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Abstract 

An analysis has been carried out on the effects of variable viscosity on the problem of Magnetohydrodynamic 

fluid flow past an infinite continuous moving sheet embedded in porous media. The fluid viscosity is assumed to 

vary as an inverse linear function of temperature.  The x – axis runs along the permeable continuous moving 

surface in the direction of the motion and the y – axis is perpendicular to it. The magnetic field is applied along 

the y axis. The governing equations have been reduced to the coupled non linear partial differential equations. 

The system of transformed non linear partial differential equations is solved numerically using the finite 

difference method. The effects of the various parameters on the flow are analyzed and discussed through graphs. 
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1.  Introduction   

Investigations of a steady, two dimensional laminar boundary flow of an electrically conducting fluid past a 

continuous moving surface embedded in porous media are important in many manufacturing processes, such as 

materials manufactured by polymer extrusion, artificial fibers, hot rolling, wire drawing, glass fiber, metal 

extrusion and metal spinning, cooling of metallic sheets. In addition, they also find very useful applications in 

the design of insulation systems employing porous media. 

Most of the existing analytical studies are based on the constant physical properties of the fluid, [12]. However, 

it is known that these properties may change with temperature[4]. To accurately predict the flow it is necessary 

to take into account this variation of viscosity. [3] concluded that when the variable viscosity is included, the 

flow characteristics change substantially compared to the constant viscosity. [1] studied the effects of variable 

viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law 

velocity. [9] studied the influence of variable viscosity on laminar boundary layer flow and heat transfer due to 

a continuously moving plate.  

Work regarding the boundary-layer behavior in moving surfaces in quiescent fluid was considered by [2]. [14] 

studied effects of variable viscosity on hydro magnetic boundary layer along a continuously moving vertical 

plate in the presence of radiation and chemical reaction. [5]  studied the heat transfer in the steady two 

dimensional stagnation-point flow of an incompressible fluid over a stretching sheet considering the case of 

constant surface temperature taking into consideration the viscous dissipation of the fluid. 

There is extensive literature on flow through porous media that is governed by generalized Darcy 

laws.[6]studied the flow of a non-Newtonian fluid over a wall with suction orblowing and [5] investigated the 

steady flow of a power-law fluid past an infinite porous flat plate subject to suction or blowing with heat 

transfer.[13]investigated boundary layer flow of Newtonian fluid through a highly porous medium. Later [11] 

used these equations to study the influence of free convective flow and mass transfer on flow through porous 

medium.[10] investigated oscillatory flow of a Newtonian fluid through a porous medium. [7] investigated 

MHD stokes fluid flow past a porous contracting surface with heat transfer. [8] studied MHD flow past an 

infinite continuous moving surface. In the present study we consider the laminar flow along permeable 

continuous infinite horizontal sheet taking into account the temperature dependent viscosity. 

1.1 Formulation of the problem 

We consider a steady two-dimensional flow of incompressible, viscous and electrically 

Conducting fluid past a continuously moving plate of permeability 𝑘𝑘𝑝𝑝  .The x axis runs along the continuous 

surface in the direction of the motion and y-axis is perpendicular to it. According to the assumption, the two-

dimensional boundary layer equations for the flow of the fluid past a permeable continuous moving surface are 

as flows: 
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Figure 1: Flow configuration 
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the fluid viscosity which is assumed to be inverse linear function of temperature, [7] 

μ = 1
α(T−Tr )                                                                                                                                              (4) 

Both 𝛼𝛼 and 𝑇𝑇𝑟𝑟 , are constant and their values depend on the reference state and the thermal property of the fluid, 

i.e. a. In general 𝛼𝛼 > 0 for liquids and 𝛼𝛼 < 0 for gases. 
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Subject to the initial and boundary conditions of the problem are; 
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𝑑𝑑 = 0,   𝑑𝑑 = 𝑈𝑈∞  ,𝑑𝑑 = 0 ,𝑇𝑇 = 𝑇𝑇𝑤𝑤  

𝑑𝑑 →  ∞  ,   𝑑𝑑 = 0 ,   𝑇𝑇 = 𝑇𝑇∞                                                                                           (8) 

Where the quantities u and v are the velocity components in the x and y directions respectively, 𝐵𝐵𝑜𝑜  is a constant 

magnetic field and all the other quantities have their usual meanings. 

Introducing the following non-dimensional quantities; 

x = x∗H,     y = y∗H,    u = u∗U∞ ,    v = v∗U∞𝑇𝑇∗ =  𝑇𝑇− 𝑇𝑇∞
𝑇𝑇𝑤𝑤−  𝑇𝑇∞

                                                                (9) 

where H,𝐔𝐔∞  and T are the characteristics length, velocity and temperature 

Equation (6) and Equations (7) reduce to the following non-dimensional form: 
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Where R𝑅𝑅 =  𝜌𝜌  𝑈𝑈∞𝐻𝐻
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𝑇𝑇𝑤𝑤− 𝑇𝑇∞
=  𝑇𝑇−𝑇𝑇𝑟𝑟

∆𝑇𝑇
  𝑎𝑎𝑎𝑎𝑑𝑑 ,θr is the viscosity parameter. Where Peclet 

number 𝑃𝑃𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑃𝑃𝑟𝑟 =  𝜌𝜌𝑈𝑈∞𝐻𝐻𝐶𝐶𝑝𝑝
𝑘𝑘

=  𝑈𝑈∞𝐻𝐻
𝛼𝛼

 ,  

𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑𝐷𝐷𝑃𝑃 𝑎𝑎𝑑𝑑𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟  𝑃𝑃𝑟𝑟 =  𝐶𝐶𝑝𝑝𝜇𝜇
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𝑈𝑈∞ 𝑘𝑘𝑝𝑝
  is the permeability parameter. 

The corresponding initial and boundary conditions are; 

y*=0, u*=1, v*=0, and T*=1 

y*→ ∞, u*=0, v*=0 and T∗ = 0        (12) 

1.2 Method of Solution 

Equating the equation (10) and (11) to a pseudo time derivative 𝜕𝜕𝑑𝑑
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The numerical solutions of the problem are obtained by solving the non-linear differential equations (13) and 

(14) subject to (12) using finite difference method together with cranks Nicolson.  

Equations (13) and (14) in finite difference form and making 𝑈𝑈𝑋𝑋 ,𝑗𝑗𝑘𝑘+1 and 𝑇𝑇𝑋𝑋 ,𝑗𝑗𝑘𝑘+1 subject 
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       (16) 

2.  Results and Discussion 

To ensure stability and convergence of the finite difference scheme, the program is run using smaller values of 

△t and ∆𝑑𝑑.It is observed that there were no significant changes in the results, which ensure that the finite 

difference method used in the problem converge and is stable. 

 

 

Figure 1.1: Velocity profiles for different values of Eckert number Ec. 
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Figure 1.2: Temperature profiles for different values of Eckert number Ec 

 

Figure 1.1 shows no change in velocity profile as Eckert number increases. Figure 1.2 shows that decrease in 

Eckert number Ec causes a decrease in temperature profiles. The Eckert number expresses the relationship 

between the kinetic energy in the flow and the enthalpy. It embodies the conversion of kinetic energy into 

internal energy by work done against viscous fluid stress. A positive Eckert number implies cooling the sheet, 

implying heating the fluid. This causes a rise in temperature. 

From figures 1.3 we noted that increase in Reynolds’ number Re causes an increase in the velocity profiles. 

From figure 1.4 we noted that increase in Reynolds’s number causes decrease in temperature profiles, but there 

is a cross over where temperature profile increases. The Reynolds’s number represents the ratio of the inertial to 

viscosity forces.  Increase in Re results to a large inertial force that in turn translates to a higher velocity. 

 

 

Figure 1.3: Velocity profiles for different values of Reynolds number Re 
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Figure 1.4: Temperature profiles for different values of Reynolds number Re 

 

Figure 1.5 shows that increase in peclet number there is no increase in velocity profile. Figure 1.6 shows that 

increase in Peclet number increases temperature profiles. Peclet number is equivalent to the product of the 

Reynolds number and the Prandtl number. Thus, increasing thermal boundary layer. 

 

 

Figure 1.5: Velocity profiles for different values of Peclet number Pe 
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Figure 1.6: Temperature profiles for different values of peclet number Pe 

From figure 1.7 and 1.8 we noted that increase in magnetic parameter M causes a decrease in the magnitude of 

both velocity and temperature profiles respectively. Application of a transverse magnetic field to an electrically 

conducting fluid give rise to a resistive type force called the Lorentz force. This force has the tendency to slow 

down the motion of the fluid in the boundary layer, [8].  The reduced velocity by the frictional drag due to the 

Lorentz force is responsible for reducing thermal viscous dissipation in the fluid leading to a thinner thermal 

boundary layer. Magnetic field can therefore be employed to control the velocity and temperature boundary 

characteristics of a fluid. 

 

Figure 1.7: Velocity profiles for different values of magnetic parameter M 
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Figure 1.8: Temperature profiles for different values of magnetic parameter M 

 

In figure 1.8 and figure 1.9 increase in permeability parameter lead to decrease in both velocity and temperature 

profiles. The permeability parameter Xi is inversely proportional to the actual permeability 𝑘𝑘𝑝𝑝  of the porous 

medium. Increase in Xi leads to deceleration of the flow hence the velocity decreases. 

Increasing Xi increases the resistance of the porous medium (as the permeability physically becomes less with 

increasing Xi). This decelerates the flow and reduces the magnitudes of both the velocity and temperature 

profiles respectively.  Thus velocity and temperature profiles can be controlled by varying the permeability of 

the porous medium. 

 

 

Figure 1.8: velocity profiles for different values of permeability parameter Xi 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
GRAPH OF TEMPERATURE vs DISTANCE ALONG THE SURFACE

DISTANCE

T
E

M
P

E
R

A
T

U
R

E
 T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
GRAPH OF VELOCITY vs DISTANCE ALONG THE SURFACE

DISTANCE

V
E

LO
C

IT
Y

 U

curve pr Ec Re Pe M 𝜃𝜃𝑟𝑟  Xi 
i 0.7 0.6 20 30 0 10 15 
ii 0.7 0.6 20 30 5 10 15 
iii 0.7 0.6 20 30 15 10 15 
 

curve pr Ec Re Pe M 𝜃𝜃𝑟𝑟  Xi 
i 0.7 0.6 20 30 5 10 0.5 
ii 0.7 0.6 20 30 5 10 15 
iii 0.7 0.6 20 30 5 10 30 
 

126 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2014) Volume 18, No  1, pp 118-131 

 

Figure 1.9: Temperature profiles for different values of permeability parameter Xi. 

 

From figure 2.0 and 2.1 we noted that increase in viscosity parameter 𝜃𝜃𝑟𝑟 , causes a decrease in the magnitude of 

velocity profiles and an increase in temperature profiles. 

 

 

 

Figure 2.0: velocity profiles for different values of viscosity parameter 𝜽𝜽𝒓𝒓 
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Figure 2.1: Temperature profiles for different values of viscosity parameter 𝜽𝜽𝒓𝒓 

 

2.1  Nusselt Number And Shear Stress 

The quantities of main engineering interest in the problem at hand are the local Nusselt number and the shearing 

stress on the continuous moving sheet. The Nusselt number physically indicates the rate of heat transfer. The 

shearing stress on the surface of the continuous surface is defined as. 

 𝜏𝜏𝑑𝑑  = 𝜇𝜇𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑
                                                                                                                                   (17) 

The local skin friction coefficients are defined as 

 𝜏𝜏
𝑑𝑑  = 1 

𝑅𝑅𝑅𝑅
𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

∗           (18) 

Equation represents the respective local skin coefficient due to velocity profiles. 

The local nusselt number Nu is expressed as 

 Nu = −1
𝑇𝑇𝑤𝑤−𝑇𝑇∞

𝜕𝜕𝑇𝑇
𝜕𝜕𝑑𝑑

         (19) 

2.2 Variation Of Nusselt Number With Various Parameters 

From table 1 and table 2 we noted the following: 

• Increase in Eckert number leads to decrease in Nusselt number and an increase in shearing stress. 

• Increase in Magnetic parameter number leads to increase in Nusselt number and shearing stress. 
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Table 1: Variation of Nusselt number with Ec, Re, Pe  and M 

NU Ec  Re  

 

Pe  

 

M  

 

5.608011 2 20 30 5 

5.613877 2.000000e-002 20 30 5 

3.866185 6.000000e-001 50 30 5 

5.607203 6.000000e-001 20 70 5 

6.181751 6.000000e-001 20 30 15 

7.995947 6.000000e-001 20 30 30 

 

Table 2: Variation of shearing stress with Ec, Pe and M. 

Tau_x Ec Re Pe M 

1.648487 1 20 50 5 

1.649386 10 20 50 5 

2.375860 1 20 50 10 

 

 

3.  Conclusion 

The analysis of various parameters on steady laminar boundary layer flow of an incompressible, electrically 

conducting, and viscous Newtonian fluid past continuous electrically non conducting porous sheet has been 

carried out. The numerical solutions of velocity and temperature fields are obtained by finite difference method. 

[8] Analyzed MHD flow past an infinite continuous moving surface. The problem at hand has a porous plate. In 

order to validate the present results, the boundary condition for the sheet is changed so as there is no effects of 

porous sheet. In the absence of porous plate the results are compared with that of [8]; and agree. The main 

conclusions are as follow: 

• Velocity profiles and temperature profiles decreases with increase in magnetic parameter M. 

• Increase in Reynolds number Re leads to increase in velocity profiles and decrease in temperature profiles 

but there is a cross over. 

• Increase in Eckert number Ec leads to no change in velocity profiles but to an increase in temperature 

profiles. 

• Increase in peclet number Pe leads to increase in temperature profiles and no effects on velocity profiles. 

• Increase in viscosity parameter 𝜃𝜃𝑟𝑟 , causes a decrease in the magnitude of velocity profiles and an increase 

in temperature profiles. 
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• Increase in Eckert number leads to decrease in Nusselt number and an increase in shearing stress. 

• Increase in Magnetic parameter number leads to increase in Nusselt number and shearing stress. 

References  

[1]Anjali Devi And A. David Maxim Gururaj, “Studied The Effects of Variable Viscosity and Nonlinear 

Radiation on MHD Flow with Heat Transfer Over a Surface Stretching with A Power-Law Velocity”, Advances 

in Applied Science Research, 3:(1)319 -334, 2012 

[2]B. C. Sakiadis, “Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary Layer Equations for 

Two-Dimensional and Axisymmetric Flow,” AIChE Journal, vol. 7, pp. 26–28, 1961 

[3]J.Gary, D.R. Kassoy, H. Tadjeran and A.Zebib, J.Fluid Mech., 117,233, 1982. 

[4]Hassanien, I. A. “Flow and Heat Transfer on Continuous Stretching Flat Surface Moving In A Parallel Free 

Steam With Variable Properties” ZAAMZ. Angew Math. Mech. 79: 786-792, 1999. 

[5]Gupta, A.S., Misra, J.C., Reza, M, “Effects of Suction or Blowing on the Velocity and Temperature 

Distribution in the Flow past a Porous Flat Plate of a Power-Law Fluid”. Fluid  Dyn. Res. 32, 283–294, 2003. 

[6]Hayat, T., Kara, A.H., Momoniat, E,“Exact Flow of A Third-Grade Fluid on A Porous Wall”.Int. J. Non-

Linear Mech. 38, 1533–1537, 2003. 

[7]Kinyanjui, Muondwe, Theuri, Giterere, “Investigation of MHD Stokes Fluid Flow Past A Contracting Porous 

Plate with Heat Transfer”, International Journal of Pure and Applied Mathematics, 2014 

[8]Muondwe, Nderitu, Njoroge, Kariuki, Kinyanjui, “Finite Difference on MHD Flow Past Infinite Moving 

Plate” Asian Journal of Current Engineering and Math’s, 2014. 

[9]Pop. I, Gorla.R.S.R and Rashidi.M, Int J Eng Sci., 30, pp.1-6, 1992. 

[10]Raptis, A. A and Perdikis, C.P. “Oscillatory flow through a porous medium by the presence of free 

convective flow” International journal of Engineering Science, 23: 51, 1985. 

[11]Raptis, A., Tzivanidis, G. and Kafousias, N. “Free convection and mass transfers flow through a porous 

medium bounded by an infinite vertical limiting surface constant suction,” Lett. Heat mass transfer, 8: 417, 

1981. 

[12]Seddeek, M. A. “Flow of a magneto-micro polar fluid past a continuously moving plate” Physics Letters A, 

306:255-257, 2003. 

[13]Yamamoto. K. and Iwamura, N. “Flow with convective acceleration through a porous medium,” Journal of 

current engineering Mathematics, 10: 41-54, 1976. 

130 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2014) Volume 18, No  1, pp 118-131 

[14]Utpal Jyoti Das “Effects of Variable Viscosity on Hydro magnetic Boundary Layer along a Continuously 

Moving Vertical Plate in the Presence of Radiation and Chemical Reaction”, Journal of Electromagnetic 

Analysis and Applications,5: 5-9(2013). 

 

 

 

131 
 


	Results and Discussion
	2.1  Nusselt Number And Shear Stress
	Variation Of Nusselt Number With Various Parameters

