under a competing model kM with a vector of 

unknown parameter kθ , the DIC is defined as 

( ) ,k k kDIC D dθ= +                                 (12) 

 where ( )kD θ  measures the goodness of fit of the model, and is defined as  

( ) ( ){ }2log | , | .k k kD E p Y M Yθ θ= −                                             (13) 

where kd  is the effective number of parameters in kM , and is defined as  
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( ){ } ( )2log | , | 2 log |
kk k k kd E p Y M Y p Yθ θ θ= − +                                     (14) 

in which kθ is the Bayesian estimate of kθ . Let ( ){ }, 1, ,j
k j Jθ =   be a sample of observations simulated from 

the posterior distribution. The expectations in (13) and (14) can be estimated as follows: 

( ){ } ( )( )
1

22 log | , | log | ,
k

J
j

k k k k
j

E p Y M Y p Y M
Jθ θ θ

=

− = ∑ .                              (15) 

In the application areas, a model with a smaller DIC value is selected [29,51]. 

Posterior Predictive p-value 

The Bayes factor can be used to evaluate the goodness of fit of the hypothesized model by taking 1M or 0M  to 

be the saturated model. Although, it is difficult to define a saturated model when analyzing some complex 

SEMs. For example, in the analysis of non-linear SEMs, the distribution associated with the hypothesized model 

is not normal. Therefore, a model with normal distribution with a general unstructured covariance matrix cannot 

be regarded as a saturated model. A simple and more convenient alternative without involving a basic saturated 

model is the PP p-values (posterior predictive p-values) [35,40].  

Let ( ),D θ ΩY  be a discrepancy measure that is used capture the discrepancy between hypothesized model 0M  

and the data, and let repY be the generated hypothetical replicate data the PP p-value defined  

( ) ( ) ( ){ }0, , ,rep
Bp P D D Mθ θ= Ω ≥ ΩY Y Y Y                                               (16) 

Which is the upper-tail probability of the discrepancy measure under its posterior predictive distribution.                

PP p-values not far from 0.5 indicate that realized discrepancies are near the center of the posterior predictive 

distribution of the discrepancy measure. Hence the hypothesized model may be considered as plausible when its 

PP p-value is reasonably close to 0.5. This approach is conceptually and computationally simple and useful for 

model checking of a wide variety of complex situations [15,22,50]. 

6. An Application of Bayesian Sem 

We illustrate the Bayesian approach with WinBUGS by an analysis of Residence Satisfaction for Turkish 

Statistical Institute’s LSS data.  The analysis was performed this survey to a random sample of 2124 Turkish 

citizens living in the 81 provinces. 

As the objective is to investigate the effects of other latent variables on Residence Satisfaction. In this study, 

Residence Satisfaction and Public Utility Satisfaction variables are the endogenous latent variables,  2η  and  1η  

respectively;  Work Life and Gain Satisfaction and Personal Relationship Satisfaction variables are the 
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exogenous latent variables, 1ξ  and 2ξ  respectively. In order to give an illustration for model comparison 

procedure via BIC, AIC and DIC value, we consider the following competing models: 

Model 1:   

1 1PUS WLGSγ δ= × +  

( ) ( ) ( )2 2
2 3 4 5 6 7 2RS WLGS PRS PUS WLGS PRS WLGS PRSγ γ γ γ γ γ δ= × + × + × + × + × + × × +              (17) 

( ) ( ) ( )
1 2

11 12
1 2

21 22

, , ,Var Var Cov WLGS PRSδ δδ δ
Φ Φ 

= Ψ = Ψ =  Φ Φ 
 

Model 2:  

( )

( ) ( ) ( )
1 2

1 1

2 3 4 5 2

11 12
1 2

21 22

, , ,

PUS WLGS
RS WLGS PRS PUS WLGS PRS

Var Var Cov WLGS PRSδ δ

γ δ
γ γ γ γ δ

δ δ

= × +

= × + × + × + × × +

Φ Φ 
= Ψ = Ψ =  Φ Φ 

                          

(18)

 

Model 3:  

( )

( ) ( ) ( )
1 2

1 1
2

2 3 4 5 2

11 12
1 2

21 22

, , ,

PUS WLGS

RS WLGS PRS PUS PRS

Var Var Cov WLGS PRSδ δ

γ δ

γ γ γ γ δ

δ δ

= × +

= × + × + × + × +

Φ Φ 
= Ψ = Ψ =  Φ Φ 

                             (19) 

Model 4:  

( )

( ) ( ) ( )
1 2

1 1
2

2 3 4 5 2

11 12
1 2

21 22

, , ,

PUS WLGS

RS WLGS PRS PUS WLGS

Var Var Cov WLGS PRSδ δ

γ δ

γ γ γ γ δ

δ δ

= × +

= × + × + × + × +

Φ Φ 
= Ψ = Ψ =  Φ Φ 

                             (20) 

Model 5:  

( ) ( ) ( )
1 2

1 1

2 3 4 2

11 12
1 2

21 22

, , ,

PUS WLGS
RS WLGS PRS PUS

Var Var Cov WLGS PRSδ δ

γ δ
γ γ γ δ

δ δ

= × +
= × + × + × +

Φ Φ 
= Ψ = Ψ =  Φ Φ 

                             (21) 

Applying this to five models, we estimate the four models by Bayesian SEM method. In the solution process, we 
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used WinBUGS program. We show the BIC, AIC and DIC value of four models in Table 1.  

Table 1: Comparison of BIC, DIC and PP value for four models 

MODEL DIC BIC AIC PP p-value 

Model 1 74691.2 62986.670 62161.7 0.4555 

Model 2 74715.4 62948.827 62149.5 0.4546 

Model 3 74686.8 62941.327 62142.8 0.4565 

Model 4 74710.1 62959.827 62160.5 0.4547 

Model 5 74722.8 62944.205 62158.2 0.4545 

 

We observe from Table 1 that Model 3 has a lowest BIC, AIC and DIC value in our models; there is enough 

evidence to consider Model 3 is the best model in our models. Moreover, Model 3’s PP p-value estimate is not 

far 0.5 (0.4565), so it shows good fit.  

 

Figure 2: The path diagram of the proposed Model 3 in analyzing the LSS data 

Since the best model is Model 3 among the five models in this study, we give only this model for our results. 

Bayesian estimates of the unknown parameters and standard error estimates are obtained. Estimation results and 

path diagram are given in Table 2 and Figure 3, respectively. It is observed that for Turkish citizens, Work Life 

and Gain Satisfaction has impact on Public Utility Satisfaction; Work Life and Gain Satisfaction, Public Utility 
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Satisfaction and Personal Relationship Satisfaction have significant impact on Residence Satisfaction. Also 

quadratic effect of Personal Relationship Satisfaction ( )2
1ξ , has significant impact on Residence Satisfaction.  

Table 2: Estimated values for the parameters in Model 3 
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 2.28 0.0184 0.0006 2.245 2.317  0.9172 0.0400 0.0021 0.8415 0.997 
 2.202 0.0168 0.0006 2.17 2.235  0.8183 0.0420 0.0019 0.7399 0.9053 
 2.273 0.0174 0.0008 2.239 2.307  0.417 0.0376 0.0017 0.3462 0.4948 
 2.886 0.0226 0.0017 2.841 2.929  0.2535 0.0367 0.0014 0.1821 0.3252 
 2.875 0.0223 0.0017 2.831 2.918  0.350 0.0394 0.0020 0.2752 0.4288 
 2.465 0.0199 0.0007 2.426 2.503  0.1969 0.0302 0.0012 0.1388 0.2558 
 2.825 0.0216 0.0009 2.783 2.868  -0.132 0.0339 0.0015 -0.198 -0.064 
 2.792 0.0217 0.0009 2.749 2.835  0.3617 0.0205 0.0011 0.3226 0.4021 

 2.139 0.0142 0.0006 2.111 2.168  0.268 0.0168 0.0010 0.2348 0.3012 

 2.01 0.0112 0.0005 1.989 2.032  0.4499 0.0144 0.0002 0.4228 0.4798 

 2.096 0.013 0.0006 2.069 2.123  0.2569 0.0132 0.0006 0.231 0.2837 

 2.05 0.0114 0.0003 2.028 2.073  0.2553 0.0127 0.0006 0.2311 0.2811 

 2.381 0.0194 0.0006 2.344 2.42  0.701 0.0222 0.0003 0.6571 0.7441 

 2.283 0.0169 0.0005 2.25 2.317  0.7262 0.0237 0.0005 0.6813 0.774 

 2.507 0.0170 0.0005 2.473 2.54  0.7662 0.0248 0.0005 0.7192 0.8158 

 2.501 0.0196 0.0006 2.462 2.541  0.2241 0.0089 0.0003 0.207 0.242 

 2.35 0.0168 0.0006 2.317 2.384  0.1109 0.0053 0.0002 0.1007 0.1216 

 2.36 0.0181 0.0006 2.323 2.395  0.1787 0.0080 0.0003 0.1635 0.1943 

 1.036 0.0699 0.0051 0.9098 1.181  0.2171 0.0071 0.0001 0.2033 0.2313 

 2.159 0.0833 0.0082 2.013 2.328  0.5113 0.0183 0.0004 0.4764 0.5479 

 2.07 0.0793 0.0079 1.928 2.238  0.3591 0.0138 0.0003 0.3323 0.3873 

 0.822 0.0540 0.0030 0.7187 0.9265  0.4093 0.0145 0.0003 0.3814 0.4385 

 1.266 0.0649 0.0047 1.144 1.400  0.483 0.0185 0.0004 0.4478 0.5201 

 1.066 0.0611 0.0039 0.9507 1.186  0.3409 0.0129 0.0002 0.3161 0.3672 

 0.8912 0.0317 0.0023 0.8311 0.9538  0.5072 0.0176 0.0003 0.4737 0.5423 

 1.057 0.0373 0.0026 0.9877 1.13  0.2793 0.0196 0.0012 0.2422 0.3204 

 0.5373 0.0301 0.0015 0.4787 0.5971  0.1758 0.0147 0.0009 0.1473 0.206 

 0.9258 0.0409 0.0022 0.8465 1.01  0.1782 0.0136 0.0013 0.1528 0.2049 

 0.8075 0.039 0.0020 0.7323 0.8883  0.0356 0.0052 0.0002 0.0256 0.0463 

 1.075 0.0462 0.0025 0.9857 1.168  0.1993 0.0121 0.0009 

 

0.1765 0.2235 

Based on Table 2, we could show the structural model diagram of Model 3 in Figure 3. We could also present 

this model’s structural equation models in the following equation: 

1µ 17,4λ

2µ 18,4λ

3µ 1γ

4µ 2γ

5µ 3γ

6µ 4γ

7µ 5γ

8µ 1εΨ

9µ 2εΨ

10µ 3εΨ

11µ 4εΨ

12µ 5εΨ

13µ 6εΨ

14µ 7εΨ

15µ 8εΨ

16µ 9εΨ

17µ 10εΨ

18µ 11εΨ

21λ 12εΨ

42λ 13εΨ

52λ 14εΨ

62λ 15εΨ

72λ 16εΨ

82λ 17εΨ

10,3λ 18εΨ

11,3λ
1δ

ψ

12,3λ
2δ

ψ

14,4λ 11Φ

15,4λ 12Φ

16,4λ 22Φ
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( )2

0.417

0.253 0.350 0.196 0.132

PUS WLGS

RS WLGS PRS PUS PRS

= ×

= + + × −
                            (22) 

This equation indicate that the greatest effect to the Residence Satisfaction is Personal Relationship Satisfaction 

then followed by Work Life and Gain Satisfaction, Public Utility Satisfaction and Public Utility Satisfaction 

quadratic effect. All of the latent variables give the significant effect to the Residence Satisfaction. Furthermore 

Work Life and Gain Satisfaction has significant impact on Public Utility Satisfaction. 

 

Figure 3: The path diagram and estimated results of the proposed model 3 in analyzing the LSS data 

7. Discussion 

SEMs are widely used to define the relationship between observed and latent variables in modern behavioral, 

social, and biomedical sciences. In the standard SEM, the computational algorithm is improved based on the 

sample covariance matrix and normal assumptions for observations. However, in many studies it is often seen 
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that the data collected in a survey do not conform to the assumption of multivariate normality. Bayesian method 

in SEM is believed to be potential tools to overcome the normal assumption [4,33,41]. The basic objective of 

this study is to present Nonlinear Bayesian Structural Equation which applied Residence Satisfaction. In contrast 

to maximum likelihood method, in Bayesian method, parameters are considered as random with prior 

distribution and a prior density function [29]. There are many advantages of estimating multiple nonlinear 

effects. One of the advantages refers to the development of behavioral theories involving interaction and 

quadratic effects [21]. The methodology of Bayesian SEM then applied to a real data set. Linear and nonlinear 

five models are solved by Bayesian structural equation model. We compared these five models based on the 

BIC, AIC and DIC values of the comparison criteria and we determine the best model. 

8. Conclusion 

The main purpose of this paper is to demonstrate the Bayesian method for analyzing nonlinear SEM. The 

methodology of Bayesian SEM applied to a real data set obtained from Turkish Statistical Institute. The 

Bayesian approach allows researchers to apply nonlinear structural equation modeling and has various 

advantages. For instance, the first moment properties of raw observations are simpler than the second moment 

properties of the sample covariance matrix. Therefore the Bayesian approach can overcome more complex 

situations and provides a direct estimate of latent variables. This approach can directly model raw observations 

and latent variables through the familiar regression model. Hence it provides more direct interpretation [49].  In 

this study, we contribute to the actual knowledge by identifying significant relationships between Residence 

Satisfaction and Public Utility Satisfaction, Personal Relationship Satisfaction, Work Life & Gain Satisfaction 

using a SEM framework and determine the best model among the five different potential models according to 

BIC, AIC and DIC comparison criteria value. For this, we apply the Bayesian SEM using WINBUGS version 

1.4.3. 

9. Recommendation 

In the future works, the proposed Bayesian SEM model in the study may be performed to different nonlinear 

SEM approaches such as Product Indicator (PI), Latent Moderated Structural Equations (LMS), Quasi-

Maximum Likelihood (QML) and Extended Unconstrained (ExUC). Furthermore, in the future, the model 

obtained in this study can be re-analyzed using the new up-to-date LSS data set and the two models can be 

compared. In this regard, it can be tested whether the preferences of the individuals have changed or not in terms 

of non-linear SEM modeling on the residential satisfaction. 
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