
HADES-IoT: A Practical Host-Based Anomaly Detection System
for IoT Devices

Dominik Breitenbacher
SUTD, Singapore

dbreitenbacher@gmail.com

Ivan Homoliak
SUTD, Singapore

ivan_homoliak@sutd.edu.sg

Yan Lin Aung
SUTD, Singapore

linaung_yan@sutd.edu.sg

Nils Ole Tippenhauer
CISPA, Germany

tippenhauer@cispa.saarland

Yuval Elovici
SUTD, Singapore

yuval_elovici@sutd.edu.sg

Abstract
Internet of Things (IoT) devices have become ubiquitous and spread
across many application domains including the industry, transporta-
tion, healthcare, and households. However, the proliferation of the
IoT devices has raised the concerns about their security – many
manufacturers focus only on the core functionality of their products
due to short time to market and low cost pressures, while neglecting
security aspects. Moreover, there is no established or standardized
method for measuring and ensuring the security of IoT devices. Con-
sequently, vulnerabilities are left untreated, allowing attackers to
exploit IoT devices for various purposes, such as compromising pri-
vacy, recruiting devices into a botnet, or misusing devices to perform
cryptocurrency mining. In this paper, we present a practical Host-
based Anomaly DEtection System for IoT (HADES-IoT) as a novel
last line of defense. HADES-IoT has proactive detection capabilities,
provides tamper-proof resistance, and can be deployed on a wide
range of Linux-based IoT devices. The main advantage of HADES-
IoT is its low performance overhead, which makes it suitable for
the IoT domain, where state-of-the-art approaches cannot be applied
due to their high-performance demands. We deployed HADES-IoT
on seven IoT devices and demonstrated 100% effectiveness in the
detection of current IoT malware such as VPNFilter and IoTReaper;
while on average, requiring only 5.5% of available memory and
causing only a low CPU load.

CCS Concepts
• Security and Privacy → Malware and Its Mitigation; Intrusion
Detection Systems.

Keywords
Host-Based Anomaly Detection; Intrusion Detection; IoT; System
Call Interception; Loadable Kernel Module; Tamper-Proof

ACM Reference Format:
Dominik Breitenbacher, Ivan Homoliak, Yan Lin Aung, Nils Ole Tippen-
hauer, and Yuval Elovici. 2019. HADES-IoT: A Practical Host-Based Anom-
aly Detection System for IoT Devices. In ACM Asia Conference on Computer
and Communications Security (AsiaCCS ’19), July 9–12, 2019, Auckland,
New Zealand. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3321705.3329847

AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Asia Conference
on Computer and Communications Security (AsiaCCS ’19), July 9–12, 2019, Auckland,
New Zealand, https://doi.org/10.1145/3321705.3329847.

1 Introduction

In recent years, the number of IoT devices connected to the Internet
reached seven billion [11] and is expected to grow. Gartner estimates
that more than 20 billion IoT devices will be connected to the Inter-
net by 2020 [12]. Nevertheless, the advent of the IoT has brought
challenges in many areas, including data storage, maintenance, and
particularly, privacy and security [14], [10], [13]. Many IoT devices
are designed with a specific purpose in mind, so their software and
hardware is solely chosen to satisfy the requirements on core func-
tionalities, e.g., using just as fast processor as needed to meet certain
real-time constraints. When it comes to security, the preference is
put on short time to market and budget constraints at the expense
of more expensive and possibly more comprehensive security solu-
tions. Therefore, embedded technology results in a trade-off between
cost and security [14]; however, real-time requirements, computing
capabilities, and energy consumption are also part of this trade-off.

For these reasons, IoT devices are often released with serious vul-
nerabilities, and this issue is further exacerbated by the fact that IoT
devices are, in many cases, exposed on the Internet, and thus easily
reachable by attackers. Most IoT devices are exploited due to oper-
ations security (OPSEC) issues, such as the use of weak or default
passwords [3], [17]; however, they are also exploited due to buffer
overflow, command injection, etc., [18]. These practical examples
raise the question of how to achieve greater security in IoT devices
while minimizing the requirements on cost and the utilization of com-
putational resources? One way to raise the bar against attackers is
to improve preventive OPSEC countermeasures, such as employing
strong passwords and conservative access control. However, in the
case of more sophisticated attacks, IoT devices must be protected by
other dedicated means, such as host-based intrusion detection sys-
tems or IoT-specific antivirus systems. Nevertheless, there might not
be enough economic incentives for companies developing low-cost
competitive IoT devices to invest in security countermeasures that
are also computationally demanding.

Given the abovementioned constraints, we make the following
fundamental observation: in contrast to general computing devices
such as laptops or mobile devices, IoT devices have, by design, a
well-defined and stable functionality. However, when an IoT de-
vice is compromised by malware, its behavior changes significantly.
Therefore, intrusion detection and anomaly detection systems are
promising options for securing IoT devices. Although, these systems
might be deployed outside of the device and perform inspection
of network traffic [8], they might be evaded by various payload-
based [6, 19] and non-payload-based obfuscations [4, 9]. Hence, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249328049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3321705.3329847
https://doi.org/10.1145/3321705.3329847
https://doi.org/10.1145/3321705.3329847

argue that behavioral changes are best observed from “within” a
device, for instance, by monitoring which processes are running and
what actions they perform. For this reason, we consider host-based
behavior analysis as an effective last line of defense.

Proposed Approach. In this paper, we propose a lightweight Host-
based Anomaly DEtection System for IoT devices (HADES-IoT)
that monitors process spawning and stops any unauthorized program
before its execution, thus providing proactive detection and preven-
tion. To achieve real-time detection, we developed HADES-IoT as a
loadable kernel module of Linux OS. Such a design decision allows
us to make HADES-IoT tamper-proof against an attacker (with su-
peruser privileges) trying to disable it. Since IoT devices are strictly
resource constrained, we created HADES-IoT in a lightweight fash-
ion, ensuring that primary functionality provided by the device is
not affected. HADES-IoT supports various types of IoT devices, as
most of them are based on the Linux OS [21].

Contributions: In summary, our contributions are as follows:
• We present a novel host-based anomaly detection and pre-

vention approach that is based on whitelisting legitimate pro-
cesses on an IoT device.

• We develop a proof-of-concept of our approach and evaluate
its effectiveness on several IoT devices.

• We show that HADES-IoT is generic and can be easily adapted
to any Linux kernel version.

• We demonstrate that HADES-IoT is tamper-proof and thus
provides resilience against attackers focusing on disabling its
protection mechanisms.

2 Problem Statement
The main objective of this work is to propose a security solution
that protects the bulk of the existing IoT devices against remote
exploitation of any vulnerabilities (including zero-day ones).

2.1 Assumptions
In this work we aim at Linux-based IoT devices. According to [21],
the market share of Linux-based IoT devices is over 80%, and hence
we cover the vast majority of existing IoT devices. Furthermore, we
assume that (1) all of the executables installed on an IoT device
are benign, and (2) an attacker does not tamper with the device
either before or during the bootstrapping of our proposed approach.
However, we assume that the default executables of an IoT device
may contain a vulnerability enabling execution of arbitrary binaries
– either binaries that already exist on a device or binaries delivered
by an attacker. Finally, to the best of our knowledge, it is not com-
mon practice for manufacturers to enable security features, such as
SELinux, Auditd, or Access Control Lists on their IoT devices mainly
due to performance reasons. Therefore, we assume that our approach
is the only security solution deployed on an IoT device.

2.2 Attacker Model
We assume that an IoT device is protected by our approach and is
connected to the Internet. Therefore, an attacker is able to find it
using a custom scanner or publicly available services such as Shodan.
The attacker can do reconnaissance of an IoT device to reveal open
ports and running network services. To make our attacker model
challenging, we consider that an attacker is capable of exploiting any

Device Type Kernel CPU Memory
Version Arch. Speed Total Avail.

Netgear WNR2000v3 Router 2.6.15 MIPS 265.2 32 16.06
ASUS RT-N16 Router 2.6.21 MIPSel 239.2 128 87.22
ASUS RT-N56U Router 2.6.21 MIPSel 249.3 128 78.56
Cisco Linksys E4200 Router 2.6.22 MIPSel 239.2 64 18.63
D-Link DCS-942L IP Camera 2.6.28 ARM 534.5 128 38.75
SimpleHome XCS7-1001 IP Camera 3.0.8 ARM 218.7 32 1.90
Provision PT-737E IP Camera 3.4.35 ARM 218.7 32 3.88

Table 1: IoT devices evaluated (CPU speed in BogoMIPS).

vulnerability (i.e., potentially zero-day) on an IoT device through
one of the network services running on the device. We further con-
sider that once an attacker “is inside” an IoT device, he is granted
superuser privileges, since it is common for many IoT devices to
have just a superuser account.

2.3 Requirements for an IoT Defense Solution
In this section, we specify desired requirements for a host-based IoT
defense solution that is resistant against our attacker model. In par-
ticular, a defense solution should meet the following requirements:

(1) Real-Time Detection: Since we aim to prevent any unknown
action on an IoT device, a defense solution must be capable of
detecting any unknown program upon its execution.

(2) Lightweight Overhead: IoT devices are extremely resource
constrained, and thus provide only limited processing and storage
resources. Therefore, it is not possible to utilize conventional security
approaches used in PC environments (e.g., machine learning or
complex heuristics approaches). With this in mind, a defense solution
should be conservative in terms of resource consumption and should
only utilize existing dependencies.

(3) Tamper-Proof Protection: Since the attacker has superuser
privileges, he may terminate or bypass a defense solution deployed
on an IoT device. Therefore, a defense solution should be resilient
against such a powerful attacker.

(4) Wide Coverage: It is important to protect a wide range of
IoT devices (e.g., printers, IP cameras, Wi-Fi routers), taking into
account that a significant portion of the existing IoT devices is
already considered legacy and moreover may lack updates.

(5) Independence: The deployment of a defense solution must
not be dependent on a manufacturer; both the user and a manufac-
turer must be capable of deploying it.

(6) Ease of Bootstrapping: With regard to the deployment of a
defense solution mentioned above, we further argue that a defense
solution should be capable of being deployed with small effort and
should not require kernel recompilation of the IoT device’s OS.

2.4 Design Problems and Options
We analyzed options for developing a defense solution and identified
additional constraining factors that should be considered as well.
Initially, we conjectured that the most straightforward option is to
utilize features provided by Linux, such as KProbe1 or inotify.2

However, after examination of several IoT devices (see Table 1) we
found that these features are not supported in neither of them.

Another design aspect we considered is the lightweight com-
plexity and low resource requirements of the defense solution. In

1https://www.kernel.org/doc/Documentation/kprobes.txt
2http://man7.org/linux/man-pages/man7/inotify.7.html

https://www.kernel.org/doc/Documentation/kprobes.txt
http://man7.org/linux/man-pages/man7/inotify.7.html

P
ro

fi
lin

g
P

h
as

e

User / Manufacturer IoT Device
P

ro
te

cti
o

n
P

h
as

e
Precompile HADES-IoT

HADES-IoT binary

Build whitelist

Protection of the
device is enabled

Run HADES-IoT
in profiling mode

Finish profiling

Switch HADES-IoT
to enforcing mode

Figure 1: Bootstrapping of HADES-IoT.

particular, the most important resources for a defense system are
CPU and memory. We measured the normal utilization of these re-
sources by the IoT devices in this study and found out that while
there is a reasonable reserve of CPU utilization, the CPU perfor-
mance is often low. Therefore, we must ensure that the defense
solution minimizes CPU consumption only to the extent needed, and
the device’s performance and availability is not affected. We also
observed that there is only a small amount of free memory on IoT
devices (e.g., ≤2MB), but not the whole free space can be utilized
for a defense solution, as some applications might rely on it.

Since the challenge is to detect unknown processes in real-time
upon their spawning, the Linux process scheduler is another limiting
factor. In the user space environment, processes compete for the CPU,
and the process scheduler makes decisions regarding the CPU and
time allocations for the processes. Therefore, if a defense solution
were implemented in user space, there is no guarantee that it would
be “scheduled as running” when a new process is spawned; hence,
malicious processes might be missed or detected too late.

System call interception is a suitable technique capable of ad-
dressing the issue of execution priority. With an appropriate set of
intercepted system calls, this technique enables us to “catch” all new
processes upon their spawning. In general, there are two options for
performing system call interception. The first option is libC library
hooking, which is performed in the user space, and the second option
is the interception of system calls through a loadable kernel module
(LKM) running in kernel space. Although libC hooking is easier
to develop with more freedom as compared to creating an LKM, it
is not suitable for our case because the IoT environment is diverse,
and each manufacturer uses custom Linux that can be compiled
with various (or custom) libraries/their versions (including libC).
Attackers address these issues by compiling their malware statically
and thus cover as many IoT devices as possible. This fact renders
libC hooking unusable for the detection of the majority of malware.
Hence, we identify LKM as the most feasible solution, which can
fulfill most of the requirements defined in Section 2.3.

3 HADES-IoT
We propose a host-based anomaly detection system targeted for
IoT devices, called HADES-IoT. Most of the requirements speci-
fied above have been fulfilled since we chose to adopt the LKM
approach that utilizes the system call interception technique and,
more specifically, intercepts the execve system call. Using the LKM

HADES-IoT

libC library

Process

execve
libC wrapper

execve
Software

Interrupt Handler

User space Kernel space

execve
Intercepting

Whitelist

ca978112ca1b...
afac231b39a2...
4da786eff814...
e72b9807785a...

⁞

SHA256 MatchNo Match

SH
A

2
5

6
 In

p
u

t Program’s binary
Program’s path
[LKM binary]
 If insmod
[LKM name]
 If rmmod
{Intercepting

Function

Function
Not Implemeted

(-ENOSYS)

Figure 2: Flow of the execve execution with HADES-IoT.

approach, we are able to install HADES-IoT into a Linux kernel at
any time; moreover, with this approach there is no need to recompile
the kernel. The only requirement for ensuring that HADES-IoT can
run on an IoT device is that HADES-IoT needs to be distributed in
binaries that are precompiled (see details in [5]).

HADES-IoT is based on the whitelisting approach. The idea of
this approach is that only programs that are known to run on an
“uninfected” off-the-shelf device are allowed to run. In order to build
a whitelist of benign programs, profiling must be performed once
for each device. This may be viewed as impractical due to the pos-
sibility that some benign programs may be missed during profiling.
Nevertheless, HADES-IoT includes an extension that copes with
this situation and allows the whitelist to be updated at runtime (see
Section 3.5).

3.1 Bootstrapping
In the following, we describe the bootstrapping and operation of
HADES-IoT, while we distinguish between two modes: 1) profiling
mode and 2) enforcing mode. HADES-IoT is bootstrapped on a
device in two stages (see Figure 1). First, HADES-IoT is precom-
piled and delivered to the device, and the kernel’s initialization file is
modified accordingly to ensure that HADES-IoT is always executed
when the device is booted. Once executed, HADES-IoT enters the
profiling mode, in which, it monitors and collects information about
all calls to execve and keeps updating the whitelist. The profiling
stage ends when no new process is detected during a specified time.
We emphasize that during the profiling, also a restart of the device is
performed, which enables to update whitelist with all the programs
executed at the boot time. In the last stage of bootstrapping, HADES-
IoT is switched to the enforcing mode in order to protect the device
using the whitelist.

3.2 Detection Process
The most important feature of the detection process is the intercept-
ing function. The process of interception is depicted in Figure 2.
Upon deployment, HADES-IoT locates the system call table and
saves the address of the execve system call found in the table. Next,
execve’s address in the table is replaced by the address of the inter-
cepting function. This ensures that each time the execve is called,
the software interrupt handler calls the intercepting function instead
of the original execve system call. Once the intercepting function is
executed, it first reads the parameters passed to the execve system

call (i.e., the path of the program to be executed). Next, the function
computes a SHA256 digest out of the program’s binary content, its
path, and other data, depending on the particular circumstances (see
Section 3.3). Using the computed digest, the intercepting function
looks for a match on the whitelist of all authorized programs. If
a match is found, the process is allowed to run, and therefore the
intercepting function performs a call to the original execve system
call. However, if a match was not found, the intercepting function
returns “−ENOSY S” error code, which causes termination of the
process, stopping the execution of any unauthorized action.

3.3 Whitelist Design
When HADES-IoT is successfully bootstrapped, each call to the ex-
ecve system call is intercepted, followed by a search in the whitelist
for a program that is requested to run. An inefficiently designed
search process would cause the IoT device exhibit slow response
time, particularly when the device has a large number of periodi-
cally spawned processes. For example, if the whitelist were naïvely
designed as a linked list, the asymptotic time complexity of the
search routine would be equal to Θ

(
n
)
. This means that the larger

the whitelist is, the longer the imposed delay. To cope with such a
delay, we designed the whitelist as a hash table, which enables us to
reach an asymptotic time complexity of Θ

(
1
)

for a search routine,
thus providing constant delay for the search routine.

IDs in the Whitelist. Each item in the whitelist contains ID and
represents a program authorized to run on a device. The ID of an item
is a SHA256 digest computed from a program’s binary, concatenated
with the path to the program, and in certain circumstances, with other
additional data. The reason for such a combination is to distinguish
symbolic links from the executable they point to. An example of
concerning executable that is heavily utilized in Linux-based IoT
devices is BusyBox – it combines a set of common Unix utilities
under a single executable, while particular utilities are accessible
through symbolic links. Therefore, if we were to compute the digest
out of just the binary content of the passed program, we would obtain
the digest of BusyBox for all of the utilities. However, after adding a
path element to the digest computation, the resulting digest is unique
for each of the utilities.

Nevertheless, there are cases in which this approach is not suffi-
cient. Hence, we have to handle such cases with more fine-grained
whitelisting, in which, additional context dependent data must be
added to the input for SHA256 (see Section 3.4.2 and 3.4.3).

3.4 Tamper-Proof Features of HADES-IoT
We assume that the attacker is provided with superuser privileges
once the IoT device has been compromised. Therefore, we need to
ensure that the attacker who is aware of the presence of HADES-IoT
is unable to terminate or modify it. In the following, we describe pro-
tection mechanisms against possible attacks that focus on tampering
with HADES-IoT.

3.4.1 Modification of HADES-IoT. To prevent a manipulation
of HADES-IoT’s binary by an attacker, HADES-IoT loads its binary
into the protected memory on boot and when a restart of a device is
requested, HADES-IoT’s binary is (re-)written to the storage, regard-
less of whether the original version was modified or not. Hence, any

malicious modification, removal, or rename of the original binary is
prevented.

3.4.2 Loading Malicious LKMs. As a protection mechanism,
each execution of isnmod must be verified against the allowed
and known executions, requiring more fine-grained indexing to the
whitelist. In contrast to the whitelist indexing of standard binaries,
in the case of insmod the index to the whitelist is computed as a
cryptographic hash from: 1) binary content of insmod, 2) its path,
and 3) the binary content of an LKM that is requested to load to a
kernel. This ensures that only known LKMs from the profiling stage
are allowed to load again.

3.4.3 HADES-IoT Uninstallation. The prevention of this attack
is almost the same as in the previous case. The only difference is
that instead of adding the binary content of the LKM to the hash
computation, it is sufficient to use the name of the LKM, as the name
unambiguously identifies a kernel module that has been already
installed. On the other hand, this solution does not prevent an attacker
from uninstalling a kernel module included in the whitelist, and thus
disabling some functionality of an IoT device. We consider this issue
out of the scope, and we plan to address it in our future work.

3.4.4 Initialization File Manipulation. To prevent this attack,
as in the case of protecting the modification of HADES-IoT’s binary,
we propose loading init file into the memory of HADES-IoT on boot.
Therefore, when an IoT device is rebooted, the file is (re-)written to
the storage, regardless of whether it was modified or not.

3.4.5 Memory Tampering. To prevent memory tampering, HA-
DES-IoT takes advantage of the fact that it is integrated into the
kernel’s memory. Therefore, user space programs cannot reach the
kernel, since accessing the kernel space is forbidden and results
in a segmentation fault. The only chance for an attacker to tamper
with HADES-IoT’s memory is to get into the kernel space as well.
Countermeasures that prevent the attacker from loading anything
into the kernel are presented in Section 3.4.2.

3.5 Extensions
We introduce a user-space application running on an IoT device,
which informs the owner about alerts, enables him to extend the
whitelist, and finally allows him to perform updates of an IoT de-
vice. Since IoT devices rarely provide dependencies for asymmetric
cryptography, the application uses authentication with Merkle sig-
natures, requiring only a cryptographically secure hash function,
while providing resilience against quantum computing. Next, we
add interception of kill system call, since it can be invoked by a kill
utility or a dedicated shell built-in function (see details in [5]).

4 Evaluation
We developed a proof-of-concept implementation of HADES-IoT
and tested it on seven IoT devices (see Table 1). First, we exper-
imented with profiling time and determined the minimal amount
of time required to extract an accurate profile. Then, we evaluated
the detection performance of HADES-IoT on vulnerabilities ex-
ploited by recent IoT malware, and finally we measured resource
consumption.

IoT Device Whitelist size / profiling time
Executables 1h 2h 4h 1h

Found (user inter.)

Netgear WNR2000v3 526 12 12 12 61
ASUS RT-N16 638 5 5 5 38
ASUS RT-N56U 375 3 3 3 6
Cisco Linksys E4200 399 9 9 9 11
D-Link DCS-942L 1256 20 20 20 105
SimpleHome XCS7-1001 588 4 4 4 29
ProVision PT-737E 482 5 5 5 9

Table 2: Comparison of profiling time vs. whitelist size.

4.1 Profiling Period
During bootstrapping, HADES-IoT must run in the profiling mode to
extract the profile of an IoT device. The longer HADES-IoT runs in
this mode, the more accurate profile is extracted. However, it can be
inconvenient for a user when the profiling takes too long. Therefore,
we conducted an experiment in which we determined the boundaries
on the amount of profiling time needed to obtain an accurate profile
(see Table 2). We can see that after one hour of profiling no new
processes were found on any of the devices, which means that an
accurate profile can be obtained even after one hour of profiling. On
the other hand, there is the possibility that a new program might be
executed after a four hour profiling period (e.g., a scheduled job).
However, with the extension described in [5], any missing program
can be added to the whitelist after the profiling phase.

Next, we measured the difference in the whitelist size when a
user interacts with the GUI of a device and cases in which there is
no user interaction. The results show that on some devices, such as
Netgear WNR2000v3 and D-Link DCS-942L, the whitelist increases
significantly, while on devices, such as Cisco Linksys E4200 and
ASUS RT-N56U, the increase is only small. These results suggest
that it is important to interact with the device during the profiling
period, otherwise many programs could be missed, leading to a less
accurate profile.

Finally, we compared the number of all executables to the number
of executables presented in the whitelist. Table 2 shows that each
device contains a large number of executables that are never used. If
an attacker were to compromise the device, none of these executables
would be used due to the protection provided by HADES-IoT; the
attacker is strictly limited to the executables in the whitelist.

4.2 Effectiveness of Detection & Prevention
To demonstrate the prevention capabilities of HADES-IoT, we per-
formed several attacks that exploit vulnerabilities used by recent
real-world IoT malware. We describe these attacks in the following.

4.2.1 Enabled Telnet with Default Credentials & Mirai. The
devices with enabled Telnet service by default (e.g., SimpleHome IP
camera) are potentially vulnerable to Mirai. However, with HADES-
IoT even such a default misconfiguration does not cause harm, since
execution of any unauthorized binary is terminated upon its spawn-
ing, as witnessed by our evaluation.

4.2.2 [CVE-2017-8225]& IoTReaper, Persirai. We bootstrapped
HADES-IoT on the vulnerable IP camera (i.e., ProVision PT-737E)
and executed the exploit. In the first step of the exploit, the cre-
dentials are retrieved by reading the system.ini file. Since this is
handled by the HTTP server that is in the whitelist, HADES-IoT

allows this action. In the second step, the remote command is sent
through FTP configuration CGI. According to HADES-IoT’s logs,
this executes the chmod utility, as well as ftpupload.sh that executes
the command. However, since none of these executables are in the
whitelist, HADES-IoT terminates both of them upon their execution
and stops the attack.

4.2.3 [CVE-2014-9583] & VPNFilter. We tested exploitation of
this vulnerability on the ASUS RT-N56U device protected by HADES-
IoT in two scenarios: with disabled and enabled Telnet. With Telnet
disabled (i.e., default option), an attempt to compromise the device
is detected upon exploit execution. However, in the case in which
Telnet is enabled, the attack is detected in its later stage – upon mal-
ware download or its execution, depending whether an HTTP client
(e.g., wget, curl) is in the whitelist (depending on user’s profile).

4.2.4 TelnetEnable Magic Packet & VPNFilter. We tested the
exploitation of this vulnerability on the Netgear WNR2000v3 device.
Like the previous vulnerability, if the Telnet service is disabled, the
attack by VPNFilter is detected by HADES-IoT when it begins. With
enabled Telnet, the attack is thwarted as soon as any unauthorized
process is spawned (i.e., execution of the malware at the latest).

4.3 CPU and Memory Overhead
An important aspect of a host-based defense system for IoT de-
vices is low performance overhead. We conducted an experiment
in which we measured the CPU utilization caused by HADES-IoT
(see Figure 3a and 3b) and the memory demands (see Figure 3c).
More specifically, we measured an average CPU load that represents
how much work has been done on the system in the previous N
minutes [7] – in our case we used five minutes. Although this metric
has no clear boundaries, it is the most available option on all IoT
devices; common utilities such as top do not show LKMs and their
resource utilization, hence this information cannot be obtained from
them. Figure 3a shows that when a device is idle, there is usually
only a small amount of overhead. Note that in some devices (e.g.,
ProVision PT-737E) the CPU load is significantly higher than on
other devices. This is caused by the periodic execution of hundreds
processes that, for example, extract various information from the
device itself. Since HADES-IoT checks every executed process, the
overhead imposed is higher compared to less active devices – the
imposed overhead comprises 34.6% and 36.9% of the total over-
head for the idle case and the case of user interaction, respectively.
Furthermore, we can see in Figure 3b that on some devices (e.g.,
SimpleHome and D-Link devices), HADES-IoT imposes greater
overhead when a user interacts with the device. This is caused by
spawning additional processes to handle the request, while on other
devices the request can be handled by already running processes.

Next, we measured memory and storage demands of HADES-IoT,
and the results (presented in Figure 3c) demonstrate low memory
demands in contrast to available space: 5.5% on average. Regard-
less of the same source code, the binary size and average memory
usage varies for each device. One of the reasons is that various
cross-compilers were used to compile HADES-IoT for each device.
However, what does have the highest impact on the binary size is
the configuration of the Linux kernel against which HADES-IoT is
compiled. For example, debug symbols are included in the HADES-
IoT’s binary due to the kernel configuration, which increases the size

Configuration
with HADES-IoT

Original
configuration

C
P

U
Lo

ad

0

4

8

12

(a) CPU load (idle)

Configuration
with HADES-IoT

Original
configuration

C
P

U
Lo

ad

0

4

8

12

(b) CPU load (with user interaction)

Binary Size

Memory Usage

S
iz

e
[M

B
]

[%] Out of Available
Memory

1.2

0.6

2.
3%

1.
4%

1.
2%

4.
3%

0.
9%

16
.1

%

12
.3

%

1.8

(c) Memory and storage utilization

Figure 3: Utilization of resources by HADES-IoT.

of the binary. Also, note that differences in memory usage across
various devices are caused by the introduced tamper-proof mecha-
nisms – the integrity of HADES-IoT’s binary and init file that must
be loaded into the memory of HADES-IoT. In detail, these files have
a different size on each device, hence loading them into the memory
causes different memory consumption for each device.

5 Related Work
In this section, we discuss research aimed at host-based intrusion
detection systems for IoT devices. An anomaly-based approach
is provided by Yoon et al. [20]; the authors present a lightweight
method based on the distribution of system call frequencies. How-
ever, the authors only consider attacks that alter system calls in
benign programs and use only one sample for their evaluation (i.e.,
Motion). A lightweight IDS that focuses on smart meters is proposed
in [16]; this research is based on system call sequences, where the
benign program is represented by a finite state machine (FSM). The
system calls are captured by the strace utility and stored in a log file.
The second component compares the captured system calls stored in
the log with the FSM once per 10 seconds to ensure low demands
on resources. However, the presented IDS is designed to be used
on smart meters only, so it is trained on a single executable. On top
of that, it requires the addition of annotations to the smart meter
software by its developers. The work of Agarwal et al. [1] presents a
concept for anomaly detection that uses context-sensitive features
based on Ball-Larus path profiling. However, this approach requires
the source code be instrumented, which facilitates the recording of
function calls during execution. An et al. [2] propose behavioral
anomaly detection aimed at home routers. This research employs
three semi-supervised algorithms (i.e., principal component analy-
sis, one-class SVM, and a naïve detector based on unseen n-grams)
utilizing captured kernel-level system calls to determine whether
a device has been compromised. Their results show that all three
algorithms employed achieved a 100% detection rate with a low
false alarm rate, but the overhead inflicted by the approach is not
evaluated. The downside of the approach is that full kernel recompi-
lation with enabled ftrace support is required. Su et al. [15] present a
lightweight image recognition technique for malware classification
based on convolutional neural network. The authors achieved 94%
accuracy and 81% accuracy for two-class and three-class classifica-
tion, respectively. However, the authors admit that their approach is
susceptible to complex code obfuscation.

6 Conclusion
In this paper, we proposed HADES-IoT, a host-based anomaly de-
tection system for IoT devices, which provides proactive detection
and tamper-proof resistance. HADES-IoT is based on a whitelist

that is build during the profiling, and it utilizes system call intercep-
tion technique realized within the loadable kernel module (LKM) of
Linux-based OSes. Leveraging the LKM, HADES-IoT gains com-
plete control of the execution of all user space programs, and any
execution of an unauthorized binary can be aborted upon its start.
HADES-IoT is lightweight in terms of its size, memory, and CPU
demands. Computational overhead is only influenced by the number
of spawned processes on the device, but not by operations with the
whitelist – searching in the whitelist has a constant time complexity.
In the evaluation, we showed that extraction of an accurate device
profile can be performed in an hour, and we demonstrated 100%
effectiveness in the detection of four kinds of attacks.

References
[1] A. Agarwal et al. Detecting abnormalities in IoT program executions through

control-flow-based features. In Internet-of-Things Design and Implementation
(IoTDI), pages 339–340. IEEE/ACM, 2017.

[2] N. An et al. Behavioral anomaly detection of malware on home routers. In
Malicious and Unwanted Software (MALWARE), pages 47–54. IEEE, 2017.

[3] M. Antonakakis et al. Understanding the Mirai botnet. In USENIX Security
Symposium, pages 1092–1110, 2017.

[4] M. Boltz et al. New Methods and Combinatorics for Bypassing Intrusion Preven-
tion Technologies. Technical report, Stonesoft, 2010.

[5] D. Breitenbacher et al. HADES-IoT: A Practical Host-Based Anomaly Detection
System for IoT Devices (Extended Version). preprint arXiv:1905.01027, 2019.

[6] P. Fogla et al. Polymorphic Blending Attacks. In USENIX Security Symposium,
pages 241–256, 2006.

[7] N. J. Gunther. Unix load average, part 1:, 2010.
https://www.teamquest.com/import/pdfs/whitepaper/ldavg1.pdf.

[8] I. Homoliak. Intrusion Detection in Network Traffic. PhD thesis, Dissertation,
Faculty of Information Technology, University of Technology Brno, 2016.

[9] I. Homoliak et al. Improving network intrusion detection classifiers by non-
payload-based exploit-independent obfuscations: An adversarial approach. EAI
Endorsed Transactions on Security and Safety, 5(17), 12 2018.

[10] G. V. Hulme. Embedded system security much more dangerous, costly than
traditional software vulnerabilities, 2012.

[11] K. L. Lueth. State of the IoT 2018: Number of IoT devices now at 7b – market
accelerating, 2018.

[12] R. v. d. Meulen. Gartner says 8.4 billion connected “things” will be in use in 2017,
up 31 percent from 2016, 2017.

[13] R. Newell. The biggest security threats facing embedded designers, 2016.
[14] D. N. Serpanos and A. G. Voyiatzis. Security challenges in embedded systems.

ACM Trans. Embed. Comput. Syst., 12(1s):66:1–66:10, Mar. 2013.
[15] J. Su et al. Lightweight classification of IoT malware based on image recognition.

In Annual Computer Software and Applications Conference (COMPSAC), pages
664–669. IEEE, 2018.

[16] F. M. Tabrizi and K. Pattabiraman. A model-based intrusion detection system for
smart meters. In International Symposium on High-Assurance Systems Engineer-
ing (HASE), pages 17–24. IEEE, 2014.

[17] O. I. S. Team. Owasp IoT top 10, 2018.
[18] TrendMicro. VPNFilter-affected devices still riddled with 19 vulnerabilities, 2018.
[19] G. Vigna et al. Testing Network-based Intrusion Detection Signatures Using

Mutant Exploits. In Computer and Communications Security (CCS), pages 21–30.
ACM, 2004.

[20] M.-K. Yoon et al. Learning execution contexts from system call distribution for
anomaly detection in smart embedded system. In Internet-of-Things Design and
Implementation (IoTDI), pages 191–196. IEEE/ACM, 2017.

[21] J. young Cho. Linux takes lead in IoT market keeping 80% market share, 2017.

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Assumptions
	2.2 Attacker Model
	2.3 Requirements for an IoT Defense Solution
	2.4 Design Problems and Options

	3 HADES-IoT
	3.1 Bootstrapping
	3.2 Detection Process
	3.3 Whitelist Design
	3.4 Tamper-Proof Features of HADES-IoT
	3.5 Extensions

	4 Evaluation
	4.1 Profiling Period
	4.2 Effectiveness of Detection & Prevention
	4.3 CPU and Memory Overhead

	5 Related Work
	6 Conclusion
	References

