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Abstract 

The analysis of natural language text for identification of sentiment has been well-studied for the English 

language. In contrast, the work that has been done in Arabic remains in its infancy; thus, requiring more 

cooperation between research communities to offer a mature sentiment analysis system for Arabic. There are 

recognized challenges that face linguists in this field; some of them inherited from the nature of the Arabic 

language itself, and others derived from the scarcity of tools and sources. This article provides an overview of 

sentiment analysis in the Arabic language, by detailing what has been done in English as a model example of 

such an analysis, and what have been covered to date in Arabic, as well as some of the limitations and existing 

potential research avenues in this field. 

Keywords: Natural Arabic Language Processing; Arabic Sentiment Analysis; Arabic Sentiment Classification; 

Subjectivity Classification; Polarity Classification. 

1. Introduction 

Over the past decade, the extraction of sentiment from text has attracted a lot of attention, both in industry and 

in academia. Sentiment analysis attempts to establish people’s feeling from their writing. Many fields are 

included in this topic, such as natural language processing, machine learning, and computational linguistics. A 

lot of this research has been done in English [1], as this is the dominant language of the science. Recently, a few 

researchers have concentrated on applying sentiment analysis to other languages, one such language being 

Arabic. 
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Arabic is not like European languages, such as English because of its richer morphological structure. It also has 

many challenges which require special treatment. Therefore, Arabic natural language processing has become 

attractive to researchers due to its complexity and the scarcity of available resources; as a result, the importance 

of addressing this language has been noted. These days, it can be seen that strong effort is being made with the 

fundamental tools of Arabic, such as the morphological analyzer, part-of-speech tagger and syntactical parser, 

according to A. Farghaly and K. Shaalan [2], but the field is still at an early stage of evolution. Nevertheless, an 

upper level of applications, such as Sentiment Analysis (SA), is still in the beginning stages, and more effort 

and reliable low-level tools are required in order to build on the top of this foundation. 

The following sections are organized as follows. The next section shows a general description and assessment 

of the sentiment analysis field. The methodologies including techniques, features, and corpora of sentiment 

analysis will be discussed in section 2. Section 3 will provide some background regarding the Arabic language 

as well as the challenges in Arabic natural processing. Section 4 illustrates the related works of Sentiment 

Analysis in Arabic language then followed by the discussion in section 5. Some possible research directions are 

given in section 6. This article ends with a conclusion. 

2. Sentiment Analysis 

Sentiment Analysis SA is a method of capturing the sentiment (feeling or opinion) of people towards a specific 

topic. This field may be considered part of the following areas: machine learning, natural language processing 

and computational linguistics. In other words, it usually tries to evaluate and extract the sentiment of people 

from their writing. In literature, SA has many names, including subjectivity analysis, opinion mining, review 

mining and appraisal extraction (B. Pang and L. Lee 2008). Moreover, the sentiment of a text can be explicit or 

implicit. If explicit, a text directly gives a sentiment, such as (إنھا سیارة رائعة /InhA syArħ rAŷςħ/ “It is a nice 

car”), it should be noted that throughout this report, Arabic words are represented in three variants: (Arabic 

word / transliteration scheme [3] / “English translation”), while if implicit the text implies a kind of sentiment, 

like (عمل الشاحن لمدة اسبوع فقط /ςml AlšAHn lmdħ Asbwς fqT/ “The charger only worked for one week”). More 

formally, SA can be defined as: 

Given a text t from a text set T, computationally assigning polarity labels p from a set of polarities P in such a 

way that p would reflect the actual polarity that is found in t. 

In the subjectivity analysis, the first aim is to determine or classify whether the the content of the text is 

subjective or objective [1]. The basic task involved in this is examining adjectives in sentences. Sometimes, the 

text may be thought of as objective when it has no polarity at all. The second task is to analyze the subjective 

text in order to determine which of two opposing sentiment polarities it has [1]. This polarity has different 

strength which differs from one opinion to another. One example of this is that user reviews need to be 

classified as positive or negative with regard to the target; this shows binary polarity. The work will be more 

difficult when the polarity is expanded to include more than two items, such as Sorry, Hugs, You Rock, Wow 

[4], or emotion types, such as happiness, sadness anger, horror and so on [5]. Here, the task becomes a multi-

class classification problem. 
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Another type of sentiment analysis is one that deals with the sentiment target or the discovery of the sentiment 

target. Most work that has been done in the sentiment analysis field relates to finding sentiments regarding a 

general topic or target, such as user reviews on a movie or product. In these examples, it is easy to determine the 

topic, as there is an assumption that the review talks about the specific product. Conversely, it is more difficult 

in the case of an unknown target, such as with feature-based sentiment analysis. It is difficult to establish what 

features of the product a user has written about, and then to determine the user’s opinion of it. Therefore, an 

exploration is first made in this situation to establish what features a user has written about by using feature 

extraction approaches [6], then the sentiment or opinion of these features is determined. 

3. Sentiment Analysis Methodologies 

A large range of approaches and techniques are used to investigate the problem of sentiment analysis. Most of 

these approaches are built to deal with the English language as it is the dominant language of science. However, 

this should not stop researchers from building techniques that work with other languages, such as Chinese, 

Korean, Japanese and Arabic. This section describes the concepts and research that are used for sentiment 

analysis in English.  

3.1. Technique Types of Sentiment Analysis 

Generally, there are two types of techniques that are used in the field of sentiment analysis. These techniques 

are based on semantic orientation (unsupervised methods) and labeled data (supervised methods) approaches. 

The following sections shed some light on these techniques.  

3.1.1.Semantic-based Approach for Sentiment Analysis 

Using semantic orientation for sentiment analysis is considered to be an unsupervised learning method. This 

technique requires no prior training data in order to find the polarity. It uses statistical inferences to learn from 

the data and to measure how the words incline toward either positive or negative. Moreover, this type of 

technique is concerned with linguistically investigating the text to identify the semantic orientation at word, 

phrase or sentence level [7]. 

In sentiment analysis, the word usually has one of two types of semantic orientation, either positive or negative. 

There are different dimensions in the semantic orientation of the word: direction and intensity [8]. The direction 

dimension refers to the actual polarity of the words, either positive or negative. Regarding the other dimension, 

the intensity indicates how strong this polarity is. For instance, a review on a product site could indicate a more 

negative attitude than another negative review. The semantic orientation not only includes the full meaning 

word (adjective or adverb) but also uses other parts of speech, such as conjunctive words, to improve training in 

supervised techniques [9]. In the case of the conjunctive “and”, both its parts (adjectives) would have the same 

polarity orientation. On the other hand, the “but” indicates the opposite meaning and polarity. 

The research conducted by [10] is considered a significant study. He classified the review using the semantic 

orientation of words. In this research, the POS is used to extract the phrases that have at least either one adverb 
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or one adjective. The technique, called semantic orientation using point-wise mutual information (SO-PMI), is 

used to calculate the semantic orientation for the selected phrase. SO-PMI calculates the proximity of the phrase 

to a predefined set of anchor words. By averaging all values of SO-PMI for all phrases, the overall semantic 

orientation or polarity of each review is determined. 84% accuracy was achieved for automobile reviews using 

this method, and 66% for movie reviews. 

Other methods in this area depend on the sentiment lexicon to determine the semantic orientation of the review. 

A lexicon, sometimes called a dictionary, is a list of subjective words annotated with their polarity. The issue 

here is how the lexicon could be built. In order to determine this, the seeds of positive and negative words (a 

basic lexicon) are found. A set of pre-existing language sources, such as dictionaries and WordNet [11], is then 

used to propagate the seeds within it. This works by searching for the synonyms and antonyms of the words in 

the basic lexicon. If the word found is a synonym for the word in the basic lexicon, then it is added as positive 

in a lexicon, while it is added to the negative polarity if it is an antonym. This method was used in the work of 

T. Wilson and his colleagues  [12] for the English language.  

3.1.2. Supervised Learning-based Approaches for Sentiment Analysis 

This approach usually starts with a set of training data. The data should be chosen and categorized properly in 

order to achieve good prediction results. If not, the data requires a manual effort from the annotator to annotate 

the data with its subjectivity and polarity. Sometimes, the websites that contain user reviews have ratings along 

with the reviews. A set of data like this is called a corpus. Next, some of the features that were explained earlier 

in Section 3 are chosen to represent the text (the review). The next step is to train a classifier on the corpus, and 

the performance of the classifier is then evaluated on the testing data. This process is usually repeated in an 

iterative manner if the initial performance is weak. During this repetition, some of the features may be fine-

tuned or some preprocessing carried out, including word stemming and the removal of stop words. 

The sentiment analysis classification problem can be solved by supervised techniques in the machine learning 

field. The supervised techniques are data-driven approaches, as data needs to be labeled as an input to the 

technique. The classifier can then build a model from this training data and apply it to new/unseen/test data in 

order to determine its class. The crucial factor in supervised methods is the quality and quantity of the trained 

data. This has a major impact on the accuracy of each technique in this field. A number of learning algorithms 

have been used in sentiment analysis. The following section will describe research that uses these algorithms in 

both English and Arabic. 

Three different machine learning approaches were investigated by B. Pangand his colleagues  [13]. They 

employed Naïve Bayes, support vector machine SVM and maximum entropy classification, and inferred that the 

machine learning techniques are better than human baselines for sentiment classification. In addition, the results 

show that the performance of the SVM was better than other classifiers. The SVM is used with specific features, 

including unigrams and lemmatized unigrams [14]. They showed that their approach outperformed other 

approaches that did not use computations for these features. A combination of classifiers was used by R. 

Prabowo and M. Thelwall [15]. The basic idea in this research was to build hybrid classification. In this process, 
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the document that is not classified by one classifier is sent to the next classifier, until either the document is 

classified or there are no more classifiers. General inquirer based classifiers GIBC, rule-based classifiers RBC, 

statistics-based classifiers SBC and SVM are used in this method. It was discovered that SVM and SBC 

improved the performance of the method. Finally, when comparing supervised and unsupervised approaches, P. 

Chaovalit and L. Zhou [16] showed that supervised methods achieved 84.49% accuracy for three-fold cross 

validations and 77% for unsupervised methods with movie reviews. 

3.2. Corpus in Sentiment Analysis 

The first step in supervised learning approaches in the field of sentiment analysis is the obtaining of a good 

corpus. Selecting or building a corpus is therefore not an easy job, due to a number of different dimensions. 

These include the protocol that was used during the annotation process and decisions about what should be 

annotated [17]. Generally, the corpora carried out in the sentiment analysis field can be categorized depending 

on the level of document granularity that has been annotated. These granularities include document, sentence, 

phrase and word level. 

At the document level, the whole document is assigned a label that shows the general sentiment of this 

document. As a result, every word in this document is assigned the same polarity. One of the studies carried out 

in English in this category was conducted by B. Pang and his colleagues [13]. This corpus contains film reviews 

from the website IMDb [40], and was released to the research community in 2002. Similarly, A. Abbasiand his 

colleagues  [18], built their corpus in multiple languages, including English and Arabic. The corpus was built 

from the messages of forum users in the USA and the Middle East.  

The sentence level is used to annotate the document at a more granular level. In 2005, B. Pang and L. Lee [19] 

built a corpus at sentence level from film reviews. The annotation process here was the use of a fine-grained 

scale rather than a binary scale that showed only the subjective sentences. The fine-grained scale range was 

from 0 to 5, simulating the star system employed by users of the website, so there was no need for humans to 

annotate this kind of data. The annotation process was done manually, with 500 positive messages and 500 

negative ones annotated.  

At the phrase level, C. Potts and F. Schwarz in [20] used n-gram variations to build a phrase-level corpus from 

documents collected from the Amazon, TripAdvisor and MyPrice websites. Around 700,000 documents were 

each annotated at different levels of n-gram: tri-, bi- and uni-gram levels of granularity. Each phrase here had a 

rating ranging from 1 to 5 that reflected the same review score on the respective websites.  

3.3. Common Features in Sentiment Analysis 

Sentiment analysis is considered a classification problem that can be solved by using the machine learning 

concept. Machine learning provides many algorithms that work for classification, but the challenge of finding a 

sentiment in a text is determining the best features to be used. The following sections reveal the common 

features that are used in sentiment analysis.  
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Term frequency is the measurement of how many times a specific term is repeated in a document. This has long 

been emphasized in traditional information retrieval systems. The term presence shows the existence of the term 

in the document in a binary mode. The document model here shows that term presence is 1 if the term appears 

at least once in a document, and 0 if not. The term presence model is used in [13] and shows improvement 

compared with the term frequency model. Famous model is one that uses term frequency and decreases the 

effect of the high frequency term by using the inverse document frequency (TF-IDF) [21]. The IDF determines 

whether the term is common or rare across all the documents. 

In sentiment analysis, it is important to find the adjectives, as these are good indicators conveying the sentiment 

orientation in the text [22]. Using the part- of-speech (POS) tagging system decreases the ambiguity of the word 

[23]. When a word is annotated with its POS tag, this helps to increase the NLP system’s confidence in its 

actual meaning. The POS will help to determine the correct meaning of the word. P. Turney in [10] used the 

POS feature for adjectives and adverbs in order to obtain the sentiment orientation at document level.  

Some other features, such as the style of the text, may contribute to the sentiment orientation of the text. The 

stylistic features include the length of the sentences, the length of the words, special characters, richness of 

words, etc. Some research has shown the effect of using the length of sentences as a feature in sentiment 

analysis [24]. In addition, Abbasiand his colleagues  in [18] investigated more than one stylistic feature in 

multi-language sentiment analysis, including English and Arabic. They found, for example, that in both 

languages the positive sentiment text is shorter than the negative sentiment text in terms of the total number of 

characters. They also found that using stylistic features in addition to other features increases the performance 

of sentiment analysis in web forum discourse [18].  

Negation plays a role in sentiment analysis. Negation words can reverse the meaning of a sentence, as a result 

of which the sentiment orientation should be changed. For example, (انا احب ھذه القصة /AnA Ahb hðh h AlqSħ/ “I 

like this story”) attributes a positive sentiment to the story, whereas (انا لا احب ھذه القصة /AnA lA Ahb hðh h\; 

AlqSħ/ “I do not like this story”) negates the meaning as well as indicating negative sentiment. These two 

sentences are very similar, the difference between them being only one word. However, not using negation will 

negate or reverse the sentiment orientation. For instance, in the sentence (لا عجب ان الجمیع یحب ھذه القصة /lA ςjb An 

Aljmyς yHb hðh AlqSħ/ “No wonder everyone loves this story”), the (لا/ lA/ “No”) word here does not negate 

the meaning. In order to deal with this situation, a specific POS tag pattern is used to identify the negations 

relevant to the sentiment polarity or phrase [24]. Therefore, sentiment analysis should pay careful attention to 

negation words. 

4. Arabic Language and Its Challenges in Natural Language Processing 

The Arabic language is one of the most widely used languages, spoken and written by more than 220 million 

people in over 57 counties [25]. There are three main types of Arabic which are Classical Arabic CA, Modern 

Standard Arabic MSA, and Dialect Arabic DA [2, 26]. CA is the oldest version of Arabic which is used in the 

earliest age of Arabic nation, whereas MSA is the formal Arabic language which is used nowadays in 

education, books, newspapers, media, and even as the official language of Arabic countries. DA is a kind of 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No  2, pp 147-165 
 

 153 

colloquial language which differs from region to region in Arab countries. There are similarities between MSA 

and CA since MSA is based on the same syntax, morphology of CA [27], but there are many differences 

between MSA and DA. 

Arabic is comprised of 28 letters. It is a cursive language, in which words consist of cursive Arabic letters 

connected to one another. Arabic letters have different shapes depending on their position in the word. Unlike 

English, which has dedicated letters to represent short vowels, Arabic has diacritics that determine the 

pronunciation or the sound of the letter. In addition, the writing in Arabic runs from right to left. Like other 

languages, such as Chinese, Japanese and Korean, Arabic has no capitalization. There are two types of Arabic 

sentences: nominal and verbal; these are determined by the part-of-speech of the first word in the sentence. A 

nominal sentence has no verb; rather, it is formed of a subject and a predicate. These vary from very simple 

forms, which consist only of nouns and adjectives, to more complicated ones in which the subject is a 

compound of two words and the predicate is another sentence [27]. On the other hand, verbal sentences start 

with a verb and follow different structures and orders. The standard structure of the verbal sentence is verb-

subject-object (VSO) [27]. 

The Arabic language is highly inflectional and derivable. Arabic has a small number of roots, but this increases 

its complexity. The agglutinative feature of the word structure adds considerable difficulty to the language 

morphology [27]. Arabic words may work with three types of affixes: prefixes, infixes, and suffixes. Affixes 

may be one letter long or a combination of multiple letters. In addition to their complex nature, the level of 

ambiguity of Arabic morphemes is notable. Determining whether a letter is an affix or part of the stem is not an 

easy task, especially when there is an absence of short vowels. These characteristics affect the NLP tools that 

deal with Arabic, such as the part-of-the- speech tagger, morphology analyzer, name entity recognition and 

syntactical parsing. Several studies have been conducted around this.  

In terms of Natural Language Processing, other languages, such as English and Chinese, have been the subject 

of much more investigation, and there are a greater number of tools to help in this field. In the case of Arabic, 

this field has become increasingly important, and several tools and systems have been developed for different 

applications [2, 26]. The Arabic language is highly inflectional and derivable, although Arabic has a small 

number of roots. This increases its complexity. The agglutinative feature of the word structure adds 

considerable difficulty to the language morphology [27]. Arabic words accept three types of affixes: prefixes, 

infixes and suffixes. Affixes may be one letter long or a combination of multiple letters. In addition to their 

complex nature, the level of ambiguity of Arabic morphemes is notable. Determining whether a letter is an affix 

or part of the stem is not an easy task, especially when there is an absence of short vowels. For instance, (وفي- 

/wfy/ - “Wafi”, and “in”, or “faithful”) could be either a proper noun, a conjunction followed by a preposition, 

or even adjective. 

The Arabic language these days suffers from diglossia phenomena. The diglossia phenomena manifests when 

speakers of the same language use two different types of language side by side. In Arab countries, people tend 

to use MSA in formal communication, media and newspapers, while using the dialect language in their informal 

speech or even in writing which tends to occur in text messages and over social networks. MSA has specific 
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rules that govern it, while the dialects have different rules and specific structure depending on the type of 

dialect. This will therefore affect the building of Arabic Natural Language Processing ANLP tools, as the tools 

that are built for MSA will not work with equal efficiency for DA. 

The absence of rigid and strict rules in adding punctuation in MSA text makes it very hard to identify the 

sentence boundaries [26]. This issue is also a significant challenge in DA, as there are no rules governing it. 

People often used to write whole paragraphs without using punctuation, except for the full stop at the end. 

Literal conjunctions, such as (و- /w/ - “and”), are used to organize and link the sentences. This challenge has a 

direct impact on ANLP, especially for the task of Sentiment Analysis SA, and particularly when selecting 

proper sentences from entire texts. 

5. Related works in Arabic Sentiment Analysis 

Much of this research has been done in English, as this is the dominant language of science. Recently, a few 

researchers have concentrated on applying sentiment analysis to other languages, one such language being 

Arabic. Figure 1 shows the difference between the research that has been conducted in the Arabic and English 

languages.  

This data is collected by using relevant keywords in sentiment analysis field in both languages. The Google 

Scholar website is used to collect the numbers of research. For a particular keyword, the Google Scholar is used 

for a specific period. The results that are retrieved are shown in the top page of the Google website result. These 

results are used in our comparing.  

 

Figure 1: The difference in research that has been conducted in Arabic and English 

It is clear that there is a big gap between the work that has been achieved in Arabic and English, Figure 1. This 

might be due to limitations in the tools or resources of the NLP of Arabic. In addition, it may reveal that Arabic 

requires special treatment due to its complex nature and structure.  
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This section summarizes related work that has been done in Arabic sentiment analysis. The summarization is 

organized into subsections titled to Arabic sentiment corpora, features and methods, and negation.  

5.1. Arabic Sentiment Corpora  

Arabic sentiment corpora are still in their early stages. Figure 2 illustrates the top ten languages on the internet. 

These statistics were captured in 2013 according to the Internet World State [28]. This may reveal why most 

research is conducted in English as well as Chinese; there are plenty of sources in these languages on the 

internet. However, the Arabic language is considered to be among the top ten languages (fourth position). A 

small number of research studies have been carried out in this direction. Most researchers in Arabic sentiment 

analysis built corpus, manually annotating it at either the document or sentence level.  

 

Figure 2: The top ten languages in the internet 

M. Elhawary and M. Elfeky in [29] tried to use the same concept to build an Arabic lexicon. They started with 

over 600 positive words/phrases and over 900 negative words/phrases as seeds. Using an Arabic similarity 

graph, which they built to compute the polarity score for each word depending on how it was similar to the 

word in the seeds, they were eventually able to expand the Arabic lexicon. 

This method has some limitations, one of which is that it is not necessary for all synonyms to convey the same 

sentiment orientation. Therefore, the manual annotation has an advantage in building the sentiment lexicon, 

especially if the annotator is an expert in this field. However, this process is error-prone and time-consuming. A 

research study in [30] has been conducted to tackle these challenges as well as to deal with informal Arabic 

(colloquial). A. Al-Subaihin and his colleagues  in [30] used the concept of human-based computing to build a 

game that allows users to annotate words and phrases with their polarity. This game provides each team 

member (teams consist of two players) with a sentence, and asks them to highlight all the positive and negative 

words or phrases. The winning team is the one that has the highest agreement between its members. The output 
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of this game will be an informal Arabic lexicon that is used to analyze the sentiment in a sentence.  

The Opinion Corpus for Arabic (OCA) [31] (which is the only published corpus) contains 500 movie reviews. 

They are annotated at the document level. Half the reviews are considered positive and the rest are negative. N. 

Farra, in [32] built an Arabic corpus and annotated the polarity at the document level. The issue in this corpus 

was that it was comprised of only a small number of documents (44), of which 27 were positive, 12 negative 

and five neutral documents. 

M. Abdul-Mageedand his colleagues [33] built an Arabic corpus containing 2855 sentences which were 

collected from the Penn Arabic Treebank [41]. The annotation process was carried out manually by two 

educated native Arabic people. Each sentence was annotated with objective, subjective-neg (negative polarity), 

subjective-pos (positive polarity), or subjective-neut (neutral polarity) tags. Further work undertaken to build a 

multi-genre subjectivity and sentiment corpus for modern standard Arabic is called AWATIF [34]. The domain 

of this data was taken from a news wire in different domains (400 documents), Wikipedia talk pages (around 

5342 sentences), and web forums (around 2532 threads from seven web forums). The annotation was at the 

sentence level and three different conditions were used to annotate the data: (1) Gold Human with Simple 

Guidelines (GH-SIMP); (2) Gold Human linguistically-motivated and Genre-nuanced (GHLG); (3) Amazon 

Mechanical Turk with Simple Guidelines (AMT- SIMP) [35]. In addition, the authors attempted to build a 

labeled social media corpus for subjectivity and sentiment in the Arabic language in the SAMAR project [36]. 

The data was collected from four different types of social media. These included Arabic chatting, tweets, 

Wikipedia Talk, and forums. This corpus was a mix of long and short sentences, as well as MSA and some of 

DA. They provided stand-off annotations on top of the Arabic Tree Bank ATB [42] part 1 version 3 which is 

only free for the user who subscribes with the LDC [43] since 2003.  

5.2. Features and Methods  

Abbasi and his colleagues in [18] proposed a system for sentiment analysis task in a multi-language web forum 

at document level. The system depends on an Entropy-Weighted Genetic Algorithm (EWGA) to choose the best 

features, and the SVM with linear kernel for the sentiment classification. Their method tries to find an overlap 

between language-independent features, including syntactic and stylistic features. The syntactic features include 

POS only for the English language, not for Arabic. In order to evaluate the performance of their method, the 

authors measured the accuracy of the classifier by dividing the number of correctly classified documents by the 

total number of documents. In this case, a more accurate measurement was required to help evaluate the method 

in both classes. The authors reported that syntactic features achieved a higher result than the stylistic ones. 

When the two features were employed together using EWGA, the accuracy result increased to 93.6% in the 

Middle Eastern forum domain.  

The work of Rushdi-Salehand his colleagues in [31] focused on investigating two ML classifiers, Naive Bayes 

and Support Vector Machine, with two different weighting schemes (term frequency and term frequency-

inverse document frequency) and three n-gram models. The effect of using the stem of the Arabic work was 

also investigated with different n-gram models. The authors built their sentiment corpus by collecting around 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No  2, pp 147-165 
 

 157 

500 Arabic movie reviews from different websites. They reported an accuracy of 90.6% using the SVM with 

the tri-gram model and with no stemming for document level classification. In addition, they claimed that there 

was no big impact of using TF or TF-ID as a weighting scheme, which makes sense because both schemes 

represent the count of the term over the document. It could be useful to compare the presence of the term versus 

the term-frequency scheme.  

El-Halees in [37] proposed a combined classification approach for document level polarity classification in 

Arabic. His method applied three different classifiers in a sequential manner: a lexicon-based classifier, a 

maximum entropy classifier and the K-Nearest Neighbor classifier. The result from one classifier was used as 

training data for the next. The text was manipulated before using the first classifier by removing the stop words. 

Some Arabic letters were normalized and some misspelled words corrected. A simple stemmer was used here to 

generate the stem of the Arabic words and TF-IDF was used as the term-weighting scheme. The F-measure was 

used as the evaluation metric. The F-measure that was reported in this method was between 75% and 84%, 

depending on the domain of the data. The average of the F-measure was also calculated; this was 82% for the 

positive document and 78% for the negative one. The main issue for this study was that there were no more 

features added to the classifier that could help to increase the performance and accuracy.  

Other studies have attempted to investigate the linguistic features of Arabic and to combine these with an ML 

classifier in order to perform sentiment analysis. One such study tried to analyze the grammatical structure of 

Arabic [32]. This work attempts to analyze the sentiment at the sentence level first, and then to use the results to 

analyze the sentiment at the document level. At the sentence level, the researchers compared two different 

approaches. The first was generalizing the Arabic sentence into a general structure that contains the actor and 

the action. The second approach used some semantic and stylistic features. The researchers used different 

classifiers for a different approach. They used the SVM for the grammatical classifier, and obtained an accuracy 

of 89%, while the J48 decision tree was used with the semantic approaches and achieved an accuracy of 80% 

when the semantic orientation of the words extracted and assigned manually were used, and 62% when the 

dictionary was used.  

Another work, which investigated the effect of language-independent and Arabic-specific features on the 

performance of the classifier, was conducted by Abdul-Mageedand his colleagues  in [33]. They performed two 

kinds of sentence level sentiment analysis for two different domains: news and social media domains. The SVM 

was used to classify both the subjectivity and polarity of the sentences with different features, including N-

gram, adjective features and a unique feature, where all words occurring fewer than four times were replaced by 

the token “UNIQUE”, and MSA morphological features (person, gender and number). By using different 

stemming and lemmatization settings with different types of independent language and Modern Standard Arabic 

morphology features, the researchers achieved an F1 result of 72% for subjectivity and 96% for the polarity 

with stem, morphology setting and ADJ features using the newswire domain. In SAMAR [36], they investigated 

the effect that the standard features and the genre-specific features had on the subjectivity and sentiment 

classification of the Arabic social media domain.  

5.3. Negation in Arabic Sentiment Analysis  
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Little work has been undertaken in Arabic in order to address the issue of negation, either in the negation 

detection problem itself or the effect of negation in sentiment analysis.  

Elhawary and Elfeky [29] considered the negation concept in their work. They relied on the Arabic lexicon to 

calculate the sentiment orientation score of each word or phrase. While the counting process is running, the 

negated word of the phrase is flipped. There are two main issues here in this work. Firstly, the authors did not 

mention the Arabic negation words used, stating only that they used around twenty words as negation words. 

Secondly, there is the issue of how they determined the negated words or phrase that come with the negation 

word in the sentence. This might affect the process of sentiment analysis, since it has the possibility of changing 

the polarity (i.e. its polarity type and strength). A further limitation of this work is that the sentiment orientation 

was calculated depending on the Arabic lexicon, rather than using machine learning to classify the sentiment.  

Farra et, al, [32] also considered negation while attempting to capture the sentiment of Arabic text. The negation 

issue is considered in this work by only counting the frequency of the negation words in the sentence while 

attempting to build a semantic feature of the sentence depending on Arabic sentiment lexicon. The used features 

were the frequency of each positive, negative, neutral word, special character and the frequency of the negation 

words. The authors do not consider the ways in which words might be affected by the negation words. This 

resulted in a lower accuracy when compared to other methods used by the authors. As in the previous work, the 

authors here did not mention the list of negation words used. In addition, relying on a simple representation 

(i.e., frequency counts of negation words or polarity words) would not capture all the semantics and syntax of 

the sentence that might be useful in sentiment classification.  

Hamouda and El-Taher [38] attempted to build a sentiment analyzer for comments on Arabic Facebook news 

pages. They compared different machine learning algorithms with different features. One of these was dealing 

with negation in Arabic. They counted only five different negation words, whereas there are many more than 

these, even without counting negation words in the dialects. They only added the percentage of negation words 

in either the post or the comment as the feature, without considering the effect of negation on the word or 

phrase. They claimed that adding negation word features besides the features of all words in the posts and 

comments gives the best performance. The general issue here is that their proposed method may work only for 

the domain that they have chosen, which is the posts and the comments in Arabic Facebook news pages. This 

might, or might not, work with regular Arabic sentiment analysis. 

6. Discussion 

This section will discuss the limitations and the gaps in the field of Arabic sentiment analysis. At the end, the 

possible research directions in this field will be presented. 

6.1. Arabic Natural Language Processing 

Some of challenges and limitations in this field stem from the challenges of the Arabic language itself. As 

explained earlier, the Arabic language has a rich morphology and high inflection. This affects the natural 

language processing NLP tools that deal with Arabic, such as the POS tagger, morphology analyzer, name 
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entity recognition NER, and syntactical parsing. Several studies have been done in this direction. The main 

issue appearing here is that there are a number of well-performing basic NLP tools have been achieved but these 

tools need more work to be use more easily and could integrated with other programing tools.  

Another property of the Arabic language that affects this field is the dichotomy of the Arabic. As mentioned 

earlier, there are different types of Arabic, including MSA and DA. Most work conducted in NLP for Arabic 

has been for MSA. The problem is that tools which work well with MSA may not work as well with DA; 

therefore, there is a need to build a native tool that works especially well with DA [2]. This may also affect the 

preprocessing approach, such as by removing the stop words and determining the sentence boundaries. In the 

case of DA, there is a lack of use of punctuation, and there is no capitalization in Arabic. Therefore, the task of 

determining the sentence boundaries is a crucial and challenging task for NLP in the Arabic language, 

especially for the task of sentiment analysis. 

6.2. Corpus for Sentiment Analysis in Arabic 

Most of the research worked with one type of Arabic language, which is Modern Standard Arabic (MSA). Only 

one work began highlighting and investigating Dialect Arabic (DA) [34]. In addition, there are two problems 

with this research. The first is the variety of DA used. The study that considers DA only included one form of 

DA, such as Egyptian Dialect. Each dialect contains different words and expressions that may differ in 

expressing subjectivity or sentiment orientation. It cannot be ensured that a method that works with Egyptian 

Dialect would work well with other dialects. The problem that relates to the dialect language is the lack of 

resources and tools. There are not enough sentiment corpora for the different dialects available to be used. In 

addition, the Arabic NLP tools that deal with basic NLP tools, such as POS tagger and morphology analyzer, 

are not yet mature, and are sometimes non-existent for the DA. Therefore, further investigation of the DA is 

encouraged in subjectivity and sentiment analysis in order to establish which features and ML algorithms work 

well with DA.  

The size and domain of the data sets that are used in subjectivity and sentiment analysis are other issues. 

Despite some studies reporting high accuracy, this may not always reflect perfection in the proposed method, 

but may instead be a result of the small size of the dataset used in the experiments. In addition, some of the 

studies only considered either the news wire or the movie reviews domains. However, what happens if other 

domains are considered, such as business reviews or even different sub-domains within the main domain, such 

as different types of news? Moreover, the features or the ML algorithms that work in one domain may not work 

with the same efficiency in other. It may be useful to use some multi-domains in order to find generalization 

features and methods that may work with the same efficiency for other types of data domains.  

6.3. Techniques Used in Arabic Sentiment Analysis 

Table 1 gives a summary of studies that have been done in Arabic sentiment analysis. This table illustrates the 

approaches that are used in sentiment analysis, the level of sentiment annotation, the corpus domains, the 

performance that is achieved, and some of advantages and disadvantages for each study. For example, the third 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No  2, pp 147-165 
 

 160 

study used SVM as machine learning classifier to classify the sentiment into two level either document or 

sentence in news domain. This study tries to generalize the Arabic sentence into general structure which is 

considered the most advantage of this study, whereas using a small data in the experiment was the weakness 

point.  

The method used to tackle the problem of how to start classifying the Arabic language is a crucial factor. First, 

the preprocessing phase for Arabic in order to train the ML classifier plays the main role. Despite this, most of 

the studies on Arabic sentiment analysis did not explain this phase in detail. Incorrect words, letters with the 

same shape and effect of the word, such as “إ“ ,”أ” and “ا”, and stop words all need to be corrected, normalized 

or removed. This process should also be undertaken in the case of DA. Secondly, most of the proposed methods 

in this field used the SVM as the ML classifier with a linear kernel. The Arabic language is recognized to be a 

highly inflectional and richly morphological language; other classifiers may work better with this language. For 

example, using a nonlinear kernel with the SVM, or even using the Neural Networks, may lead to better 

analysis of the sentiment in Arabic, especially in the case of DA, when there is a lack of NLP recourse.  

It is clear that most of these works rely on machine learning approaches during the classification process. The 

most used classifier in these research studies was SVM. However, this may not reduce the power of the other 

machine learning methods, such as neural networks. L. Chen and H. Chiu in [39] proposed a method to classify 

sentiment based on neural networks. The neural networks method was trained using three semantic orientation 

indexes: semantic orientation from association, PMI (point-wise mutual information) and LSI (latent semantic 

analysis). Therefore, this method might be used with Arabic sentiment analysis.  

Table 1: Some of studies that have been done in Arabic sentiment analysis 

Studies Technique Level Domain Pros Cons 

[18] ML-SVM Document Extremist web 
forums 

Use stylistic 
features 
Feature selection 
methods 
A bilingual system 

Domain is very 
limited 
More computation 
cost 
How they pre-
process the Arabic 
data 

[33, 34, 
35, 36] ML-SVM Sentence News Social 

Media 

Multi-genre  
Deploys linguistics-
nuanced 
Involves 
morphological 
features  
Developing various 
lexicons 

Data is limited to the 
MSA 

[32] ML-SVM Document 
Sentence News Generalize the 

sentence structure Small corpus 

[29] ML-
AdaBoost Document Business 

reviews 
Builds large-scale 
lexicon 

Do not use Arabic 
features 

[37] ML Document 
Three domains 

(Politics, sports, 
education) 

Using more than 
one ML approaches 

Do not use Arabic 
features 

 Key: ML: Machine learning, SVM: Support vector machines 
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While dealing with the negation in Arabic sentiment analysis, most of the works touch the basic idea of how to 

add and deal with negation during the sentiment analysis processing. The negation tools and styles should be 

specified during the first step. Previous works either depend on basic negation form or do not mention the 

negation syntax that they rely on. Moreover, most research in Arabic sentiment analysis does not deal with the 

issue of negation words while using machine learning algorithm to solve sentiment analysis. They use to using 

semantic approaches by counting the number of opinioned words instead of using machine learning techniques 

and flip the score of negated words or counting negation words and adding this to the total score. Therefore, this 

dissertation tries to come up with a comprehensive method to deal with negation by using machine learning 

techniques to solve Arabic sentiment classification.  

Lastly, the English language has been more investigated in the field of sentiment analysis compared to what has 

been done in Arabic. It may be useful to benefit from these tools to capture the sentiment in Arabic, but the 

question that may arise here is “Is the sentiment preserved across different languages during translation 

process?” This does not imply that there is no need to conduct any further sentiment analysis work for English 

but getting benefits from what have been achieved in English. 

7. Open Research Direction 

The field of Arabic sentiment analysis is relatively new. Researchers have put some effort into filling the gaps 

in this area. Some work has been done to build a data corpus and lexicon for sentiment in Arabic, while other 

work has concentrated on exploring the techniques used to classify the sentiment in Arabic text. Unlike the 

English language, in which there have been many studies into sentiment, more work is still required in Arabic in 

order to build more mature systems for sentiment analysis. This section will discuss some possible work which 

is represented as having an open direction in this field.  

The first direction could be related to the notion of sentiment itself. Most of the work that has been done in 

Arabic is related to capturing the polarity of the subjective text, either positive or negative. This is acceptable, 

as work in the Arabic sentiment analysis is still at an early stage. One possible direction here is to classify the 

text as fine-grained sentiment. Instead of using two polarities to represent the sentiment, a scale range from 0 to 

10 can be used to show the sentiment strength in the text that could be used (0 means more negative sentiment, 

10 means more positive sentiment). Using two kinds of polarity only captures the type of sentiment in the text, 

whereas using a fine-grained polarity could capture the type and strength of the sentiment.  

Carrying out more work on the dataset for an Arabic sentiment corpus and lexicon is a challenging task and 

needs more attention, as it is an important part of the sentiment analysis process. Some initiatives have been 

implemented and discussed in the previous section. As explained, only one of them has been publicly published 

for the benefit of the research community. The studies that may be involved here may develop in a number of 

different directions. The domain of the chosen data represents one direction. Most work in Arabic Sentiment 

Analysis ASA deals with the news or business/movie reviews domains. Other types of data could be also 

included, such as political discussion or medical domain. In addition, social networks today are a de facto 

method of communication between people; this could use as a source for building sentiment corpus in this field.  
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Regarding to language types, most of the work in this field has been carried out on the type of Arabic language 

known as MSA. Dialect Arabic DA requires more work and investigation. Recently, M. Abdul-Mageed and M. 

Diab in [35] included this type of language in their work, but they only included one Arabic dialect, the 

Egyptian dialect. There is large scope for work to be done here in order to build a more sophisticated corpus 

that includes different Arabic dialects. The last direction for this type of work to go in could include the method 

of labeling the data in the corpus. Most of the work has been done manually, which costs the consumer time and 

money. Therefore, a fully semi-automated method is needed to label the data with its sentiment. A. Al-Subaihin 

in [30] used a kind of human-based game to involve more people in labeling the text with its sentiment while 

they were gaming. Using a well-known corpus from a well-studied language such as English and translating it 

to Arabic could be a useful approach to building a quick corpus. Therefore, more studies need to be conducted 

in this direction in order to improve the viability of this method.  

Machine learning ML approaches have a strong role in classifying Arabic sentiment. Most of the studies in 

Arabic use the SVM, to classify the sentiment in the Arabic text. This may be another direction for researchers 

to investigate further by exploring other MLs in the field of Arabic sentiment, such as neural networks, as has 

been done in the English language [39] 

8. Conclusion 

This article describes the field of sentiment analysis in the Arabic language, and sheds some light on what has 

been accomplished in the English language as an example of a language that has been well studied for sentiment 

analysis, compared with what has been investigated in the Arabic language. Moreover, some novel studies and 

works have been conducted in Arabic sentiment analysis. However, these works are still at an early stage and 

require more effort from researchers in order to increase the quality and strength of the tools in this field.  

This field is still struggling with a number of issues, beginning with the scarcity of linguistic resources for 

Arabic and ending with the lack of corpora sources for Arabic sentiment and the approaches used to classify the 

sentiment in the text. The internet provides an unlimited source of material that contains sentiment in different 

aspects, as well as varieties of Arabic dialect that are used in these sites, such as social networks.  
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