provided by GSSRR.ORG: International Journals: Publishing Research Papers in all Field

International Journal of Sciences: Basic and Applied Research (IJSBAR)

ISSN 2307-4531 (Print & Online)

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

A Generalization of Notion Group as Dynamical Groups

Abolfazl Ebrahimzadeh^a*, Ali Delbaznasab^b

^aDepartment of Mathematics, Zahedan Branch, Islamic Azad University, Zahedan, Iran.

^bDepartment of Mathematics, Faculty of Mathematics and Computer Science,

Shahid Bahonar University of Kerman, Kerman, Iran.

^aEmail: abolfazl35@yahoo.com ^bEmail: delbaznasab@gmail.com

Abstract

In this paper the concept of groups will be extended by a dynamical system to the dynamical groups and we will investigate some results about them. Also notions coset and qoutient dynamical group are introduced.

Keywords: Dynamical groups; group; qoutient dynamical group.

1. Introduction

Some generalizations of notion group are presented sofar. For example generalized group is introduced by Molaie [2] and is studied in [1-6]. We assume the reader is familiar with the definition of dynamical system [7]. In this paper we introduce a new generalization of group by notion dynamical system that we call dynamical group. The paper is organized as follows. In Section 2 the notion of dynamical groups is introduced, also we define dynamical subgroups and give some properties and examples about dynamical groups. In Section 3 we define and study notions coset and qoutient dynamical groups.

E-mail address: abolfazl35@yahoo.com.

^{*} Corresponding author.

2. Dynamical groups

Definition 2.1. Let G be a non-empty set and o be an associative operation on G. We say (G, f, g, h, o) is a dynamical group if the functions $f: G \to G$, $g: G \to G$ and $h: G \to G$ be injective and satisfies the following conditions:

i) There exists $e \in G$ such that for every $x \in G$,

$$f(x)og(e) = f(e)og(x) = h(x),$$
 (1)

Which e is called the identity element of (G, f, g, h, o)

ii) For every $x \in G$ there exists $x' \in G$ such that

$$f(x)og(x') = f(x')og(x) = h(e),$$
 (2)

Which x' is called the inversion element of x in (G, f, g, h, o). Note that every function of the functions f, g, h is considered as a dynamical system.

Remark 2.2. The notion of dynamical groups is a generalization of groups. In fact if f = g = h and the functions are injective and surjective then (G, o) is a group because if $x \in G$ and $\overline{e} = f(e)$ then there exists $\overline{x} \in G$ such that $x = f(\overline{x})$ and we can write

$$\overline{e}ox = f(e)of(\overline{x})$$

$$= f(e)og(\overline{x})$$

$$= h(\overline{x}) = f(\overline{x}) = x, (3)$$

Also

$$xo\overline{e} = f(\overline{x})of(e)$$

$$= f(\overline{x})og(e)$$

$$= h(\overline{x}) = f(\overline{x}) = x. \quad (4)$$

Now let $y \in G$. Since f is surjective there exists $x \in G$ such that y = f(x). By the property (2), there exists $x' \in G$ such that: (let y' = f(x'))

$$yoy' = f(x)of(x') = f(x)og(x')$$

=
$$h(e) = f(e) = \overline{e}$$
, (5)
 $y'oy = f(x')of(x) = f(x')og(x)$
= $h(e) = f(e) = \overline{e}$. (6)

So (G, o) is a group.

Example 2.3. Let G be an abelian group and $a, b \in G$. If f(x) = ax, g(x) = b. x and h(x) = a. b. x. Then we have

$$f(x). g(e) = a.x. (b.e)$$

$$= a.x. b = a.b.x$$

$$= h(x), \qquad (7)$$

$$f(e). g(x) = ae. (b.x)$$

$$= a.b.x = h(x). \qquad (8)$$

where e is the identity element of G.

On the other hand let $x \in G$ and x' be the Inversion element of x in G, then we can write

$$f(x). g(x') = a. x. b. x'$$
= a. b. x. x'
= a. b. e = h(e), (9)
$$f(x'). g(x) = a. x'. b. x$$
= a. b. x'. x
$$= a. b. e = h(e). (10)$$

Hence (G, f, g, h) is a dynamical group.

Example 2.4. Let $G = \{a, b, c\}$. We define an operation on G by

$$aa = a$$
, $ab = b$, $ac = a$, $ba = a$, $bb = c$, $bc = b$, $ca = c$, $cb = a$, $cc = c$. (11)

Also let the functions f, g, h are defined by

$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $g(a) = b$, $g(b) = c$, $g(c) = a$, $g(c)$

Then (G, f, g, h) is a dynamical group because

i) b is the identity elelment because

$$f(a)g(b) = bc = ab = f(b)g(a) = b = h(a),$$

$$f(b)g(b) = ac = f(b)g(b) = a = h(b),$$

$$f(c)g(b) = cc = ca = f(b)g(c) = c = h(c).$$
 (13)

ii) Inverse element: we can write

$$a' = c$$
, $b' = b$, $c' = a$

because

$$f(a)g(a') = ba = cb = f(a')g(a) = a = h(b),$$

$$f(b)g(b') = ac = f(b')g(b) = a = h(b),$$

$$f(c)g(c') = cb = ba = f(c')g(c) = a = h(b).$$
 (14)

Proposition 2.5. Let (G, f, g, h) be a dynamical group, then (x')' = x.

Proof. It can be deduced from property 2.2.

Definition 2.6. Let (G, f, g, h) be a dynamical group. A non-empty subset H of G is called a dynamical subgroup of G if $(H, f|_{H}, g|_{H}, h|_{H}, o)$ be a dynamical group.

Since f, g, h are injective, f $\Big|_H$, g $\Big|_H$, h $\Big|_H$ are injective.

Definition 2.7. We say two dynamical groups (G, f, g, h, o), $(\overline{G}, \overline{f}, \overline{g}, \overline{h}, \overline{o})$ are isomorphic if there exists a bijective function $\phi: G \to \overline{G}$ such that

i)
$$\varphi(xoy) = \varphi(x)\overline{o}\varphi(y)$$
,

ii) φ of $= \overline{f}$ o φ , φ og $= \overline{g}$ o φ , φ oh $= \overline{h}$ o φ .

Then φ is called an isomorphism.

Proposition 2.8. Let (G, f, g, h, o), $(\overline{G}, \overline{f}, \overline{g}, \overline{h}, \overline{o})$ be two dynamical groups and $\phi: G \to \overline{G}$ be an isomorphism. Then

- i) If e is the identity element of (G, f, g, h, o), then $\varphi(e)$ is the identity element of $(\overline{G}, \overline{f}, \overline{g}, \overline{h}, \overline{o})$,
- ii) If x' is the inversion element of x in (G, f, g, h, o), then $\varphi(x')$ is the inversion element of $\varphi(x)$ in $(\overline{G}, \overline{f}, \overline{g}, \overline{h}, \overline{o})$.

Proof.

i) By definition 2.1 it is sufficient to show that

$$\bar{f}(x)\bar{g}(\phi(e)) = \bar{f}(\phi(e))\bar{g}(x) = \bar{h}(x). \tag{15}$$

From definition 2.7 we have

$$\bar{f}(x)\bar{g}(\varphi(e)) = \bar{f}(x)\varphi(g(e))$$

$$= \varphi(f(\varphi^{-1}x))\varphi(g(e))$$

$$= \varphi(f(\varphi^{-1}x)(g(e)))$$

$$= \varphi(h(\varphi^{-1}x))$$

$$= (\varphi \circ h \circ \varphi^{-1})(x) = \bar{h}(x). \tag{16}$$

Also

$$\bar{f}(\phi(e))\bar{g}(x) = \phi(f(e))(\phi o g o \phi^{-1})(x)$$

$$= \phi(f(e))\phi(g(\phi^{-1}x))$$

$$= \phi((f(e))(g(\phi^{-1}x)))$$

$$= \phi(h(\phi^{-1}x))$$

$$= (\phi o h o \phi^{-1})(x) = \bar{h}(x). \tag{17}$$

ii) We show that

$$\bar{f}(\phi(x))\bar{g}(\phi(x')) = \bar{f}(\phi(x'))\bar{g}(\phi(x)) = \bar{h}(\phi(e)). \quad (18)$$

We can write

$$\begin{split} \bar{f}(\phi(x))\bar{g}(\phi(x')) &= \phi\big(f(x)\big)\phi\big(g(x')\big) = \phi\big(f(x)g(x')\big) \\ &= \phi\big(h(e)\big) = (\phi \circ h \circ \phi^{-1})(\phi(e)) \end{split}$$

$$= \bar{h}(\varphi(e)). \tag{19}$$

Also

$$\begin{split} \bar{f}(\phi(x'))\bar{g}(\phi(x)) &= \phi\big(f(x')\big)\phi\big(g(x)\big) \\ &= \phi\big(f(x')g(x)\big) = \phi\big(h(e)\big) \\ &= (\phi \circ h \circ \phi^{-1})(\phi(e)) = \bar{h}(\phi(e)). \end{split} \tag{20}$$

3. Coset and qoutient dynamical group

Definition 3.1. Let (G, f, g, h, o) be a dynamical group. Also let H be a dynamical subgroup of G and $c \in G$. We define left and right cosets of H in G as

$$cH = \{f(c)g(h)|h \in H\}, (21)$$

$$Hc = \{f(h)g(c)|h \in H\}.$$
 (22)

Remark 3.2. Let H be a dynamical subgroup of dynamical group (G, f, g, h, o) and e be the identity element of G. Then we have

$$eH = He = h(H).$$
 (23)

Because

$$eH = \{f(e)g(x)|x \in H\} = \{f(x)g(e)|x \in H\}$$
$$= He = \{h(x)|x \in H\} = h(H). (24)$$

Lemma 3.3. Let H be a dynamical subgroup of dynamical group (G, f, g, h). Also let for each $x, y \in G$

$$f(x)g(y) = g(y)f(x),$$

$$f(xy) = f(x)f(y),$$

$$g(xy) = g(x)g(y)$$
. (25)

Then for every $c, b \in G$

$$(cH)(bH) = (cb)H.$$
 (26)

Proof.

$$(cH)(bH) = \{f(c)g(h)|h \in H\}\{f(b)g(h')|h' \in H\}$$

$$= \{f(c)g(h)f(b)g(h')|h,h' \in H\}$$

$$= \{f(c)f(b)g(h)g(h')|h,h' \in H\}$$

$$= \{f(cb)g(hh')|h,h' \in H\}$$

$$= (cb)H. \tag{27}$$

Proposition 3.4. Let H be a dynamical subgroup of dynamical group (G, f, g, h), such that Also let for each $c \in G$, cH = Hc. Also let for every $x, y \in G$,

$$f(x)g(y) = g(y)f(x)$$

$$f(xy) = f(x)f(y)$$

$$g(xy) = g(x)g(y)$$
. (28)

Then the family of left (right) cosets of H in (G, f, g, h) which is shown by $(\frac{G}{H}, f', g', h')$ is a dynamical group called the quotient dynamical group of G by H such that f', g', h' are defined by

$$f'(cH) = f(c)H$$
,

$$g'(cH) = g(c)H$$
,

$$h'(cH) = h(c)H.$$
 (29)

Proof.

It is necessary to check the axioms of dynamical group on $\frac{G}{H}$.

f',g',h' are injective functions. If e is the identity element in (G,f,g,h), then eH is the identity element in $(\frac{G}{H},f',g',h')$ because

$$f'(cH)g'(eH) = f(c)Hg(e)H$$

$$= f(c)g(e)H$$

$$= h(c)H = h'(cH), \qquad (30)$$

$$f'(eH)g'(cH) = f(e)Hg(c)H$$

$$= f(e)g(c)H$$

$$= h(c)H = h'(cH). \qquad (31)$$

Now Let c' be the inverse of c in (G, f, g, h). We show that c'H is the inverse of cH in $\left(\frac{G}{H},f',g',h'\right)$.

$$f'(cH)g'(c'H) = f(c)Hg(c')H$$

 $= f(c)g(c')H$
 $= h(e)H = h'(eH),$ (32)
 $f'(c'H)g'(cH) = f(c')Hg(c)H$
 $= f(c')g(c)H$
 $= h(e)H = h'(eH).$ (33)

So the axioms of dynamical group are satisfied in $\left(\frac{G}{H},f',g',h'\right)$.

Example 3.5. Let (G, f, g, h) be the dynamical group of example 2.3 with aa = a and bb = b. Also let H be a dynamical subgroup of dynamical group G such that for each $c \in G$, cH = Hc. Then $(\frac{G}{H}, f', g', h')$ is a quotient dynamical group because by proposition 3.4 we can write

$$f(x)g(y) = (ax)(by)$$
= (ay)(bx) = g(y)f(x), (34)
$$f(xy) = axy = aaxy$$
= (ax)(ay) = f(x)f(y), (35)
$$g(xy) = bxy = bbxy$$
= (bx)(by) = g(x)g(y). (36)

4. Conclusion

We introduced the notion dynamical groups as a generalization of concept group. Also we defined notions coset and qoutient dynamical group and we presented some propositions and examples about them.

References

- [1] J. O. Adeniran, J. T. Akinmoyewa, A. R. T. Solarin and T. G. Jaiyeola. "On Some Algebraic Properties of Generalized Groups." Acta Mathematica Academiae Paedagogicae Nyregyh aziensis, Vol. 27, pp. 23-30, 2011.
- [2] M. R. Molaei. "Generalized actions." Proceedings of the First International Conference on Geometry, Integrability and Quantization. Coral Press Scientific Publishing Proceedings of the First International Conference on Geometry, pp. 175-180, 1999.
- [3] M.R. Molaei. "Generalized groups." Bull. Inst. Polit. Di. Iase Fasc, 3(4), PP. 21-24, 1999.
- [4] M.R. Molaei. "Topological generalized groups." Int. Jour. Appl. Math, 2(9), PP. 1055-1060, 2000.
- [5] M.R. Molaei and A. Tahmoresi. "Connected topological generalized groups." Mathematics, 12(1), PP. 13-22, 2004.
- [6] M. R. Mehrabi and A. Oloomi. "Generalized subgroups and homomorphisms." Arabs Jour. Math. Sc, Vol. 6, PP. 1-7, 2000.
- [7] Ya. G. Sinai. "Dynamical Systems." Aarhus Univ, Vol. 1, 1970.