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Abstract 

The paper investigates the effect of a discrete source of damage on the loading capacity and failure strength of 

composite materials. First, the effects of varying fiber orientation on the distribution of the circumferential stress 

around the source of damage and on the failure strengths of continuous fiber-reinforced composites were 

investigated using theoretical approaches developed for infinite-plate with a central hole. Numerical simulations 

were conducted and spatial graphical illustrations were plotted using fiber orientation angle and angular location 

on the circumference of the hole as analysis variables. Tsi-Wu failure criterion was employed to predict the 

failure strength of a composite layer subjected to a discrete damage with a varying fiber orientation. Second, 

experimental tests using specimens with and without damage were carried out to find out the impact of discrete 

damage on the loading capacity and failure strength of woven Carbon-epoxy composite laminates. A qualitative 

analysis was performed to evaluate the effect of the size of damage on the structural performances of laminated 

composites. 
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1. Introduction  

The increased use of composite materials in aeronautical and aerospace vehicles such as aircraft, spacecraft, 

helicopters, and missiles requires in-depth analysis of the structural performances of these materials under 

potential failure conditions. Structures using high performance continuous fiber-reinforced composites are 

vulnerable to mechanical performance degradation in many aspects including interlaminar delamination, loading 

rate, in-service impact damage, destruction by shock, and vibration. 

It has been well known that composite materials have a significant damage sensitivity, which can have an effect 

on their structural performances mainly their failure strengths. Hence, the most important tasks of composite 

design calculation are the damage assessment and failure strength prediction.  

In recent years, there have been several interesting investigations and continuous efforts in developing new 

damage mechanics models, stress concentration prediction approaches, and failure criteria for damage 

assessment of composite materials. In literature, there exist a large number of these models, approaches, and 

criteria [1-10]. These contributions are still an open issue for engineering and a comprehensive evaluation of 

their accuracy and their ability to reveal the mechanisms behind damage and failure of composite materials 

seems to be not yet completely addressed. Hence, further theoretical, numerical, and experimental investigations 

are typically required for good understanding and assessment of failure and damage of continuous fiber-

reinforced composites. 

There are three major elements in the analysis of damaged composite materials, i.e., stress distribution around 

damage source, lamina failure, and laminate stiffness reduction. To deal with these issues, a three-part process is 

adopted in the present study. First, using the theoretical formulations developed in [11,12] for plates with a 

central hole, the effect of fiber orientations on the circumferential stress distribution around a discrete damage 

source is investigated simulating this source as a hole. Second, Tsi-Wu failure criterion is employed to predict 

the failure strength of a composite layer subjected to a discrete damage source with varying fiber orientations. 

Comparatively to Tsai-Hill criterion used in [11], Tsi-Wu failure criterion is more general due to its ability to 

distinguish between tensile and compression strengths. Two composite laminas are used for comparison 

purposes, i.e. Carbon-epoxy and Glass-epoxy composite sheets. Third, to understand the global behavior of 

damaged woven composite materials, two experiments are set up, one for undamaged laminates to evaluate the 

loading capacity of woven Carbon-epoxy materials, and one for damaged laminates to verify the effect of 

damage on this capacity. It is worth noting that experimental damage assessment of woven fiber reinforced 

composites is one of the strongest methodologies for the evaluation of damaged material loading capacity and 

for the study of the phenomena behind failure under damage [13-18]. 

2. Analytical Modeling of a Composite Plate with Hole 

2.1. Lamina Representative Unit Cell and Macroscopic Properties 

Composite materials are commonly defined as materials formed using continuous or discrete fibers (e.g. Carbon, 

Glass, aramid, boron, and silicon) combined with matrix materials (e.g. metallic, ceramic, and polymer). In this 
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study, the focus is on the continuous fiber-reinforced composite materials due to their oriented mechanical 

properties and highest structural performances due to the mechanism of spatially fiber varying orientations. A 

uniaxial composite unit cell configuration is given in Figure 1. 

 

Figure 1: Configuration of unit cell of an uniaxial composite layer.  
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L  , T , W , cV denote the length, height, width, and volume of the cell; fW , fV , mW  and mV    denote the width 

and volume of fiber and matrix; fη and mη denote the fiber and matrix volume fraction, respectively. 

The existing approaches to the micromechanics of composite materials are mainly grouped into two categories; 

Mechanics of Materials Approach (MMA) and elasticity-based approaches that regroup exact solutions, 

bounding principles, and approximate solutions. MMA assumes that lamina’s properties are different in various 

directions or orientations, but not different from one location to another. The macroscopic properties of a 

composite lamina are derived based upon the following assumptions [19,20] 

• Fibers and matrix are perfectly bonded and slip-free. 

• Fibers are continuous, parallel, and possess uniform strength.  

• Geometrical properties such as fiber’s diameter, spaces between fibers, etc. are supposed to be uniform. 

• Fiber and matrix materials are supposed to be linear.  
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Macroscopically, a lamina is supposed to be homogenous, orthotropic, linearly elastic, and initially stress-free. 

As the lamina is considered a biaxial structure (Figure 2), the geometrical deformations and mechanical stresses 

under tensile loading are determined as follows   

 

 

 

 

Figure 2: Uniaxial fiber-reinforced composite lamina under biaxial tensile loading 
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For a linear elastic orthotropic material based on the C1 shell elements continuity requirement, the terms 

associated with the transverse or interlaminar shear effects (i.e., terms associated with γ13 and γ23) are 

eliminated. The corresponding stress-strain relationships for this high-order continuity element are written as: 
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With 

11 L Lε = ∆ ,  22 W Wε = ∆ ,   12 12 12Gγ τ=  

Where L∆ and W∆ are the longitudinal cell and transverse cell deflection, respectively. 

243 
 

 

σ1 σ1 

L 

Matrix 

Matrix 

Fiber 

∆W/2 

∆L 

1 

2 

 

∆W/2 

σ2 

σ2 

1 

2 

Matrix 

Matrix 

Fiber W 

∆W/2 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 20, No  2, pp 240-252  

2.2 Circumferential Stresses Around a Central Hole 

Consider the hollow infinite plate under tensile loading shown in Figure 3. Upon the theory of orthotropic 

plates, an analytical model for evaluating the circumferential stress around a hole is presented in [1] and adapted 

and used for composite materials with fiber orientation in [11,12]. For a reinforced composite layer with fibers 

oriented by an angle θ  and subjected to an axial tensile loading xσ , as shown in Figure 3, the circumferential 

stress around the hole is computed in the direction α  using the following formulation 

 

 

 

 

 

 

 

Figure 3: Composite plate with central hole subjected to uniaxial loading 

 

( )( )
( , )=

( - ) ( - )
1 2 3

x2 2
1 1 2 2

N N N
1 2 cos 2 1 2 cos 2

σ θ α σ
γ γ α θ γ γ α θ

+ +
+ − + −

                                  (4) 

With 

[ ]( + )( + )+ ( - ) + + - ( - )

( + ) ( - )

( - ) ( - )

2
1 1 2 1 2 1 2

2
2 1 2 1 2

3 1 2

N 1 1 cos 2 sin 1 2 cos 2

N 4 1 cos 2 sin

N 4 1 sin 2 sin cos

γ γ α θ θ γ γ γ γ α θ

γ γ γ γ α θ θ

γ γ α θ θ θ

 = −
 = − + −   
 = −

                        (5) 

And 

1 2 

x 

y 

α 

θ σx 

σx 

244 
 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2015) Volume 20, No  2, pp 240-252  

2

2 2 2
12 12

12 12 1

1
2

2 2 2
12 12

12 12 1

2

2 2 2
12 12

12 12 1

2
2

2 2 2
12 12

12 12 1

E E E 1
2G 2G E

E E E 1
2G 2G E

E E E 1
2G 2G E

E E E 1
2G 2G E

ν ν

γ

ν ν

ν ν

γ

ν ν


    − + − − −        =

     − + − − +       

     − − − − −       =
    

− − − − +    
    

                                                         (6) 

 

2.3 Failure Strength  

The failure strength of a lamina composite is investigated using Tsi-Wu (T-W) failure criterion. T-W theory is a 

phenomenologically based failure theory that is widely used to predict the failure strength for anisotropic 

composite materials. It is worth noting that T-W criterion is more general than Tsai-Hill failure criterion because 

of its ability to distinguish between tensile and compression strengths. In plane stress, the T-W failure criterion 

reduces to the following quadratic function 
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Where fσ  denotes the failure strength in the uniaxial layer while 1tσ , 1cσ , 2tσ , and 2cσ  denote the uniaxial 

tensile and compression failure strengths in the fiber direction and transverse direction, respectively.  
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3. Numerical Investigation 

In this section, the analytical formulations shown in section 2 are used to create three-dimensional mapping of 

the distribution of the circumferential stress around the hole using fiber orientation θ  and the angle α  as study 

parameters. Two composite laminas are used to analyze the effect of discrete source of damage on the 

composite materials: Carbon-epoxy lamina and Glass-epoxy lamina. The properties of these two composites 

areiven in Table 1.  

Table 1: Physical properties of composite materials [11]. 

 

Property 

(GPa) 

Lamina 

Uniaxial Carbon-

epoxy 

Uniaxial 

Glass-epoxy 

1E  0.181 0.0549 

2E  0.0103 0.0183 

12G  0.00717 0.00914 

1tσ  1.5 1.0555 

1cσ  1.5 1.0555 

2tσ  0.04 0.0281 

2cσ  0.246 0.1407 

S  0.068 0.0422 

 

Poisson’s ratio is taken as 12 0.28ν =  for Carbon-epoxy lamina and 12 0.25ν =  for Glass-epoxy lamina. 

3.1 Failure Strength  

Figure 4 shows the distribution of the circumferential stress around the hole under a unit tensile stress loading. 

3.2 Failure Strength from Analytic Predictions 

Using the criterion (7), the failure strengths are computed around the hole using the following transformations 
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Figure 5 shows the distribution of the tensile failure strength around the hole under a unit tensile stress loading. 

 

(a) 

 

(b) 

Figure 4: Circumferential stress distribution around the hole for a) Carbon-epoxy composite, (b) Glass-epoxy 

composite 

4. Experimental Investigation 

A number of experiments were conducted to assess the effect of a discrete source of damage on the tensile 

failure strength of a woven composite material. The Carbon-epoxy composite laminates were manufactured with 

five plies of (0°/90°) woven prepreg. The plies were obtained with 40% of Carbon fibers. Table 2 shows the 

properties of the carbon fibers and epoxy used in this experimentation. Specimens were divided into three 

groups; without hole, with central hole of diameter of 10mm, and with central hole of diameter of 25 mm. 

Figure 6 shows 250.0×50.0×1.8mm woven Carbon-epoxy samples without and with a central hole.  
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(a) 

 

(b) 

Figure 5: Tensile failure stress distribution around the hole: (a) Carbon-epoxy layer, (b) Glass-epoxy layer. 

 

Table 2: Properties of Woven Carbon fibers and epoxy 

Property Carbon fiber Epoxy  

1E   2.757903e11 3.447379e9 

2E  2.757903e11 3.447379e9 

12G  9.65266e10 1.378951e9 

12ν  0.33 0.33 
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       Figure 6: Woven carbon composite specimens without and with a central hole 

 

The experimental results for different specimens with average values are shown in Figure 7.  
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Figure 7: Experimental results for different specimens with average values 

The loads and displacements corresponding to the failure of specimens are presented in Table 3 and plotted in 

Figure 8 using polynomial interpolations. 

Table 3: Tensile test results at the failure of specimens  

 

Hole Diameter  

(mm) 

Axial force 

 (kN) 

Axial displacement 

 (mm) 

0 28.1882 2.1358 

10 15.2192 1.3471 

25 08.5458 1.2503 

 

Figure 8: Failure loads versus failure displacements of different specimens 
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From Figure 8, it is clear that the presence of a discrete source of damage considerably reduce the tensile failure 

strength of composite materials including woven fabric composites. Results show that the damage size has a 

proportional effect on the strength of the woven composite materials. 

5. Conclusion 

This paper presented a numerical and experimental analysis of the effect of a discrete source of damage on the 

failure strengths of composite materials. In the first part, the effects of fiber orientation on both stress 

distribution around the damage source and tensile failure strengths were numerically investigated using 

theoretical approaches. Two composite laminas with different materials i.e. Carbon-epoxy and Glass-epoxy 

laminas were used to illustrate these effects. Graphical results depicted in Figure 4 show that high 

circumferential stress values for Carbon-epoxy composite correspond to the fiber orientations around 

{ }45°,140°,220°θ =  while for Glass-epoxy composite the highest values are for { }0°,180°θ = . In Figure 5, the 

tensile failure strength values obtained from Tsi-Wu criterion are presented for both composite materials. 

Results show that higher failure strengths correspond to fiber orientations around { }0°,100°  for both 

composites. 

 

The second part was dedicated to the experimental assessment of the effect of a discrete source of damage size 

on the strength level of woven Carbon-epoxy composite materials. From Figures 7 and 8, it is clear that the 

presence of a discrete source of damage considerably reduces the strength level of composite materials even 

woven fabrics are used. The load resisting capacity of woven Carbon-epoxy materials deceases proportionally to 

the size of the source of damage. 
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