
Evasive Malware via Identifier Implanting

Rui Tanabe1(B), Wataru Ueno1, Kou Ishii1, Katsunari Yoshioka1,
Tsutomu Matsumoto1, Takahiro Kasama2, Daisuke Inoue2,

and Christian Rossow3

1 Yokohama National University, YNU, Yokohama, Japan
{tanabe-rui-nv,ueno-wataru-tn,ishii-kou-yf}@ynu.jp,

{yoshioka,tsutomu}@ynu.ac.jp
2 National Institute of Information and Communications Technology,

NICT, Koganei, Japan
{kasama,dai}@nict.go.jp

3 Center for IT-Security, Privacy, and Accountability, CISPA, Saarland University,
Saarbrücken, Germany
rossow@cispa.saarland

Abstract. To cope with the increasing number of malware attacks that
organizations face, anti-malware appliances and sandboxes have become
an integral security defense. In particular, appliances have become the de
facto standard in the fight against targeted attacks. Yet recent incidents
have demonstrated that malware can effectively detect and thus evade
sandboxes, resulting in an ongoing arms race between sandbox develop-
ers and malware authors.

We show how attackers can escape this arms race with what we call
customized malware, i.e., malware that only exposes its malicious behav-
ior on a targeted system. We present a web-based reconnaissance strat-
egy, where an actor leaves marks on the target system such that the cus-
tomized malware can recognize this particular system in a later stage,
and only then exposes its malicious behavior. We propose to implant
identifiers into the target system, such as unique entries in the browser
history, cache, cookies, or the DNS stub resolver cache. We then pro-
totype a customized malware that searches for these implants on the
executing environment and denies execution if implants do not exist
as expected. This way, sandboxes can be evaded without the need to
detect artifacts that witness the existence of sandboxes or a real system
environment. Our results show that this prototype remains undetected
on commercial malware security appliances, while only exposing its real
behavior on the targeted system. To defend against this novel attack,
we discuss countermeasures and a responsible disclosure process to allow
appliances vendors to prepare for such attacks.

1 Introduction

Malware, in its various forms, is equally a threat to consumers (e.g., banking
trojans, ransomware), businesses (e.g., targeted attacks, denial-of-service bots),
c© The Author(s) 2018
C. Giuffrida et al. (Eds.): DIMVA 2018, LNCS 10885, pp. 162–184, 2018.
https://doi.org/10.1007/978-3-319-93411-2_8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249328138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93411-2_8&domain=pdf

Evasive Malware via Identifier Implanting 163

and society (e.g., spambots). As a response, malware sandboxes have been widely
deployed as a vital component in the fight against malware. Sandboxes help to
obtain threat information, such as previously unseen malware, inputs for super-
vised detection mechanisms, malware C&C servers, targets of banking trojans,
intelligence on spreading campaigns, or simply to assist in the manual processes
of reverse engineering. In addition, organizations face so many security incidents
that vendors use sandboxes as an integral part of malware security appliances.
As a consequence, the anti-virus industry and security companies heavily rely on
sandboxes to detect the maliciousness of an unknown program under analysis.

Seeing sandboxes’ utility to defenders, malware authors naturally have been
trying to evade sandbox analyses to fly under the radar. There are various
types of sandbox implementations, most prominently sandboxes that use vir-
tual machine technologies or CPU emulators. Whereas, malware may include
indicators to detect a sandbox, e.g., using artifacts that show the presence of
virtualization solutions. Consequently, sandbox designers have tried to design
stealthier sandboxes, such as those hiding virtualization artifacts [21,24] or using
bare-metal systems for malware analysis [33,34,54]. However, recent research
demonstrates that characteristics other than virtualization hint at sandboxes.
For example, Yokoyama et al. show that snapshotting features can reveal a
sandbox [60], while Najmeh et al. search for wear-and-tear artifacts of user sys-
tems [42]. This demonstrates an ongoing arms race between sandbox maintainers
and attackers.

We show that this cat-and-mouse game can be won by attackers once and for
all if they implement malware that is tailored to a specific target system. Instead
of malware that distinguishes between sandboxes and actual user systems, we
envision customized malware that is carefully crafted such that it only reveals its
malicious behavior on a specific target system. In fact, malware campaigns that
follow a similar idea have already been observed [29]. For example, the Gauss
malware computed MD5 hashes over directories, assuming a certain identifier
only present on the target system, and using this information to unpack/decrypt
itself [6]. The difference between these approaches and ours is that we do not use
machine-specific keys that are difficult to exfiltrate before infection. Instead, we
aim to implant marks in the target system. We propose an automated web-based
reconnaissance phase, in which an actor uniquely marks a target system so that
it can be reidentified later. After doing so, the customized malware is created
such that it hides the malicious payload until it can verify that the previously
placed characteristics match with the execution environment. This way, not only
sandboxes, but any type of non-targeted systems are subject to evasion, without
the need to enter the battle of sandbox detection. Such an attack might become
especially attractive for targeted attacks, where attackers aim to compromise
single individuals in sophisticated attacks.

We instantiate a reconnaissance strategy tailored towards both heterogeneous
and homogeneous environments, i.e., a methodology that even works when most
systems in the target environment (including the appliances’ sandboxes) share
the same configuration. Especially homogeneous environments are a highly-

164 R. Tanabe et al.

controlled setting that are common in large organizations that aim to reduce
maintenance costs. This way, traditional evasion attacks that aim to detect arti-
facts of sandboxes are ineffective in such a setting, as the users and the sandbox
are cloned from each other. However, with our proposal to implant an identifier
into the target system, we show that adversaries can even evade analysis in such
homogeneous settings. We show that attackers can place unique and character-
istic marks in the browser’s history, cache, or cookies, or place delicate traces
in the DNS stub resolver cache. Implants are, for example, triggered via email,
where a target user is tricked into clicking on an attacker-controlled URL that
performs a reconnaissance phase and places an implant.

To prototype the attack, we create customized malware that checks the exe-
cution environment and search for certain marks/traces. We experimentally show
that this malware becomes active on a previously-explored target system, but
remains silent and does not raise security warnings on any malware security
appliance. Our results demonstrate that implants escape the battle of sandbox
detection and remain fully undetected on modern anti-malware appliances. This
provides a new angle to the ongoing arms race and calls for completely novel anti-
evasion strategies. We discuss several such defenses, ranging from enhancing the
sandbox with alerts upon detection of a reconnaissance phase, to how implants
can be reliably destroyed. To allow appliance vendors to prepare for such attacks,
we discuss a responsible disclosure process to notify affected vendors.

Summarizing, the contributions of this paper are as follows:

– We propose a stealth reconnaissance strategy that places unique implants in
the target system. This methodology allows attackers to create target-specific
malware for both heterogeneous and homogeneous environments.

– We envision the general concept of customized malware that presents a com-
pletely new angle in the context of malware sandbox evasion. We instantiate
the concept with a web-based reconnaissance strategy and demonstrate per-
fect evasion of three popular commercial malware security appliances.

– We discuss several defenses and a responsible disclosure process. We inform
appliances vendors about this new threat to collaborate on countermeasures.

2 Background

We first describe the terminology that we use throughout the paper. We use
the term sandbox to refer to a dynamic analysis environment that executes
unknown programs to observe their behavior. Sandboxes are extensively lever-
aged to obtain threat information, such as current campaigns [19], recent C&C
servers and traffic patterns [43,49,51], or attack targets [26]. Similarly, sand-
boxes can be used to group behavior into malware families [16,50], or to identify
suspicious behavioral patterns [36].

Sandbox Analysis: To cope with the daily feed of hundreds of thousands of
previously-unseen malware samples, sandboxes are highly automated. To scale

Evasive Malware via Identifier Implanting 165

the analysis, most sandboxes rely on some form of virtualization. To this end,
sandboxes rely on various virtualization techniques such as VMWare [10] and
VirtualBox [8] or CPU emulators [3,17]. Cuckoo Sandbox [5] is a popular open-
source sandbox. However, many security organizations operate other sandboxes,
either choosing from commercial sandboxes or designing their own solution. Vir-
tualization offers the benefit that many virtual machines (VMs) can run in par-
allel on a single system, each analyzing one piece of malware. Egele et al. give a
comprehensive overview of known sandboxes [25].

Malware Security Appliances: By now, sandbox analysis is widely used in
academia, the anti-virus industry, and finally, also by commercial malware secu-
rity appliances (henceforth simply “appliances”). Such appliances protect end-
points by analyzing unknown files and inspecting their behavior for suspicious
actions. They are frequently deployed at the network layer and are used orthog-
onally as anti-virus scanners, e.g., to protect endpoints from opening malicious
email attachments and malicious file downloads from the Internet. Internally,
appliances also use a sandbox to analyze the malware behavior, such as its sys-
tem interactions or network communication.

Given the importance of preventing malware intrusions, these appliances play
an ever-increasing role as security defenses. This motivates malware authors to
find ways to detect and evade sandboxes. Typically, malware detects sandboxes
by checking the execution environment. For example, Barbosa et al. reported
that about 80% of evasive malware detects VM environments [13]. By now, many
appliances have resilience to such simple sandbox evasion techniques. Still, as
we will show, it is fundamentally difficult to prevent targeted attacks that can
gather information about the target system prior to compromising the target.

Targeted Attack: Adversaries with an outstanding interest to infiltrate a tar-
get will continuously and persistently attack the target using various types of
malware in several attack phases. Security vendors have defined this type of
attack as Advanced Persistent Threat (APT) [1,2]. The purpose of a targeted
attack varies per attack campaign, such as leaking information related to finan-
cial and intellectual property, destroying a target’s core system, or altering data
saved in the target system. Although attacks are complex and can be divided into
several phases, it is common that attackers gather pieces of information related
to the target user(s) and their setup. This makes it possible to plan an attack
scenario in which the targeted malware bypasses existing security measures. New
vulnerabilities (zero-day attacks) and human weaknesses (social engineering) are
then abused to infect a victim. Once the malware has infected a target system,
backdoors or C&C channels are created. Further attacks may abuse this stepping
stone to propagate to and monitor other target systems.

166 R. Tanabe et al.

3 Sandbox Evasion via Implants

We use this section to explain the general concept of customized malware that
presents a completely new angle in the battle of sandbox evasion. In our context,
customized malware can identify a target-specific system in both heterogeneous
and homogeneous environments. We will first explain the attack scenario that
follows two phases, starting with a phase to place identifiers into the target
system and then using them in the next phase. We then describe how to leave
unique and characteristic features in the target system. To prototype the attack,
we implement customized malware that checks the execution and search for cer-
tain marks/traces. Finally, we test these samples against commercial appliances
and see if stealth evasion is possible in practice (Fig. 1).

Fig. 1. Overview of our attack scenario. Adversaries first implant identifiers into the
target system using an out-of-band channel. We propose to place URLs in the browser
history, cache, cookie, and DNS stub resolver cache(1©). Attackers then send cus-
tomized malware that search for the previously placed characteristics, and trigger its
malicious behavior only if the features match. This way, not only malware security
appliances, but any type of not-targeted systems are evaded(2©).

3.1 Attack Scenario

We first explain the threat model that we follow in our work and the assumptions
that we make about the capabilities of sandboxes. We start with an overview
of how sandboxes are used in practice, and then detail the setting of our new
concept of customized malware.

To defend against the ever-increasing number of malware attacks, malware
security appliances have become an integral part of many organizations’ secu-
rity strategies. Seeing their prevalence, malware authors put significant effort
into detecting (and evading) such sandboxes. For example, malware can deploy
detection routines for VM-based or emulation-based sandboxes and change its
behavior if a sandbox environment is found. Similarly, malware that evades

Evasive Malware via Identifier Implanting 167

sandbox analysis based on the lack of user interaction has been seen. In addi-
tion, recent academic works propose further more systematic sandbox detection
strategies [42,60]. To cope with the problem, stealthier or even bare-metal sand-
boxes [7,34] have arisen, and security vendors have entered an ongoing arms race
to become resilient against sandbox evasion techniques.

Whereas it seems that this evasion arms race will continue for a while, in this
paper, we call attention to the next-stage problem of target-specific malware.
That is, we envision customized malware that is tailored towards infecting one
particular system. To this end, we assume that the customized malware first
places an implant into the target system using an out-of-band channel (e.g.,
triggered via email). Later on, when executed, the customized malware first
gathers information on the executed environment, matches these features against
the previous implants of the target system, and triggers its malicious activities
only if the features match. Regardless of the efforts put into hiding the presence
of a sandbox, as long as the sandbox is not an exact copy of the target system,
the customized malware will not reveal its normal behavior. That is, our work
is fundamentally different from previous approaches in that our key idea is to
identify the target system instead of separating sandboxes from normal systems.

Individual malware campaigns have already been observed to follow a similar
idea, e.g., by computing MD5 hashes over directories, assuming a certain SID
(a unique per-system identifier in Windows), and by comparing specific and
current paths to decrypt themselves [6,29]. Chengyu et al. show some system
unique properties that can be used to obfuscate malware samples [23]. However,
these features are difficult to exfiltrate remotely (before infection) and thus pose
costs for the attacker or even render such evasions infeasible. We hence revisit
this attack pattern and augment it with new techniques. Most importantly, we
propose to place unique marks on the target system prior to infection instead of
merely using existing ones.

The novel concept of customized malware follows a two-phase approach,
starting with the reconnaissance phase and then using its results in the intrusion
phase. This attack scenario is common for targeted attacks such as Advanced
Persistent Threats (APTs), in which the attackers aim to infiltrate specific sys-
tems after spying on their victims first. In our context, we require that the
reconnaissance target and the attack target are the same (specific user). As we
will show, this assumption can be easily satisfied, e.g., when both reconnaissance
phase and infection phase share the same communication channel (e.g., email or
HTTP). We will describe the two phases in the following:

Reconnaissance Phase: In this phase, adversaries first implant certain marks
on the target system. The Internet has become a necessary technology for daily
business, including email communication and web browsing. In fact, obtaining
the email address of an attack target is already a vital step for targeted attacks.
To perform the reconnaissance, we assume that a targeted email successfully
tricks a user into clicking the URL of an attacker-controller reconnaissance web
site. This web site will then use a web-based reconnaissance procedure that

168 R. Tanabe et al.

implants features to the host, e.g., via email or via web sites. That is, if target
users click on an attacker-provided URL in an email, an unique identifier is
implanted on the target system. Such an implant can be stealthy, e.g., by leaving
certain marks/traces in the browser or system. Later on, customized malware
can recognize the target-specific system based on these implants.

During the reconnaissance phase, we assume that sandboxes either do not
click on URLs provided in emails (e.g., as this would otherwise cause bad side
effects, such as automated unsubscriptions from mailing lists, etc.). Or, if sand-
boxes indeed follow links provided in emails, we assume that the intrusion and
reconnaissance phase would not be run within the same execution unit of the
sandbox. This follows the reasoning that sandboxes have to differentiate the
behavior of different inputs (emails, malware files, etc.) and restore their snap-
shot after analyzing a particular input. In fact, this relaxation allows us to place
implants without even requiring the user to click on URLs. We observed that it
is possible to carefully craft emails that automatically load external content from
attacker-controlled URLs (e.g., loading embedded external images, as enabled by
default in Apple Mail), which then can be used to place implants. In an attempt
to collect implants, sandboxes could also automatically open emails and access
the URLs, but again, if this happens on a freshly-restored snapshot, both phases
would still not be linked. We will motivate this further in Sect. 4.

Intrusion Phase: After the reconnaissance phase, adversaries have sufficient
characteristic information to reidentify a specific target. The purpose of the
intrusion phase is thus to create stealth customized malware that only executes
on the target system, while not triggering suspicious activity on other systems
and thereby also evading anti-malware appliances. As we will show, we can
even hide the actual malicious payload by encrypting/decrypting it with the
characteristic information. That is, also a manual analyst lacking the true char-
acteristics of the actual target system could not reverse engineer the malicious
payload.

To assess how stealthy the customized malware is, we assume that the
crafted customized malware is tested by any (combination of) appliance(s) and
sandbox(es). We further assume that adversaries have no insights on which (if
any) sandboxes are deployed, which also makes it difficult to implant features.
Although some expert knowledge might be helpful to guess which activity in
the intrusion phase might raise an alert in the sandbox, an attacker might use
blackbox tests to identify viable strategies that survive sandbox checks.

Hetegerogeneous vs. Homogeneous Target Environments: Targeted
attacks are usually easier to perform in heterogeneous environments compared to
homogeneous environments, as systems in the heterogeneous setting can be eas-
ily distinguished from each other. Yet we propose a methodology for customized
malware that also performs well if the target system has identically-configured
clones. For example, organizations that deploy preconfigured configurations to
their end users to minimize maintenance and license costs and to ease security

Evasive Malware via Identifier Implanting 169

management create such a homogeneous environment. High-end security appli-
ances adapt to such settings in that their sandbox operates on exact copies of
the actual production systems of the organization they aim to protect. In such a
setting, traditional fingerprinting methods may fail to distinguish target systems
from any other system of the organization—including the sandbox.

3.2 Feature Implantation

We will now describe and evaluate our implant-based methodology to develop
customized malware that implicitly evades sandboxes. The key idea of the pro-
posed implants is to add unique and characteristic marks into the target system,
such that the customized malware can recognize them during the infection stage.
An important detail is that the implants should look benign to the target system
(and to the sandbox when looking them up), while the customized malware has
to be able to query implants. We now consider four non-invasive methods to
realize such implants.

Browser History: Web browsers typically record histories of web accesses to
ease lookups of visited sites in the future. By sending a unique (not necessarily
attacker-controlled) URL to the target and leading him to access it, the URL
will be recorded in the log of the target system. Since adversaries only need
to implant the URL in the access history, the web site does not have to be
malicious, so that no network appliances will be able to detect such implants.
As the implant just has to be unique, it could even be a legitimate web site with
a unique identifier added within the URL (e.g., google.com/12345). Another
way to abuse browser history is to use the access date as an implant, if browsers
record the last access date per URL.

Browser Cache: Most web browsers cache web content to speed up subsequent
visits. By luring the target system into clicking a unique URL, one can place
identifiers that are stored in the cache of the target system. The implant could
be benign but unique URLs or resources (images, CSS files, etc.). As caches
might be refreshed or deleted after a certain time and may thus not last long,
attackers would likely aim to shorten the time between the reconnaissance phase
and the intrusion phase.

HTTP Cookie: Cookies are a well-known technique for tracking browsers.
They are stored on the user’s computer as a file and store stateful information
that is specific to the pair of a client and a specific web site. Cookies are usually
saved when a new web site is loaded and can be queried by the web server or
accessed by the client computer. By now, most legitimate web sites use cookies,
so their usage is not suspicious. Although they can be destroyed when the current
web browser is closed, the lifetime of cookies is configurable (unless overridden
by manual browser configurations). Attackers can also use cookies to implant

170 R. Tanabe et al.

an identifier in a stealth manner using attacker-controlled web sites. This way,
malware authors could search for an implant in cookie databases of browsers.

Supercookies (Evercookies) are similar to cookies in that they are stored on
the user’s computer. They are usually harder to delete from the device, as they
are realized using multiple storage mechanisms [31]. For example, a supercookie
can implant a user-specific identifier using a Flash Local Shared Object. Alter-
natively, web servers can abuse a security improvement function like HSTS or
HPKP for supercookies [9]. The data size can be larger than normal cookies,
showing that supercookies are suited to track devices and place implants.

DNS Stub Resolver Cache: The Domain Name System (DNS) is widely used
to resolve domains to IP addresses, e.g., when accessing web sites. On Windows,
by default the Windows DNS stub resolver is used to query domains and cache
results according to their lifetime, as specified in the Time-to-Live (TTL) value
in DNS responses. Thus by sending a specific URL to the target and leading him
to access it, the domain will be cached by the DNS stub resolver. In fact, the
domain does not have to lead to a malicious web site, just feature a sufficiently
long cache duration (i.e., TTL) to bridge the time between reconnaissance and
infection. Malware authors could then check if the resolver cached a particular
domain, e.g., using common DNS cache snooping techniques.

Beside implanting features, when it becomes important for malware authors
to learn if the target has accessed a specific web site, the situation is trickier. The
obvious solution is using an attacker-controlled URL. Alternatively, one could
use unique benign web sites that state the date of the most recent visit, deploy
a publicly-visible visitor counter, or even abuse a timing-based side channel to
infer whether a certain page has been visited. By preparing an attacker-controlled
URL, malware authors can also find out which web browser the target is using
and make it easier to search for such implants. Therefore, malware authors may
carefully send an attacker-controlled URL and effectively implant identifiers into
the target system.

3.3 Customized Malware

We envision that customized malware first gathers information of the executed
environment and then matches these features against the implants placed pre-
viously during the intrusion phase. Most basic, malware authors could simply
check if the implant exists, and if so, follow a binary decision to either unpack
the malicious payload or not. However, a manual analyst could then still reverse
engineer the customized malware, reverse the decision to not unpack, and then
obtain the malicious payload. In fact, malware sandboxes and appliances already
have similar functionalities to scan malware binaries for malicious payloads, or
to execute several branches (multi-path execution [41]).

To strengthen this näıve approach, malware authors can not only check for
the existence of an implant. In fact, they can retrieve a value from the implant,
which can then be used as decryption key for malicious payloads. This way, it

Evasive Malware via Identifier Implanting 171

would be impossible to decrypt the malicious payload even for a human analyst
or multi-path execution. Embedding such implant values is trivial for cookies,
caches and browser history, where adversaries just need to configure the implant
URLs in the reconnaissance phase accordingly. For DNS caches, storing implant
values is bit more evolved, but also possible. For example, the value of a cached
AAAA record (which stores an IPv6 address) could be used as a 128-bit AES key.

3.4 Malware Security Appliance Evasion

Seeing that one can implant identifiers through web-based techniques and imple-
ment customized malware, we now test if such implants can be used to evade
commercial appliances.

Implementation: We first prepared a legitimate web site, which prototypes
an attacker-controlled URL and gives an attacker the highest flexibility. We
accessed our web site from a user machine that is used on a daily basis at a real
organization (henceforth simply “target”). To compare the results, we accessed
the web site from three different web browsers (Chrome, Firefox, and IE) and
implanted a URL in the target system’s browser history, cache, cookie, and
DNS stub resolver cache. We then implemented Windows 32-bit PE programs
written in C/C# that use the Windows API, commands, and custom functions
to search for URLs that perfectly match our web site. We implemented sam-
ples that open the browser history by searching for preferences for Chrome,
sessionstore.js for Firefox, and %HISTORY% for IE. Our web site has an image
file embedded in the top page, and therefore the samples search for such cached
items in entries for Firefox and %TEMPORARY INTERNET FILES% for IE. We fur-
thermore implemented samples that read a cookie from Cookies for Chrome
and cookies.sqlite for Firefox. To inspect the stub resolver’s DNS cache, our
prototype uses the Windows ipconfig utility and the undocumented Windows
API DnsGetCacheDataTable.

Evaluation Setup: We first executed the samples on the target host and ver-
ified that all implants could be found. We then submitted the samples to three
popular appliances from well-known vendors1 (henceforth simply appliance A,
B, and C). We gained access to various sandbox configurations (Windows 10,
Windows 7, Windows XP, 32/64 bit, different service packs, etc.) of the appli-
ances, totaling nine distinct sandboxes. Since the appliances did not allow for
network communication (which supports our threat model that even collecting
implants might be impractical for most sandboxes), we investigated the analy-
sis report which was produced by the appliance after execution. Although the
appliances were not cloned from actual user machines, this methodology would
similarly work in a fully-homogeneous environment.

1 We omit the vendor names not to pinpoint to weaknesses of individual appliances.

172 R. Tanabe et al.

Table 1. Security alerts reported from the three appliances including nine sandboxes
(Windows 10, Windows 7, and Windows XP) which executed samples that searched
for implants of browser history, cache, cookie, and DNS cache.

Feature Appliance A Appliance B Appliance C

History Chrome Hardware Access no alert no alert

Firefox Hardware Access no alert no alert

IE Hardware Access no alert no alert

Cache Firefox Hardware Access no alert no alert

IE Hardware Access no alert no alert

Cookie Chrome Hardware Access no alert no alert

Browser Access

Firefox Hardware Access no alert no alert

Browser Access

DNS Hardware Access Directory Access no alert

Table 2. Security alerts reported from the three appliances including five sandboxes
(Windows 10 and Windows 7) which executed samples that searched for implants of
browser history, cache, and DNS cache and decrypts malicious payload when previous
implants are found.

Feature Appliance A Appliance B Appliance C

History Chrome no alert no alert no alert

Firefox no alert no alert no alert

IE no alert no alert no alert

Cache Firefox no alert no alert no alert

IE no alert no alert no alert

DNS no alert no alert no alert

Evaluation Results: When manually inspecting the analysis reports, not sur-
prisingly, the implants were not found in any of the sandboxes. After verifying
the evasion capabilities, we then checked if our implant checks triggered any
security alerts from the appliances. We summarize the results in Table 1. The
first column contains the implant technique, and the last three columns show
the result per vendor. We first implemented test samples that are executable
on systems that are backwards-compatible to earlier Windows versions, down
to Windows XP. We had a look at the reports produced by the appliances and
found that a security alert about Hardware access was reported for every single
sample. The alert was reported from Windows XP, by one of the nine sand-
boxes which belonged to appliance A. For samples that check HTTP cookies,
we obtained another alert about Browser access from three sandboxes, which
belonged to appliance A. The sample that checks the DNS stub resolver cache
raised an alert about Hardware access from two sandboxes (including Windows

Evasive Malware via Identifier Implanting 173

XP) which belonged to appliance A, and an alert about a Windows command
(ipconfig) from three sandboxes which belonged to appliance B.

For further analysis, we implemented test samples that not only searched for
implants, but also encapsulated an encrypted version of a malicious payload that
all sandboxes would detect if it was not hidden. That is, we chose to use malware
that was seen in a real attack campaign targeting organizations in Japan and
Taiwan [4]. We submitted the malware sample to the appliances and verified that
it indeed was detected as such by all sandboxes. We then wrapped the malware
in the customized malware, protected by a decryption that would only trigger if
implants were found. Technically, the sample searches for the implant, and when
the URL is found, decrypts and executes the actual malware. In fact, adver-
saries could include the decryption key in implants, such that even multi-path
execution or manual analysts would fail to obtain the malicious packed payload.
In our evaluation, the implants are the same as for the previous experiment
and searched for in the browser history (for Chrome, Firefox, and IE), browser
cache (for Firefox and IE), and DNS stub resolver cache. Seeing that one of the
three appliances reported alerts when accessing cookies, we excluded the HTTP
cookie from further analysis. Assuming that the target host operates Windows
7 or newer, we implemented these samples using libraries that do not work on
earlier Windows versions, leaving us to five sandboxes of three appliances in our
test setting. Using this new API, only a single sandbox raised an alert when our
sample tried to inspect the DNS stub resolver using ipconfig. To counter this
alert, we used DnsGetCacheDataTable, which did not raise any alert. In sum-
mary, as Table 2 shows, our updated implant search did not trigger any alerts.
We manually inspected the analysis reports of all sandboxes and verified that
none of the sandboxes decrypted the malware sample, meaning that our implant
checking mechanism worked as expected.

Evaluation Summary: To summarize, an attacker can implant several identi-
fiers into the target-specific system using web-based techniques. The implanted
features can be used to implement customized malware that can stealthily evade
malware security appliances. Adversaries with insider knowledge on anti-malware
appliances, or having an oracle that tells whether their customized malware is
detected as such, can tweak their implant mechanism such that the evasion is
stealthy and remains undetected.

4 Discussion and Limitations

4.1 Defenses Against the Attack

As we have shown, attackers could reliably distinguish between a target-specific
system from others based on implanted identifiers. As an option to solve these
problems, we consider three solutions. First, we envision raising the bar for
creating implants. Second, sandboxes and appliances can be tuned against such
attacks. Third, appliance could be included in the reconnaissance phase to learn
implants. We will discuss those ideas and their limitations in the following.

174 R. Tanabe et al.

Destroying Implants: Adversaries can implant features into the target system
using web-based techniques. An important detail is that the implant looks benign
to the target system and sandboxes when looking them up. Therefore, detecting
the implant itself require additional care and cannot be easily thwarted. Potential
targets could aim to destroy implants by periodically deleting the cookies and
browser history, or disabling caching to destroy cache-based implants. However,
especially disabling browser and DNS caches would likely degrade user expe-
rience due to increased communication latencies, showing a fine line between
utility and security. It is possible to change where to store browser cache and
make malware authors difficult to find. In our experiment, we found that Chrome
stores browser cache randomly. Although, we note that an attacker could com-
bine multiple implants, and if a single implant survives, any attempts to hide
other implants would be rendered ineffective. Alternatively, one could use a
proxy service to make the tracking difficult. This technique would even destroy
most of the proposed implant strategies. Still, proxy services leaves records into
the target system. An attacker can search for this identifier instead of tracing
implants.

Reconnaissance Detection in Sandboxes: An orthogonal solution to
destroy implants would be for sandboxes to become aware of the reconnaissance
phases. Such detection would allow the sandbox to identify suspicious behav-
ior in the customized malware, regardless of whether it unpacks the malicious
payload. At the risk of raising false alerts, sandboxes could aim to identify the
various strategies that customized malware has to use in order to find an implant.
Our work can help sandbox developers to become aware of implant strategies
and assist them in raising alerts when seeing such behavior. By now, appliances
detect sandbox evasion techniques by monitoring access to credential files and
the registry. We show that the monitoring search space needs to be significantly
extended, including browser-related files (cookies, cache, history) and Windows
internals such as the DNS stub resolver’s cache.

An obvious challenge is to keep up with all potential implant techniques that
attackers could use. Our list of possible implants is by no means complete. For
example, during experiments, we also inspected the Windows system log that
includes various system events. We found that one can create log entries by
trying to resolve a domain for which the authoritative name server times out.
This would be another excellent way to place an attacker-controllable implant in
a system, and demonstrate how creative attackers might become when choosing
implant techniques. By adapting to these techniques, sandbox operators can
aim to detect potential customized malware samples. Unfortunately, this does
not help in unpacking encrypted payloads that depend on the value of certain
implants that are missing in the sandbox or are unknown to the manual analyst.

Including Sandboxes in the Reconnaissance Phase: At the core of our
threat model, we assume that the target system undergoes the reconnaissance,
whereas the appliance does not. Although the appliances did not allow for net-

Evasive Malware via Identifier Implanting 175

work communication, we did not observe any actions that tries accessing to our
web site, while the target host was protected by the appliances. This could be
changed if appliances are included in the typical reconnaissance steps, e.g., when
they automatically follow URLs listed in emails sent to targets. The dangers of
such automated URL visits make them impractical, though, as they will cause
undesired side effects such as unsubscribing from mailing lists, or mistakenly con-
firming email-based authentication requests. Other drawbacks, such as attackers
being able to learn which email address is protected by an appliance, and requir-
ing the appliance to have Internet access (which none in our testbed had), give
us the impression that this idea is only a last resort.

Suppose that despite these drawbacks a sandbox would indeed visit the
URLs, and by doing so, collect implants. Even then, one complication is that
sandboxes typically use snapshots to clean the system after each analysis to
properly differentiate and to avoid side-effects between two malicious inputs,
respectively. As a sandbox cannot correlate reconnaissance and intrusion phases,
both phases would be executed separately in a clean system snapshot. Therefore,
the intrusion phase would not see implants placed in the reconnaissance phase.

4.2 Ethical Considerations

Our research may seem offensive in the sense that we reveal a methodology that
adversaries can use for targeted attacks. However, with our insights, sandbox
operators will have a heads-up to implement stealthier analysis systems. While
it will always be possible to find artifacts that can identify an individual sand-
box or user machines, it is significantly harder to distinguish the target-specific
system, especially if vendors synchronize the characteristics of the sandbox with
user systems. However, attackers may not need profiles of the target, but could
implant an identifier. Therefore, it is important to be more sensitive to pro-
grams that conduct sensitive data acquisitions that is used to discover implants.
A responsible disclosure process (see next subsection) informed vendors of the
appliances to prepare for attacks described in this paper. We gave suggestions on
which activities to monitor for detecting programs that conduct implant acqui-
sitions to appliances vendors prior to the conference. Finally, We anonymize the
appliance vendors to avoid exposing weaknesses of specific vendors or products.

4.3 Responsible Disclosure

Appliance vendors are immediately affected by our research results and we thus
considered them as the target of our responsible disclosure process. We chose
to disclose our result to the three appliance vendors from our experiments, and
to additional eleven popular appliance vendors. To notify these organizations,
we contacted them 120 days prior to the publishing date of this paper, detail-
ing the proposed attack and including hints on how to protect against poten-
tial adversaries in the future. We used direct contacts whenever possible and
available. Alternatively, we resorted to contact details stated on the organi-
zation’s web sites, notably including Web-based contact forms. If we did not

176 R. Tanabe et al.

hear back after four weeks, we retried to contact the organizations, if possible
using alternative communication channels (e.g., using generic email addresses
like info@organization.com or email addresses found in the WHOIS database for
the organization’s web site domain) and received a feedback. If we did not hear
back after eight weeks from the first process, we contacted the national CERT(s)
that are in the same country as the affected organization in order to notify the
party via the CERT as a trusted intermediary.

We provided each organization an executive summary of our research results
as well as a full description of our research methodology (i.e., a copy of this
paper in the pre-print version). We made sure to highlight the implications of
our work with respect to future operations of the appliance. We also specified our
contact details for both research institutions, including physical address, phone
number, and the email address of a representative for the research activities. We
allowed organizations to download the latest version of the test samples and their
source code. Such auxiliary data helps to build protection mechanisms against
customized malware. We removed all organization and product names as well
as precise messages (security alerts) that were reported by the appliances. To
this end, we received feedbacks from most of the organizations and provided test
samples and their source code.

4.4 Limitations of the Attack

Enforcement of Reconnaissance Phase: Our attack makes use of emails
that contain a URL in order to create an implant. We assume that the targeted
mail attracts the user, such that the target host will access the URL and complete
the reconnaissance phase. We consider the way the attacker tricks the user into
clicking the URL a separate research topic that is out of the scope of this work.
In practice, however, sophisticated attacks involving social engineering would
succeed with this task. Even if a user does not click, adversaries can make the
target host automatically access the URL. For HTML mail, most email clients
support techniques to prefetch web access or download images from the Internet.
For example, Apple Mail has prefetching of external email content enabled by
default. Attackers can easily create emails that use these techniques to complete
the reconnaissance as soon as the user opens the email. On occasions where
the email is opened through web browsers, the accessed URL or image is saved
in caches. Even for some mailers, the accessed URL is saved in a temporary
file, so the attacker can implant a specific URL. However, for services that use
proxy servers for access (e.g., Gmail), serving implants is difficult. Similarly, the
functionality of external email content prefetching is not always (and should not
be) allowed, again requiring an active click on a URL as fallback. We leave the
problem of luring a user into clicking such an implant URL as future work.

Stability of Implants: After the malware author has accomplished the recon-
naissance phase, the intrusion phase is started. If the phases are far apart from
each other, certain implants may get lost. However, we argue that the typical gap

Evasive Malware via Identifier Implanting 177

between reconnaissance and intrusion is in the range of several days, which is a
short enough period for implants to remain stable. Most of the implants do not
decay over time, unless action is taken by the user or they are blocked from the
beginning. For example, the browser history and cache file may not record access
histories, which prevents implants from being created. Cookies could be config-
ured to be deleted periodically, which disturbs the implants being recorded. The
DNS stub resolver cache may be cleaned, which implicitly destroys implants.
We argue that a combination of multiple implants would survive most of these
individual deletions and decays. Note that this does not sacrifice accuracy, as
any individual implant out of a set of multiple unique implants is still unique.
That is, the customized malware could search for multiple implants and trigger
its malicious behavior when any implant was found.

False Positives: It is not in question that implants can be made unique with
an attacker-controlled (high) entropy. We thus consider that the possibility of a
non-targeted host to be falsely recognized as the targeted host is low. Even if such
a coincidental match happens, assuming that the malware spreads to hundreds
of other systems (including sandboxes), it is still unlikely that the coincidentally
matching system will ever get in contact with the customized malware.

5 Related Work

5.1 Sandbox Evasion Techniques

Seeing the wide use of sandboxes, malware authors have been trying to evade
sandbox analyses. There are various types of sandbox implementations, and
Egele et al. give a comprehensive overview [25]. Most sandboxes use virtual
machine (VM) technology [8,10,14] or CPU emulators [3,17]. Techniques to
check for artifacts that indicate the presence of virtualization solutions are seen
in modern malware [13,15,18,20,35,53,55,56]. Accordingly, there have been a
number of studies about how to distinguish between a real machine and a vir-
tual environment. RedPill [52] is one of the most well-known methods, and
determines whether it is executed on VMware using the sidt instruction. Many
other detection methods have also been developed not only for VMware [32,48],
but also for famous system emulators such as QEMU [11,28,32,40,45,48], and
BOCHS [28,40,45]. There are also some detection methods for emulation-based
Android sandboxes [30,47,59]. Garfinkel et al. [27] surveyed the wide range of
dissimilarities between real and virtualized platforms, and Chen et al. [22] devel-
oped a taxonomy of anti-virtualization and anti-debugging techniques that are
used by modern malware. Although these techniques work against classical sand-
boxes, malware security appliances are designed to protect endpoints from recent
threats and may not be as susceptible.

On the other hand, evading sandboxes does not necessarily require searching
for virtualization or emulation artifacts. Malware has already started to evade
sandboxes based on the lack of user interaction, such as checking for mouse

178 R. Tanabe et al.

events [53,55,56] or waiting for a user to close a dialog box [20,56]. Recent
research identifies features that are common on user systems [44]. These types
of evasions are based on seeing that the system is used by a real user, and thus
may seem similar to our approach. The fundamental difference is that we do not
try to identify if malware executes on just any (non-)sandbox system. Instead,
we show that attackers can tailor their malware to specific target systems.

In addition to identifying sandboxes, fingerprinting has also become popular.
Maier et al. [39] gathered several features of Android sandboxes and showed that
Android malware can bypass the existing sandboxes by using the fingerprints.
Regarding sandboxes for Windows malware, Yoshioka et al. [61] clustered and
detected sandboxes by their external IP addresses. Yokoyama et al. clustered
sandbox fingerprints and created a classifier that can distinguish user machines
from sandboxes [60]. They gathered fingerprints from sandboxes to user machines
and proposed sandbox-inherent features so that even appliances placed in real
networks can be classified as sandboxes. Najmeh et al. collected user and sand-
box fingerprints to assess the degree of system use and age [42]. They developed
statistical models that capture how realistic the system’s past use looks to aid
sandbox operators in creating system images that exhibit a realistic wear-and-
tear state. We were inspired by these works and swifted the problem to homoge-
neous target environments. To this end, we aim to use implant-based techniques
to identify the target systems, instead of any sandboxes or any benign systems.
Our work extends existing ideas in that we show how an attacker might escape
the typical arms race of identifying sandboxes using customized malware.

5.2 Transparent/Bare-Metal Sandboxes

Seeing the threat of VM evasion, researchers started to explore transparent sand-
boxes that are stealthy against detection. Vasudevan and Yerraballi proposed
Cobra [58], which is a first dynamic analysis system focused on countering anti-
analysis techniques. Dinaburg et al. proposed Ether [24], a transparent sandbox
using hardware virtualization extensions such as Intel VT. Those systems focus
on how to conceal the existence of analysis mechanisms from malware. Pek et al.
introduced a timing-based detection mechanism to detect Ether [46]. Orthogo-
nal to stealth VM-based sandboxes, Kirat et al. proposed to use actual hardware
to analyze malware [7,34]. The proposed system, called BareBox, is based on a
fast and rebootless system restore technique. Since the system executes mal-
ware on real hardware, it is not vulnerable to any type of VM/emulation-based
detection attacks. In the context of Android sandboxes, Bordoni et al. proposed
Mirage [38], an architecture that aims to arm an Android analysis system to
tackle evasion by reproducing characteristics of real devices as much as possible
into the Android emulator. These sandboxes increase evasion resilience in the
classical setting, but would be evaded by customized malware.

Evasive Malware via Identifier Implanting 179

5.3 Evasive Malware Detection

Separately from our work, researchers have identified the threat of evasive mal-
ware and studied its evasion attempts. As evasive malware became more pop-
ular, the demand for distinguishing whether malware has evasive functionality
increased. Many of the evasive malware detection methods are based on compar-
ison of behaviors between analysis and non-analysis environments. Balzarotti et
al. proposed a method to detect malware that behaves differently in an analysis
environment vs. a bare-metal reference host [12]. They first execute a malware
sample on a reference host and compare its system call behavior with the exe-
cution in a virtual environment, revealing split behaviors in malware. Sun et
al. proposed the behavior distance algorithm [57], which is based on generic
string matching, for calculating the difference between two environments for the
same malware. DISARM [37] compares behaviors in four emulation-based anal-
ysis systems and detects those differences. Barecloud [33] is a similar method
to DISARM, but uses four fundamentally different analysis platforms, includ-
ing bare-metal sandboxes. All these studies support the conclusion that malware
already deploys evasion attempts. As we have shown, it will be difficult to detect
customized malware. In fact, even advanced techniques such as multi-path exe-
cution [41] do not help in our threat model, as attackers can derive (strong) keys
from implants to decrypt the piggybacked malicious payload.

6 Conclusion

The novel concept of customized malware might gain attention from malware
authors in the future, as it solves many of their daily problems of evading increas-
ingly stealthy and professional sandboxes. A fundamental challenge of malware
authors remains evading anti-malware solutions that are based on sandboxes.
Whereas our focus was email as infection vector, the problem scope goes beyond
this. In fact, similar concepts could be integrated (much more easily, and fully
automatically) into other popular ways of infections such as browser exploit kits.
We thus think it is important to shed light on this potential new area which might
add another burden to malware sandbox engineers, and to aid sandbox opera-
tors with ideas for protecting against such attacks. This is not only relevant for
targeted attacks; also consumer malware could facility similar ideas by slightly
sacrificing the implant accuracy to broader the set of accepted systems.

Implant techniques that we presented have been fairly successful in evad-
ing even the most modern malware security appliances. In settings like small
agile organizations (startups, academia, etc.), where employees bring and con-
figure their own devices: heterogeneous environment, an attacker can distinguish
target system from others. Furthermore, it helps to infiltrate all kinds of envi-
ronments, even those that require strict homogeneity. Regardless of the precise
customization strategy being used, it is the simplicity of the proposed attack
concept and its ease of automation that make it appealing for attackers. To
give sandbox operators a timely heads-up before publishing our work, we have
planned a rigorous responsible disclosure process.

180 R. Tanabe et al.

Acknowledgements. We would like to thank the anonymous reviewers for their
constructive feedback. This work was supported by the European Union’s Horizon
2020 research and innovation program, project SISSDEN, under grant agreement No.
700176. A part of this work was funded by the WarpDrive: Web-based Attack Response
with Practical and Deployable Research Initiative project, supported by the National
Institute of Information and Communications Technology (NICT).

References

1. Advanced persistent threats: how they work. https://www.symantec.com/theme.
jsp?themeid=apt-infographic-1

2. APT [Advanced Persistent Threat]. http://www.trendmicro.com/vinfo/us/
security/definition/advanced-persistent-threat

3. bochs: The open source IA-32 emulation project. http://bochs.sourceforge.net
4. Darwins favorite APT group. https://www.fireeye.com/blog/threat-research/

2014/09/darwins-favorite-apt-group-2.html
5. Malwr - malware analysis by cuckoo sandbox. https://malwr.com/
6. The mystery of the encrypted gauss payload. https://securelist.com/the-mystery-

of-the-encrypted-gauss-payload-5/33561/
7. NVMTrace: Proof-of-concept automated baremetal malware analysis framework.

https://code.google.com/p/nvmtrace/
8. Oracle VM VirtualBox. https://www.virtualbox.org
9. Public key pinning extension for http. https://tools.ietf.org/html/rfc7469

10. VMware. http://www.vmware.com/
11. Detecting android sandboxes (2012). http://www.dexlabs.org/blog/btdetect
12. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Engin, K., Vigna, G.: Effi-

cient detection of split personalities in malware. In: Proceedings of the Symposium
on Network and Distributed System Security, ser. NDSS 2010 (2010)

13. Barbosa, G.N., Branco, R.R.: Prevalent characteristics in modern malware (2014).
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-
Characteristics-In-Modern-Malware.pdf

14. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev. 37(5), 164–177 (2003)

15. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. In: Proceedings of the 2nd USENIX Conference on Large-Scale
Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, ser. LEET
2009, p. 8 (2009)

16. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proceedings of the Symposium on Network
and Distributed System Security, ser. NDSS 2009 (2009)

17. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ser. ATEC 2005, p.
41 (2005)

18. Branco, R.R., Barbosa, G.N., Neto, P.D.: Scientific but academical overview of
malware anti-debugging, anti-disassembly and anti-vm technologies (2012). http://
research.dissect.pe/docs/blackhat2012-paper.pdf

19. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: Proceedings of the 20th USENIX
Security Symposium (2011)

https://www.symantec.com/theme.jsp?themeid=apt-infographic-1
https://www.symantec.com/theme.jsp?themeid=apt-infographic-1
http://www.trendmicro.com/vinfo/us/security/definition/advanced-persistent-threat
http://www.trendmicro.com/vinfo/us/security/definition/advanced-persistent-threat
http://bochs.sourceforge.net
https://www.fireeye.com/blog/threat-research/2014/09/darwins-favorite-apt-group-2.html
https://www.fireeye.com/blog/threat-research/2014/09/darwins-favorite-apt-group-2.html
https://malwr.com/
https://securelist.com/the-mystery-of-the-encrypted-gauss-payload-5/33561/
https://securelist.com/the-mystery-of-the-encrypted-gauss-payload-5/33561/
https://code.google.com/p/nvmtrace/
https://www.virtualbox.org
https://tools.ietf.org/html/rfc7469
http://www.vmware.com/
http://www.dexlabs.org/blog/btdetect
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
http://research.dissect.pe/docs/blackhat2012-paper.pdf
http://research.dissect.pe/docs/blackhat2012-paper.pdf

Evasive Malware via Identifier Implanting 181

20. Candid, W.: Does malware still detect virtual machines? (2014). https://www.
symantec.com/connect/blogs/does-malware-still-detect-virtual-machines

21. Carsten, W., Ralf, H., Thorsten, H.: CXPInspector: Hypervisor-Based, Hardware-
Assisted System Monitoring (2012)

22. Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an understanding
of anti-virtualization and anti-debugging behavior in modern malware. In: Proceed-
ings of the 38th Annual IEEE International Conference on Dependable Systems
and Networks, ser. DSN 2008, pp. 177–186 (2008)

23. Chengyu, S., Paul, R., Wenke, L.: Impeding automated malware analysis with
environment-sensitive malware. In: Proceedings of the 7th USENIX Conference on
Hot Topics in Security, ser. HotSec 2012 (2012)

24. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, ser. CCS 2008, pp. 51–62 (2008)

25. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

26. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: di Vimercati, S.C.,
Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335.
Springer, Heidelberg (2005). https://doi.org/10.1007/11555827 19

27. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: VMM detection myths and realities. In: Proceedings of the 11th USENIX
Workshop on Hot Topics in Operating Systems, ser. HOTOS 2007, pp. 6:1–6:6
(2007)

28. Hao, S., Abdulla, A., Jelena, M.: Cardinal pill testing of system virtual machines.
In: Proceedings of the 23rd USENIX Security Symposium (2014)

29. Ishimaru, S.: Why corrupted (?) samples in recent APT? case of Japan
and Taiwan. https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R1
%201500%20why%20corrupted%20samples%20in%20recent%20apt.pdf

30. Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuris-
tics to detect android emulators. In: Proceedings of the 30th Annual Computer
Security Applications Conference, ser. ACSAC 2014 (2014)

31. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:
Proceedings of the 33rd IEEE Symposium on Security and Privacy, ser. S&P 2012,
pp. 413–427 (2012)

32. Jung, P.: Bypassing sandboxes for fun. https://www.botconf.eu/wp-content/
uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf

33. Kirat, D., Vigna, G., Kruegel, C.: BareCloud: bare-metal analysis-based evasive
malware detection. In: Proceedings of the 23rd USENIX Security Symposium
(2014)

34. Kirati, D., Vigna, G., Kruegel, C.: Barebox: efficient malware analysis on bare-
metal. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference, ser. ACSAC 2011, pp. 403–412 (2011)

35. Kruegel, C.: Evasive malware exposed and deconstructed (2015). https://www.
rsaconference.com/writable/presentations/file upload/crwd-t08-evasive-malware-
exposed-and-deconstructed.pdf

36. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Access-
Miner: using system-centric models for malware protection. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, ser. CCS 2010
(2010)

https://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
https://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
https://doi.org/10.1007/11555827_19
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R1%201500%20why%20corrupted%20samples%20in%20recent%20apt.pdf
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R1%201500%20why%20corrupted%20samples%20in%20recent%20apt.pdf
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
https://www.rsaconference.com/writable/presentations/file_upload/crwd-t08-evasive-malware-exposed-and-deconstructed.pdf
https://www.rsaconference.com/writable/presentations/file_upload/crwd-t08-evasive-malware-exposed-and-deconstructed.pdf
https://www.rsaconference.com/writable/presentations/file_upload/crwd-t08-evasive-malware-exposed-and-deconstructed.pdf

182 R. Tanabe et al.

37. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-
sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0 18

38. Bordoni, L., Conti, M., Spolaor, R.: Mirage: toward a stealthier and modular mal-
ware analysis sandbox for android. In: Foley, S.N., Gollmann, D., Snekkenes, E.
(eds.) ESORICS 2017. LNCS, vol. 10492, pp. 278–296. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66402-6 17

39. Maier, D., Müller, T., Protsenko, M.: Divide-and-conquer: why android malware
cannot be stopped. In: Proceedings of the 9th International Conference on Avail-
ability, Reliability and Security, ser. ARES 2014 (2014)

40. Martignoni, L., Paleari, R., Roglia, G.F., Bruschi, D.: Testing CPU emulators. In:
Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA 2009, pp. 261–272 (2009)

41. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 28th IEEE Symposium on Security and Privacy,
ser. S&P 2007 (2007)

42. Najmeh, M., Mahathi, P.A., Nick, N., Michalis, P.: Spotless sandboxes: evading
malware analysis systems using wear-and-tear artifacts. In: Proceedings of the
38th IEEE Symposium on Security and Privacy, ser. S&P 2017 (2017)

43. Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting malware’s failover
C&C strategies with squeeze. In: Proceedings of the 27th Annual Computer Secu-
rity Applications Conference, ser. ACSAC 2011 (2011)

44. Nikiforakis, N., Joosen, W., Livshits, B.: Privaricator: deceiving fingerprinters with
little white lies. In: Proceedings of the 24th International Conference on World
Wide Web, ser. WWW 2015, pp. 820–830 (2015)

45. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how
to automatically generate procedures to detect CPU emulators. In: Proceedings of
the 3rd USENIX Conference on Offensive Technologies, ser. WOOT 2009 (2009)

46. Pék, G., Bencsáth, B., Buttyán, L.: nEther: in-guest detection of out-of-the-guest
malware analyzers. In: Proceedings of the 4th European Workshop on System
Security, ser. EUROSEC 2011, pp. 3:1–3:6 (2011)

47. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the 7th European Workshop on System Security, ser. EUROSEC
2014 (2014)

48. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1 1

49. Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: detecting the
phoning home of malicious software. In: Proceedings of the 2010 ACM Symposium
on Applied Computing, ser. SAC 2010, pp. 1978–1984 (2010)

50. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Sec. 19(4), 639–668 (2011)

51. Rossow, C., Dietrich, C.J., Bos, H.: Large-scale analysis of malware downloaders.
In: Proceedings of the 9th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, ser. DIMVA 2012 (2012)

52. Rutkowska, J.: Red pill... or how to detect VMM using (almost) one CPU instruc-
tion (2004). http://www.securiteam.com/securityreviews/6Z00H20BQS.html

https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-319-66402-6_17
https://doi.org/10.1007/978-3-540-75496-1_1
http://www.securiteam.com/securityreviews/6Z00H20BQS.html

Evasive Malware via Identifier Implanting 183

53. Shinotsuka, H.: Malware authors using new techniques to evade auto-
mated threat analysis systems (2012). http://www.symantec.com/connect/blogs/
malware-authors-using-new-techniques-evade-automated-threat-analysis-systems

54. Simone, M., Yanick, F., Antonio, B., Luca, I., Jacopo, C., Dhilung, K., Christopher,
K., Giovanni, V.: Baredroid: large-scale analysis of android apps on real devices.
In: Proceedings of the 31st Annual Computer Security Applications Conference,
ser. ACSAC 2015 (2015)

55. Singh A., Khalid, Y.: Don’t click the left mouse button: introducing trojan
upclicker (2012). https://www.fireeye.com/blog/threat-research/2012/12/dont-
click-the-left-mouse-button-trojan-upclicker.html

56. Singh, A., Bu, Z.: Hot knives through butter: evading file-based sandboxes (2013).
https://media.blackhat.com/us-13/US-13-Singh-Hot-Knives-Through-Butter-
Evading-File-based-Sandboxes-WP.pdf

57. Sun, M.K., Lin, M.J., Chang, M., Laih, C.S., Lin, H.T.: Malware virtualization-
resistant behavior detection. In: Proceedings of the 17th IEEE International Con-
ference on Parallel and Distributed Systems, ser. ICPADS 2011, pp. 912–917 (2011)

58. Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: Proceedings of the 27th IEEE Symposium on Security and
Privacy, ser. S&P’06, pp. 264–279 (2006)

59. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, ser. ASIA CCS 2014 (2014)

60. Yokoyama, A., et al.: SandPrint: fingerprinting malware sandboxes to provide
intelligence for sandbox evasion. In: Monrose, F., Dacier, M., Blanc, G., Garcia-
Alfaro, J. (eds.) RAID 2016. LNCS, vol. 9854, pp. 165–187. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45719-2 8

61. Yoshioka, K., Hosobuchi, Y., Orii, T., Matsumoto, T.: Your sandbox is blinded :
Impact of decoy injection to public malware analysis systems. J. Inf. Process. 52(3),
1144–1159 (2011)

http://www.symantec.com/connect/blogs/malware-authors-using-new-techniques-evade-automated-threat-analysis-systems
http://www.symantec.com/connect/blogs/malware-authors-using-new-techniques-evade-automated-threat-analysis-systems
https://www.fireeye.com/blog/threat-research/2012/12/dont-click-the-left-mouse-button-trojan-upclicker.html
https://www.fireeye.com/blog/threat-research/2012/12/dont-click-the-left-mouse-button-trojan-upclicker.html
https://media.blackhat.com/us-13/US-13-Singh-Hot-Knives-Through-Butter-Evading-File-based-Sandboxes-WP.pdf
https://media.blackhat.com/us-13/US-13-Singh-Hot-Knives-Through-Butter-Evading-File-based-Sandboxes-WP.pdf
https://doi.org/10.1007/978-3-319-45719-2_8

184 R. Tanabe et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Evasive Malware via Identifier Implanting
	1 Introduction
	2 Background
	3 Sandbox Evasion via Implants
	3.1 Attack Scenario
	3.2 Feature Implantation
	3.3 Customized Malware
	3.4 Malware Security Appliance Evasion

	4 Discussion and Limitations
	4.1 Defenses Against the Attack
	4.2 Ethical Considerations
	4.3 Responsible Disclosure
	4.4 Limitations of the Attack

	5 Related Work
	5.1 Sandbox Evasion Techniques
	5.2 Transparent/Bare-Metal Sandboxes
	5.3 Evasive Malware Detection

	6 Conclusion
	References

