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Abstract 

Landmark localization is one of the fundamental approaches to facial expressions recognition, occlusions 

detection and face alignments. It plays a vital role in many applications in image processing and computer 

vision. The acquisition conditions such as expression, occlusion and background complexity affect the landmark 

localization performance, which subsequently lead to wrong classification. In this paper, the writers bestowed 

the challenges of various landmark detection techniques, number of landmark points and dataset types been 

employed from the existing literatures. Meanwhile, advanced technique for facial landmark detection under 

various expressions and occlusions was presented. This was carried out using Point Distribution Model (PDM) 

to estimate the occluded part of the facial regions and detect the face. The proposed method was evaluated using 

University Milano Bicocca Database (UMB). This approach gave more promising result when compared to 

several previous works. However, the technique detected images despite varieties of occlusions and expressions. 

It can further be applied on images with different poses and illumination variations. 
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1.    Introduction  

Face recognition is a process of recognizing an individual from their facial attributes. It belongs to the class of 

biometric system [1]. Occlusions degrade the performance of face recognition evidently [2,3]. Therefore, when 

occluding object is known, a specific strategy can be developed to estimate and compensate the occluded 

regions, for reliable face recognition [3]. Facial expressions are sometimes used for human communication, as it 

provides natural and immediate indication about a person’s intentions and emotions. Face landmarking is 

defined as detection of certain characteristic points on the face. The points used to represent the vital 

information needed to classify an individual; this is achieved by building a model [4]. The knowledge of 

landmarking can be applied in login authentication and security units such as police department, criminal 

investigation, and immigration department among others.  

Regardless of good landmark detector, there are cases were landmark values cannot be computed, due to 

missing data (the occlusion). At the same time, landmark approach should try to detect as many points as 

possible, this leads to complex and more general systems. 

Human faces vary from one another; it is therefore difficult to differentiate faces under high occlusion. More so, 

to detect and remove occlusions on the face images quickly and automatically becomes a largely unsolved 

problem. This makes face detection and recognition among the toughest problems in the fields of computer 

vision and biometrics. Moreover, aligning faces robustly and precisely is one of the most important steps to 

solve the challenges in facial landmark detection [5]. In order to overcome these challenges, significant 

contributions have been made to aid in the process of identification, in different scenarios [3,6]. However, there 

is still need for significant attentions in terms of missing data, control points (labeling), misalignment, 

restoration, expression and illumination variations.  

Information about shape variations are usually collected to build a model. The model represents a predefined 

number of landmark points, which depends on the complexity of the object’s shape and desired level of detailed 

descriptions of where it is needed. In this study, we present a technique for facial landmark detection and 

estimation under various expressions and occlusions. The approach aimed at detecting the position of face and 

facial features (eye, mouth, and nose) despite occluding object by hair, scarf, hand, and so on. It will also be 

tested to fit on faces with different expressions such as smile, angry, and open mouth. We obtained faster 

detection and fitting time compared to other reported techniques in the literature. 

The rest of the paper is organized as follows: Section 1 introduces the concepts of facial landmarks with regard 

to expressions and occlusions. Section 2 illustrates related works of current applications. In section 3, the 

materials and methods used in the study are developed. The results and discussion of the proposed system are 

stated in Section 4. Finally, conclusion and future work are drawn in Section 5. 

2.    Related Work 

Facial landmark localization is a prerequisite for face recognition either in two dimensions (2D) or three 

dimensions (3D). Various algorithms and constraints have been proposed to detect and handle the face 
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occlusion. 

2.1    Reported challenges on 2D and 3D methods  

A method for removing glasses from a frontal face image was proposed by the authors in [7]. The occluded 

region by glasses was first detected and then generated a natural looking facial image without glasses using 

Principal Component Analysis (PCA) reconstruction. Besides that, a more general solution is needed for more 

challenging situations especially where the occlusions are unpredicted. A possible solution for this problem is 

local approaches, for instance, the proposed work in [8,9] divided the face into local regions which were 

analysed independently. Moreover, the authors in [10] proposed a part-based local representation method using 

Locally Salient Independent Component Analysis (LSA-ICA). 

Contrary to this approach, another method was investigated in [11] which eliminated parts that correspond to 

occlusions, and that may hinder the recognition accuracy. The authors in [12,3] presented a strategy that 

approaches the occlusion problem by performing a restoration of the faces: the occluded regions were detected, 

and the non-occluded regions were used to recover the missing information. However, accumulation of error at 

each stage deteriorated the final performance of the system. Similarly, the research in [13] divided the faces into 

rectangular regions, and on the basis of their gray level histograms, the probability of the occlusion was 

estimated.  

In more advanced study, the authors in [14] proposed a part based recognition method, which used Average 

Regional Models (ARM) and matched the various parts of the face independently. Various fusion techniques 

were used to integrate the similarity between the face parts and the corresponding ARMs. However, significant 

improvement was reported with respect to Iterative Closest Point (ICP) matching in the case of occlusions (by 

hands, hair or eyeglasses) and facial expressions. In another development, the authors in [15] presented an 

approach that provided general labeling over a wide region of face, which was robust to occlusion and pose 

variations. 

The Landmarking scheme used in [15,16] involved 14 and 22 points respectively, which were manually selected 

across the faces. However, the systems were costly when the number of points increases. The studies of [16] and 

[17] on landmark detection and pose estimation worked robustly, even if half of the face is missing. The 

selected landmark points for both studies were 5 - 8 and were not fully automated. There is need for increased 

landmark points for more robustness. In another efforts by [18,19], a fully automated and multimodal (2D and 

3D) algorithm for facial image synthesis was proposed. The labeled landmark points were 57 and 79 points. But 

there was no consideration of other timing issues such as rotating and aligning 3D models, which instantly 

compared to the modeling time. And the recognition rate was affected in the case of some missing landmarks. 

Additionally, the accuracy of landmark localization increased proportionally to number of landmarks considered 

[20]. When the number landmark points increases from 3 - 68, 50% improvement was observed.  

In comparison between 2D and 3D methods, one advantage of landmarking in 3D is that, it enables alternate 

processing techniques for landmarks since there are multiple ways of representing 3D face data. For example, 
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point clouds, multiple profiles, curvature, shape index and depth maps [21] have been used for face recognition, 

but not fully exploited for landmarking. These advantages cannot be found in 2D landmarking which is largely 

affected by severe lighting and pose variation.  

Conversely, the drawback of 3D face raw data is that, it demands more pre-processing steps compared to 2D. 

For instance, the face surface must be smoothed, spikes and discontinuities must be removed, and gaps must be 

filled in. Moreover, the execution time is dependent on the scene complexity. Therefore, 3D landmarking are 

considered costly and time consuming. This is because, significant effort is required to produce an acceptable 

result [22]. Again, the time required to generate new views in 2D using interpolation is independent of the scene 

complexity.  

2.2    Other factors and challenges   

Researchers reported different techniques via various databases being used on landmark points, conducted using 

2D and 3D methods and achieved considerable results often. Face landmarking algorithm that works well under 

and across all intrinsic variations of faces, and delivers the target points in a time efficient manner has not yet 

been feasible [22]. Table 1 depicts comparison of some recent landmarking techniques. Other factors that hinder 

the performance of facial landmark detection are: 

 The accurate number of landmarks: The accuracy and number of landmark points vary based on the 

intended application. For instance, higher level tasks, such as facial expression understanding or facial 

animation, requires greater number of landmarks within the range of 20–30 and 60–80, as well as higher 

spatial accuracy [23,24]. Few number of landmark points were selected in [25,26] as shown in table 1. The 

results obtained were not applicable under significant pose variations. 

 The acquisition conditions: Acquisition conditions such as illumination, resolution and background 

complexity affect the landmark localization performance. This was attested by the fact that landmark 

localizers trained in one database have usually inferior performance when tested on another database [27], 

[28]. 

 Face variability: Landmark appearances differ due to intrinsic factors such as face variability between 

individuals, and due to extrinsic factors such as partial occlusion, pose and camera resolution. Moreover, 

facial landmarks can only be partially observed due to occlusions of hair, hand movements or self-

occlusion due to extensive head rotations. The other two major variations that compromise the success of 

landmark detection are facial expressions and illuminations [22]. 
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Table 1: Comparison of some recent landmarking techniques 
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3. Materials and Methods 

The experiment was conducted using UMB database [34]. This is a collection of multimodal (3D + 2D images) 

facial acquisitions. The database is composed of 1473 images of 143 subjects. The subjects include 98 males and 

45 females. Most of the subjects have been with eyeglasses, holding phones, hat, partially occluded by hair and 

other miscellaneous objects. The total number of occluded faces are 578. And the size of each image is 640x480 

pixels.  

A total number of 100 neutral faces were selected for training the model. Another 100 faces were used as test set.  

The set includes multiple occluding objects (by hand, hair and scarf) and different facial expressions such as 

angry, smile, and open mouth. The images were cropped to retain only the region of interest. For the purpose of 

experiment, Matlab software was used on personal computer with the following specifications; Intel Celeron of 

1.0 GHz processor and 2.00 GB DDR3 RAM. Figure 1 shows some sample of the neutral images and test images 

from the UMB database. 

The images were converted to gray-scale, to reduce the amount of information in the image and then cropped to 

size 220 × 240 to remove the background and retain only the region of interest. The images were normalized by 

scaling, rotation and translation so that the faces were centered into a definite coordinates to enable the model 

easily fit the appropriate regions. We used the principle of PDM to capture the statistical face variations. The 

Mode Techniques 
Landmark 

points 
Databases Remark 

 

 

 

 

 

 

2D 

SIFT and ASM [29] 58 BioID and 

FRGC V2 

 No localization results 

ASM,  SIFT, and 

Probabilistic PCA 

[30] 

45 IMM and 

CMU-PIE 

 No localization results 

PDM of landmarks 

and local descriptors 

[31] 

12 CMU 

Multi-PIE 

 No localization results 

Conditional 

Regression Forest 

[32] 

 

 

10 LFW  2D normalized errors per 

landmark. Close to human 

accuracy and real time.  

 Different expression and 

lighting variation are considered. 

 

 

 

 

3D 

Generic Algorithm 

[26] 

3 FRGC V1  Not applicable under 

significant pose variations 

PDM, Shape index 

and Curvedness 

index [25] 

5 BU3DFE  No localization results. 

 Not applicable under significant 

pose variations 

Shape index, Spin 

images and FLM 

[33] 

8 FRGC V2 

and UND 

Ear 

 Applicable under significant 

yaw and expression 

variations. 
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number of landmarks should be adequate to show details of the overall shape. For accuracy, 66 control points 

were used to represent the faces as a sequence of connected landmarks similar to [35]. Finally, model fitting was 

achieved through transformations between the model points and candidate vertices. Candidate vertices include 

candidate inner eye, nose tip and mouth tips vertices. To extract the candidate interest points, the face model 

was categorized into five regions; region 1 represents Right Eye and Right Eye Brows (REREB), region 2 

represents Left Eye and Left Eye Brows (LELEB). The Nose Tip (NT) is represented by region 3 and region 4 

represents Mouth Tips (MT) while region 5 represents Edges of the Face (FE). Figure 2 shows the block 

diagram of the developed system, and figure 3 depicts the modeled regions. 

 

 

 

 

 

 

Fig 1: Sample of neutral images obtained from UMB database (first row) and corresponding occluded faces by 

different types of objects (second row). 

 

 

 

 

 
Fig 2: Block diagram of the proposed system 

 

 

 

 

 

Fig 3: Model divided into five regions 
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4.    Results and Discussion 

The detected occluded faces were categorized into a set of weakly and strongly occluded faces based on the 

amount of details covered. If at least three out of the five regions (3/5) are covered then the face is classified as 

strong occlusion, otherwise as a weak occlusion.  

Figure 4 shows some of the results of face detection using this model with different occlusion and expression. 

Images a, b, c are faces with expression and d, e, f, are faces with occlusions. In figure 4 ‘a’, the occluded 

regions are; LELEB, MT and FE. Three types of expressions were taken into consideration in the experiment, 

these are: angry, smile and open mouth. The results performed well for the expression of the type angry and 

smile. In the same figure, ‘a’ and ‘b’, the three out of the five regions (of the facial features) were partially 

covered. Hence, they were classified as strong occlusion. On the other hand, image ‘c’ of the same figure was 

classified as weak occlusion since two out of the five regions (2/5) of the face were covered. 

In table 2, a strategy was developed to estimate the location of the occluded regions based on the positions and 

number of landmark points represented on the face regions. Table 3 summarizes the results of the face and 

facial features detection implemented in this paper. The average detection and fitting time per image (for 

occluded faces) were 5.43 sec and 1.18 sec respectively. And for the expressions, the average detection and 

fitting time per image (for expressions) were 4.56 sec and 1.08 sec respectively. 

Finally, most of the strong occluded faces covered the region FE. Whereas weak occluded faces mostly covered 

regions REREB and LELEB. We obtained faster detection and fitting time in faces with expressions than in 

faces with occlusions. The major drawback of this work is that, the fitting accuracy decreases in the case of 

strongly occluded faces. Although, the eyes in the neutral images were closed, yet, the model detected the eye 

regions. This study focused on expressions and occlusions using Point Distribution model, and more promising 

result was reported compared to many studies in the literature. Table 3 demonstrates the detection results of this 

technique and the previous studies. 

 

 

 

 

 

 

 

Fig 4: Model fitted on different face with occlusion (a-c) and different expression (d-f) 
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Table 2: Regions and their corresponding positions of the landmark point 

 

 

 

 

 

Table 3: Detailed results obtained from the experiment 

Acquisition type Fitting 

time (sec) 

Detection 

time (sec) 

 

Occlusion                    

type 

Hand 1.18 5.48 

Hair 1.11 4.92 

Scarf 1.24 5.88 

 

Expression 

type 

Angry 1.04 4.40 

Smile 1.08 4.48 

Open Mouth 1.13 4.81 

 

 

 
Table 4: Comparison of the proposed and previous methods 

 

 

 

 

 

5.     Conclusion and Future Work 

This paper discussed the various challenges in face landmarking, and proposed an approach that detected facial 

landmarks under various occlusions and expressions. The proposed technique was evaluated using UMB 

database, which is one of the most challenging facial databases with different types of occlusions and 

expressions. A PDM was employed with a total number of 66 points to fully describe the shape variations in 

accordance with five divided regions. The application of this model on very many occlusions and expressions is 

considered unique in this study, contrary to many existing works in the literature where single variation (like 

S/N Techniques Detection time (sec) 

1 Gabor Wavelets [36] 16.00 

2 ICP [37]                      7.52 

3 PDM  & ICP [38]                             3.00 

4 PCA [39]                             6.18 

5 Our approach (with expression)                    4.56 

6 Our approach (with occlusion)           5.43 
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Region 

name 

Position of the 

landmark points 

No. of landmark 

points 

REREB 1 – 11 11 

LELEB 12 – 22 11 

NT 23 – 31 9 

MT 32 – 48 16 

FE 59 – 66 17 
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expression, occlusion or pose) was reported. Despite the strong occlusions and difficult expressions, yet, we 

obtained detection within shortest possible time. The model worked robustly, even if more than half of the face is 

entirely covered. The model can further be applied to work on different poses and illuminations. Finally, we 

hope to improve the technique (i) by testing it on different databases (ii) by improving the accuracy of fitting the 

model in terms of pose changes and (iii) by increasing detection and fitting time.  
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