
Causal Inference on Event Sequences
Kailash Budhathoki◦ Jilles Vreeken◦

Abstract
Given two discrete valued time series—that is, event sequences—of
length n can we tell whether they are causally related? �at is, can
we tell whether xn causes yn , whether yn causes xn? Can we do so
without having to make assumptions on the distribution of these
time series, or about the lag of the causal e�ect? And, importantly
for practical application, can we do so accurately and e�ciently?
�ese are exactly the questions we answer in this paper.

We propose a causal inference framework for event sequences
based on information theory. We build upon the well-known notion
of Granger causality, and de�ne causality in terms of compression.
We infer that xn is likely a cause of yn if yn can be (much) be�er
sequentially compressed given the past of both yn and xn , than
for the other way around. To compress the data we use the notion
of sequential normalized maximal likelihood, which means we
use minimax optimal codes with respect to a parametric family of
distributions. To show this works in practice, we propose CUTE, a
linear time method for inferring the causal direction between two
event sequences. Empirical evaluation shows that CUTE works well
in practice, is much more robust than transfer entropy, and ably
reconstructs the ground truth on river �ow and spike train data.

1 Introduction
Telling cause from e�ect from data that was not collected
through carefully controlled randomized trials, i.e. observa-
tional data, is one of the fundamental problems in science.
We consider the case where we are given two discrete-valued
time series—event sequences—of length n, and have to de-
termine whether it is more likely that xn caused yn , or the
other way around, that yn caused xn .

�e perhaps most well-known framework for causal in-
ference on time series is Granger causality, which postulates
that xn is likely a cause of yn if the past values of xn help to
signi�cantly be�er sequentially predict the values of yn than
we can do with just the data over the past of yn . Typically
predictability is measured in terms of variance of the error.
While this framework makes intuitive sense, to put it to prac-
tice it does require us to make assumptions on the generating
process, as well as on the measure of predictability.

In this paper we take a related, but subtly di�erent
approach. We take an information theoretic viewpoint and
de�ne causality in terms of compression. Simply put, we
say that X causes Y if we save more bits by compressing the

◦Max Planck Institute for Informatics and Saarland University, Saarland
Informatics Campus, Saarbrücken. {kbudhath,jilles}@mpi-inf.mpg.de

data of Y with additionally the past of X , than vice versa.
�e larger the di�erence, the more con�dent we are. To
optimally compress the data, we would need to know its
distribution. In practice, however, we only have observed
data and a class of possible prediction strategies—in which
the true distribution may or may not live. We hence build our
inference framework on the notion of sequential normalized
maximum likelihood (SNML), which is a strategy that is
guaranteed to give the minimum number of additional bits
(regret) compared to the true distribution, regardless of input,
and regardless of whether or not the true distribution is in
the model class under consideration. At every time step,
our prediction for the current outcome is proportional to
the Maximum Likelihood estimate of the overall sequence,
including the past outcomes as well as the current one.

We give the general theory for causal inference on
event sequences using SNML, including a detailed exposition
on how to derive our causal indicators for binary event
sequences based on the class of bernoulli distributions—from
which the extension to multinomial distributions is trivial.
Importantly, for discrete data in general, CUTE, which stands
for causal inference on event sequences, has only a linear
time worst case runtime complexity.

While there exist many causal inference approaches for
time series, many of which based on Granger causality, there
are only few that are applicable on event sequences. Transfer
Entropy, which is based on Shannon Entropy, is perhaps the
most well known. Conceptually, it is closely related to CUTE,
as lower entropy corresponds to be�er compression, but only
considers one model instead of a complete model class—and
hence has no minimax optimality guarantee. Moreover, like
many frameworks, but unlike CUTE, it requires the user to
set a lag parameter that speci�es the (expected) lag between
the cause and the e�ect, and its computational complexity is
exponential in this parameter. We refer the reader to Sec. 3
for a more in depth discussion of related work.

We empirically evaluate CUTE on a wide range of binary-
valued event sequences. Results on synthetic data show
that unless the e�ect is only time-shi�ed, it outperforms
transfer entropy by a wide margin. Additionally, we consider
two case studies on real world data, where we �nd that
CUTE with high accuracy reconstructs the ground truth in
water elevation levels in two rivers, as well as in discovering
excitatory connections in neural spike train data. �e code
of CUTE is freely available for research purposes.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

2 �eory
In this section, we formally introduce the problem, and
present our framework.

2.1 �e Problem Let xn = x1,x2, . . . ,xn be an event
sequence, a time series of n observed outcomes where each
outcome xi is an element of a discrete space of observations
X ∈ {1, 2, . . . ,m}. Likewise yn = y1,y2, . . . ,yn such that
yi ∈ Y. Given two correlated event sequences xn and yn ,
we are interested in �nding the most likely causal direction
between them. �at is, we would like to identify whether xn
causes yn , or yn causes xn , or they are just correlated.

2.2 Assumptions To measure the causal dependence
between two event sequences, we take the usual assumptions
of Granger causality [6]. Namely, we assume the following.

Assumption 1. Cause precedes the e�ect in time.

Assumption 2. Cause has unique information about the
future values of e�ect.

Assumption 1 is commonly accepted [4, 18], and also cor-
roborated by the thermodynamic principle—the arrow of
causation points in the same direction as the arrow of time.
�at is, the past in�uences the future, but not the other way
around. One of the implications of Assumption 1 is that we
assume there is no confounding event sequence zn that is the
common cause of both xn and yn . �e other implied assump-
tion is that there is no instantaneous causal relationship—the
present value of the cause does not help in the prediction of
the present value of the e�ect.

Assumption 2 is also intuitively plausible: the past of
the cause and the future of the e�ect should share some
information which cannot be accounted for only by the
knowledge of the past of the e�ect. �is also means that
causal dependence measure should be able to quantify that
unique information which is not available otherwise.

2.3 Measuring Causal Dependence We base our causal
dependence measure on the foundation of Granger causal-
ity [6] where causal dependence is measured in terms of
predictability.

Definition 1. (Granger Causality) Let It be the infor-
mation available as of time t in the entire universe that includes
both x t−1 and yt−1, and It¬x be that in a modi�ed universe
where x t−1 is excluded. We say that x t Granger-causes yt if
P(yt+1 | It) > P(yt+1 | It¬x), where P indicates the prediction.

In the original paper [6], predictability is measured in terms
of the variance of the error in regression, thereby ending up
with a reverse inequality.

We associate predictability with compression. In partic-
ular, we consider the encoded length of the event sequence

using a sequential prediction strategy. Intuitively the more
predictable an event sequence is, the smaller the number of
bits required to describe it using the prediction strategy.

Let P(xt | x t−1) be the prediction of current outcome xt
given its past x t−1. To encode the entire event sequence
xn , we use the prediction P(· | x t−1) at every iteration
t = 1, 2, . . . ,n. Let P(Xn) be the probability distribution over
all the possible event sequence of size n from the domain
X, and P(Xn = xn) be the probability mass function for
event sequence xn . �en the predictions P(· | x t−1) can
be considered as a conditional of the joint distribution, i.e.
P(Xn = xn) =∏n

t=1 P(xt | x t−1).
�e ideal code length for encoding the current outcome

xt given its past x t−1 using the prediction P(xt | x t−1) is
− log P(xt | x t−1). In learning theory, it is commonly known
as log loss. Hence the total encoded length of the event
sequence xn using its past, denoted `(xn), is given by

`(xn) =
n∑
t=1
− log P(xt | x t−1) .

Likewise, let P(xt | x t−1,yt−1) be the prediction probability
of xt given the past outcomes of xn , as well as the past
outcomes of yn . �e total encoded length of the event
sequence xn using its past as well as the past of yn , denoted
`(xn | yn), is then

`(xn | yn) =
n∑
t=1
− log P(xt | x t−1,yt−1) .

Note that the encoded size `(xn) measures the predictability
of xn from its past outcomes, and `(xn | yn) measures the
predictability of xn from its past, as well as the past of yn .
�eir di�erence, hence, measures the extra predictability
of xn contributed by the past of yn which is not available
otherwise. With that, we de�ne the causal dependence from
the direction yn to xn as

∆yn→xn = `(xn) − `(xn | yn) ,

and that from xn to yn is given by

∆xn→yn = `(yn) − `(yn | xn) .

Due to the dependence on time our causal dependence
measure is inherently asymmetric. Under our assumptions,
the direction with larger dependence is likely the true causal
direction. �us, using the above indicators we arrive at the
following causal inference rules on event sequence data.

• If ∆xn→yn > ∆yn→xn , we infer xn → yn .
• If ∆xn→yn < ∆yn→xn , we infer yn → xn .
• If ∆xn→yn = ∆yn→xn , we are undecided.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

�at is, if the added knowledge of the past outcomes of
xn makes the encoding of yn easier than vice versa, we infer
xn is likely the cause of yn . If it is the other way around, we
infer yn is likely the cause of xn . If causal dependence is the
same in both directions, we remain undecided.

�e larger the di�erence in causal dependence in both
directions, the more con�dent we are. In practice, we can
always introduce a threshold τ on the absolute di�erence
between two indicators |∆xn→yn − ∆yn→xn |, and treat the
results smaller than τ as undecided.

�e proposed causal inference rule is based on the
premise that we have access to the true distribution P . In
practice, we of course do not know this distribution; we
only have observed data, and possible models or prediction
strategies P. �e true distributionmay ormay not be in this
model class. Next we discuss how to construct a prediction
strategy such that we get optimal performance for this class,
regardless of whether true distribution lies in P.

2.4 Sequential NormalisedMaximumLikelihood As
models, prediction strategies P, we consider parameterised
families of distributions. Formally, we de�ne P as P = {Pθ :
θ ∈ Θ}, whereΘ is a parameter space, i.e.Θ = {θ ∈ Rk }, and
k > 0. Typically the performance of a prediction strategy P
on an event sequence xn w.r.t. a model class P is measured
by regret, which is de�ned as

R(P ;xn) =
n∑
t=1
− log P(xt |x t−1) − min

Pθ ∈P

n∑
t=1
− log Pθ (xt |x t−1)

= − log P(xn) − min
Pθ ∈P

(− log Pθ (xn)) .

In words, regret is the additional number of bits required
to encode the event sequence using a prediction strategy P
instead of the best prediction strategy from themodel classP.
�e regret, however, is not the same for allxn ∈ Xn—it can be
small for some, and large for others. As we want to be robust
with regard to model misspeci�cation, we therefore consider
the worst-case regret over all possible event sequences of
length n,

Rmax(P ;n) = max
xn ∈Xn

R(P ;xn) .
�e optimal prediction strategy relative to a model class P
for a sample of size n is then the one that minimises the
worst-case regret,

min
P
Rmax(P ;n) .

If the true data generating distribution lies in the model
class under consideration P, the maximum likelihood (ML)
strategy—predict the next outcome xt+1 using the distribu-
tion Pθ̂ (x t) with θ̂ (x t) being the ML estimator based on the
past outcomes x t—will be the optimal prediction strategy.
�e ML strategy, however, is not robust against the misspeci-
faction of the model class, i.e. when the true distribution is

not in the model class under consideration the result can be
arbitrarily bad [10].

We would like to have a prediction strategy P that is
optimal regardless of whether the true distribution lies in
P. A surprisingly slight modi�cation of the ML strategy
can achieve such optimality, and gives the solution to the
minimax problem posed above. �e modi�cation involves
computing the ML estimator of the data sequence including
the current outcome, followed by the normalisation of the
distribution. �at is, the modi�ed strategy predicts xt with a
distribution proportional to Pθ̂ (x t−1,xt), where θ̂ (x t−1,xt) is
the ML estimator for the data sequence x1, . . . ,xt−1,xt , and
is de�ned as

Psnml(xt | x t−1) =
Pθ̂ (x t−1,xt)∑

x ∈X
Pθ̂ (x t−1,x)

.

�is strategy is also known as the Sequential Normalised
Maximum Likelihood model (SNML) [10, 14]. We use it to
encode the event sequence. For the exponential family of
distributions (e.g. Bernoulli, Multinomial, Gaussian, etc.), we
can use the respective closed-form expression to calculate
the ML estimator θ̂ . Hence, it turns out to be easy to compute
the SNML strategy for the whole exponential family.

Importantly the SNML strategy is general in the sense
that we are only restricted by the choice of our model class.
For clarity, we focus speci�cally on binary data. Without
loss of generality, it generalises to the general discrete case.

2.5 SNML for Binary Data As models for binary data,
we consider a parameterised family of Bernoulli distributions.
�e parameterised family of Bernoulli distributions B is
de�ned as B = {Pθ : θ ∈ Θ}, where Θ is a parameter
space de�ned as Θ = {θ ∈ [0, 1]}. �e probability mass
function for Bernoulli distribution is given by Pθ (X = k) =
θk (1 − θ)1−k , where k ∈ {0, 1}.

�e ML estimator for an event sequence x t−1 relative to
the Bernoulli class is given by θ̂ (x t−1) = t1/(t − 1), where
t1 =

∑t−1
i=1 xi is the number of ones in x t−1. Let t0 = t − 1− t1

be the number of zeros in x t−1. �en the denominator of the
SNML strategy for predicting xt given the past x t−1 is∑

x ∈X
Pθ̂ (x t−1,x) =

∑
x ∈{0,1}

Pθ̂ (x t−1,x) = Pθ̂ (x t−1,0) + Pθ̂ (x t−1,1)

= (θ̂ (x t−1, 0))t1 (1 − θ̂ (x t , 0))t0+1+
(θ̂ (x t−1, 1))t1+1(1 − θ̂ (x t , 1))t0

=
(t1
t

)t1 (
1 − t1

t

)t0+1
+

(
t1 + 1
t

)t1+1 (
1 − t1 + 1

t

)t0
=

1
t t

{
t t11 (t0 + 1)t0+1 + (t1 + 1)t1+1t t00

}
.

�us the prediction for the outcome xt = 1 from its past x t−1

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

using the SNML strategy is given by

Psnml(xt = 1 | x t−1) =
Pθ̂ (x t−1,1)∑

x ∈X
Pθ̂ (x t−1,x)

=
(t1 + 1)t1+1t t00

t t11 (t0 + 1)t0+1 + (t1 + 1)t1+1t t00
,(2.1)

and that for xt = 0 is trivially given by

Psnml(xt = 0 | x t−1) = 1 − Psnml(xt = 1 | x t−1) .
In practice, instead of computing the SNML prediction,

which for large sample size could lead to over�ow errors,
we can compute the SNML code length directly using the
log-sum-exp trick. For our purpose, we also need to compute
the encoded length of the event sequence xn given event
sequence yn . Next we discuss how to conditionally encode
one event sequence given the other using the past of both.

2.5.1 Conditional Compression To encode an event
sequence xn given an event sequence yn , i.e. for `(xn | yn),
we have to compute − log Psnml(xt | x t−1,yt−1). To predict
the outcome xt , we can use either xi or yi in every time
step i = 1, 2, . . . , t − 1. Let u = ∑t−1

i=1 xi ⊕ yi , with ⊕ being
the Boolean XOR operator, be the number of time steps
where the outcome of xi and yi di�er. �us we end up with
2u di�erent event sequence for predicting the outcome xt .
Among all possibilities, we choose the one that improves the
prediction of xt .

For exposition, we present a toy example in Eq. (2.2).
Suppose we want to predict the outcome x4 given its past
x3 = 111, and that of yn , which is y3 = 010. At every time
step—except for the second— we have two choices. Overall
we therefore can construct four di�erent event sequence
z1, . . . , z4 that we can use to base our prediction on.

x3 : 1 1 1(2.2)
y3 : 0 1 0
z1 : 0 1 0 (y3, 1,y1)
z2 : 0 1 1 (y3, 1,x1)
z2 : 1 1 1 (x3, 1,x1)
z4 : 1 1 0 (x3, 1,y1)

By virtue of Eq. (2.1), we know that the prediction depends
on the number of ones in the past t1. �erefore we can use the
number of ones present in newly constructed event sequence
zis to directly get the prediction. Let tx =

∑t−1
i=1 xi be the

number of ones in x t−1, de�ning ty analogous. To predict xt
given its past and that of yn , we can use the number of ones
in the range from tmin = min(tx , ty) to tmax =

∑t−1
i=1 xi ∨ yi ,

where ∨ is the boolean OR operator.
In every iteration, we choose the number of ones

t1 ∈ {tmin, tmin + 1, . . . , tmax} that results in the minimal

code length − log Psnml(xt | x t−1,yt−1), using the predic-
tion Psnml(xt | x t−1,yt−1). �is way, the optimisation of
− log Psnml(xt | x t−1,yt−1) also includes the index set for
that of the − log Psnml(xt | x t−1). �us we have

− log Psnml(xt | x t−1,yt−1) ≤ − log Psnml(xt | x t−1) .
�e equality holds when yt−1 does not help in the prediction
of xt . As a result, both causal indicators are positive, i.e.
∆xn→yn ≥ 0, and ∆yn→xn ≥ 0.

At �rst glance, it is not evident whether the prediction
is monotone with respect to the number of ones in the
past t1. Moreover, derivative analysis or an inductive proof
appears to be non-trivial. �erefore we numerically compute
the code length of the outcome xt using the prediction
Psnml(xt | x t−1,yt−1) for various number of ones t1 =
1, 2, . . . , t−1 for a �xed t . Further we repeat the same process
for t = 1, 2, . . . , 50. In Fig. 1, we show the results in a 3D plot.
We observe that the code length for the outcome xt = 1 is
monotonically decreasing with respect to the number of ones
in the past t1 for a �xed t . �e code length for the outcome
xt = 0, however, is monotonically increasing relative to t1
for a �xed t .

�is numerical analysis suggests that tmax maximises
the prediction of the outcome xt = 1 given its past x t−1, and
that of yn . On the contrary, tmin maximises the prediction of
the outcome xt = 0. Hence, the prediction for the outcome
xt = 1 from its past x t−1, and that ofyn using SNML strategy
is given by

Psnml(xt = 1 | x t−1,yt−1) = Z

t tmax
max (t0 + 1)t0+1 + Z

,(2.3)

where Z = (tmax + 1)tmax+1t t00 , and t0 = t − 1− tmax. Likewise,
the prediction for the outcome xt = 0 from its past x t−1, and
that of yn using SNML strategy is given by

Psnml(xt = 0 | x t−1,yt−1) = K

K + t tmin
min (t0 + 1)t0+1

,(2.4)

where K = t tmin
min (t0 + 1)t0+1, and t0 = t − 1 − tmin.

From here onwards, we refer to our proposed framework
as CUTE, for causal inference on event sequences using
SNML. All logarithms are to base 2, and by convention we
use 0 log 0 = 0.

2.6 Computational Complexity To compute `(xn), we
have to compute − log Psnml(xt | x t−1) for t = 1, 2, . . . ,n.
In every iteration, we can keep track of the count of the
number of ones t1 we have seen so far. Given t and t1, we
can compute − log Psnml(xt | x t−1) in constant time, O(1),
using the closed form expression in Eq. (2.1). �erefore we
can compute `(xn) in O(n) time.

To compute `(xn | yn), we have to compute
− log Psnml(xt | x t−1,yt−1) for t = 1, 2, . . . ,n. In every it-
eration, we can keep track of the count of number of ones

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

0 10 20 30 40 50 1 10
2030

4050
2

4.5

7

t1
t−l

og
P
sn

ml
(1
|x

t−
1 ,
y
t−

1)

0 10 20 30 40 50 1 10
2030

4050
2

4.5

7

t1
t−l

og
P
sn

ml
(0
|x

t−
1 ,
y
t−

1)

Figure 1: SNML predictions using the past of xn , and that of yn . For time steps t = 1, 2, . . . , 50, and number of ones in the
past t1 = 1, 2, . . . , 50 such that t1 < t , we plot the code length using the SNML prediction strategy for (le�) xt = 1, and
(right) xt = 0.

tx , ty , and tmax. Given tx , ty , and tmax, we can compute
− log Psnml(xt | x t−1,yt−1) in constant time, O(1), using the
closed form expression in Eq. (2.3), and Eq. (2.4). Hence we
can compute `(xn | yn) in O(n) time. �is implies we can
compute ∆yn→xn in O(n) time.

Altogether the worst case computational complexity of
the framework is O(n).

3 Related Work
Causal inference techniques for time series are, for the
most part, based on Granger causality [6]. �e key idea
is that a time series xn does not Granger cause a time
series yn if the past of xn does not help in predicting yn
given the past of yn . Typically predictability is measured in
terms of the variance of the error in regression. �is also
corresponds to a signi�cance test assuming a multivariate
time series model [5, 13]. �ere exists many variants of
Granger causality depending on the assumed model, and the
predictability measure.

Linear Granger causality, for instance, considers a vector
autoregressive (VAR) model. A VAR model describes the
current outcome as a linear function of its past values, and
an additive error term. Non-linear Granger causality is an
extension of Granger causality to non-linear systems [4].
�e key idea there is to apply linear regression for each
local neighbourhood and average the resulting statistical
quantity over the entire a�ractor (a set of numerical values
towardwhich a system tends to evolve). Wax&Rissanen [15]
proposed a compression-based framework for measuring
mutual and causal dependence on the foundations of Granger
causality, with an instantiation for continuous real-valued
data. Another variant of Granger causality is the transfer
entropy (shortly TENT) [17] which measures predictability
in terms of Shannon entropy. Transfer entropy can, unlike
others, detect both linear and non-linear causal in�uences.

�ere do exist techniques that take a di�erent approach

from Granger causality. Chu & Glymour [5] propose condi-
tional independence test on non-iid se�ing, and introduce
the additive non-linear time series models (ANLTSM). It
uses additive model regression as a general purpose non-
linear conditional independence test. TS-LiNGAM [9] con-
siders the general case where causal in�uences can occur
either instantaneously or with considerable time lags. It
combines the non-Gaussian instantaneous model with au-
toregressive models for causal analysis. Peters et al. [11] use
restricted structural equation models, ANMs in particular,
to �nd causal structures from time series. Huang & Klein-
berg [8] introduce a causal inference framework based on
logical formulas where cause is a discrete variable, and e�ect
is a continuous-valued variable.

Except for transfer entropy, all the frameworks above
either work with continuous-valued or mixed time series
data. �e known variants of Granger causality for event
sequences, or discrete-valued time series are either highly
tailored for the problem at hand [13], or just minor varia-
tions [12]. Origo [3], and Cisc [2] also use compression to
identify the causal direction, but from iid binary and discrete
data respectively. Both are based on the postulate of indepen-
dence of input and mechanism, whereas CUTE is based on the
assumption that cause happens before e�ect, and has unique
information about the future of e�ect. Transfer entropy is
close in spirit to CUTE, but in contrast, we are robust to ad-
versarial se�ings (e.g. misspeci�ed model classes). Transfer
entropy requires a lag parameter, whereas CUTE does not re-
quire one. Importantly CUTE runs in O(n) time. TENT, on the
other hand, takes O(nk + 2k), where k is the lag value. As it
is the most commonly applied Granger causality framework,
we compare CUTE against TENT in the experiments.

4 Experiments
We implemented CUTE in Python and provide the source
code for research purposes, along with the used datasets, and

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

synthetic dataset generator.1 All experiments were executed
single-threaded on Intel Xeon E5-2643 v3 machine with 256
GB memory running Linux. We compare CUTE with transfer
entropy, shortly TENT, which is both commonly regarded as
the state of the art in Granger causality and straightforwardly
applicable to event sequences.

4.1 Synthetic Data To evaluate CUTE on data with the
known ground truth, we use synthetic data. Unless otherwise
stated, to generate the cause time series, we �rst uniformly
randomly choose the parameter θ for Bernoulli distribution
B from the interval [0.1, 0.9], then at every time step t , we
sample outcome xt ∈ {0, 1} usingB. Unless stated otherwise,
we sample 1000 outcomes for both cause and e�ect.

E�ect as a time-shi�ed version of cause We generate
the e�ect time series by shi�ing the cause time series by k
time steps forward, where k is chosen randomly between 1
and 20. At every time step of the resulting time series, we
�ip the outcome depending on the noise level. At each noise
level, we generate 500 cause-e�ect pairs.

Unlike CUTE, TENT requires a lag parameter. �erefore
we take the best result (maximum transfer entropy) obtained
by varying the lag between 1 and 20 on every cause-e�ect
pair. In Fig. 2a, we compare the accuracy of CUTE against
TENT at various noise levels. Further we also note down the
95% con�dence interval with dashed lines for a random coin
�ip in 500 cause e�ect pairs. We observe that CUTE performs
be�er than TENT at every level of noise.

Next we draw θ fromU(0.1, 0.5) to generate cause time
series that on average are sparse, repeat the same process
as before, and report the results in Fig. 2b. We observe that
the performance of TENT remains almost the same as before.
�e performance of CUTE, however, improves by a huge
margin whenever noise is present. �is improvement can be
a�ributed to the sparsity of the generated time series, and
the underlying mechanism of CUTE; if the cause time series
is dense the e�ect time series–obtained by shi�ing the cause–
does not necessarily need the past of cause to encode itself
e�ciently. If the cause time series is sparse, however, the
recent density of cause is informative for e�ect, and hence
helps to encode more e�ciently.

E�ect as a time-shi�ed and inverted version of cause
In the next experiment, we generate the e�ect time series by
�rst shi�ing the cause time series by k time steps forward,
and then inverting the resulting time series. �e value of k is
chosen uniformly randomly from the range 1 to 20. To assess
the performance of the inference frameworks, we repeat the
same process as in the previous experiment.

In Fig. 2c, we compare the accuracy of CUTE against TENT

1http://eda.mmci.uni-saarland.de/cute

at various noise levels. In the absence of noise, the result of
CUTE is insigni�cant, and performs slightly worse than TENT.
With increasing noise, however, CUTE outperforms TENT.

E�ect as a combination of its past and that of cause
Next to generate the outcome yt of the e�ect time series at
time t , we use the previous outcome xt−1 of the cause, and
that of the e�ect yt−1. If xt−1 = yt−1, we sample yt using a
coin �ip. If xt−1 = 0 and yt−1 = 1, we set yt = 1. Otherwise
we set yt = 0. Particularly the last two rules ensure that we
use the previous outcome xt−1 of the cause to best encode
the current outcome yt of the e�ect. For the �rst time step,
we sample the outcome based on a random coin �ip.

In Fig. 2d, we compare the accuracy of CUTE against
transfer entropy (TENT) at various noise levels. We observe
that CUTE outperforms TENT in all cases.

Statistical Signi�cance �eproblem of di�erentiating two
directions (between xn → yn and yn → xn) can be
cast as an identity testing problem, which is one of the
fundamental problems in statistics. As our method is based
on compression, we can use the compression based identity
testing framework [16] to assess the signi�cance of inferred
results. �e framework can be roughly described as follows:

Definition 2. (Compression-based Identity Testing [16])
Let xn be a sequence over an alphabet Σ. Let H0 be the null
hypothesis that the source of xn has a distribution P , and
H1 be the alternative hypothesis that the source of xn has a
distribution Q . We reject the null hypothesis H0 if

− log P(xn) − {− logQ(xn)} > − logα ,

where α is the level of signi�cance. For each distribution P , and
Q , the Type I error of the compression-based identity testing is
not larger than α .

On a cause-e�ect pair (xn ,yn) where CUTE makes a
decision (say xn → yn), we want to assess whether the
decision is signi�cant. To this end, our null hypothesis H0
will be the joint distribution under the alternative direction
(yn → xn). �en the alternative hypothesis H1 will be that
under the inferred direction. In that case, we reject H0 if
∆yn→xn − ∆xn→yn > − logα .

In order to control the false discovery rate for multi-
ple hypothesis testing, we use Benjamini-Hochberg proce-
dure [1]. Let H1,H2, . . . ,Hm be the null hypotheses tested,
and p1,p2, . . . ,pm their corresponding p-values. We sort the
p-values in ascending order. For signi�cance level of α , we
�nd the largest k such that pk ≤ k

mα . We reject the null
hypothesis for all Hi , where i = 1, . . . ,k .

We sample 100 cause-e�ect pairs, where e�ect is a
shi�ed version of the cause with 10% noise. For each pair,
we sample 1000 outcomes. In Fig. 3, we sort the cause-e�ect

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://eda.mmci.uni-saarland.de/cute

0 10 20 30
0

25

50

75

100

59

41
31 29

89

60 63 66

noise (%)

ac
cu
ra
cy

(%
)

TENT

CUTE

(a)

0 10 20 30
0

25

50

75

100

63

36 32 28

88
96 96 97

noise (%)

ac
cu
ra
cy

(%
)

(b)

0 10 20 30
0

25

50

75

100

56

39 34
28

49
59

65 69

noise (%)

ac
cu
ra
cy

(%
)

(c)

0 10 20 30
0

25

50

75

100

20 24 25 29

64
70 71 68

noise (%)

ac
cu
ra
cy

(%
)

(d)

Figure 2: Accuracy vs. noise on synthetic cause-e�ect pairs, where (a) e�ect is a timeshi�ed version of the cause with
θ ∼ U(0.1, 0.9), (b) e�ect is a timeshi�ed version of the cause with θ ∼ U(0.1, 0.5), (c) e�ect is a timeshi�ed and inverted
version of the cause, (d) e�ect is a combination of its past and that of cause. �e dashed gray lines indicate the 95%
con�dence interval for a random coin �ip in 500 cause-e�ect pairs.

1 20 40 60 80 100

5

60

130

195

cause-e�ect pair

|∆
x
n
→
y
n
−
∆
y
n
→
x
n
|

X signi�cant
X insigni�cant

Figure 3: Synthetic cause-e�ect pairs, where e�ect is a
shi�ed version of the cause with 10% noise, sorted by their
corresponding di�erence in compression in two directions.
We apply Benjamini-Hochberg correction to control the false
discovery rate at a signi�cance level of α = 0.01.

pairs by their corresponding di�erence in causal dependence
in two directions |∆xn→yn −∆yn→xn |. �at also corresponds
to sorting the pairs by their p-values in ascending manner—
the di�erence in measures in two directions determines the
p-value due to the no-hypercompression-inequality [7, Chap
3.3] which gives an upper bound on the probability of an
arbitrary distribution Q compressing the data be�er by K
bits than the distribution P on the data.

At a signi�cance threshold of α = 0.01 a�er applying
Benjamini-Hochberg correction, we observe that all the
inferences for signi�cant scores are correct.

4.2 Real Data Next we investigate CUTE on real data.

River Water Level First we look into water level of rivers
in Germany. We consider two rivers in particular: Saar and
Rhein. For a river, we collect the raw water level recorded
every 15 minutes in past one month from various water

Fremersdorf
Sankt Arnual

Hanweiler

Saar

Speyer

Mannheim
Worms

Mainz

Rhein

Germany

France

Figure 4: Map of the Saar and the Rhein river in Germany.
�e recording stations are marked with gray dots.

level recording stations.2 �is way we end up with 2880 data
points from one station. �e raw water level, however, is
continuous real-valued, and hence we have to binarise the
data. To this end, if the water level goes up from previous
recording, we use 1. Otherwise we use 0. It is intuitively
plausible to consider that the water level recording of the
station upstream causes the water level recording of the
station downstream.

For the Saar river, we collect the raw water level data
from three stations, namely Hanweiler, Sankt Arnual, and

2http://www.pegelonline.wsv.de/webservices/files/
Wasserstand+Rohdaten/

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://www.pegelonline.wsv.de/webservices/files/Wasserstand+Rohdaten/
http://www.pegelonline.wsv.de/webservices/files/Wasserstand+Rohdaten/

FD

Fremersdorf
SA

Sankt Arnual
HW

Hanweiler

Figure 5: Results of CUTE on the Saar river. A green edge
represents a correct causal direction.

MZ

Mainz
WO

Worms
MH

Mannheim
SP

Speyer

Figure 6: Results of CUTE on the Rhein river. A green edge
represents a correct causal direction. A red edge indicates a
wrong causal direction.

Fremersdorf. �en we binarise the recordings from each
station. In Fig. 4, we show the map of the Saar river along
with the recording stations. For instance, Hanweiler station
is upstream compared to Fremersdorf station. �erefore the
ground truth would be Hanweiler causes Fremersdorf. We
run CUTE on all the pairs. In Fig. 5, we present the results as a
directed acyclic graph (DAG). �e results clearly corroborate
our intuition. TENT (max. lag = 100) identi�es two edges
correctly, however wrongly infers FD→SA.

For the Rhein river, we collect the raw water level data
from four stations, namely Speyer, Mannheim,Worms, and
Mainz. We binarise the recordings from each station. In Fig. 4,
we show the map of the Rhein river along with the recording
stations. A�er running CUTE on all the pairs, we end up with
a DAG as shown in Fig. 6. We see that CUTE identi�es the
correct direction in all but one case where it wrongly infers
WO→ MH—a possible explanation is the confounding in�ux of
water from the Neckar river right before the WO measuring
station. TENT (max. lag = 100), on the other hand, infers the
wrong direction in all but one case (MH→WO).

Temperature �e Temperature dataset is the 48th pair in the
Tübingen cause-e�ect benchmark pairs.3 It contains indoor
(xn), and outdoor (yn) temperature measurements recorded
every 5 minutes. �ere are n = 168 measurements. We
binarise the data like before. �e ground truth of the pair is
yn → xn . With CUTE, we get the following scores:

∆xn→yn = 28.36, ∆yn→xn = 41.81 .

Hence CUTE infers yn → xn , which is in agreement with the
ground truth. TENT (max. lag=100), on the other hand, infers
the wrong causal direction.

3https://webdav.tuebingen.mpg.de/cause-effect/

X1 X2

X4 X3

X1 X2

X4 X3

Figure 7: (le�) Ground truth for the neural spike train data.
A directed edge with a pointy head represents an excitatory
in�uence, whereas a directed edge with a circular head
represents an inhibitory in�uence. (right) Results of CUTE
on the neural spike train data. A green edge represents a
correct causal direction. A gray edge indicates a partially
identi�ed causal direction.

Overall, these results show that CUTE �nds sensible
causal directions from real data.

Neural Spike Train Recordings Next we look at the
neural spike train recordings data from an experiment
carried out on a monkey [13]. As the original experimental
data itself is not available for public use, we obtained
the data simulator used by the authors to con�rm their
experimental data. �e spike trains are generated using
point process generalised linear models (GLM). �e values
of the parameters are selected to be within the range of
parameters identi�ed in point process GLM model �ts to
spike trains from electrode array recording data of primate
primary motor cortex [18]. Typically there are two types of
in�uences in neural spike trains, namely excitatory (neurons
�re more) and inhibitory (neurons �re less).

In Fig. 7 (le�), we show the ground truth of the spike
train data. We note that CUTE is not designed to deal with
feedback loops. �e inferred DAG a�er testing pairwise
causality using CUTE is presented on the right side of Fig. 7.
We see that it correctly infers the direction of the two non-
looped causal connections, and correctly recovers one of the
two causal connections (as opposed to saying there is none)
forX1 andX2,X1 andX4, andX4 andX3 each. For the looped
causal connections, TENT (max. lag = 100) also recovers one
of the two causal connections, but the directions are exactly
opposed to what CUTE identi�es. As for the non-looped ones,
TENT wrongly infers X2 → X4 and X2 → X3.

When we remove the loops from the generating model
by removing the inhibitory connections, we obtain the
generating model depicted in Fig. 8 (le�). When we use CUTE
to determine the causal direction of all dependent edges, we
�nd that it recovers the ground truth. TENT (max. lag = 100)
recovers X2 → X3 and X4 → X1, however it wrongly infers
X3 → X4 and X2 → X4.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

https://webdav.tuebingen.mpg.de/cause-effect/

X1 X2

X4 X3

X1 X2

X4 X3

Figure 8: (le�) Ground truth for the neural spike train data
a�er removing the inhibitory in�uences, and cycles. (right)
Results of CUTE on the modi�ed neural spike train data. A
green edge represents a correct causal direction.

5 Discussion
�e experiments show that CUTE works well in practice. It
reliably identi�es true causal direction in a wide range of
se�ings, is remarkably fast, and outperforms the state of the
art by a wide margin, while qualitative case studies con�rm
that the results are sensible.

Although these results are promising, we see many
possibilities for further improvement. We focused mainly
on binary data in this work. But the extension to discrete
data is also straightforward. We can compute Psnml for a
discrete time series by using the ML estimator relative to
a multinomial family. For the conditional compression, we
can trivially extend the proposal in Section 2.5.1.

In this work, we do not take instantaneous e�ects into
account. In theory we can do so by using the current
outcome yt of the conditioned time series yn in conditional
compression `(xn | yn). �is leads to `(xn | yn) =∑n

t=1 − log P(xt | x t−1,yt). We can then compute `(xn | yn)
using the technique proposed in Section 2.5.1.

Our method might fail in presence of a confounding
time series zn that causes both xn and yn . One of the
avenues for future work would be to address that problem.
�at would also require reconsidering our assumptions, and
perhaps a new framework needs to be developed with the
new assumptions in mind. Last it would be interesting to
explore the possibilities of using CUTE for causal discovery.

6 Conclusion
We proposed an information theoretic framework for causal
inference on event sequences, building upon on the foun-
dations of Granger causality. To encode an event sequence,
we used minimax optimal codes relative to a parametric
family of distributions. We proposed CUTE, a linear time
method for inferring the causal direction between two event
sequences. Extensive evaluation on synthetic and real-world
data showed that CUTE outperforms the state of the art and
discovers meaningful causal relations in real data.

Acknowledgements
�e authors thank the anonymous reviewers for detailed
comments. Kailash Budhathoki is supported by the Interna-

tional Max Planck Research School for Computer Science
(IMPRS-CS). Both authors are supported by the Cluster of
Excellence MMCI within the Excellence Initiative of the Ger-
man Federal Government.

References

[1] Y. Benjamini and Y. Hochberg. Controlling the false discovery
rate: A practical and powerful approach to multiple testing.
J. R. Statist. Soc. B, 57(1):289–300, 1995.

[2] K. Budhathoki and J. Vreeken. MDL for causal inference on
discrete data. In ICDM, pages 751–756, 2017.

[3] K. Budhathoki and J. Vreeken. Origo: causal inference by
compression. Knowl. Inf. Sys., 2017.

[4] Y. Chen, G. Rangarajan, J. Feng, and M. Ding. Analyzing mul-
tiple nonlinear time series with extended granger causality.
Phys. Let. A, 324(1):26–35, 2004.

[5] T. Chu and C. Glymour. Search for additive nonlinear time
series causal models. JMLR, 9:967–991, 2008.

[6] C. W. J. Granger. Investigating causal relations by econo-
metric models and cross-spectral methods. Econometrica,
37(3):424–438, 1969.

[7] P. Grünwald. �e Minimum Description Length Principle. MIT
Press, 2007.

[8] Y. Huang and S. Kleinberg. Fast and accurate causal inference
from time series data. In FLAIRS, pages 49–54, 2015.

[9] A. Hyvärinen, S. Shimizu, and P. O. Hoyer. Causal modelling
combining instantaneous and lagged e�ects: An identi�able
model based on non-Gaussianity. In ICML, pages 424–431.
ACM, 2008.

[10] W. Kotlowski and P. Grünwald. Sequential normalized
maximum likelihood in log-loss prediction. In IEEE ITW,
pages 547–551, 2012.

[11] J. Peters, D. Janzing, and B. Schölkopf. Causal inference on
time series using restricted structural equation models. In
NIPS, pages 154–162, 2013.

[12] U. Pö�er and H.-P. Blossfeld. Causal inference from series of
events. Europ. Sociol. Rev., 17(1):21–32, 2001.

[13] C. J. �inn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopou-
los. Estimating the directed information to infer causal rela-
tionships in ensemble neural spike train recordings. Comp.
Neurosci., 30(1):17–44, 2011.

[14] J. Rissanen and T. Roos. Conditional nml universal models.
In ITA Workshop, pages 337–341, 2007.

[15] J. Rissanen and M. Wax. Measures of mutual and causal
dependence between two time series. IEEE TIT, 33(4):598–
601, 1987.

[16] B. Ryabko and J. Astola. Application of data compression
methods to hypothesis testing for ergodic and stationary
processes. In AofA, pages 399–408. Discrete Mathematics
and �eoretical Computer Science, 2005.

[17] T. Schreiber. Measuring information transfer. Phys. Rev. Le�.,
85:461–464, 2000.

[18] W. Wu and N. Hatsopoulos. Evidence against a single
coordinate system representation in the motor cortex. Exp.
Brain Res., 175(2):197–210, 2006.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Theory
	The Problem
	Assumptions
	Measuring Causal Dependence
	Sequential Normalised Maximum Likelihood
	SNML for Binary Data
	Conditional Compression

	Computational Complexity

	Related Work
	Experiments
	Synthetic Data
	Real Data

	Discussion
	Conclusion

