View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

Complex Security Policy?
A Longitudinal Analysis of Deployed Content Security Policies

Sebastian Roth*, Timothy Barron, Stefano Calzavara®, Nick Nikiforakis’, and Ben Stock*
*CISPA Helmbholtz Center for Information Security: {sebastian.roth,stock } @cispa.saarland
f Stony Brook University: {tbarron,nick} @cs.stonybrook.edu
1 Universita Ca’ Foscari Venezia: calzavara@dais.unive.it

Abstract—The Content Security Policy (CSP) mechanism was
developed as a mitigation against script injection attacks in
2010. In this paper, we leverage the unique vantage point of
the Internet Archive to conduct a historical and longitudinal
analysis of how CSP deployment has evolved for a set of 10,000
highly ranked domains. In doing so, we document the long-
term struggle site operators face when trying to roll out CSP
for content restriction and highlight that even seemingly secure
whitelists can be bypassed through expired or typo domains. Next
to these new insights, we also shed light on the usage of CSP
for other use cases, in particular, TLS enforcement and framing
control. Here, we find that CSP can be easily deployed to fit
those security scenarios, but both lack wide-spread adoption.
Specifically, while the underspecified and thus inconsistently
implemented X-Frame-Options header is increasingly used on
the Web, CSP’s well-specified and secure alternative cannot keep
up. To understand the reasons behind this, we run a neotification
campaign and subsequent survey, concluding that operators have
often experienced the complexity of CSP (and given up), utterly
unaware of the easy-to-deploy components of CSP. Hence, we find
the complexity of secure, yet functional content restriction gives
CSP a bad reputation, resulting in operators not leveraging its
potential to secure a site against the non-original attack vectors.

I. INTRODUCTION

Given the complexity of modern Web applications and the
number of different attacks that Web sites and their users can
be exposed to, browser vendors have long supported a wide
range of additional opt-in security mechanisms (with more
being adopted regularly). These mechanisms attempt to protect
the confidentiality of cookies (e.g., through the secure and
httpOnly flags), to stop malicious sites from framing benign
ones (e.g., through X-Frame-Options), or to ensure users
are protected against SSL stripping attacks (e.g., through
HTTP Strict Transport Security). The Content Security Policy
(CSP) is one such mechanism that was introduced in 2010
and was initially designed to grant Web developers more
control over the content loaded by their Web sites [40]. Unlike
other security mechanisms that have a limited number of
configuration options, CSP allows Web developers to author
complex, whitelisting-based policies to precisely specify the
sources that are trusted for a wide range of content including
JavaScript, images, plugins, and fonts.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.23xxx
www.ndss-symposium.org

Though the (in)effectiveness of CSP has been analyzed and
debated in several research papers [6, 18, 150, I51]], CSP is still
under active development and is routinely adopted by more and
more Web sites: the most recent study [8]] observed an increase
of one order of magnitude in CSP deployment in the wild
between 2014 and 2016. Notably though, virtually all papers
have focused on CSP as a means to restrict content and have
treated its newly added features (such as TLS enforcement
and framing control) as side notes. To close this research gap
and holistically analyze CSP it is important to take a critical
look at how CSP deployment has evolved over time, so as to
understand for which purposes developers use CSP and how
it affects their sites’ security.

To this end, we leverage the Internet Archive to obtain
the historical CSP headers for 10,000 highly ranked domains
from 2012 to 2018. Leveraging this unique vantage point for
a long-term study, we first investigate CSP’s evolution for
content restriction and specifically highlight numerous case
studies that document the struggle in rolling out a CSP. Among
the insights, we find that 56% (251/449) of Web sites that
test CSP for content restriction with report-only, presumably
due to its complexity, refrain from ever enforcing any policy.
Similarly, we find numerous examples of sites trying to keep
on top of their whitelists for months, before eventually giving
up. Moreover, we outline the unexpected interactions between
CSP and DNS and discover that over 13% of sites attempting to
control script resources whitelisted domains that have expired,
contain obvious typos, or resolve to private IPs.

Notably though, our longitudinal lens over seven years
allows us to show that CSP’s primary use case is gradually
shifting away from the original goal of content restriction,
with 58% (720/1,233) deploying it for other purposes. In
particular, we document the increase in adoption of TLS
enforcement and how the security mechanism is used in
practice for utility purposes. Moreover, we find that while CSP
is well-equipped to rid the Web of the X-Frame—-Options
(XFO) header, many sites still rely on the deprecated header
incapable of providing CSP’s fine-grained framing control.
To understand the reason behind this lack in adoption, we
conduct a notification campaign of sites running XFO. Based
on the over 100 responses we received, we find that CSP’s full
potential is scarcely documented and the perceived complexity
of CSP shies operators away from even the easy-to-deploy
parts. Furthermore, using an in-depth analysis of violated
policies as well as sites that are either trivially insecure or are
able to sustain a secure policy, we propose CSP extensions to
ease adoption and improve security in practice.

https://core.ac.uk/display/249328169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of our paper is structured as follows:

e We leverage the Internet Archive to conduct the longest
study of the CSP mechanism to date (2012-2018), and
show how our insights can generalize (Section [[II).

e We document the evolution of CSP and its use cases
over time, showing its gradual move away from content
restriction to other security goals (Section [[V).

e Based on the collected CSPs for content restriction, we
discuss an overlooked attack caused by the interplay of
CSP and DNS, and document the long-term struggles site
operators face in the deployment of CSP (Section [V).

e We shed light on the previously dismissed use cases
of TLS enforcement (Section and framing control
(Section [VII), and highlight their growing importance.

e To untangle the reasons behind CSP’s failed adoption, we
conduct an in-depth analysis of sites that gave up on CSP,
ran insecure CSPs, and those that managed to run a strict
CSP. Based on this, we identify characteristics which are
blocking sites from CSP deployment (Section [VIII).

o Given that the adoption of CSP for framing controls lacks
behind the underspecified XFO header, we conduct a
notification of sites at risk, and report on the insights
gathered from the field (Section [IX])).

e Based on the insights gained throughout our analysis, we
highlight how CSP’s evolution has affected its prevalence
and usage, and propose three actionable steps to improve
adoption of CSP (Section [X]).

II. BACKGROUND ON CSP

Content Security Policy (CSP) is a browser-enforced secu-
rity mechanism first proposed in 2010 by Stamm et al. [40].
Its primary purpose was to mitigate the impact of Cross-Site
Scripting (XSS), as well as of other types of content injection
vulnerabilities. However, CSP has undergone several revisions
over the years and evolved to support different use cases.

CSPs can be specified inside the Content-Security-
Policy header or by including them in <meta> tags inside
an HTML head section. An example CSP is shown in Fig-
ure || and used as a running example in this section. Policy
violations can be logged to the URL specified in the report—
uri/report—to directive (line 5) Alternatively, a Security-
PolicyViolationEvent can be caught by scripts [25]. CSPs sent
using the Content-Security-Policy-Report-Only
header are not enforced by the browser, but their violations are
logged for telemetry. This way, sites can test policies before
their deployment, without affecting their functionality.

A. CSP for Content Restriction

CSP provides directives to bind content types to sets of
source expressions, regular-expression-like constructs used to
represent the Web origins from which resources of a given
type may be included. For example, the policy in Figure [I]
whitelists scripts originating from the origin itself (line 1) and
images served from https://b.com (line 2). Resources of
all the other content types can be loaded from any HTTPS
origin, as denoted by the default-src directive (line 3)
whitelisting the entire HTTPS scheme. If a policy lacks both
a t—src directive (for some content type t) and a default-
src directive, content of type ¢ can be loaded from anywhere.

script—src Pself 7
img—src https ://b.com;
default—src https :;

frame—ancestors https ://*x.a.com;
report—uri https ://a.com/csp.php;
upgrade—insecure —requests ;

NN B W —

Fig. 1: Example of a Content Security Policy

Our example policy also implicitly forbids the use of in-
line scripts, event handlers, and string-to-code transformations
via eval and its derivatives. These security restrictions can
be relaxed by adding unsafe—-inline or unsafe—eval
to the script—-src directive (or to default-src when
script-src is missing).

The original CSP design proved to be an inflexible security
mechanism, since it required the removal of all the inline
scripts and event handlers to actually provide any security
benefit; hence, its adoption initially lagged behind other secu-
rity headers [51]. To remedy this, the second version of CSP
introduced hashes and nonces to whitelist selected inline script
elements [46]]. The former allow to whitelist inline scripts
matching a given hash, whereas nonces enable execution
of <script> tags carrying this nonce. However, note that
neither hashes nor nonces allow developers to whitelist event
handlers. For backward compatibility, when nonces or hashes
are present, supporting browsers ignore unsafe—-inline.

Since 2016, the third and latest version of CSP further aims
to ease deployment through the strict-dynamic source
expression, used to propagate trust to scripts loaded by other
scripts whitelisted using a valid hash/nonce [47]. In other
words, when strict-dynamic is used in combination with
hashes/nonces, any script with a valid hash/nonce can arbitrar-
ily include additional scripts by programmatically adding script
nodes to the DOM, even when they lack a valid hash/nonce.

B. CSP for TLS Enforcement

A use case not originally intended for CSP is TLS en-
forcement. While one could already leverage the content re-
striction capabilities of CSP to force the use of HTTPS by
whitelisting just HTTPS resources, CSP also introduced new
explicit directives for additional expressiveness. In particular,
CSP was extended to better integrate with the Mixed Content
specification, a security policy implemented by all modern
browsers which regulates the use of HTTP resources in HTTPS
pages [53]. In particular, modern browsers will refuse to load
active content like scripts over such downgraded connections,
but, e.g., for images blocking is at the browser’s discretion.
A site can be explicit in forbidding such resources by spec-
ifying the block-all-mixed-content directive in its
CSP. This effectively instructs browsers to block all mixed
content. Instead of blocking all mixed content, the upgrade—
insecure-requests directive (shown in Figure[I] line 6)
forces the automatic rewriting of all HTTP URLs to HTTPS
upon page loading. This is useful to gracefully implement a
transition from HTTP to HTTPS, while preventing warnings
and breakage due to the use of mixed content.

C. CSP for Framing Control

Moreover, CSP introduced the frame-ancestors di-
rective for framing control, thus providing protection against

framing-based attacks like Click-Jacking [30]. It was intended
to replace the traditional Xx-Frame-Options header (XFO)
with a more flexible whitelisting mechanism, as well as to
patch underspecified points of XFO [36]]. In particular, XFO
just supports three types of policies: DENY prevents all fram-
ing, SAMEORIGIN restricts framing to the same origin as
the framed page, and ALLOW-FROM u restricts framing to a
single URL u. Note that ALLOW-FROM is not even supported
by all browsers (in particular Chrome and Safari), thus making
XFO particularly problematic [22]. CSP, instead, may be
used to allow framing from a list of arbitrarily many Web
origins specified through source expressions. Moreover, the
CSP specification mandates that the security enforcement must
be done against the full chain of ancestors of the framed page.
In contrast, XFO delegates the choice to browser vendors.
This enables double framing attacks on browsers which only
compare the origin against the top frame, such as IE and
Edge [30]. As an example of the benefits of CSP over XFO in
terms of framing control, the policy in Figure [T]allows framing
by any subdomain of a.com over HTTPS (line 4), which
cannot be expressed using XFO. Moreover, it ensures that in
case of multiple nested frames, all frames must originate from
subdomains of a.com in order for the content to be shown.

III. ANALYSIS METHODOLOGY

Contrary to prior work that mostly quantified the insecurity
of CSP with respect to XSS mitigation, our main focus is to
investigate how CSP’s changing role affected its deployment.
To this end, the Internet Archive (IA) [[17] provides a glimpse
into the past since, starting from 1996, it archives both content
and headers of popular Web sites and makes the information
publicly available. Here, we describe how we arrive at a
representative dataset of 10,000 popular sites, followed by how
we crawl the IA for data related to CSP’s evolution.

A. Dataset Construction

Since widespread support for CSP landed in browsers in
2012 [9], we focus on analyzing the deployment and usage of
CSP from 2012 to the end of 2018. However, merely using a
current list of highly-ranked domains does not suffice, as many
domains may not have been registered (let alone be popular)
during the entire period of our study. Moreover, the reliability
of lists such as Alexa was recently challenged for exhibiting
massive fluctuations on a day-to-day basis [37]. Therefore, we
used the following selection strategy for sites: using Alexa lists
collected over time [37], for each month between January 2012
and December 2018 we extracted the set of sites that were in
the top 50,000 on at least a single day within that month. We
then calculated the intersection of these monthly sets, sorting
the sites by their average rank (over the entire time).

To limit the overall number of queries to the A, we opted
to study the 10,000 most prolific sites for the given timeframe.
To arrive at this set [2], for each entry in the sorted list
of sites, we queried the IA to determine if it contained any
archived version of the site. This check is necessary since the
IA removes any previously stored content when a site blocks
the IA crawler through robots.txt [20}41]]. To understand
potential biases towards any period within the seven years,
for each month we computed the average top 10,000 sites,
and compared them to the list we finally chose. This showed

that at least 4,960 and at most 6,199 entries overlapped for
any given month, averaging at 5,738 domains. Hence, we
argue our dataset is well-balanced, allowing us to draw general
conclusions on the evolution of deployed CSPs over time.

Given this set of sites, we queried the IA for their daily
snapshots from January 1, 2012, until December 31, 2018.
Selecting one snapshot per day (where available), we fol-
lowed any HTTP redirection to reach the final landing page
for users accessing the site at archival time. Note that we
only used HEAD requests to reduce the load on the IA.
Once all redirects were followed, we compared the orig-
inally visited site to the final URL. In total, we queried
the TA for 10,414,975 snapshots, out of which 10,316,325
yielded final URLs still on the same site. For each of the
same-site snapshots, we collected all variants of CSP head-
ers historically used (i.e., Content-Security-Policy,
X-Content-Security-Policy, X-WebKit-CSP, and
Content-Security-Policy—-Report-0Only), as well
as XFO and Strict-Transport-Security. The IA
prefixes archived headers with X— Archive-Orig-, making
them easy to differentiate from other response headers [41].
Note that the IA removes CSP directives in <meta> elements
to avoid interference with the CSP of the IA itself. The CSP
deployment occurred after previous research had identified
the possibility of maliciously tampering with historical results
through the use of externally-hosted scripts [20]. This filtering
has a minor effect on our experiments since few sites deploy
CSP through a meta tag (Section [III-BJ).

Naturally, not all sites have daily snapshots in the IA. On
average, a site had snapshots for 1,031 of the 2,557 days in our
analysis timeframe. Hence, whenever there is no snapshot for
a given day d;, we use d;_; instead as a basis for our analysis,
in a recursive fashion. This means that for every gap in the
snapshot data, we use the last entry before that gap as the data
point. This approach suffers from a certain level of impreci-
sion, as it might be unclear exactly when a change in a CSP
has occurred. This loss of fine-grained information, however,
does not significantly affect the class of observations pursued
in our work. For each collected CSP policy, we normalized all
randomized elements. In particular, nonces are meant to used
just once, and the violation reporting URL may also contain
random strings. For those, we removed the random parts,
allowing us to properly analyze actual changes. All normalized
policies are available at https://archive-csp.github.io,

B. Threats to Validity

Given that our analysis uses the IA to extract information,
it is prone to the following threats to the validity of the results.

1) Incorrect Archival Data: 1Tt is not clear to what extent
the data collection process in the IA might influence our
results, since a specific browser version might yield a different
server response. To determine this IA-specific influence, we
chose a second archive service to corroborate the IA’s data.
In particular, Common Crawl (CC) [[L0] has been collecting
snapshots of popular sites since 2013. For each date on which
we found a CSP in the IA, we queried the CC API for
a matching snapshot. Overall, we found 38,129 overlapping
snapshots for 940 sites. Out of these, 729 (1.9%) on 127 sites
were inconsistent between the two archives. For 96 cases the

https://archive-csp.github.io

1000 4
only CSP
B 7504| ---only csP-roO
= Both
7]
2 5001
)
#2504
07 promsmmsmmem iy = |
2014 2016 2018

Fig. 2: Usage of CSP only, CSP-RO only, or both

difference was the lack of block-all-mixed-content
or upgrade—insecure-requests in the CC data. Fur-
ther investigation showed that in the IA, these directives were
separated from the remaining CSP with a comma instead of a
semicolon. This likely relates to the IA joining headers with
the same name with a comma. For those pages, we could
always only find a single CSP header in the CC response.
Moreover, starting from August 2018, these sites still used the
aforementioned directives in the TA data, but CC returned two
CSP headers (one including only those directives). Hence, we
speculate this relates to a bug in CC, which was fixed around
August 2018. 23 cases showed evidence for a difference in
crawling time; e.g., taking the IA policy from the following
day matched the CC. Additionally, 29 differences can be
attributed to whitelisting different edge CDNs based on the
crawler’s IP. For the remaining 581 cases, the exact cause
of the difference was not detectable. Notably though, in only
238/38,129 cases (0.6%) did those policies have a different use
case (see Section [[)). Overall, this confirmation from a second
source gives us high confidence in our utilized dataset.

2) CSP Through Meta Tags: As mentioned, CSP can also
be deployed via HTML meta tags which are currently removed
by the IA. To understand the potential impact of this drawback,
we crawled the live main page of all 10,000 Web sites from our
dataset on June 10, 2019. We collected CSP headers and also
checked the content for CSP meta elements. In this experiment,
a total of 1,206 sites deployed CSP, and, of those, 78 (6.4%)
sites set their policy only through a meta element. Of the 1,147
sites that sent a CSP header, 19 also set the meta element.
Notably though, only 3 with both meta and HTTP header CSPs
had policies which differed in their use case (see Section [[V-B).
Hence, we are confident the archived headers provide a valid
dataset for our large-scale historical analysis.

IV. HISTORICAL EVOLUTION OF CSP

In this section, we provide an overview of how CSP
deployment evolved, studying the adoption and maintenance
of CSPs, and the changing use cases we observed over time.

A. Adoption and Maintenance of CSP

Figure [2] shows the number of Web sites utilizing CSP
in enforcement mode, in report-only mode (CSP-RO), and
in both modes in parallel. The figure does not include the
CSP adoption from 2012 to 2014, since only 8 different sites
deployed CSP before 2014. In our dataset, lastpass.com
and adblockplus.org were the first Web sites to adopt
CSP in January 2012, while the other six sites joined in 2013.
In total, we find that 1,233 out of the 10,000 sites in our dataset
used CSP in enforcement mode for at least a single day in
our analysis period. Notably though, in the last month of our
analysis, only 1,032 domains enforced a CSP.

— -average number of changes
—fraction of changed sites

% of sites with change
w

i
i
o

sabueyo Jo 1aqunu abelane

2014 2016 2018

Fig. 3: Maintenance of CSPs over time

We draw two main observations based on the plot. First,
even though CSP offers the report-only mode to enable de-
velopers to experiment with policies before deployment, this
mode is not nearly as popular as the enforcement mode. This
means that most developers are rolling out policies without
having a chance to test them on their user base. We suspect
that this is one of the main reasons why CSPs in the wild are
so relaxed since they have not been appropriately evaluated
and the developers eventually opted for utility over security
(see Section . Second, we observe even fewer Web sites
utilizing CSP in enforcement and report-only mode at the
same time, which is the preferred way of gradually testing and
deploying more restrictive policies. These two observations
together suggest that developers are likely confused about the
role of report-only and therefore do not take advantage of it.

The plot also shows that the overall adoption of CSP
is consistently increasing over time. Given that our list of
Web sites remains stable, we can attribute the increased CSP
adoption to Web developers deciding to use it, rather than
CSP-capable Web sites suddenly climbing in Alexa popularity.
Specifically, in 2017 and 2018 anywhere between 18 and 65
Web sites in our dataset were adopting CSP in enforcement
mode for the first time every single month. Considering the
ever-increasing complexity of Web sites and their deployed
JavaScript code [41]], the rising adoption of CSP seems to be
a positive sign for security. Given the low adoption of report-
only, the next sections focus primarily on enforcement mode.

Since CSP is one of many security mechanisms deployed
by servers and enforced by browsers (like, e.g., HSTS [29]) one
may think that similar to other mechanisms, once a policy is
curated, that policy can be deployed and used for a prolonged
period. Unfortunately, CSP — especially for its original use
case of script content restriction — is way more complicated
than other security mechanisms and requires constant mainte-
nance to ensure that the appropriate sources are whitelisted so
that the site remains operational and secure. Figure 3] quantifies
the burden of keeping deployed CSPs up to date. The dashed
red line shows that, in many cases, sites needed to modify
their policies tens of times each month. Even though we see
the average number of changes going down towards a steady
state, we later show that this is rather caused by CSP being
used for non-traditional reasons (such as for TLS enforcement)
than by stabilized whitelists. The blue line shows the fraction
of sites with changed policies. We still observe the need to
regularly maintain CSPs since by the end of our analysis, still
roughly 10% of sites changed their policy at least monthly.

B. Use Cases for CSP

Even though CSP was initially developed as a measure to
mitigate the impact of script injection, the multitude of direc-
tives available nowadays allows site operators to control much

500 A
Script Content Control
8 400 ---TLS Enforcement
‘5)' 300 A Framing Control
‘S 200 A
** 100
o ey I PP

2014 2016 2018

Fig. 4: Classified policies over time

more than included content. Specifically, we classify policies
in the following (overlapping) categories: Script Content Re-
striction (policies using script-src or default-src);
TLS Enforcement (policies using upgrade-insecure-—
requests, block-all-mixed-content, or whitelist-
ing only HTTPS sources); and Framing Control (policies
using frame-ancestors). Figure f] shows the number of
sites applying CSP for the identified use cases over time. When
comparing the numbers to Figure [2| we find that the increase
in the deployment of CSP starting from 2015 coincides with
the increased usage of framing control. Similarly, the increase
in the overall usage of CSP from 2017 onwards aligns with
the increased enforcement of TLS connections, mostly through
upgrade-insecure-requests. Moreover, the decrease
in maintenance shown in Figure is evidence of easily
deployable mechanisms like TLS enforcement, rather than
reduced effort to keep policies up to date. This clearly indicates
that while CSP was meant as a tool to mitigate script injection,
new additions to the set of the CSP directives have shifted CSP
into new use cases. In the following, we analyze each category
separately, discuss its evolution, and highlight key insights.

V. CSP FOR SCRIPT CONTENT RESTRICTION

In this section, we analyze how CSP has evolved with
respect to its content restriction capabilities. This not only
allows us to confirm findings of prior work through the
longitudinal lense of the IA, but also to highlight unknown
trends in the increasing trust of operators into lower-ranked
domains, to investigate the success of newly introduced CSP
features, and to identify previously unexplored attacks related
to hijacking whitelisted domains. Finally, given the unique
vantage point of an archival analysis, we conduct a number
of case studies which document the long-lasting struggle of
Web sites to deploy an effective policy.

The first observation we make is that, out of the 1,032
sites in the dataset that enforced a CSP by the end of our
analysis period, only 421 sites shipped policies aimed at
restricting script content. This clearly shows that although CSP
was initially meant to mitigate script injections, this is only
attempted by about 41% of the deployed policies. We now
present insights gained from the deployed policies.

A. Insecure Practices Die Hard

Figure [5] shows the evolution in the number of sites using
CSP for content restriction, and how many of them have been
using various unsafe practices therein. The two most popular
unsafe practices are the use of unsafe—-inline (without the
use of hashes/nonces) and the use of unsafe—eval. While
unsafe-eval must be considered the lesser evil, given that
its presence does not immediately nullify CSP’s security, we
observe almost all the policies deployed in 2014 and 2015

500
o 4004 IScript Contefwt Control -
5 unsafe—eval it
%’ 300 4| --'unsafe-inline' w/o nonces 7
u5 2004| e /htps R
data: At =7
#* 0090000000000 =T —r
04 I.—..-..-:—.—.—:_———_:——'— - I— """" bl :
2014 2016 2018

Fig. 5: Overall adoption of content restriction and insecure practices

made use of unsafe—inline. We attribute this to the inflex-
ibility of early versions of CSP. However, it is noteworthy that
even at the end of our analysis period, this trivially insecure
directive is contained in almost 90% of the policies. While we
can only speculate about the exact reason for this trend, we
opine that it is likely due to event handlers which cannot be
whitelisted with hashes or nonces. Checking merely the start
pages for the 378 sites which deployed unsafe-inline in
December 2018, 180 (48%) of them carried event handlers.
The actual number of sites making use of them is likely
even higher, but we could not confirm this without adding a
significant load on the IA by crawling sub-pages. The bottom
two lines of Figure[5|refer to the whitelisting of entire schemes.
In particular, the first line shows that developers are declaring
that any HTTP/HTTPS origin is permitted, which obviously
voids security. The second line represents the whitelisting of
the data scheme, which can be used to add arbitrary code,
e.g., through data:;alert (1) [23].

Our analysis also indicates that the numerous features
added to CSP to ease its secure deployment are not success-
ful. Table [I] reports on the adoption of hashes, nonces, and
strict-dynamic on a yearly basis. Note that, although
strict—dynamic has recently been shown to be bypassable
through Script Gadgets [19]], we still treat it as an improvement
since it should ease CSP deployment. The table highlights that
while the usage of CSP to control scripts has constantly grown,
neither hashes nor nonces have gained significant adoption.
We also find that in both 2017 and 2018, at most 8 sites
made use of strict-dynamic. While we are only checking
start pages and might therefore miss wider-spread deployment,
this still highlights that the new directive is not widely used.
Overall, we can conclude that insecure practices are present
in 90% of policies, whereas secure practices like nonces or
hashes, reach less than a 5% adoption rate.

B. Whitelisted Sources

We now complement the findings of Weichselbaum et al.
[S0] regarding the insecurity of whitelists by quantifying the
evolution of the number of whitelisted script sources over time
(Figure [6). We observe that even though the median remains
relatively stable, the number and magnitude of outliers expand
year after year with some Web sites whitelisting over 200

Year Controls script ~ Hashes Nonces strict-dynamic
2014 27 0 (0%) 1 (4%) 0 (0%)
2015 75 1 (1%) 2 (3%) 0 (0%)
2016 135 1 (1%) 3 (2%) 0 (0%)
2017 296 4 (1%) 14 (5%) 7 (2%)
2018 478 6 (1%) 24 (5%) 8 (1%)

TABLE I: Number of sites per year restricting script content, and
using hashes, nonces, and strict-dynamic.

NIREERE T
lestbitdd bl

Fig. 6: Boxplot showing the number of elements in script whitelist

unique sources for their scripts. The low median must be
interpreted in light of the unsafe practices described earlier.
Whitelisting an entire scheme (such as https) and allowing
unsafe-inline may result in short policies (in terms of the
number of entries) which are, however, still more vulnerable
than explicitly trusting hundreds of remote third parties.

The ranking of whitelisted sources is an important di-
mension of CSPs, since site popularity is often used as a
proxy for security. This stems from the reasonable assumption
that, on average, the developers of more popular Web sites
have more know-how and resources to help secure their code.
For example, Van Goethem et al. [45] discovered that more
popular Web sites tend to utilize more security mechanisms
than less popular ones. To analyze this, Figure [/| shows
information about the ranking of Web sites that are whitelisted
as script sources. In particular, this contains all hosts that were
whitelisted; i.e., even in the presence of », we analyzed the
remaining contained sites. We argue that this is useful, given
that remote sources contained in the whitelist are explicitly
trusted by the site, and the existence of » often is a byproduct
of attempting to curate a limited whitelist (cf. Section [V-DI).
For this analysis, we used the publicly available historical
dataset of Scheitle et al. [37]], extracting the rank from each site
on the day when it was whitelisted. To combat the fluctuation
of these lists, we aggregate the results on a monthly basis. We
find that starting from 2017, the average rank of trusted CSP
sources increases, although the average number of elements in
whitelists does not (cf. Figure [6). This means that developers
are explicitly trusting less popular Web sites through their
CSPs to host JavaScript code, thereby weakening their security.

C. Abusing Whitelisted Domains

Given the observed trend in trusting lower-ranked sites,
we find that such domains are valuable targets for an attacker.
Even though whitelisting domains can prevent script injections
from arbitrary sources, this can be bypassed by an attacker who
is able to serve content from a whitelisted source. Specifically,
referring to trusted sources by domain names carries with it
the typical security problems of domain names. In our dataset,
the CSPs of 373/422 (89%) of sites trying to restrict content
whitelisted at least one domain for script inclusion. We discuss
three attacks to leverage trusted domains and determine how
many sites could have had their policies bypassed.

1) Expired Domains: First, domains that expire while still
appearing in a whitelist may be re-registered, giving the new
owner the ability to serve malicious content through a source
that is already trusted by the victim site. To find periods when
whitelisted domains were expired, we use public TLD zone
files which we have collected daily since 2016. We compute

200 KA
150 K
=
< 100 K+
S
el é
e L Lo E L LT L
2014 2015 2016 2017 2018

Fig. 7: Average historic Alexa rank of whitelisted domains

the difference between zone files on consecutive days to find
domains that are newly registered or expired. These differences
are indexed into a search engine allowing us to query for the
registration history of a domain name. Despite the lack of zone
files covering the full duration of our dataset, we were still
able to find 9 cases of domains expiring after being added to a
whitelist and 7 domains which were not registered at all during
the periods they appeared in CSP whitelists.

2) Typos: CSP whitelists are also vulnerable to human
error in defining trusted sources. A typo entered in the whitelist
permits the loading of content from an unintended domain. The
typo domain may not be registered, in which case it can be
bought and abused as above. If the typo domain is already
owned, there is still the potential for the current owner to
discover the issue and abuse the misplaced trust. Compared to
traditional typosquatting where each end-user needs to mistype
the domain, typos in CSPs involve a one-time mistake which
results in a persistent threat. To find typos we use the fat-finger
typosquatting models of Wang et al. [48] to generate a list of
domains that may have been the intended ones. We compare
the Alexa ranks of these domains to the whitelisted domain
to find cases where the ranks differ significantly, implying the
site owner may have meant to type the more popular domain.
‘We manually inspected each of these cases taking into account
the length of the domain, whether the domains are whitelisted
by other sites, the type of content served on both domains, and
whether the domain is used elsewhere on the page. In doing
so, we found 11 domains which appear to be typos on the CSP
whitelists of 11 different Web sites in our dataset.

3) Local Addresses: Finally, even if the attacker cannot
gain control of the whitelisted domain, in some cases they
may still exploit the IP address it points to. If this address is
in a private IP range, an attacker can serve malicious content to
victims on the same LAN [28]. To find such cases, we queried
Farsight’s DNSDB to determine what the whitelisted domains
resolved to in the past. We searched these records for private IP
addresses and checked that the observations occurred during a
period where the domain was present on a CSP whitelist. This
revealed 15 whitelisted domains trusted by 26 sites.

Table [[I| summarizes our findings from each condition as
well as the overall impact on the sites using CSP. In addition, it
shows examples which were vulnerable to abuse and the sites
which could have been affected, notably including Dropbox,
a site with an otherwise exemplary CSP record. As the table
indicates, 50/373 (13%) sites using CSP whitelists trusted at
least one abusable domain. Unlike other more obvious CSP
mistakes, avoiding these requires carefully vetting the domains
and regularly updating the list. This is not an easy task, as a
surprising percentage of popular sites fail at some point and
the maintenance burden is even higher for sites that whitelist
hundreds of domains. Because of this non-obvious interaction

Category Vulnerable domains Duration ~ Impacted domains

Expired 16 15

C Evample sushisslcon 39 days zomato.com
Typo 11 11

) Exaimpile 777777 U;trr:sr;r.c;mi 777m(;11;s o cjxp;ri;n.;m;)
Local address 15 26

) Exajn;le7 S ;w;ke:o;e; 737m(:mas T :lr;])h;x;or;)
Total 41 50

TABLE II: Vulnerable whitelisted domains and the number of sites that
allowed these domains in their whitelists. One example for each category
with a high-profile site that included it and duration of attack opportunity.

between CSP and DNS, even a perfectly secure CSP could
become insecure without changes to the policy.

D. Longitudinal Case Studies

Contrary to other works which focused on analyzing CSP’s
adoption and security from a bird’s eye viewpoint and at most
over a period of a few months, our archival analysis enables
us to investigate how sites struggled in their deployment of
content-restricting CSPs over the years. In the following, we
present our insights into sites that exemplify general behavior
and issues we identified in our long-term study.

1) Curating Limited Whitelists: To understand how pop-
ular Web sites attempt to curate their whitelist, we use
airbnb.com as a motivating example. The site first de-
ployed a CSP report-only (CSP-RO) header on November 12,
2014. While initially 17 sites were whitelisted (and therefore
allowed) to serve script resources, by March 27, 2015, the
list of whitelisted sites had grown to 21. On the next day,
however, a new policy was deployed (still in report-only
mode), whitelisting the full HTTPS scheme; thereby essentially
allowing any site to provide script content to Airbnb. In
addition, we observed multiple changes to whitelisted hashes,
indicating that due to changes of inline scripts, these had to
be repeatedly modified. The policy was further modified until
May 1, 2015, when the curated policy was deployed as an
enforcement CSP. This policy was modified three more times
until May 9, 2015, when CSP was fully disabled.

The policy was re-enabled on May 22, 2015, and from
then up to December 8, 2017, we observed 222 changes to
the deployed CSP, merely adding and removing hashes of
whitelisted scripts, while still allowing any HTTPS host to
serve scripts (i.e., not actually mitigating the risk of content
injection at all). On December 8, 2017, airbnb. com started
experimenting with changing CSP-RO headers, limiting the
sites from which remote scripts could be loaded. The first
variant of a blocking CSP with limited sites was deployed on
January 13, 2018. However, on January 16, 2018, the policy
regressed to trusting all HTTPS hosts for scripts. After another
29 modifications to CSP-RO headers, Airbnb on March 13,
2018, finally deployed a blocking CSP with limited hosts, and
a different report-only policy until the end of our analysis
timeframe. By then, while only two more sites were added
to the enforced list, we observed almost daily changes to the
policy, ensuring up-to-date hashes of the used inline scripts.

For both Airbnb and other domains exhibiting the same
struggle, we attempted to attribute changes in the CSP to
changes in the page itself, so as to understand if they had

been caused through the site itself adding new scripts, or
third-party code (such as ads) loading additional dependencies.
However, apart from obvious changes in hashes due to changed
inline scripts, we could only attribute a negligible fraction of
changes in the whitelisted sites to modified content of the start
page (10/106 for Airbnb). For Airbnb, we investigated further,
crawling one level of links for each of the changes we could
not attribute. Doing so, we were able to attribute an additional
15 changes, but at the cost of making 106,090 GET requests
to the Internet Archive. Given this small increase in coverage
and our goal of not flooding the IA with requests, we decided
to not follow this path of attribution any further.

Even though Airbnb was an early adopter of CSP and
made significant efforts to secure their site, they had to often
effectively disable their policies for long periods of time.
These gaps could have been abused by attackers to launch
attacks that would not normally be possible with Airbnb’s CSP.
Moreover, while they finally managed to curate a whitelist of
33 sites, it took them multiple years from when they started
experimenting with CSP to arrive at this final policy.

2) Eventually Giving Up on CSP: Next to those sites which
deploy CSP in an insecure variant by allowing any origin to
provide script code, our dataset also contains numerous sites
which tried to deploy CSP but eventually gave up. Overall,
294 sites used CSP in either mode for at least one day but not
within the last month of our analysis. Of those sites that used
CSP for at least one month, we find that 227 eventually gave
up. Lastly, considering only those sites that made a long-term
attempt at CSP (at least one year), we find a total of 79 sites
which ended their deployment before December 1, 2018.

Researchgate.net was a prominent example of a Web
site. which moved from CSP to CSP-RO on September 13,
2018, before completely abandoning it on November 27, 2018.
Before moving to report-only mode, we observed 29 different
attempts at enforcing a working policy. This indicates that
researchgate.net struggled to build a functional, yet
secure policy. In a similar case, zaycev.net had deployed
CSP since September 2015 and stopped deployment on April
11, 2018. Checking snapshots from March and April, the site
itself appeared to be unchanged. Notably though, in the week
before CSP was disabled, we observed 3 changes, seemingly to
get the non-functioning CSP to stop interfering with the Web
site. These examples make it clear that even though sites spend
significant effort to deploy CSP, many of them eventually
yield to the complexity of keeping their policies secure and
functional, and proceed to entirely abandon the mechanism.

3) Failing Gracefully Through Report-Only: While prior
works have found evidence that CSP report-only is used to
test and then deploy policies, our longitudinal allows us to
investigate the usage of report-only in a more thorough fashion.
In particular, we can identify all those sites attempted report-
only within the five year period for which have extracted CSP
data and understand how many of them actually made use
of CSP report-only to test and then roll out policies. Even
though report-only mode is meant to allow “developers to piece
together their security policy in an iterative fashion™ [47], it
can also be used to determine that the deployment of CSP
would cause too much interference with the operation of the
application and should therefore not be rolled out; importantly
before breaking the application due to blocked resources.

CSP-RO for CSP for CSP for CSP for CSP for
Content Anything Content TLS Framing
449 216 (48%) 130 (29%) 78 (17%) 23 (5%)

TABLE III: From report-only to enforced policies

In total, our dataset shows that 449 sites experimented
with report-only aimed at restricting content at some point
throughout our analysis period. Of those, 233 never actually
enforced any type of CSP afterward. This already indicates
that CSP’s complexity in restricting content deters developers
to deploy it after seeing the results in report-only. Next, we
analyze to what extent the remaining 216 sites leveraged the
tested content-restricting policy in enforcement mode.

Table LIl shows the overview of our results. Of the 216 sites
that enforced any type of CSP after testing a policy aimed at
restricting content, only 130 end up deploying such a policy.
The remaining 86 decided to not use CSP for its original
purpose, but rather for TLS enforcement (78) and framing
control (23), whereas 15 used it for both. Of those 86 sites, 79
had also tested report-only for framing or TLS control before,
showing that they merely dropped the content restriction part.
Two of the most prominent examples are aliexpress.com
and aarp.org. AliExpress started experimenting with CSP
report-only in September 2015, eventually allowing up to 35
sites as well as the usage of inline scripts and eval. In June
2016, they moved to a report-only policy permitting any origin
to provide content, but later only enforced an upgrade-
insecure-requests policy. aarp.org went further than
this, trying to remove unsafe-inline and unsafe-eval
from their policy altogether. They experimented with this for a
month in November 2017 but re-enabled the insecure directives
in December 2017. While this policy was still active for report-
only in December 2018, the site instead adopted an enforced
CSP merely used for framing control.

Overall, our results indicate that more than half of the
sites which experiment with any sort of report-only policy
never actually deploy one in enforcement mode. This provides
clear evidence that the complexity of the mechanism is too
high for many site operators. Notably though, we find that
even when sites first deploy report-only to restrict content
and subsequently move to an enforced policy, only 60%
(130/216) keep their content restriction in place, whereas the
remaining policies use CSP for the additional use cases, i.e.,
TLS enforcement or framing control. This shows that such sites
could fail gracefully, in the sense of understanding that CSP
for content restriction would break their site without causing
any outages to an enforced policy. Overall, only 29% of all
sites that tried script content policies via report-only ended up
enforcing such a policy, again highlighting CSP’s complexity.

4) Lasting Success in CSP Deployment: We now turn to
sites with a long-standing track record of improving their CSP
deployment. Three prime examples are pinterest.com,
github.com, and flickr.com. Pinterest first deployed a
CSP-RO in February 2014 and tested it with an increasing
number of whitelisted hosts until July 2014. At that point,
they deployed a policy with 15 whitelisted sites but still had
to resort to unsafe-inline. The number of whitelisted
sites went up to 23 sites until May 2017, at which point
they deployed nonces and strict-dynamic (making mod-
ern browsers ignore both unsafe-inline and whitelisted

500 A
TLS Enforcement
v 4004
o) ---Upgrade Insecure Requests
g 300 | --Block Mixed Content .
.6 200 Whitelist HTTPS schema < e Pl
H 100 ——
04 B S e S
T T

Fig. 8: TLS Enforcement Strategies

hosts). Notably, even though nonces and strict-dynamic
remained in the policy until the end of our experiment, the
list of whitelisted hosts still grew over time. This, however, is
because legacy browsers would otherwise block content.

When Github first deployed CSP in November 2013, their
whitelist contained 5 sites, including a CDN of their host-
ing provider Fastly and Google Analytics. In October 2014,
however, Github stopped using Google Analytics and moved
all their assets to two of their own subdomains. By October
2015, those two subdomains were explicitly whitelisted; but
since that time, Github consolidated all scripting resources
on assets-cdn.github.com, which has remained the
lone entry in script-src. Notably, Github has never used
unsafe-inline. This behavior is in line with Github’s
efforts for securing their service [14, |43]].

Our last example, Flickr, first used CSP in enforcement
mode in October 2015. While they had a limited host whitelist,
they also had to employ unsafe-inline. The initial pol-
icy’s whitelisted sites grew to 12 by May 2017 at which
point Flickr started experimenting with nonces (in report-
only mode). After enabling nonces in their enforcement policy
in July 2017, they had to go back and forth with nonces
three times until finally, since August 2017, they have always
deployed nonces. In March 2018, Flickr first sent a report-only
policy with strict-dynamic. This feature, however, while
still active in CSP-RO had not been ported to their enforced
CSP by the end of our analysis timeframe.

All three sites have shown a long-lasting commitment
to improving security with CSP. These sites, however, are
objectively major players on the Web with the ability to spend
considerable time and resources on deploying appropriate poli-
cies. Even then, while Github is an excellent example of how
to deploy CSP in a fully secure fashion, the other two generally
positive examples have shown how complicated a deployment
can be, especially with regard to removing the need for
unsafe-inline. What’s more, for legacy compatibility (as,
e.g., Safari and Edge don’t support strict-dynamic [27]),
even sites with modern features like st rict-dynamic need
to constantly update their host-based whitelist, meaning CSP
remains a long-term maintenance burden.

VI. CSP FOR TLS ENFORCEMENT

The second use case of CSP is to ensure that no content
is loaded via HTTP on HTTPS sites. In this section, we first
report on how the different means of achieving that goal have
evolved over the course of time, and then report specifically
on how they were used successfully for TLS migration.

A. Evolution of TLS Enforcement

Figure [§] reports on the trend of deployed CSPs for TLS
enforcement. As we first saw policies specifically tailored to-
wards TLS enforcement in 2016, we omit the data before 2016.
We observe a steady increase in the usage of CSP for TLS
enforcement from December 2016 onwards. Most notably, the
enforcement is not pushed forward by exclusively whitelist-
ing HTTPS sites, but rather by the upgrade-insecure-
requests directive. Full support for this CSP feature first
landed in browsers around March 2015 (with Chrome 43 [52]),
meaning site operators did not deploy the directive until about
1.5 years after it became available. The related directive to
block all mixed content has also increased in usage, but only
sees adoption on a fraction of sites compared to upgrade-
insecure-requests. Notably, we found that 51 sites
make use of both directives in December 2018, even though
in modern browsers block-all-mixed-content in the
presence of upgrade—-insecure-requests is effectively
a no-op because the upgrade to HTTPS happens first. We find
the decreasing number of sites deploying CSP for TLS en-
forcement in December 2018 is not a downward trend; a brief
check for January 2019 shows that usage keeps increasing.

Figure [8| also compares the usage of a policy aimed at
ensuring that no content can be loaded over HTTP with the
usage of the HTTP Strict Transport Security (HSTS) header
on those sites. The HSTS header is set to ensure that once a
site has been visited over HTTPS, it cannot be loaded over
HTTP until a specified timeout occured [16]]. In contrast, the
CSP directives ensure that any resources that are included
by the original site will be loaded over HTTPS. We ob-
serve that alongside the increasing deployment of upgrade-
insecure-requests, the fraction of sites using HSTS also
rises. Notably, of the 450 sites that enforced transport security
with CSP in December 2018, 267 made use of HSTS (59%).
This uptake in HSTS adoption is a positive trend in line with
the more widespread use of HTTPS on the Web [35].

Considering the 347 of those sites enforcing TLS explic-
itly via upgrade—-insecure-requests, 194 made use
of HSTS. This provides us with an interesting insight: the
upgrade-insecure-requests directive is deployed to
ensure that once the connection has been securely established,
no resources or other URLs can be accidentally loaded via
HTTP. HSTS, in contrast, is used to ensure that the site cannot
be loaded via HTTP in the first place. While for a secure setup,
both mechanisms are desirable, deploying HSTS comes with a
loss of control for the operator. Once a client has observed the
HSTS header, it will refuse to connect to the site via HTTP for
a set amount of time controlled by the received HSTS header.
Given that activating HSTS is no more complex than shipping
upgrade-insecure-requests we posit that its absence
by half of the sites using the directive has more to do with the
developers being uncomfortable fully giving up HTTP than
with issues regarding HSTS setup and deployment.

B. Leveraging CSP for TLS Migration

While one of the goals of CSP is to enforce TLS, it also
provides a meaningful aid for developers when migrating to
HTTPS. When mixed active content is detected by the browser
while visiting an HTTPS site, it is automatically blocked.

However, upgrade—insecure—-requests instructs the
browser to gracefully upgrade the connection, rather than
blocking all HTTP resources, which is particularly useful if
an HTTPS site still contains references to HTTP-based active
content (like scripts). To understand which sites leveraged
this added benefit of CSP, for each of the 347 sites that
deployed upgrade—insecure-requests within the last
month of our analysis, we determined when each started to
use the directive. Subsequently, we downloaded the snapshots
for those site’s main pages from the IA for 31 days after the
first upgrade—-insecure-requests deployment.

Based on the snapshots we collected before upgrade-—
insecure-requests was deployed, we find that 251
(72.3%) sites deployed the directive as part of a transition
to HTTPS. We base this observation on the archived URL,
which indicates if the site had been loaded via HTTPS by the
Archive’s crawlers. For those sites, we parsed the HTML of all
collected snapshots once upgrade—insecure-requests
was deployed and extracted the URLs of external scripts, im-
ages, frames, and stylesheets. On 77 sites, we found that within
a month from originally deploying upgrade-insecure-
requests, resources were still linked via HTTP. Among
these sites, we found high-profile pages such as wired. com,
airasia.com, and aol.com. For those three sites, we
further investigated how much longer they linked to HTTP
resources, downloading all snapshots until December 31, 2018.
For Air Asia and AOL, on the last day of our experiment,
there was still one HTTP resource on their main page, even
though both sites moved to HTTPS in 2017. Wired, which
started deploying HTTPS in June 2016, removed the last HTTP
resource from the start page only in September 2017.

Overall, these results indicate that upgrade-
insecure-requests is a useful mechanism and therefore
widely used when a site migrates to HTTPS, highlighted by
the fact that more than 70% of sites deploying upgrade-—
insecure-requests for the first time did so as part
of their move to HTTPS. In addition, 77 sites still made
use of HTTP-linked resources after their move to HTTPS.
upgrade-insecure-requests allowed these sites to
function correctly due to the graceful upgrade to HTTPS.

VII. CSP FOR FRAMING CONTROL

This section presents our historical findings for the third use
case of CSP, i.e., framing control. In particular, we investigate
to what extent CSP’s frame-ancestors has achieved its
goal of deprecating the underspecified XFO header, by ana-
lyzing sites that leverage its flexibility, sites that deploy both
headers, and highlighting numerous cases in which frame-
ancestors would be required to achieve proper protection.

A. Evolution of CSP for Framing Control

As discussed in Section [l XFO was not standardized
before it was put into browsers, leading to inconsistent en-
forcement, which in turn enabled double-framing attacks. This
is why CSP removes any ambiguity and checks all of a frame’s
ancestors. The high-level overview of our analysis on the use
of CSP for framing control against XFO is shown in Figure [0
We observe a steady increase in the usage of XFO until the
end of our analysis in December 2018. In that month, 3,253

3000 1 X-Frame-Options
8 ---CSP frame-ancestors
2 2000+ Both
(%]
©
1000 4
H*
IR = -
2012 2014 2016 2018

Fig. 9: Evolution of X—-Frame—-Options and frame—-ancestors

sites made use of XFO, whereas only 409 used frame-
ancestors. Moreover, out of the sites that use CSP for
framing control, 270 do so in combination with XFO. In the
following, we first analyze to what extent the flexibility of
frame-ancestors is used by sites, i.e., we determine if the
same whitelist could also be expressed with XFO. Second, for
those sites that make use of both CSP and XFO for framing
control, we analyze how the goals of the deployed headers
differ. Finally, we report on how many sites would have to
move to CSP to achieve universal protection.

1) Leveraging the Flexibility of CSP: The protection of-
fered by XFO is coarse-grained both because of the small
number of configuration options, but also because of Google
Chrome’s decision (shared by all Chrome-based browsers) to
not support the ALLOW-FROM directive. As part of our analy-
sis, we wanted to determine which sites needed the additional
flexibility offered by CSP’s frame-ancestors directive.
We aggregate these by year, as this shows a clearer trend
compared to monthly analyses. The result is shown in Table[[V]
We find that starting from 2015 when a meaningful number
of sites adopted frame—-ancestors (shown as CSP-FA), at
least 50% of them required the flexibility of CSP. For those, we
find that the most common pattern is whitelisting all origins
from the same site (104 of 321 in 2018). Moreover, manual
investigation of the remaining cases showed that CSP was
often used to whitelist sites from the same company (e.g.,
icloud.com allows to be framed from %.icloud.com
and ».apple.com). Hence, apart from delivering different
XFO headers depending on the Referer or Origin header, these
sites could not run uninhibited without frame—ancestors.

2) Combining XFO and CSP frame-ancestors: When an
XFO header and a CSP frame—ancestors directive are
both set, CSP-compatible browsers are supposed to ignore
XFO. However, in older browser versions, XFO was the only
mechanism to protect users from clickjacking. Based on this
insight, we compared the semantics of XFO and frame-
ancestors (CSP-FA) in cases where both were present,
so as to understand how site operators dealt with different
browsers. Over the whole period of time, 394 Web sites made
use of both XFO and frame-ancestors at least once on
the same day. Out of those, 290 did so inconsistently (at least
once), i.e., were not semantically equivalent (e.g., did not
combine SAMEORIGIN and self). On 70 sites, frame—
ancestors was used to relax the security boundary from
the same origin to the same site, e.g., https://site.com
https://*.site.com, while the XFO header was set to
SAMEORIGIN. 185 sites used CSP (at least once) to relax the
security boundary even further than the same site, leveraging
SAMEORIGIN for older browsers. Notably, these sites made
the best of a bad situation, given that browsers without support
for frame—-ancestors are at least more secure than when

10

Year Used CSP-FA Required CSP-FA
2014 13 3 (23%)
2015 60 32 (53%)
2016 133 92 (69%)
2017 260 182 (70%)
2018 460 321 (70%)

TABLE 1V: Number of sites per year that set a frame-ancestors
directive, as well as number and fraction of sites that set policies not
expressible by X-Frame-Options

XFO is absent. Only twice was CSP used to deploy a more
restrictive policy; specifically going from the invalid value
ALLOWALL (essentially disabling XFO) to whitelisting the site
and all of its subdomains. Here, the site operators opted for
an insecure solution for IE users, which is the only current
browser that does not support CSP framing control. Finally, 65
sites deployed an invalid XFO header alongside CSP at least
once, e.g., by using contradicting values like SAMEORIGIN,
DENY, effectively disabling any protection for legacy browsers.

3) Replacing XFO with CSP-FA: 1t is worth noting that
even though the double-framing attack is mitigated in most
browsers since 2017 [26] (except for Edge and IE), using
directives that are not supported by all browsers (e.g., ALLOW—
FROM for Chrome and Safari) can have dangerous conse-
quences. For those, setting an ALLOW-FROM directive in
XFO results in the header being ignored completely (failing
insecurely [[18]]). We found that in December 2018, 116 sites in
our dataset made use of a non-universally supported directive,
meaning the developers would have to deploy CSP’s frame-
ancestors to properly secure their sites. Notably, of the
3,253 sites that use XFO in December 2018, but not frame—
ancestors, 362 already deploy a CSP. Hence, even though
these sites would merely have to add a directive to make
use of the more fine-grained and consistent framing control,
they still only resort to the deprecated security header. While
one could argue that this might originate from old, outdated
CSP policies, we find that 120 of these sites made use of
upgrade-insecure-requests: a directive that was only
added after support for frame-ancestors was enabled.

VIII. IN-DEPTH ANALYSIS OF DEPLOYED CSPs

We now attempt to shed light on the main reasons which
may affect a successful adoption of CSP. First, we focus on
sites that gave up CSP and aim to attribute this choice to its
cause. Second, we highlight characteristics of sites which kept
running trivially insecure policies for content restriction, before
finally investigating sites which deployed effective policies.

A. Reasons for Giving Up on CSP

We start by investigating whether we can attribute changes
in the deployed CSPs to violations of said policies. Specif-
ically, we focus on those sites which tried out CSP in en-
forcement mode for at least one month, but gave up. We
define “giving up” as not having had a policy for a specific
use case in all of December 2018. This way, we lower the
risk of incorrectly flagging a site for having given up just
because it did not have CSP for the last few days of 2018.
For each domain, we investigate the final policy snapshot for
each use case, namely content restriction, TLS enforcement,

and framing control. Out aim is to understand why a given
domain stopped using CSP in a particular capacity.

1) Content Violations: CSP’s initial purpose was to restrict
the inclusion of content into a page. Hence, our first analysis
focuses on sites that gave up this use case as per our earlier
definition. For each site, we determined the exact timeframe
for which the last policy was deployed. We then visited the
start page on the last day of policy deployment, following all
links to the same site that were archived in the timeframe of
the last deployed CSP. While all of our previous analyses relied
on downloading and statically parsing HTML documents, for
this experiment we relied on an instrumented Chrome browser.
This allowed us to not only determine if the resources statically
linked in the document caused violations, but also observe if
dynamically-added content interfered with CSP. We limited the
analysis to the first level of links (in total, 3,347 URLSs), as
this already required us to make an additional 421,684 requests
through loaded scripts, images, fonts, etc.

Overall, we found 63 domains which attempted content
restriction, but eventually gave up. For 15, we found violations
of the deployed CSP through dynamic analysis. When purely
relying on the resources statically linked in the HTML docu-
ment, only 7 sites indicated a violated CSP, which shows the
benefits of the dynamic analysis. Unfortunately, the Archive
does not always manage to correctly rewrite URLs to included
resources, as shown by Lerner et al. [20]. Hence, it is likely that
even the more accurate dynamic analysis missed at least a few
violations, merely due to the fact that third-party code was not
even executed. Of the 15 sites with violations, we analyzed
which party included the violating resources. On 9 pages,
the violation was caused by third-party code, whereas on 8
they were caused by first-party code, with an overlap of two
domains having both first- and third-party-caused violations.

On the remaining 48 sites for which we could not find
violations, we performed two analyses. First, since we cannot
reason about violations that are deeply hidden in the appli-
cation, we performed a live experiment on September 24,
2019, in which we crawled the live versions of all websites
in our data set. For sites with a CSP on the start page, we
randomly sampled 10 same-site subpages and checked their
CSPs. In doing so, we found that of the 1,202 sites with CSP
on the start page, 1,024 (85%) appear to have a site-wide
deployment of the same policy. Hence, assuming a similar
distribution of site-wide policy deployment for the archived
versions, the abandoning of site-wide policies may very well
be due to violations on pages other than the ones we crawled.
Eventually, we resorted to manually checking the deployed
policies to classify them, so as to provide an educated guess
about the reason for dropping CSP. For 25 sites, we found that
their policies showed increasing numbers of third-party entries
(e.g., milanoo.com and snai.it). For those, it is likely
that the overhead of keeping a whitelist of their dependencies
was too burdensome for the operators. For another 9 sites, the
policies were trivially insecure (e.g., raspberrypi.orq)
before they were dropped. Here, we argue that deploying
insecure CSPs can eventually lead to their removal.

Summing up, though our archival analysis can only provide
glimpses of the reasons why site operators gave up CSP, we
find that more than half of the sites for which we could
find violations had these caused by third parties. For the

11

rest, even though we could not find specific violations, a
significant fraction had large whitelists with tens of third
parties, indicating that reliance on third parties could well be
the major reason behind the sites’ decision to abandon CSP.

2) TLS Violations: To understand whether a TLS en-
forcement policy was violated, we need to check multiple
angles. Trivially, if a site includes a resource via HTTP
and has block-all-mixed-content or default-src
https://* (or equivalent for other resource types), the CSP
is violated. Contrary to this straightforward case, understand-
ing if upgrade-insecure-requests could have caused
incompatibility is more involved, as the Archive crawler does
not honor upgrade—insecure-requests, i.e., would not
automatically archive the HTTPS variant of an upgradable
resource. As a first step, we assume that if a site was delivered
over HTTPS, all resources from the same host would also be
available via HTTPS (e.g., the page was https://foo.com
and the resource http://foo.com/bar.png). We do not
look for violations in this case, to minimize the risk of false
positives. We then leverage the observation that widely-used
resources which are available over both protocols would have
been loaded and archived by the crawler at least once over
a secure connection, as at least one site would likely have
included it via HTTPS. We exploit this by querying the CDX
API for the HTTPS variant of the URL we want to check
for upgradability, limiting the results to URLs archived within
£30 days of the HTTP resource. If we can find an HTTPS
variant, we mark the resource as upgradable. We then flag all
remaining resources, i.e., those with only HTTP snapshots in
the IA, as non-upgradable. Though this approach might not be
a perfect solution, it is the best option considering the Archive
limitations. Hence, whenever a resource is non-upgradable, but
is included in a site with upgrade—-insecure-requests,
we say that the site’s policy is violated.

In total, 46 domains were labeled as having given up TLS
enforcement. Similar to content violations, we used Chrome to
crawl the first level of links beginning from the last snapshot
with CSP. For 28 of the sites, we detected a non-upgradable
resource on the crawled pages. In addition, for 4 domains, TLS
enforcement seemed to have been dropped along with all other
CSP directives, i.e., was collateral damage. For the remaining
14 domains, we could not reach a definitive conclusion.
However, given the insights about site-wide deployment we
discussed in the previous section, we plausibly expect that
many of these sites may have had at least one non-upgradable
resource on subpages we did not crawl.

3) Framing Control Violations: To understand if a given
CSP would have caused a framing violation, we would have
to retroactively investigate which other sites framed a given
page. As this is not feasible, we instead resort to a heuristic
to determine if the removal of frame-ancestors was due
to framing control issues. As we have seen before, frame—
ancestors is often used in combination with XFO. Hence,
if a given site has encountered an issue related to framing
control, it would likely not only remove frame-ancestors,
but also drop or adjust XFO. Therefore, once a site has stopped
using frame-ancestors, we check its XFO status on that
same day, as well as on the next snapshot. If a site has also
stopped using XFO, it is extremely likely that framing control
in general proved to be a problem.

In our dataset, 69 domains used CSP for framing control,
but gave up on that use case. Given our above classification, we
found that for 42 sites, restricting framing in general proved to
be problematic, i.e., they dropped both frame-ancestors
and XFO at the same time. In addition, we found 7 sites
which moved from explicitly allowing a hostname through
both CSP and XFO to only XFO SAMEORIGIN. These cases
are interesting, as they indicate that developers determined this
to be sufficient to constrain framing (as the flexibility of CSP
was not necessary); notably showing the lack of awareness
of the dangers of double-framing attacks. In another 7 cases,
frame-ancestors was removed as collateral damage, i.e.,
XFO was used before and after CSP’s removal. Surprisingly,
we also observed two sites moving from exclusively using
frame-ancestors to XFO, indicating those operators were
also not aware of the drawbacks of XFO. Overall, we find
that sites do not give up on frame-ancestors for reasons
specific to CSP, but rather because they either find framing
control too cumbersome, or altogether unnecessary.

B. Investigating Insecure Policies

As our results have indicated, around 90% of sites that tried
to restrict content did so insecurely, e.g., by using unsafe—
inline or whitelisting entire schemes. To understand the
reasons behind this, we specifically looked at the content of all
pages which deployed such insecure policies, and were never
able to remove those unsafe keywords. We discovered 467
websites exhibiting this behavior. For each of the websites,
we checked every snapshot from the Archive (totaling around
118K requests) for the presence of inline scripts, event han-
dlers, and the number of third parties in the page.

Overall, 455 sites (97%) had inline scripts on the start
page at least once while running an insecure policy. Moreover,
317 used event handlers (68%) and in the median, each site
relied on 3 third parties (with a maximum of 26 third parties
for a single site). It is worth noticing that all these numbers
likely represent lower bounds, as we did not crawl the sites
any further. Nevertheless, a staggering 68% of sites relied on
event handlers, meaning they could not deploy a policy without
unsafe-inline given the current CSP specification. The
results also highlight the difficulty that operators face when
trying to retrofit CSP; essentially, a policy that is tacked onto
an existing application is virtually always trivially insecure.

C. Analyzing Secure Sites

To complement our previous analysis, we now focus on
sites which managed to deploy a secure policy, i.e., one with-
out whitelisting entire schemes or using unsafe-inline.
While prior work [50] has indicated that additional risks may
originate from whitelisting origins with JSONP endpoints or
allowing Flash to be hosted locally, we do not consider these
additional factors. In total, we found that 40 sites were able to
deploy a meaningfully secure policy and still have that in op-
eration at the end of our analysis timeframe. Notably, another
7 at some point deployed a strict policy; however, they either
added the unsafe keywords again or entirely disabled CSP after
mere days, indicating their policy caused functionality issues.
In particular, for 3 sites we found event handlers on their
start pages, even though their policy did not specify unsafe-
inline, hence definitely causing a CSP violation.

12

Of the 40 sites which can be counted as successfully having
deployed CSP for content restriction, 2 actually run policies
which interfere with scripts on their start pages as of this
writing. When looking at the other 38 cases, we discovered
an interesting trend. First, we found 16 adult websites, most
of which deployed a strict policy without attempting a more
relaxed one before. Interestingly, they all had starting days of
their first CSP about 1-2 weeks apart (each). Analyzing the
CSPs, we found that they were all whitelisting the exact same
sources. Looking at the start dates of CSP deployment, we
found that the operators of these sites first experimented on one
site with removing the event handlers on the page, exclusively
used to track users through Google Analytics. Notably, this
behavior of using inline event handlers was even advocated
for by Google [3]. Once they had successfully rolled out CSP
for one website, they proceeded with others. Of the remaining
22 sites, only 3 had any event handlers on the last snapshot
before the deployment of the strict policy.

Overall, we find that of the few sites that were able to
deploy a strict policy, virtually all either did not rely on event
handlers (on their start page), or only used event handlers for
a single, easy-to-change use case (such as registering event
handlers programmatically for off-site links). This stands in
stark contrast to the results for the sites which failed to deploy
a secure CSP, where over two thirds used event handlers.

IX. FRAMING CONTROL NOTIFICATION

In general, we observed that sites have a clear preference
for XFO over frame—ancestors. Moreover, we found
cases where XFO was used even though the site deployed
directives only introduced after frame-ancestors, indicat-
ing the CSPs were updated when framing control was already
possible. To understand the reason behind these findings, we
decided to notify site operators running XFO, informed them
about the improved support that CSP’s frame—-ancestors
offers, and tried to discover their reasons for preferring XFO.
To this end, we checked all live versions of the sites in our
dataset starting from May 31, 2019, for their deployed XFO
and CSP directives. On June 4, we notified all 2,699 sites that
used XFO headers which either had a syntactically incorrect
header, used the non-universally-supported ALLOW-FROM
directive, or deployed SAMEORIGIN, making them prone to
double-framing attacks in Edge and IE. We did not notify
the sites that also made use of CSP’s framing control, since
supporting browsers ignore any XFO headers when frame—
ancestors is present. Given the insights from prior work
on Web notifications [42], we chose to send emails to generic
aliases on each domain (info, security, webmaster) as well as
to the WHOIS contact (where available). The template of our
email can be found in Appendix |Al We sent this email from
one of the researchers’ regular email address, ensuring that
recipients could verify our identity. As expected, in line with
prior work’s findings [42], most emails bounced, either due to
non-existing addresses or lack of appropriate MX records.

A. Insights from Initial Responses

Notably though, we received responses from 117 sites
which went beyond automated confirmation emails, such as
out-of-office responders or confirmation of a created ticket. By
categorizing these responses, we discovered that 62 operators

claimed that they would deploy frame—ancestors shortly.
For a sample of anonymous answers we received, please
consult Appendix Among the responses, we also found
24 answers which indicated that CSP was too complex to
be deployed. In particular, they all claimed to have attempted
to deploy CSP for content restriction, but either deferred it,
or abandoned the attempt altogether. This is in line with
the significant number of sites we discovered in our archival
analysis, which either stopped deploying CSP or never moved
from report-only to enforcement mode (see Section [V-D).

With all respondents, we exchanged further emails, indi-
cating that CSP’s frame—ancestors could be used without
any of the other CSP functionality. In doing so, we received
emails from 16 operators stating they were not aware of any
issues related to XFO, and 13 who explicitly noted they had
not heard of CSP’s frame—ancestors before. In contrast,
9 informed us in their initial response that they had already
deployed the CSP directive. From the notification date and
onwards, we continued our daily checks for both XFO and
frame—ancestors. Overall, we observed an increase from
511 sites deploying frame-ancestors before our notifi-
cations to 554 sites by June 12, 2019. In particular, for the
domains that answered to our initial message, 14 had taken
action. Moreover, for the other sites, 4 belonged to a network
of sites for which we had received one response. For the
remaining 25 sites that rolled out frame-ancestors in
the 8 days, we could only find two sites for which all our
sent emails bounced. Hence, we believe that most of the sites
deployed frame—ancestors as a result of our notification,
demonstrating the ease of deployment within mere days.

Finally, in conversations with operators, several mentioned
that they relied on external resources for security headers. In
checking those resources, we found that they all list XFO as
the only defense against framing-based attacks, whereas they
advertised CSP as a means to mitigate XSS attacks [4} 15|
13} 138, 49]. Notably, even widely-used sites like securi-
tyheaders.com consider XFO the only viable option for
framing control. Neither this service nor other resources like
MDN [24] indicate that CSP can be used for this purpose.

B. Follow-Up Survey

Given the diverse responses we obtained from the notified
site operators, we decided to run a more systematic survey,
allowing us to ascertain the number of operators aware of
issues with XFO, CSP, and the fact that frame—ancestors
could be used in isolation. We made the survey as brief as
possible and only sent it to operators who had previously
answered our initial email, with the explicit goal of soliciting a
high fraction of responses due to the limited effort necessary to
answer the questions. In particular, as prior works have shown,
unsolicited surveys have minuscule response rates [11} 42],
which is why we decided to only reach out to operators to
whom we had previously provided helpful information. The
full questionnaire is available in Appendix [C| For our survey,
until June 12, 2019, we received a total of 39 answers. Out
of those, two thirds (27) indicated they were not aware of
the inconsistencies around XFO. When asked about why they
had deployed XFO in the first place, the majority (20) said
they had their own reasons to restrict framing, indicating
the awareness of framing-based attacks. Moreover, 31 (79%)

13

respondents indicated that they had been aware of CSP before
our notification; yet only 12 of those claimed to have been
aware of frame—ancestors beforehand. Of those 12, 9
claimed to know that frame-ancestors can be used in
isolation. These reports suggest that while operators have a
general understanding of CSP, they are not aware of all its
directives and their security benefits.

For all respondents that indicated to have known about
CSP beforehand, 23 said that their site would not work with
a reasonably secure policy right away (2 claimed yes, 6 did
not know). On the flip side, 29/31 operators believed that CSP
could be a viable option to improve their site’s resilience to
XSS attacks. Additionally, when asked about the use case of
TLS enforcement, 22 responded that they knew they could
operate TLS enforcement in isolation before our notification.
Hence, it appears that while content restriction is clearly known
as a goal of CSP, most sites are unable to deploy it due to
its complexity. Operators seemed to be more aware of the
fact that TLS can be enforced through CSP, but were not as
knowledgeable about framing control. This, combined with the
insights from resources the respondents indicated (both in the
survey and the email conversations) leads us to conclude that
resources on CSP critically lack details about framing control.

In terms of tool support, 36/39 respondents answered that
they had used the browser console to debug and analyze their
site. Hence, if there had been warnings about inconsistencies
(or even lack of support for certain directives), those operators
would likely have taken action. With respect to required
tools, the respondents named better tools to debug CSP errors
(locally), improved collection and aggregation of warnings
caused in users’ browsers, and in general tools to suggest
appropriate security headers. As a result of these insights and
separate discussions with Google engineers, we filed a Chrome
feature request to issue warnings about XFO; in particular to
at least warn operators about the unsupported ALLOW-FROM
directive and suggest to deploy frame-ancestors instead.

C. Limitations and Additional Survey

Our notification and subsequent survey cannot be con-
sidered an in-depth analysis due to its unstructured nature
(especially of the emails we received). We specifically set up
the survey to be brief, so as to achieve a high response rate.
However, it is not clear whether security-aware operators filled
our survey. Even then, our results are indicative of operators
which did not use CSP for framing control, i.e., cannot be
considered experts in CSP. While we cannot account for these
facts in our initial survey, to partially alleviate the identified
shortcomings, we ran our survey a second time after having
presented a talk about the evolution of CSP and its different
use cases at an OWASP conference. For this, we are confident
that professionals with a Web security background answered
the questions. We received a total of 20 responses with 10/20
claiming prior knowledge of XFO’s shortcomings, and 19/20
being aware of CSP beforehand. 18 of those believed CSP to
be a viable option, of which 9 argued their site would be able to
run a secure policy. Regarding framing control, 13/19 said they
already knew about frame—ancestors, of which only 2 did
not know that it was feasible to deploy in isolation. In contrast,
9/19 were not aware that TLS enforcement could be deployed
in isolation, indicating that this is a little known use-case even

among security experts. Naturally, as for our initial survey, we
cannot assess incorrect reporting from operators. Nevertheless,
as we stressed the anonymous nature of our survey, we expect
the results to be characteristic of the participants.

X. DISCUSSION

We now summarize the evolution of CSP’s use cases,
enabled by the unique vantage point of the IA, and highlight
gathered insights. We then discuss if CSP is too complex, and
outline how it can become more useful going forward.

A. Summary of CSP’s Use Cases

1) CSP for Script Content Restriction: Our work has
confirmed a previously investigated fact [6, 18, 150, I51]]: CSP
is largely failing as a defense mechanism for script content
restriction. Through our longitudinal analysis, we could show
that although nonces and hashes have been available since
2014, they have not gained significant popularity over time.
On the flip side, most policies make use of unsafe—-inline,
which makes them trivially bypassable by XSS. We argue that
this is due to the complexity of deploying CSP in a secure
fashion. This is evidenced by the fact that more than half of
the Web sites (251/449) which experimented with report-only
never switched to enforcement mode. It is also confirmed by
the notification responses, in which operators regularly stated
they had experimented with CSP, but felt it was incompatible
with their application. This anecdotal evidence is supported by
our survey, in which only 2/30 respondents familiar with CSP
claimed their site could deploy it right away without breakage.

In terms of deploying limited whitelists, we saw ample
evidence in our case studies as well as the general uptick in
whitelisted sites that curating such whitelists is challenging.
Moreover, our analysis of the whitelisted sites has indicated
that operators are prone to add typo domains, or leave un-
registered domains in their whitelist, effectively undermining
the provided security guarantees (on approx. 13% of the sites
with content-restricting CSPs). Of the handful of sites which
managed to actually deploy a restricted whitelist, both the case
studies and the feedback from our notification indicated that
curating such a list takes months or even years. Hence, the
overall effort of setting up and maintaining a secure policy
seems unbearable to all but the biggest players.

2) CSP for TLS Enforcement: Previous studies mainly
focussed on CSP as a means to restrict script content, treating
TLS enforcement and framing control as side notes. In particu-
lar, Weichselbaum et al. [50] reported that only 3% of policies
were used to enforce TLS, while Calzavara et al. [8] reported
that around 0.5% of the Top 1M used upgrade—-insecure—
requests, without providing further details. Our longitu-
dinal analysis showed that CSP is a very valuable tool for
TLS enforcement, being used by about one third of the Web
sites that deployed CSP. Most prominently, we observe that
347 sites make use of the upgrade—insecure-requests
directive to automatically upgrade HTTP resources to HTTPS.
We find that this feature is not only used for security purposes
but when investigating those sites that deployed upgrade—
insecure-requests as part of their migration to HTTPS,
we found that 77 of 251 (31%) sites still link HTTP resources
(on their start page). Here, the added benefit of upgrade-
insecure-requests enables browsers to upgrade URLs

14

before trying to load them, thereby avoiding mixed con-
tent warnings or blockage. Given the increasing adoption of
HTTPS [35], we argue that Web sites adopting an upgrade—
insecure-requests policy would have an easy migration
to HTTPS, while at the same time not having the burden
of making their applications compliant with a strict content-
restricting CSP (e.g., by removing event handlers). This fact,
however, according to our survey, is less than well-known.

3) CSP for Framing Control: In contrast to previous stud-
ies, our findings indicate that CSP is becoming increasingly
popular for framing control, now on par with content re-
striction (attempts) and TLS enforcement. At the same time,
the adoption of CSP for framing control is not nearly as
widespread as XFO: CSP with frame—ancestors is used
in 409 Web sites, while XFO is present on 3,253 Web sites
as of December 2018. However, we observe that existing
Web sites are taking advantage of the additional flexibility on
framing control offered by CSP. In fact, out of the 460 sites
using CSP for framing control in all of 2018, 321 sites (70%)
used whitelists not expressible by XFO, which suggests that the
additional expressiveness of CSP for clickjacking protection is
useful in practical cases. Moreover, our notifications showed
that about two thirds of respondents were not aware of the
added benefit of frame—ancestors. While our notifications
and the feedback we have received suggest that this can be
easily changed for operators we could reach, the resources
frequently used by the respondents lack crucial information
about this fact. As an example, the Mozilla Developer Network
only explicitly mentions “[..] certain types of attacks, including
Cross Site Scripting (XSS) and data injection attacks.” and
does not list framing control as a use case [24].

B. Complex Security Policy?

From both the evidence gathered from our longitudinal
study as well as the insights provided to us through the con-
versations in our notification, CSP for script content restriction
seems to be a failing mechanism. Even though modifications
to CSP should have made it easier for sites to adopt secure
policies (e.g., allowing inline scripts through nonces), we could
not observe any significant uptake over time. Moreover, the
responses indicated that operators still shy away from CSP for
content restriction due to its perceived complexity.

One specific issue that CSP for content restriction has is
the moving target it represents. As an example, google.com
stopped using strict-dynamic on July 17th, 2018 even
though Google engineers originally proposed the new direc-
tive [S0]. Given the insights shared by the Google team in a
recent presentation [49]], they have since moved away from us-
ing strict-dynamic, favoring the explicit propagation of
trust by having nonced scripts attach the nonce whenever they
add additional scripts. The reasons are seemingly two-fold:
first, support for strict-dynamic is not universal (e.g.,
Safari does not support it). Second, using strict—-dynamic
yields any control over which resources can be included, and
opens up the potential for Script Gadget attacks [19]. The loss
of control over included resources cannot be addressed through
a nonce-based policy, given that any nonced script could just
use the nonce to add code from elsewhere. The solution, as
also proposed by the Google engineers and at least partially
deployed as of now by Dropbox, is policy composition. There,

a site sets two CSPs, where one carries a nonce and the other
carries a whitelist. Since both have to be fulfilled, only scripts
that carry the nonce and are from explicitly whitelisted hosts
can be executed. Given these advances and frequent changes
in suggested best practices, it is understandable that operators
feel overwhelmed by the complexity of the mechanism.

At the same time, while CSP appears to be failing as a
means to mitigate XSS, it has become a successful mechanism
to enforce TLS, evidenced by the uptick of this use case.
Moreover, upgrade—insecure-requests allows sites to
seamlessly migrate to HTTPS by upgrading all URLs in-
flight. Notably, out of the 10K sites in our original dataset,
7,675 were archived via HTTPS. We downloaded the final
snapshot for each domain from the IA and found that of the
7,328 sites without upgrade-insecure-requests, 435
had a least one HTTP-linked resource (6%). Given the current
implementation of browsers, these sites would at the very least
trigger a mixed content warning. This, in light of the results of
our survey, in which 21/30 respondents claimed to be aware
of the isolated usage of TLS enforcement, shows that sites are
clearly not making use of CSP’s full potential.

Despite the growth of CSP for framing control, unfortu-
nately, it still lags behind the increasing adoption of XFO and
more importantly, the complexity of CSP as such seems to con-
fuse operators. This is evidenced by the fact that in December
2018 we observed 362 Web sites using CSP without frame—
ancestors in combination with XFO. For these Web sites,
it would be trivial to use CSP to enforce the same protection,
but this is not done. Though this might be caused by outdated
CSPs written before framing control support was added, we
observed an interesting phenomenon: a third of the Web sites
which deploy CSP without using frame-ancestors are
making use of upgrade—-secure-requests, which was
introduced to CSP only later. This implies that CSP is often
perceived as a complex mechanism to restrict content inclusion
and not as a meaningful mechanism to control framing, which
can even be used without any restriction on included content.

Overall, we find that CSP has grown from a mechanism
aimed at restricting content to a multi-use measure to improve
the security of Web applications. Our work has highlighted
that this shows success with respect to TLS enforcement and
framing control but also indicates that operators tend to shy
away from deploying CSP, even though it could in many
cases easily benefit their security. We believe this is caused by
the ever-increasing complexity of the CSP mechanism. Apart
from the already existing directives, new features for content
restriction, such as more involved mechanisms for securing
script code in attributes [32], are being added. In addition,
with features such as navigate-to [31] and the signaling
for Trusted Types [54], CSP is becoming a highly complex,
generic Security Policy. This perceived complexity was also
echoed in the notification responses, with operators explicitly
naming complexity as the hurdle towards CSP deployment.

C. Quo Vadis, CSP?

Given our insights regarding CSP’s (in)ability to restrict
script content and the reasons we uncovered through our
analysis, we propose three actionable steps which we believe
can help CSP’s adoption and the security of deployed policies.

15

1) unsafe-nonced-elements: One major roadblock
to CSP adoption is the inability to use event handlers. While
Chrome has recently added support for unsafe-hashed-
attributes [33], this only enables operators to make
their hash-based whitelist apply to event handlers. In practice
though, we observed up to 3,344 different event handlers on a
single page. While the median is only at around 5, any update
to the event handlers needs to be propagated to the CSP header
(for all pages). Instead, we propose that CSP be extended
to allow for nonced elements, i.e., when an element carries
a nonce, any event handlers are permitted on that element
but not its children. This would remove the need of always
resorting to unsafe—inline. This proposed changes comes
with certain risks, namely nonce-reuse attacks and injections
inside nonced elements. The first is acknowledged by the CSP
standard authors, who proposed a fix as follows [1]: if a
script tag is nonced, it will only be executed if within all of
its attributes, no additional opening script tag can be found.
This could be easily extended to check for other elements. To
understand the feasibility of the approach, for all of the 317
sites with unsafe—-inline which used event handlers (see
Section we checked each snapshot to gauge whether
an element with an event handler also contained markup in
any of its attributes. Assuming these were to be nonced, but
contain markup, CSP would falsely block the nonced element
from executing the event handlers. This analysis showed that
not a single snapshot had such a case; meaning that our
proposal would likely not cause incompatibilities. Second, an
attacker could abuse an injection inside a nonced element to
add additional event handlers. However, this is a significantly
lower attack surface than using unsafe-inline, for which
an injection anywhere in the page is sufficient to allow for an
XSS attack. Hence, we argue that this is a viable option to
make CSP more usable, while not fully sacrificing security.

2) Incorporate CSP into Development Cycle: As our anal-
ysis has highlighted, many operators attempted to deploy
CSP to an existing application, only to either end up with a
trivially bypassable policy or give up on CSP altogether. With
a few exceptions, deploying CSP retroactively to an existing
application does not appear to be a viable strategy. This is
aggravated by the use of third parties, which are known to
dynamically add additional content. Hence, we argue that CSP
must be incorporated into the development cycle. In particular,
we urge IDE vendors to add checks for CSP incompatible
code at development time by, e.g., warning developers to not
add inline scripts or event handlers, but instead proposing
to externalize the desired functionality. In addition, as prior
work has documented, third parties often add (script) content
dynamically. We could confirm that by attributing over half the
detected content violations to third parties. While prior work,
such as Calzavara et al. [7] and Weichselbaum et al. [50], have
proposed means to address this issue, we instead argue that
third parties should be explicit about their dependencies and
their impact on CSP (e.g., if they only add scripts dynamically,
thereby enabling support for strict-dynamic). In this
way, during development, a web developer could decide to
incorporate another similar vendor which provides the same
service with less CSP interference. This could also be incor-
porated into IDEs, which could automatically analyze included
parties and warn the developers about roadblocks for CSP.

3) Updated Informational Material for Developers: In light
of our findings and survey responses, it appears that the com-
plexity for script content restriction gives CSP a bad reputation.
Given that this is not counteracted by widely used resources
pointing out the easy-to-deploy use cases of TLS enforcement
and framing control, we advocate for clear communication of
the individual goals in such resources. Likewise, we argue
that browser vendors are in a unique position to improve
upon this situation, by warning developers through the console
about inconsistently implemented mechanisms like X-Frame-
Options, even providing a quick fix for the issue by deploying
CSP. To that end, we have started discussions with both
the Chrome and Firefox team on addressing this issue, with
the hope of allowing more sites to leverage the easy-to-use
capabilities that CSP can offer for better security.

XI.

1) Large-Scale Analyses of CSP: The CSP deployment in
the wild has undergone at least four authoritative studies as
of now [6l 18 50, I51]. The first investigation was published
by Weissbacher et al. in 2014 and mostly focused on the
challenges of CSP adoption: the authors identified a slow, sub-
optimal CSP deployment and proposed techniques for semi-
automated policy generation [51]. Weichselbaum et al. in 2016
highlighted that more than 90% of the CSPs in the wild
provided no protection against XSS due to trivial bypasses such
as the use of unsafe—inline or insecure whitelists [SO].
The authors then recommended the use of strict-dynamic
to deploy CSP more securely. In the same year, Calzavara et al.
identified similar issues and performed a longitudinal analysis
of CSP deployment over 4 months, showing that CSPs change
less frequently than needed [6]. Their study was later extended
to 6 months, showing that the fraction of sites mitigating XSS
increased over time due to nonces, but most policy changes in
the wild were not targeted at improving security [S8]].

RELATED WORK

Our work improves upon previous analyses of CSP in dif-
ferent ways. First, we present the first analysis of the security
impact of expired domains on existing CSPs, complementing
previous findings of the insecurity of whitelists [19] 50] with
a new delicate aspect. Moreover, our longitudinal lense from
2012 to 2018 not only provides the most comprehensive study
on CSP deployment to date, but allows us to document the
types of struggles sites face when deploying CSP for content
restriction, detailing insights other works could not uncover.
We then turn our attention to aspects of CSP which have not
been thoroughly evaluated in previous work, namely the use
of CSP for framing control and for TLS enforcement, which
we also investigate through hands-on experience enabled by
a notification campaign. Finally, we complement all of our
findings by gathering insights from the field based on email
responses to the notification and our follow-up survey.

2) Other Work on CSP: Van Acker et al. studied the
inability of CSP to prevent data leaks and proposed mitigation
techniques against specific attack vectors [44]. Hausknecht et
al. observed that browser extensions may force Web pages into
requesting resources which are not whitelisted by their CSP
and proposed an endorsement mechanism to solve possible
compatibility issues [15]. Somé et al. identified a subtle inter-
action between CSP and the Same Origin Policy which allowed
bypasses of the security guarantees offered by CSP [39].

16

Calzavara et al. [7] proposed Compositional CSP: an extension
of CSP designed to better support the dynamic nature of most
modern Web sites. Finally, several researchers have proposed
automated techniques to synthesize CSPs for existing Web
applications, such as DeDaCoTa [12] or CSPAutoGen [34].

3) Historical Analyses of the Web: The idea of using
the Internet Archive for historical security analyses was first
employed by Lerner et al. who used it to conduct a study on
how Web tracking evolved over the course of 20 years [21].
In 2017, Stock et al. used the same method to investigate
the general evolution of client-side security [41]. In particular,
they investigated the prevalence of client-side threats (such as
Client-Side XSS) and adoption of mitigation techniques. They
also noted an uptake in the usage of CSP since 2014, how-
ever, did not focus on any particular analysis of the security
implications of the deployed policies. Later that year, Lerner
et al. showed that the Internet Archive is prone to attacks that
leverage externally referenced JavaScript resources, effectively
allowing attackers to modify the rendered content [20]. Their
work is the reason why the Archive deployed their own CSP.

XII. CONCLUSION

In this paper, we conducted a longitudinal analysis of the
deployment and evolution of CSP since 2012. Leveraging the
Internet Archive to collect the historical headers for 10,000
highly ranked websites for seven years, we identified that while
CSP was initially meant as a mitigation for script injection,
it has evolved into a mechanism that is equally often used to
control framing and enforce TLS connections. Our longitudinal
analysis allowed us to document the struggle developers face
when constructing a secure and functional policy for content
restriction, and highlighted that even secure CSPs are prone
to bypasses through typos and expired domains. Combined
with the lack of adoption of new features such as strict-
dynamic, this lead us to conclude that script-restricting parts
of CSP are unlikely to succeed in the future. Moreover, while
CSP is increasingly deployed for framing control and TLS
enforcement, their adoption rate is still unsatisfactory. The
insights gathered from our survey indicate that CSP has earned
a bad reputation due to its complexity in content restriction,
resulting in developers shying away from any part of CSP.
Even though the alternative use cases for CSP are easy to
deploy, this bad reputation, unless counteracted by tools,
browser vendors, and informational material alike, significantly
hampers CSP’s ability to improve the Web’s security.

REFERENCES

[1] “Prevent nonce stealing by looking for “<script” in
attributes of nonced scripts,” https://github.com/w3c/
webappsec-csp/issues/98|

[2] “Dataset used in our analysis,” |https://pastebin.com/

NbExNmcl.

[3] “Google analytics legacy documentation,”
https://developers.google.com/analytics/devguides/
collection/gajs.

[4] Ambroise Maupate, “Nginx CSP example,” |https://gist.
github.com/ambroisemaupate/bce4b760405558£358ael
2019.

https://github.com/w3c/webappsec-csp/issues/98
https://github.com/w3c/webappsec-csp/issues/98
https://pastebin.com/NbFxNmc1
https://pastebin.com/NbFxNmc1
https://developers.google.com/analytics/devguides/collection/gajs
https://developers.google.com/analytics/devguides/collection/gajs
https://gist.github.com/ambroisemaupate/bce4b760405558f358ae
https://gist.github.com/ambroisemaupate/bce4b760405558f358ae

[5] Bruno Scheufler, “Using security-related headers to se-
cure your application against common attacks,” https:
/Itinyurl.com/y68c4lpp, 2019.

[6] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content
security problems? evaluating the effectiveness of content
security policy in the wild,” in CCS, 2016.

, “CCSP: controlled relaxation of content security

policies by runtime policy composition,” in USENIX

Security, 2017.

, “Semantics-based analysis of content security pol-
icy deployment,” TWEB, 2018.

[9] Can I use..., “Content Security Policy 1.0,” https://
caniuse.com/#feat=contentsecuritypolicy, 2019.

[10] Common Crawl, “So you are ready to get started,” http:
//commoncrawl.org/the-data/get-started/, 2019.

[11] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes,
“Keep me updated: An empirical study of third-party
library updatability on android,” in CCS, 2017.

[12] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna, “dedacota: toward preventing
server-side xss via automatic code and data separation,”
in CCS, 2013.

[13] Experiments with Google, “Content Security Policy,”
https://csp.withgoogle.com/docs/strict-csp.html, 2019.

[14] GitHub Blog, “GitHub CSP Blog Post,” https://blog.
github.com/2013-04-19-content-security-policy/, 2013.

[15] D. Hausknecht, J. Magazinius, and A. Sabelfeld, “May
i? - content security policy endorsement for browser
extensions,” in DIMVA, 2015.

[16] J. Hodges, C. Jackson, and A. Barth, “RFC6797: Http
strict transport security (hsts),” https://tools.ietf.org/html/
rfc6797, 2012.

[17] Internet Archive, “About the internet archive,” https:
/farchive.org, 2019.

[18] E. Lawrence, “This page frames a victim page in myriad

ways,” http://www.enhanceie.com/test/clickjack, 2019.

S. Lekies, K. Kotowicz, S. Grof3, E. A. V. Nava, and

M. Johns, “Code-reuse attacks for the web: Breaking

cross-site scripting mitigations via script gadgets,” in

CCS, 2017.

A. Lerner, T. Kohno, and F. Roesner, “Rewriting history:

Changing the archived web from the present,” in CCS,

2017.

A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner,

“Internet jones and the raiders of the lost trackers: An

archaeological study of web tracking from 1996 to 2016,”

in USENIX Security, 2016.

M. Luo, P. Laperdrix, N. Honarmand, and N. Niki-

forakis, “Time Does Not Heal All Wounds: A Longitudi-

nal Analysis of Security-Mechanism Support in Mobile

Browsers,” in NDSS, 2019.

[23] MDN, “Data URISs,” https://developer.mozilla.org/en-US/
docs/Web/HTTP/Basics_of HTTP/Data URIs, 2019.

(7]

(8]

[19]

[20]

[21]

[22]

[24] , “Content Security Policy (CSP),” https://developer.
mozilla.org/en-US/docs/Web/HTTP/CSP, 2019.

[25] —, “SecurityPolicy ViolationEvent,” https:
//developer.mozilla.org/en- US/docs/Web/API/
SecurityPolicy ViolationEvent, 2019.

[26] ——, “X-Frame-Options,” |https://developer.mozilla.

org/en-US/docs/Web/HTTP/Headers/X-Frame-Options),
2019.

17

[27] Microsoft, “CSP Level 3 strict-dynamic source expres-
sion,” https://tinyurl.com/y3d6ljjk, 2019.

N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “You are what you include: large-scale
evaluation of remote javascript inclusions,” in CCS,

(28]

2012.
[29] OWASP, “HTTP Strict Transport Security Cheat
Sheet,” |https://www.owasp.org/index.php/HTTP_Strict_

Transport_Security_Cheat_Sheet, 2018.

[30] —, “Clickjacking Defense Cheat Sheet,”
https://www.owasp.org/index.php/Clickjacking_Defense_
Cheat_Sheet, 2017.

[31] A. Paicu, “CSP ’navigate-to’ directive,” https://www.
chromestatus.com/feature/6457580339593216, 2018.

[32] X “CSP: ‘script-src-attr®, ‘script-src-elem®,
‘style-src-attr, ‘style-src-elem‘ directives,” https:
/Iwww.chromestatus.com/features/5141352765456384,
2018.

[33] “CSP3: unsafe-hashed-attributes,” https://www.
chromestatus.com/features/5867082285580288, 2017.

[34] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou,
“Cspautogen: Black-box enforcement of content security
policy upon real-world websites,” in CCS, 2016.

[35] A. Porter Felt, R. Barnes, A. King, C. Palmer, C. Bentzel,
and P. Tabriz, “Measuring https adoption on the web,” in
USENIX Security, 2017.

[36] D. Ross and T. Gondrom, “RFC7034: Http header field x-
frame-options,” https://tools.ietf.org/html/rfc7034, 2013.

[37] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmer-
mann, S. D. Strowes, and N. Vallina-Rodriguez, “A long
way to the top: Significance, structure, and stability of
internet top lists,” in IMC, 2018.

[38] Scott Helme, “Security Headers,” https://securityheaders.
com, 2019.

[39] D. F. Somé, N. Bielova, and T. Rezk, “On the content
security policy violations due to the same-origin policy,”
in WWW, 2017.

[40] S. Stamm, B. Sterne, and G. Markham, “Reining in the
web with content security policy,” in WWW, 2010.

[41] B. Stock, M. Johns, M. Steffens, and M. Backes, “How
the Web Tangled Itself: Uncovering the History of Client-
Side Web (In)Security,” in USENIX Security, 2017.

[42] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow,
“Didn’t You Hear Me? - Towards More Successful Web
Vulnerability Notifications,” in NDSS, 2018.

[43] P. Toomey, “GitHub’s CSP Journey,” |https:
//githubengineering.com/githubs-csp-journey/, 2016.

[44] S. Van Acker, D. Hausknecht, and A. Sabelfeld, “Data
exfiltration in the face of CSP,” in AsiaCCS, 2016.

[45] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet,
and W. Joosen, “Large-scale security analysis of the web:
Challenges and findings,” in TRUST, 2014.

[46] W3C Working Group, “Content Security Policy (Level
2),” https://www.w3.org/TR/CSP2/, 2016.

[47] ——, “Content Security Policy (Level 3),” https://www.
w3.org/TR/CSP3/, 2018.

[48] Y.-M. Wang, D. Beck, J. Wang, C. Verbowski, and
B. Daniels, “Strider typo-patrol: Discovery and analysis
of systematic typo-squatting,” SRUTI, 2006.

https://tinyurl.com/y68c4lpp
https://tinyurl.com/y68c4lpp
https://caniuse.com/#feat=contentsecuritypolicy
https://caniuse.com/#feat=contentsecuritypolicy
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
https://csp.withgoogle.com/docs/strict-csp.html
https://blog.github.com/2013-04-19-content-security-policy/
https://blog.github.com/2013-04-19-content-security-policy/
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://archive.org
https://archive.org
http://www.enhanceie.com/test/clickjack
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent
https://developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent
https://developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://tinyurl.com/y3d6ljjk
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.chromestatus.com/feature/6457580339593216
https://www.chromestatus.com/feature/6457580339593216
https://www.chromestatus.com/features/5141352765456384
https://www.chromestatus.com/features/5141352765456384
https://www.chromestatus.com/features/5867082285580288
https://www.chromestatus.com/features/5867082285580288
https://tools.ietf.org/html/rfc7034
https://securityheaders.com
https://securityheaders.com
https://githubengineering.com/githubs-csp-journey/
https://githubengineering.com/githubs-csp-journey/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/

[49] L. Weichselbaum and M. Spagnuolo, “CSP - A Suc-
cessful Mess Between Hardening and Mitigation,” https:
//tinyurl.com/yyohn606.

[50] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc,
“CSP is dead, long live csp! on the insecurity of whitelists
and the future of content security policy,” in CCS, 2016.

[51] M. Weissbacher, T. Lauinger, and W. K. Robertson, “Why
is CSP failing? trends and challenges in CSP adoption,”
in RAID, 2014.

[52] M. West, “Upgrade insecure requests,” https://www.
chromestatus.com/feature/6534575509471232, 2018.

[53] , “Mixed content,” https://www.w3.org/TR/
mixed-content/, 2016.

[54] WICG, “Explainer: Trusted Types for DOM
Manipulation,” |https://github.com/WICG/trusted-types#
limiting-policies, 2018.

APPENDIX
A. Email notification template
Dear $domain team,

We are a team of academic researchers from S$institutions
investigating the usage of security headers on the Web.

As part of our analysis, we are investigating the usage of the
X-Frame-Options header to control framing on the Web. Based
on our analysis, your site is attempting to control framing with
the following value: SAMEORIGIN

We noticed that this value potentially allows for double-
framing attacks with certain browsers such as Internet
Explorer and Edge (see https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_-
compatibility)

The currently proposed way to ensure that all modern browsers
properly protect against framing attacks is to use the Content-
Security-Policy directive frame-ancestors. In particular, for
your value of X-Frame-Options, the corresponding value is:
frame—-ancestors ’self’

Note that in order to protect older browsers, keeping X-Frame-
Options in place is recommended. As CSP takes precedence
over X-Frame-Options, securing legacy clients without inter-
fering with modern browsers is possible through the usage of
the DENY directive in XFO.

For further information on CSP’s frame-ancestors, please
refer to https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Content-Security-Policy/frame-ancestors

As this email is part of a research project in which we are
trying to understand the lack of adoption of CSP in the
wild, it would be immensely helpful if you could provide us
with feedback regarding the lack of CSP’s frame-ancestors to
protect against framing attacks on your Web site (i.e., were you
not aware of the CSP mechanism, that specific CSP directive,
or, were you not adopting it, for some other reason?)

Please note that this email is only part of an academic research
project and not meant to sell any products or services.

Best regards
$researchers

18

B. Quotes from Responses

1) Complexity of CSP: “Reading the experience of people
that tried to do a full CSP implementation is just scary”. “In
previous discussions about CSP, we’ve been worried that the
risk of accidentally breaking some interaction we have with
other [sitename] systems (or the few third party tools we
integrate with) outweighs the benefit of implementing these
sorts of changes.” “We are pretty certain that there are a lot of
pitfalls with implementation of these headers, that might break
sections or uses of our site.”

2) XFO Dangers: “We were vaguely aware of the frame-
ancestors option, but our understanding was that XFO was
sufficient for securing all clients”. “While we were aware
of CSP itself, we were unaware of the fact, that X-Frame-
Options allows for attacks under certain conditions, which can
be mitigated by using the frame-ancestors directive of CSP.”

3) frame—ancestors: “In my opinion the only advan-
tage of CSP is to protect against XSS [...]”. “As we were not
that aware of CSP framing control, we were also not aware of
its implementation (no side effects)”

C. Survey Questionnaire

1) Did you know about the inconsistent understanding of
browsers of the X-Frame-Options header before our noti-
fication (such as the lack of support for ALLOW-FROM
in Chrome and Safari as well as the potential threat of
double-framing in Edge/IE)? (Yes/No)

2) Why have you implemented the X-Frame-Options
header? (Penetration test or consultant suggested it/Tools
we used suggested it/Own decision to restrict fram-
ing/Other (free text))

3) Did you know about CSP before our notification?
(Yes/No)

4) (only if Q3 was yes) Would your site work out of the
box if you deployed a script-content restricting CSP
today (disallow eval, inline scripts, and event handlers)?
(Yes/No/Don’t know)

5) (only if Q3 was yes) Do you believe CSP is a viable
option to improve your site’s resilience against XSS
attacks? (Yes/No/Don’t know)

6) (only if Q5 was no) Why do you think CSP is not viable
for your site? (free text)

7) (only if Q3 was yes) Did you know about the frame-
ancestors directive and its improved protection capabil-
ities compared to X-Frame-Options before our notifica-
tion? (Yes/No)

8) (only if Q7 was yes) Did you know that frame-ancestors
can be deployed independently of any other part of CSP
before our notification? (Yes/No)

9) (only if Q3 was yes) Did you know that CSP can be
used (in isolation) to ensure no HTTP resources can
accidentally be loaded (through block-all-mixed-content)
and to enforce TLS for all resources (through upgrade-
insecure-requests)? (Yes/No)

10) Do you ever use the developer tools to debug or analyze
your site? (Yes/No)

11) What kind of tool support would be useful to you to
secure your application? (free text)

https://tinyurl.com/yyohn6o6
https://tinyurl.com/yyohn6o6
https://www.chromestatus.com/feature/6534575509471232
https://www.chromestatus.com/feature/6534575509471232
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/mixed-content/
https://github.com/WICG/trusted-types#limiting-policies
https://github.com/WICG/trusted-types#limiting-policies

	Introduction
	Background on CSP
	CSP for Content Restriction
	CSP for TLS Enforcement
	CSP for Framing Control

	Analysis Methodology
	Dataset Construction
	Threats to Validity
	Incorrect Archival Data
	CSP Through Meta Tags

	Historical Evolution of CSP
	Adoption and Maintenance of CSP
	Use Cases for CSP

	CSP for Script Content Restriction
	Insecure Practices Die Hard
	Whitelisted Sources
	Abusing Whitelisted Domains
	Expired Domains
	Typos
	Local Addresses

	Longitudinal Case Studies
	Curating Limited Whitelists
	Eventually Giving Up on CSP
	Failing Gracefully Through Report-Only
	Lasting Success in CSP Deployment

	CSP for TLS Enforcement
	Evolution of TLS Enforcement
	Leveraging CSP for TLS Migration

	CSP for Framing Control
	Evolution of CSP for Framing Control
	Leveraging the Flexibility of CSP
	Combining XFO and CSP frame-ancestors
	Replacing XFO with CSP-FA

	In-Depth Analysis of Deployed CSPs
	Reasons for Giving Up on CSP
	Content Violations
	TLS Violations
	Framing Control Violations

	Investigating Insecure Policies
	Analyzing Secure Sites

	Framing Control Notification
	Insights from Initial Responses
	Follow-Up Survey
	Limitations and Additional Survey

	Discussion
	Summary of CSP's Use Cases
	CSP for Script Content Restriction
	CSP for TLS Enforcement
	CSP for Framing Control

	Complex Security Policy?
	Quo Vadis, CSP?
	unsafe-nonced-elements
	Incorporate CSP into Development Cycle
	Updated Informational Material for Developers

	Related Work
	Large-Scale Analyses of CSP
	Other Work on CSP
	Historical Analyses of the Web

	Conclusion
	Appendix
	Email notification template
	Quotes from Responses
	Complexity of CSP
	XFO Dangers
	frame-ancestors

	Survey Questionnaire

