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Abstract  

In any examination result, performance is a function of several variables, which could be linear or nonlinear in 

dimension.  Under approximately normal condition, every examination result is a Bernoulli trial with two 

unique and independent outcomes: a success and a failure.  In this work, we examine the goodness - of - fit of 

the ordinary least squares regression with binary dependent variables (linear probability model) and the logistic 

regression in modeling and predicting examination performance. The degree examination results of 2012/2013 

graduating class of the Department of Statistics were considered having reflected all the categories of 

performance in our examination grading system [viz; First class, Second class (Upper & Lower) divisions, Third 

class, and Pass]. The analysis revealed that the binary logistic regression is a better approach for modeling and 

predicting examination performance since most examination conditions are abnormal and nonlinear in 

dimension.  
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1. Introduction 

Studies involving examination results or performance of students have been in the increase recently. Various 

scholars and researchers have proposed different methods for modeling examination results.  

This has been an important research area since effective modeling of examination results can lead to a better 

prediction of the performance of students in future, hence, providing the system an opportunity for evaluating 

the academic structures for optimal performance.  

Recently, so many authors have considered researches involving categorical time series data of different 

dimensions and have showcased diverse challenges on the interpretation of the results [1,2,3]. This work, a 

probabilistic model is proposed for predicting examination performance, generated over time under an 

approximately normal condition, in linear and nonlinear dimensions. We also consider the materials and method 

in the next section followed by the empirical results and discussions. 

2. Materials and Method 

Degree examination results of 36 students in five different courses were considered for 2012/2013 graduating 

class. For the dependent binary variable (performance), a score of 50% and above was regarded as a pass and 

graded “1” while a score of below 50% was regarded as a failure and graded “0”. The independent variables 

which were taken as the courses with grades A, B, C, D, E, and F were graded as 5, 4, 3,2, 1, and 0, 

respectively. The linear probability and binary logistic regression were separately applied to model the results 

based on their underlying assumptions.  

2.1 Linear Probability Model 

This is a special case of a binomial regression model where the observed variable for each observation takes 

values which are either 0 or 1. The probability of observing a 0 or 1 in any one case is treated as depending on 

one or more explanatory variables. For the “linear probability model”, this relationship is particularly simple, 

and allows the model to be fitted by simple linear regression.  

When Y is binary, the linear regression model  𝑌𝑖 =  𝛽0 +  𝛽1𝑥𝑖 +  𝜀𝑖 is called the linear probability model. The 

predicted value is a probability given by: 𝐸{𝑌|𝑋 = 𝑥}  = Pr(𝑌 = 1|𝑋 = 𝑥) = Xβ.  

Here, 𝑌 �  = the predicted probability that 𝑌𝑖  =1 , given X. 

𝛽1   = Change in probability that Y = 1 for a given change in X. 

𝛽1=  
𝐏𝐫(𝒀 =𝟏|𝑿 =𝒙 + ∆𝒙 ) −𝐏𝐫(𝒀 =𝟏|𝑿 =𝒙)

∆𝒙
 

This model assumes that Y = Xβ + ε, such that the estimated coefficients are themselves the marginal effects.  
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With all exogenous regressors, E(Y|X) = Pr[Y = 1|X] = Xβ.  

If on the other hand, some elements of X are endogenous, they will be correlated with ε. As the LPM with 

exogenous explanatory variables is based on standard regression, the zero conditional mean assumption E(ε|X) 

= 0 applies [4]. 

2.2 Logistic Regression 

Logistic regression, or logit regression, as a type of probabilistic statistical classification model is also used to 

predict a binary response from a binary predictor. It helps in predicting the outcome of a categorical dependent 

variable (i.e., a class label) based on one or more predictor variables [5,6]. Thus, it is used in estimating the 

parameters of a qualitative response model. The probabilities describing the possible outcomes of a single trial 

are modeled, as a function of the explanatory (predictor) variables, using a logistic function. Frequently (and 

subsequently in this article) “logistic regression” is used to refer specifically to the problem in which the 

dependent variable is binary, that is, the number of available categories is two, while the problems with more 

than two categories are referred to as multinomial logistic regression or, if the multiple categories are ordered, as 

ordered logistic regression. 

Logistic regression measures the relationship between the categorical dependent variable and one or more 

independent variables, which are usually (but not necessarily) continuous, by using probability scores as the 

predicted values of the dependent variable. As such, it treats the same set of problems as does probit regression 

using similar techniques; the former assumed logistic function, the latter standard normal distribution function, 

although both yield similar results. Thus, logit regression models the probability of Y = 1 as the cumulative 

standard logistic distribution function, evaluated at: Z = β0 + β1X.  

This implies that: Pr(Y = 1|X) = F(β0 + β1X), where F is the cumulative logistic distribution function given by: 

F(β0 + β1X) = 1
1 + 𝑒−(𝛽0 + 𝛽1𝑥) 

Here, the measures of fit used are: 

(i) The fraction correctly predicted = fraction of Y’s for which predicted probability is > 50% (if Yi = 1) or 

is < 50% (if Yi = 1). 

(ii) The pseudo-R2 measure the fit using the likelihood function: measures the improvement in the value of 

the log likelihood, relative to having no X’s, which simplifies to the R2 in the linear model with normally 

distributed errors. 

3.  Results   

Table 1 shows how the binary variables are introduced under the ordinary least squares procedure for the five 

Courses. From Table 2(a - e), the predicted linear probability models are: Course A is 𝑌 � =  −0.034 + 0.237𝑋; 

Course B is 𝑌 � =  −0.093 + 0.28𝑋; Course C is 𝑌 � =  −0.017 + 0.235𝑋; Course D is 𝑌 � =  −0.006 + 0.219𝑋; 

377 
 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Binary_classification
http://en.wikipedia.org/wiki/Categorical_variable
http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Qualitative_response_models
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Binary_variable
http://en.wikipedia.org/wiki/Multinomial_logistic_regression
http://en.wikipedia.org/wiki/Level_of_measurement%23Ordinal_type
http://en.wikipedia.org/wiki/Ordered_logistic_regression
http://en.wikipedia.org/wiki/Level_of_measurement%23Interval_scale
http://en.wikipedia.org/wiki/Probit_regression
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Normal_distribution


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 375-394 

 
Course E is 𝑌 � =  0.012 + 0.22𝑋. On the proportion of the total variation accounted for by each of the linear 

models, about 86% is explained in Course A, 75% in Course B, 85% in Course C, 93% in Course D, and 98% in 

Course E. Using the fitted model to predict the probability of a student passing the course A, given the grade, 

it’s seen that a student with an “F” grade, has a negative predicted probability value of -0.034, which is 

abnormal while the one with an “A” grade also has an abnormal probability value of 1.151 (which is 115.1%) of 

passing the course. 

Table1: OLS Fit with Binary Variables 

STU
D

EN
T 

COURSE 

A B C D E 

1 1 =   𝛼0+  𝛼1  + 𝑒1  1 = 𝛼0 +2𝛼1  +   𝑒1 1 = 𝛼0 +3𝛼1  +   𝑒1 1 = 𝛼0 +3𝛼1  +   𝑒1 1 = 𝛼0 +5𝛼1  +   𝑒1 

2 1 = 𝛼0 +4𝛼1  +   𝑒2 1 = 𝛼0 +3𝛼1  +   𝑒2 1 = 𝛼0 +5𝛼1  +   𝑒2 1 = 𝛼0 +5𝛼1  +   𝑒2 1 = 𝛼0 +5𝛼1  +   𝑒2 

3 0 0 = 𝛼0 +0𝛼1  +   𝑒3 0 0 0 

4 1 = 𝛼0 +2𝛼1  +   𝑒4 1 = 𝛼0 +3𝛼1  +   𝑒4 1 = 𝛼0 +4𝛼1  +   𝑒4 1 = 𝛼0 +5𝛼1  +   𝑒4  

5 1 = 𝛼0 +5𝛼1  +   𝑒5 1 = 𝛼0 +2𝛼1  +   𝑒5 1 = 𝛼0 +5𝛼1  +   𝑒5 1 = 𝛼0 +5𝛼1  +   𝑒5 1 = 𝛼0 +5𝛼1  +   𝑒5 

6 1 = 𝛼0 +5𝛼1  +   𝑒6 1 = 𝛼0 +4𝛼1  +   𝑒6 1 = 𝛼0 +3𝛼1  +   𝑒6 1 = 𝛼0 +4𝛼1  +   𝑒6 1 = 𝛼0 +4𝛼1  +   𝑒6 

7 1 = 𝛼0 +4𝛼1  +   𝑒7 1 = 𝛼0 +2𝛼1  +   𝑒7 1 = 𝛼0 +5𝛼1  +   𝑒7 1 = 𝛼0 +5𝛼1  +   𝑒7 1 = 𝛼0 +4𝛼1  +   𝑒7 

8 1 = 𝛼0 +4𝛼1  +   𝑒8 1 = 𝛼0 +3𝛼1  +   𝑒8 1 = 𝛼0 +4𝛼1  +   𝑒8 1 = 𝛼0 +4𝛼1  +   𝑒8 1 = 𝛼0 +5𝛼1  +   𝑒8 

9 1 = 𝛼0 +5𝛼1  +   𝑒9 1 = 𝛼0 +3𝛼1  +   𝑒9 1 = 𝛼0 +3𝛼1  +   𝑒9 1 = 𝛼0 +3𝛼1  +   𝑒9 1 = 𝛼0 +4𝛼1  +   𝑒9 

10 1 = 𝛼0 +𝛼1  +   𝑒10 1 = 𝛼0 +𝛼1  +   𝑒10 1 = 𝛼0 +4𝛼1  +   𝑒10 1 = 𝛼0 +4𝛼1  +   𝑒10 1 = 𝛼0 +5𝛼1  +   𝑒10 

11 0 1 = 𝛼0 +𝛼1  +   𝑒1 1 = 𝛼0 +2𝛼1  +   𝑒1 0 1 = 𝛼0 +4𝛼1  +   𝑒1 

12 1 = 𝛼0 +4𝛼1  +   𝑒12 1 = 𝛼0 +𝛼1  +   𝑒12 1 = 𝛼0 +3𝛼1  +   𝑒12 1 = 𝛼0 +4𝛼1  +   𝑒12 1 = 𝛼0 +5𝛼1  +   𝑒12 

13 0 0 0 0 0 

14 1 = 𝛼0 +5𝛼1  +   𝑒14 1 = 𝛼0 +4𝛼1  +   𝑒14 1 = 𝛼0 +5𝛼1  +   𝑒14 1 = 𝛼0 +5𝛼1  +   𝑒14 1 = 𝛼0 +4𝛼1  +   𝑒14 

15 1 = 𝛼0 +2𝛼1  +   𝑒15 0 0 0 0 

16 1 = 𝛼0 +4𝛼1  +   𝑒16 1 = 𝛼0 +3𝛼1  +   𝑒16 1 = 𝛼0 +3𝛼1  +   𝑒16 1 = 𝛼0 +5𝛼1  +   𝑒16 1 = 𝛼0 +4𝛼1  +   𝑒16 

17 1 = 𝛼0 +3𝛼1  +   𝑒17 1 = 𝛼0 +𝛼1  +   𝑒17 1 = 𝛼0 +4𝛼1  +   𝑒17 0 = 𝛼0 +0 +  𝑒17 1 = 𝛼0 +4𝛼1  +   𝑒17 

18 0 0 0 0 0 

19 0 0 0 0 0 

20 0 0 0 0 0 

21 0 1 = 𝛼0 +𝛼1  +   𝑒1 0 0 1 = 𝛼0 +4𝛼1  +   𝑒1 

22 1 = 𝛼0 +3𝛼1  +   𝑒22 1 = 𝛼0 +𝛼1  +   𝑒22 0 0 0 

23 0 0 0 0 0 

24 0 0 0 0 0 

25 0 0 0 0 0 

26 1 = 𝛼0 +3𝛼1  +   𝑒26 1 = 𝛼0 +𝛼1  +   𝑒26 1 = 𝛼0 +2𝛼1  +   𝑒26 1 = 𝛼0 +2𝛼1  +   𝑒26 1 = 𝛼0 +4𝛼1  +   𝑒26 

27 0 0 0 0 0 

28 1 = 𝛼0 +3𝛼1  +   𝑒28 1 = 𝛼0 +3𝛼1  +   𝑒28 1 = 𝛼0 +4𝛼1  +   𝑒28 1 = 𝛼0 +5𝛼1  +   𝑒28 1 = 𝛼0 +5𝛼1  +   𝑒28 

29 1 = 𝛼0 +𝛼1  +   𝑒29 0 0 0 0 
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30 1 = 𝛼0 +𝛼1  +   𝑒30 1 = 𝛼0 +2𝛼1  +   𝑒30 1 = 𝛼0 +𝛼1  +   𝑒30 1 = 𝛼0 +4𝛼1  +   𝑒30 0 

31 0 0 0 0 0 

32 0 0 0 0 0 

33 0 0 0 0 0 

34 0 0 0 0 0 

35 0 0 0 0 0 

36 0 1 = 𝛼0 +3𝛼1  +   𝑒36 1 = 𝛼0 +2𝛼1  +   𝑒36 0 1 = 𝛼0 +4𝛼1  +   𝑒36 

 

Table 2: Results of Model Fit with Ordinary Least Squares 

Table 2a(i): ANOVAb  (COURSE A) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 7.188 1 7.188 218.768 .000a 

Residual 1.117 34 .033   

Total 8.306 35    

a. Predictors: (Constant), SCORE  

b. Dependent Variable: PERFORANCE 

 

 Table 2a(ii): Model Summary (COURSE A) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .930a .865 .862 .18127 

a. Predictors: (Constant), SCORE 

 

Table 2a(iii): Coefficientsa  (COURSE A) 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) -.034 .040  -.840 .407 

SCORE .237 .016 .930 14.791 .000 

a. Dependent Variable: PERFORANCE 

 

 

379 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 375-394 

 
Table 2b(i): ANOVAb   ( COURSE B) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 5.045 1 5.045 100.603 .000a 

Residual 1.705 34 .050   

Total 6.750 35    

a. Predictors: (Constant), SCORE 

b. Dependent Variable: PERFORMANCE 

Table 2b(ii): Coefficientsa   ( COURSE B) 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) -.093 .051  -1.830 .076 

SCORE .280 .028 .865 10.030 .000 

a. Dependent Variable: PERFORMANCE 

 
 

Table 2b(iii): Model Summary (COURSE B) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .865a .747 .740 .22394 

a. Predictors: (Constant), SCORE 

 

Table 2c(i): Model Summary (COURSE C) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .922a .850 .845 .19437 

a. Predictors: (Constant), SCORE 

 

Table 2c(ii): ANOVAb   (COURSE C) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 7.271 1 7.271 192.460 .000a 

Residual 1.285 34 .038   

Total 8.556 35    

a. Predictors: (Constant), SCORE 

b. Dependent Variable: PERFORMANCE 
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Table 2c(iii): Coefficientsa   ( COURSE C) 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) -.017 .044  -.378 .707 

SCORE .235 .017 .922 13.873 .000 

a. Dependent Variable: PERFORMANCE 

 

Table 2d(i): Model Summary ( COURSE D) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .966a .934 .932 .12903 

a. Predictors: (Constant), SCORE 

 

Table 2d(ii): ANOVAb  ( COURSE D) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 7.990 1 7.990 479.892 .000a 

Residual .566 34 .017   

Total 8.556 35    

a. Predictors: (Constant), SCORE 

b. Dependent Variable: PERFORMANCE 

 

Table 2d(iii): Coefficientsa    ( COURSE D) 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) .006 .028  .210 .835 

SCORE .219 .010 .966 21.906 .000 

a. Dependent Variable: PERFORMANCE 

 

Table 2e(i): Model Summary (COURSE E) 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .988a .976 .975 .07984 
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Table 2b(i): ANOVAb   ( COURSE B) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 5.045 1 5.045 100.603 .000a 

Residual 1.705 34 .050   

Total 6.750 35    

a. Predictors: (Constant), SCORE 

a. Predictors: (Constant), SCORE 

 

Table 2e(ii): ANOVAb   (COURSE E) 

Model Sum of Squares Df Mean Square F Sig. 

1 Regression 8.783 1 8.783 1377.883 .000a 

Residual .217 34 .006   

Total 9.000 35    

a. Predictors: (Constant), SCORE 

b. Dependent Variable: PERFORMANCE 

 

Table 2e(iii): Coefficientsa   ( COURSE E) 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) .012 .019  .644 .524 

SCORE .222 .006 .988 37.120 .000 

a. Dependent Variable: PERFORMANCE 

 

In reality, a student with grade F has a zero chance of passing the course while the one with grade A has a 

significant probability (not more than 1) of passing the course, as predicted by the logistic model.  These further 

confirm that the Ordinary Least Squares is not appropriate for investigating dichotomous or otherwise “limited” 

dependent variables [5, 6, 7, 8]. 

In the same vein, if the performance is modeled as a function of the cumulative grade average points (CGPAs), 

the fitted model is; E(Y) = -0.343 + 0.380X. 
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Again, the problem here is the same as the LPM using the scores since a student with a CGPA that is below 1.0 

will have a negative probability value while the one with a CGPA of 3.6 and above will have a probability value 

that is greater than one. 

Furthermore, the prediction equation has not satisfied all the assumptions of OLS.  Some of these are; 

i. Constant Variance: It is expected that the variance of the residuals be the same for all Y’s.  In this case, it is 

obvious (from equation 2) that the variance is p(1-p), which means that the variance depends on the value 

of p, rather than be constant. The variance can only be constant if and only if the value of p is the same for 

all grades (which is not so).  Hence, the assumption is violated. 

ii.   Normality: Also, OLS assumes that, for each set of values for the k independent variables, the residuals are 

normally distributed. This is equivalent to saying that, for any given value of performance, the residuals 

should be normally distributed. This assumption is also clearly violated as we can’t have a normal 

distribution when the residuals are only free to take on two possible values. 

4. Discussion 

From the above results, we have further buttressed the fact that the linear probability model (LPM) is not a good 

estimator for modeling and predicting examination performance as it generates predicted probabilities that are 

too extreme even for moderate values of the grades obtained. These problems can be summarized thus: 

heteroskedasticity, unbounded predicted probabilities, non-normal errors, and the linear functional form. 

However, some researchers claim that although the predicted probabilities are flawed, their main interest lies in 

the models’ marginal effects, and argue that it makes insignificant difference to use the LPM, with its constant 

marginal effects, rather than the more complex marginal effects derived from a proper estimated cumulative 

distribution functions (CDF) as demonstrated by the logistic model (see Table 3 (a - e) below). In all the cases, 

estimation procedure terminates at 20 iterations because a perfect fit is obtained in each logistic regression.  

Table 3: LOGISTIC BINARY REGRESSION 

Table 3a (i): Classification Table (a, b) for Course A 

  Observed Predicted 

  Y1 

Percentage 

Correct 

  .00 1.00   

Step 0 Y1 .00 20 0 100.0 

    1.00 16 0 .0 

  Overall Percentage     55.6 

         

         a.  Constant is included in the model. 

         b.  The cut value is .500 

383 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 375-394 

 
Table 3a (ii): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 0 Constant -.223 .335 .443 1 .506 .800 

 

 

Table 3a (iii): Variables not in the Equation 

 Score Df Sig. 

Step 0 Variables X1 31.895 1 .000 

Overall Statistics 31.895 1 .000 

 

 

Table 3a (iv):Omnibus Tests of Model Coefficients 

 Chi-square Df Sig. 

Step 1 Step 49.461 1 .000 

Block 49.461 1 .000 

Model 49.461 1 .000 

 

 

Table 3a (v): Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 .000(a) .747 1.000 

a. Estimation terminated at iteration number 20 because maximum iterations have been reached. 

Table 3a (vi): Classification Table(a) 

 

Observed Predicted 

Y1 Percentage 

Correct .00 1.00 

Step 1 Y1 .00 20 0 100.0 

 1.00 0 16 100.0 

Overall Percentage   100.0 

a.   The cut value is .500 
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Variables in the Equation 

Table 3a(vii): 

 B S.E. Wald Df Sig. Exp(B) 

Step 

1(a) 

X1 

34.139 4820.852 .000 1 .994 

67077070

9106501.0

00 

Constant -84.463 12098.781 .000 1 .994 .000 

a. Variable(s) entered on step 1: X1. 

Table 3a(viii):Variables not in the Equation 

 Score Df Sig. 

Step 0 Variables X1 36.000 5 .000 

X1(1) 20.571 1 .000 

X1(2) 3.600 1 .058 

X1(3) .823 1 .364 

X1(4) 7.258 1 .007 

X1(5) 10.862 1 .001 

X2 20.925 4 .000 

X2(1) 14.400 1 .000 

X2(2) .360 1 .549 

X2(3) .090 1 .764 

X2(4) 9.600 1 .002 

X3 12.600 5 .027 

X3(1) 7.200 1 .007 

X3(2) .823 1 .364 

X3(3) .164 1 .686 

X3(4) 2.973 1 .085 

X3(5) .569 1 .451 

X4 8.286 4 .082 

X4(1) 5.143 1 .023 

X4(2) .823 1 .364 

X4(3) .026 1 .871 

X4(4) .569 1 .451 

X5 5.631 2 .060 

X5(1) 5.355 1 .021 

X5(2) 3.662 1 .056 

Overall Statistics 36.000 20 .015 
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Table 3b (i): Classification Table (a,b) for Course B 

 

Observed Predicted 

Y2 Percentage 

Correct .00 1.00 

Step 0 Y2 .00 24 0 100.0 

 1.00 12 0 .0 

Overall Percentage   66.7 

 

         a.  Constant is included in the model. 

         b.  The cut value is .500 

Table 3b (ii): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

step 0 Constant -.693 .354 3.844 1 .050 .500 

 

Table 3b (iii): Variables not in the Equation 

 Score Df Sig. 

Step 0 Variables X1 14.949 1 .000 

Overall Statistics 14.949 1 .000 

 

Table 3b (iv):Omnibus Tests of Model Coefficients 

 Chi-square Df Sig. 

Step 1 Step 16.552 1 .000 

Block 16.552 1 .000 

Model 16.552 1 .000 

 

 

Table 3b (v): Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 29.277(a) .369 .512 

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001. 
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Table 3b (vi): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 

1(a) 

X1 .920 .288 10.184 1 .001 2.511 

Constant -2.908 .945 9.474 1 .002 .055 

a. Variable(s) entered on step 1: X1. 

 

Table 3b (vii): Omnibus Tests of Model Coefficients 

 Chi-square Df Sig. 

Step 1 Step 29.277 1 .000 

Block 29.277 1 .000 

Model 45.829 2 .000 

 

Table 3b (viii):  Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 .000(a) .720 1.000 

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. 

 

Table 3b (viii): Classification Table (a) 

 

Observed Predicted 

Y2 Percentage 

Correct .00 1.00 

Step 1 Y2 .00 24 0 100.0 

 1.00 0 12 100.0 

Overall Percentage   100.0 

          a.  The cut value is .500 
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Table 3b (ix): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 

1(a) 

X1 -.007 1757.515 .000 1 1.000 .993 

X2 

37.195 6001.843 .000 1 .995 

14236737

14721980

0.000 

Constant -92.616 14170.619 .000 1 .995 .000 

       a.  Variable(s) entered on step 1: X2. 

 

Table 3c (i): Classification Table(a,b) for Course C 

 

Observed Predicted 

Y3 Percentage 

Correct .00 1.00 

Step 0 Y3 .00 22 0 100.0 

 1.00 14 0 .0 

Overall Percentage   61.1 

          

          a.  Constant is included in the model. 

          b.  The cut value is .500 

 

Table 3c (ii): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 0 Constant -.452 .342 1.748 1 .186 .636 

 

Table 3c (iii): Variables not in the Equation 

 Score df Sig. 

Step 0 Variables X3 30.595 1 .000 

Overall Statistics 30.595 1 .000 
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Table 3c (iv): Classification Table(a) 

 

Observed Predicted 

Y3 Percentage 

Correct .00 1.00 

Step 1 Y3 .00 22 0 100.0 

 1.00 0 14 100.0 

Overall Percentage   100.0 

          a. The cut value is .500 

 

Table 3c (v): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 

1(a) 

X3 

35.225 4800.310 .000 1 .994 

19865299

43907726.

000 

Constant -87.759 12124.286 .000 1 .994 .000 

         a. Variable (s) entered on step 1: X3. 

 

Table 3c (vi): Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 48.114 20 .000 

Block 48.114 20 .000 

Model 48.114 20 .000 

 

Table 3c (vi): Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 .000(a) .737 1.000 

a. Estimation terminated at iteration number 18 because a perfect fit is detected. 
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Table 3d (i): Classification Table (a,b) for Course D 

 

Observed Predicted 

Y4 Percentage 

Correct .00 1.00 

Step 0 Y4 .00 22 0 100.0 

 1.00 14 0 .0 

Overall Percentage   61.1 

 

          a.  Constant is included in the model. 

          b.  The cut value is .500 

Table 3d (ii): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 0 Constant -.452 .342 1.748 1 .186 .636 

 

 

Table 3d (iii): Variables not in the Equation 

 Score Df Sig. 

Step 0 Variables X4 33.618 1 .000 

Overall Statistics 33.618 1 .000 

 

 

Table 3d (iv): Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 48.114 1 .000 

Block 48.114 1 .000 

Model 48.114 1 .000 

 

 

Table 3d (v): Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 .000(a) .737 1.000 

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. 
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Table 3d (vi): Classification Table (a) 

 

Observed Predicted 

Y4 Percentage 

Correct .00 1.00 

Step 1 Y4 .00 22 0 100.0 

 1.00 0 14 100.0 

Overall Percentage   100.0 

a. The cut value is .500 

 

Table 3d (vii): Variables in the Equation 

 B S.E. Wald Df Sig. Exp(B) 

Step 

1(a) 

X4 

32.871 4407.783 .000 1 .994 

18868560

9292404.7

00 

Constant -81.815 11202.959 .000 1 .994 .000 

 

a. Variable(s) entered on step 1: X4. 

 

 

Table 3e (i): Classification Table(a, b) for Course E 

 

Observed Predicted 

Y5 Percentage 

Correct .00 1.00 

Step 0 Y5 .00 19 0 100.0 

 1.00 17 0 .0 

Overall Percentage   52.8 

 

          a.  Constant is included in the model. 

          b.  The cut value is .500 

 

Table 3e (ii): Variables in the Equation 

 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.111 .334 .111 1 .739 .895 
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Table 3e (iii): Variables not in the Equation 

 Score Df Sig. 

Step 0 Variables X1 16.712 5 .005 

X1(1) 7.646 1 .006 

X1(2) 1.393 1 .238 

X1(3) .920 1 .337 

X1(4) 1.726 1 .189 

X1(5) 5.166 1 .023 

X2 9.697 4 .046 

X2(1) 6.743 1 .009 

X2(2) 1.092 1 .296 

X2(3) 1.092 1 .296 

X2(4) .037 1 .847 

X3 29.001 5 .000 

X3(1) 25.077 1 .000 

X3(2) .920 1 .337 

X3(3) 3.658 1 .056 

X3(4) 6.490 1 .011 

X3(5) 2.503 1 .114 

X4 16.358 4 .003 

X4(1) 16.053 1 .000 

X4(2) 1.150 1 .284 

X4(3) 2.367 1 .124 

X4(4) 2.503 1 .114 

X5 36.000 2 .000 

X5(1) 36.000 1 .000 

X5(2) 15.475 1 .000 

Overall Statistics 36.000 20 .015 

 

Table 3e (iv): Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 49.795 1 .000 

Block 49.795 1 .000 

Model 49.795 1 .000 
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Table 3e (v): Model Summary 

Step 

-2 Log 

likelihood 

Cox & Snell 

R Square 

Nagelkerke R 

Square 

1 .000(a) .749 1.000 

a. Estimation terminated at iteration number 18 because a perfect fit is detected. 

In this case, the predicted values for course A are all zero in the null model on the dependent variable with an 

overall percentage of 55.6% where B is the coefficient for the constants in each of the models. The Wald Chi-

square test revealed that the null hypothesis of the constant being zero is not rejected since the p-value of 0.506 

is greater the critical value of 0.05 (or 0.01). On the inclusion of X1 (first predictor) in the model, the overall 

statistics shows that the test is significant at both 5% and 1% levels implying that the contribution of this course 

in predicting the overall performance of students is quite significant.     

5. Discussion and Conclusions 

From the predicted values of the dependent variable based on the model in Course A, 20 cases are observed to 

be 0 and are correctly predicted to be 0 while 16 cases are observed to be 1 and are correctly predicted to be 1. 

Also, no case is observed to be 0 and is incorrectly predicted to be 1, and vice versa. Thus the logistic regression 

describes the exact situation for predicting examination performance in this course. This is further confirmed by 

the overall percentage which increased from 55.6% (for the null model) to 100% (for the full model). 

In Course B, 21 cases are observed to be 0 and are correctly predicted to be 0 while 8 cases are observed to be 1 

and are correctly predicted to be 1. Also, no case was observed to be 0 but incorrectly predicted to be 1and vice 

versa, with an overall percentage of 61.7% (for the null model) and 100% (for the full model). 

In Courses C and D, the situations were the same with 24 cases observed to be 0 and correctly predicted to be 0 

while 14 cases were observed to be 1 and correctly predicted to be 1. However, no case was observed to be 0 or 

1 but predicted otherwise, thereby recording an increase in the overall percentage from 61.1% (for the null 

model) to 100% (for the full model). 

In Course E, 20 cases were observed to be 0 and correctly predicted to be 0 while 16 cases were observed to be 

1and correctly predicted to be 1. Again, no case was observed to be 0 or 1 but incorrectly predicted. This 

generated an increase in significance from 52.8% (for the null model) to 100% (for the full model). 

On the Omnibus tests for the significance of model coefficients, the Chi-square values for STEP, BLOCK and 

MODEL revealed that they are all significant at both 5% and 1% levels, thereby confirming the goodness - of - 

fit of the logistic regression in modeling and predicting examination performance with dichotomous variables.  

Finally, some more predictive approaches based on these probable and other possible relationships (in linear and 

nonlinear dimensions) are being explored for subsequent research publications.  
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