
Towards Automated Network Mitigation Analysis (extended)

Patrick Speicher*, Marcel Steinmetz*, Jörg Hoffmann†, Michael Backes*, and Robert Künnemann*
*CISPA Helmholtz Center

†CISPA Helmholtz Center, Saarland University
Email: {first name}.{last name}@cispa.saarland, backes@cispa.saarland, hoffmann@cs.uni-saarland.de

ABSTRACT
Penetration testing is a well-established practical concept for the
identification of potentially exploitable security weaknesses and
an important component of a security audit. Providing a holistic
security assessment for networks consisting of several hundreds
hosts is hardly feasible though without some sort of mechanization.
Mitigation, prioritizing counter-measures subject to a given budget,
currently lacks a solid theoretical understanding and is hence more
art than science. In this work, we propose the first approach for
conducting comprehensive what-if analyses in order to reason about
mitigation in a conceptually well-founded manner. To evaluate and
compare mitigation strategies, we use simulated penetration testing,
i.e., automated attack-finding, based on a network model to which a
subset of a given set of mitigation actions, e.g., changes to the net-
work topology, system updates, configuration changes etc. is applied.
Using Stackelberg planning, we determine optimal combinations
that minimize the maximal attacker success (similar to a Stackelberg
game), and thus provide a well-founded basis for a holistic mitiga-
tion strategy. We show that these Stackelberg planning models can
largely be derived from network scan, public vulnerability databases
and manual inspection with various degrees of automation and detail,
and we simulate mitigation analysis on networks of different size
and vulnerability.

CCS CONCEPTS
• Security and privacy → Economics of security and privacy;
Formal security models; • Computing methodologies → Planning
under uncertainty;

KEYWORDS
Planning, network security, simulated penetration testing

ACM Reference Format:
Patrick Speicher*, Marcel Steinmetz*, Jörg Hoffmann†, Michael Backes*,
and Robert Künnemann* . 2019. Towards Automated Network Mitigation
Analysis (extended). In The 34th ACM/SIGAPP Symposium on Applied
Computing (SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York,
NY, USA, Article 4, 11 pages. https://doi.org/10.1145/3297280.3297473

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297473

NOTES ABOUT THIS VERSION
The first version of this article was published on arXiv under the
title ‘Simulated Penetration Testing and Mitigation Analysis’ [3].
The mitigation analysis formalism was later dubbed ‘Stackelberg
planning’ and discussed in a more general scope in a separate publi-
cation [42]. The present version thus concentrates on the application
to simulated pentesting. In comparison to the previous version, the
algorithmic implementation was removed (it can be found [42]), the
presentation was streamlined, typos were fixed and the title changed
to reflect the new focus.

1 INTRODUCTION
Penetration testing (pentesting) evaluates the security of an IT infras-
tructure by trying to identify and exploit vulnerabilities. It constitutes
a central, often mandatory component of a security audit, e.g., the
Payment Card Industry Data Security Standard prescribes ‘network
vulnerability scans at least quarterly and after any significant change
in the network’ [10]. Network pentests are frequently conducted on
networks with hundreds of machines. Here, the vulnerability of the
network is a combination of host-specific weaknesses that compose
to an attack. Consequently, an exhausting search is out of question,
as the search space for these combinations grows exponentially with
the number of hosts. Choosing the right attack vector requires a vast
amount of experience, arguably making network pentesting more art
than science.

While it is conceivable that an experienced analyst comes up with
several of the most severe attack vectors, this is not sufficient to pro-
vide for a sound mitigation strategy, as the evaluation of a mitigation
strategy requires a holistic security assessment. So far, there is no
rigorous foundation for what is arguably the most important step,
the step after the pentest: how to mitigate these vulnerabilities.

In practice, the severity of weaknesses is assessed more or less in
isolation, proposed counter-measures all too often focus on single
vulnerabilities, and the mitigation path is left to the customer. There
are exceptions, but they require considerable manual effort.

Simulated pentesting was proposed to automate large-scale net-
work testing by simulating the attack finding process based on a
logical model of the network. The model may be generated from
network scans, public vulnerability databases and manual inspec-
tion with various degrees of automation and detail. To this end, AI
planning methods have been proposed [5, 29] and in fact used com-
mercially, at a company called Core Security, since at least 2010 [11].
These approaches, which derive from earlier approaches based on
attack graphs [34, 39, 40], assume complete knowledge over the
network configuration, which is often unavailable to the modeller,
as well as the attacker. We follow a more recent approach favouring
Markov decisions processes (MDP) as the underlying state model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249328047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3297280.3297473
https://doi.org/10.1145/3297280.3297473

SAC’19, April 8-12, 2019, Limassol, Cyprus Speicher et al.

to obtain a good middle ground between accuracy and practical-
ity [12, 17] (we discuss this in detail as part of our related work
discussion, Section 2).

Simulated pentesting has been used to great success, but an impor-
tant feature was overseen so far. If a model of the network is given,
one can reason about possible mitigations without implementing
them – namely, by simulating the attacker on a modified model. This
allows for analysing and comparing different mitigation strategies in
terms of the (hypothetical) network resulting from their application.
This problem was recently introduced as Stackelberg planning in the
AI community [42]. Algorithmically, the attacker-planning problem
now becomes part of a larger what-if planning problem, in which
the best mitigation plans are constructed. This min-max notion is
similar to a Stackelberg game, which are frequently used in security
games [26]. The foundational assumption is that the defender acts
first, while the adversary can choose her best response after observ-
ing this choice, similar to a market leader and her followers. The
algorithm thus provides a well-founded basis for a holistic mitigation
strategy.

Mitigation actions can represent, but are not limited to, changes to
the network topology, e.g., adding a packet filter, system updates that
remove vulnerabilities, and configuration changes or application-
level firewalls which work around issues. While, e.g., an application-
level firewall might be an efficient temporary workaround for a vul-
nerability that affects a single host, contracting a software vendor to
provide a patch might be more cost-efficient in case the vulnerability
appears throughout the network. To reflect cases like this, mitigation
actions are assigned a cost for their first application (set-up cost),
and another potentially different cost for all subsequent applications
(application cost). The algorithm computes optimal combinations
w.r.t. minimizing the maximal attacker success for a given budget,
and proposes dominant mitigation strategies with respect to cost and
attacker success probability.

After discussing related work in Section 2 and giving a running
example in Section 3, we present the mitigation analysis model
in Section 4, framed in a formalism suited for a large range of
mitigation/attack planning problems. In Section 5, we show how to
derive these models by scanning a given network using the Nessus
network-vulnerability scanner. The attacker action model is then
derived using a vulnerability database and data associated using the
Common Vulnerability Scoring System (CVSS). This methodology
provides a largely automated method of deriving a model (only the
network topology needs to be given by hand), which can then be used
as it is, or further refined. In Section 6, we evaluate our algorithms
w.r.t. problems from this class, derived from a vulnerability database
and a simple scalable network topology.

2 RELATED WORK
Our work is rooted in a long line of research on network security
modeling and analysis, starting with the consideration of attack
graphs. The simulated pentesting branch of this research essentially
formulates attack graphs in terms of standard sequential decision
making models — attack planning — from AI. We give a brief
background on the latter first, before considering the history of
attack graph models.

Automated Planning is one of the oldest sub-areas of AI (see [13]
for a comprehensive introduction). The area is concerned with
general-purpose planning mechanisms that automatically find a plan,
when given as input a high-level description of the relevant world
properties (the state variables), the initial state, a goal condition,
and a set of actions, where each action is described in terms of a pre-
condition and a postcondition over state variable values. In classical
planning, the initial state is completely known and the actions are
deterministic, so the underlying state model is a directed graph (the
state space) and the plan is a path from the initial state to a goal state
in that graph. In probabilistic planning, the initial state is completely
known but the action outcomes are probabilistic, so the underlying
state model is a Markov decision process (MDP) and the plan is an
action policy mapping states to actions.In partially observable prob-
abilistic planning, we are in addition given a probability distribution
over the possible initial states, so the underlying state model is a
partially observable MDP (POMDP).

The founding motivation for Automated Planning mechanisms is
flexible decision taking in autonomous systems, yet the generality of
the models considered lends itself to applications as diverse as the
control of modular printers [36], natural language sentence genera-
tion [22, 23], greenhouse logistics [16], and, in particular, network
security penetration testing [5, 12, 17, 29, 37]. This latter branch of
research — network attack planning as a tool for automated security
testing — has been coined simulated pentesting, and is what we
continue here.

Simulated pentesting is rooted in the consideration of attack
graphs, first introduced by Philipps and Swiler [34]. An attack graph
breaks down the space of possible attacks into atomic components,
often referred to as attack actions, where each action is described by
a conjunctive precondition and postcondition over relevant proper-
ties of the system under attack. This is closely related to the syntax
of classical planning formalisms. Furthermore, the attack graph is
intended as an analysis of threats that arise through the possible
combinations of these actions. This is, again, much as in classical
planning. That said, attack graphs come in many different variants,
and the term “attack graph” is rather overloaded. From our point of
view here, relevant lines of distinction are the following.

In several early works (e. g. [39, 45]), the attack graph is the
attack-action model itself, presented to the human as an abstracted
overview of (atomic) threats. It was then proposed to instead rea-
son about combinations of atomic threats, where the attack graph
(also: “full” attack graph) is the state space arising from all pos-
sible sequencings of attack actions (e. g. [35, 40]). Later, positive
formulations — positive preconditions and postconditions only —
where suggested as a relevant special case, where attackers keep
gaining new assets, but never lose any assets during the course of the
attack [2, 14, 21, 32, 33, 45]. This restriction drastically simplifies
the computational problem of non-probabilistic attack graph anal-
ysis, yet it also limits expressive power, especially in probabilistic
models where a stochastic effect of an attack action (e. g., crashing a
machine) may be detrimental to the attacker’s objectives.1

1The restriction to positive preconditions and postconditions is actually known in
Automated Planning not as a planning problem of interest in its own right, but as a
problem relaxation, serving for the estimation of goal distance to guide search on the
actual problem [7, 18].

Towards Automated Network Mitigation Analysis (extended) SAC’19, April 8-12, 2019, Limassol, Cyprus

Figure 1: Network structure in our running example. (Figure
adapted from Sarraute et al. [37].)

A close relative of attack graphs are attack trees (e. g. [30, 39]).
These arose from early attack graph variants, and developed into
‘Graphical Security Models’ [24]: Directed acyclic AND/OR graphs
organizing known possible attacks into a top-down refinement hi-
erarchy. The human user writes that hierarchy, and the computer
analyzes how attack costs and probabilities propagate through the
hierarchy. In comparison to attack graphs and planning formula-
tions, this has computational advantages, but cannot find unexpected
attacks, arising from unforeseen combinations of atomic actions.

Probabilistic models of attack graphs/trees have been considered
widely (e. g. [8, 9, 19, 27, 31, 38, 41]), yet they weren’t, at first, given
a formal semantics in terms of standard sequential decision making
formalisms. The latter was done later on by the AI community in the
simulated pentesting branch of research. After initial works linking
non-probabilistic attack graphs to classical planning [5, 29], Sar-
raute et al. [37] devised a comprehensive model based on POMDPs,
designed to capture penetration testing as precisely as possible, ex-
plicitly modeling the incomplete knowledge on the attacker’s side,
as well as the development of that knowledge during the attack. As
POMDPs do not scale — neither in terms of modeling nor in terms
of computation — it was thereafter proposed to use MDPs as a more
scalable intermediate model [12, 17]. Here we build upon this latter
model.

Stackelberg planning [42] models not only the attacker, but also
the defender, and in that sense relates to more general game-theoretic
security models. The most prominent application of such models
thus far concerns physical infrastructures and defenses (e. g. [44]),
quite different from the network security setting. A line of research
considers attack-defense trees (e. g. [24, 25]), not based on standard
sequential decision making formalisms. Some research considers
pentesting but from an abstract theoretical perspective [6]. A basic
difference to most game-theoretic models is that our mitigation
analysis does not consider arbitrarily long exchanges of action and
counter-action, but only a single such exchange: defender applies
network fixes, attacker attacks the fixed network. The latter relates
to Stackelberg competitions, yet with interacting state-space search
models underlying each side of the game.

3 RUNNING EXAMPLE
We will use the following running example for easier introduction of
our formalism and to foreshadow the modelling of networks which
we will use in Section 5. Let us consider a network of five hosts,
i.e., computers that are assigned an address at the network layer. It
consists of a webserverW , an application server A, a database server
D, and a workstation S . We partition the network into three zones
called as follows: 1) the sensitive zone, which contains important
assets, i.e., the database server D 2) the DMZ, which contains the
services that need to be available from the outside, i.e., A and W ,
3) the user zone, in which S is placed and 4) the internet, which is
assumed under adversarial control by default and contains at least a
host I .

These zones are later (cf. Section 6) used to define the adversar-
ial goals and may consist of several subnets. For now, each zone
except the internet consists of exactly one subnet. These subnets
are interconnected, with the exception of the internet, which is only
connected to the DMZ. Firewalls filter some packets transmitted be-
tween the zones. We will assume that the webserver can be accessed
via HTTPS (port 443) from the internet.

4 MITIGATION ANALYSIS AS
STACKELBERG PLANNING

It was recently proposed to model penetration testing and mitigation
tasks as Stackelberg planning task [42]. We review this formalism
and show how vulnerability analysis can be mapped onto it.

Intuitively, the attacks we consider might make a service unavail-
able, but not physically remove a host from the network or add a
physical connection between two hosts. We thus distinguish between
network propositions and attacker propositions, where the former
describes the network infrastructure and persistent configuration,
while the latter describes the attacker’s advance through the net-
work. By means of this distinction, we may assume the state of
the network to be fixed, while everything else can be manipulated
by the attacker. The network state will, however, be altered during
mitigation analysis, which we will discuss in more detail afterwards.

Networks are logically described through a finite set of network
propositions PN. A concrete network state is a subset of network
propositions sN ⊆ PN that are true in this state. All propositions
p < sN are considered to be false.

Example 4.1. In the running example, the network topology is de-
scribed in terms of network propositions subnet(s,h) ∈ PN assigning
a host h to a subnet s, e.g., subnet(sensitive,D) ∈ PN. Connectivity
is defined between subnets, e.g., haclz(internet, dmz, 443, tcp) ∈ PN

indicates that TCP packets with destination port 443 (HTTPS) can
pass from the internet into the DMZ. We assume that the webserver
W , the workstation S and the database server D are vulnerable,
e.g., vul_exists(cveW ,W , 443, tcp, integrity) ∈ PN for a vulnerabil-
ity with CVE identifier cveW affecting W on TCP port 443, that
compromises integrity.

We formalize network penetration tests in terms of a probabilistic
planning problem:

Definition 4.2 (penetration testing task [42]). A penetration test-
ing task is a tuple Π = (PA,A, IA,G,bA0) consisting of:

• a finite set of attacker propositions PA,

SAC’19, April 8-12, 2019, Limassol, Cyprus Speicher et al.

• a finite set of (probabilistic) attacker actions A (cf. Defini-
tion 4.4),

• the attacker’s initial state IA ⊆ PA,
• a conjunction G over attacker proposition literals, called the

attacker goal, and
• a non-negative attacker budget bA ∈ R+ ∪ {∞}, including the

special case of an unlimited budget bA = ∞.

The objective in solving such a task — the attacker’s objective —
will be to maximize attack probability, i. e., to find action strategies
maximizing the likelihood of reaching the goal, which we will spec-
ify in more detail. The attacker proposition are used to describe the
state of the attack, e. g., dynamic aspects of the network and which
hosts the attacker has gained access to.

Example 4.3. Consider an attacker that initially controls the in-
ternet, i.e., controls(I) ∈ IA and has not yet caused W to crash,
available(W) ∈ IA. The attacker’s aim might be to inflict a privacy-
loss on D, i.e., compromised(D, privacy), with a budget bA of 3
units, which relate to the attacker actions below.

The attacks themselves are described in terms of actions which
can depend on both network and attacker propositions, but only
influence the attacker state.

Definition 4.4 (attacker actions [42]). An attacker action a ∈ A
is a tuple (preN(a), preA(a), c(a),O(a)) where

• preN(a) is a conjunction over network proposition literals
called the network-state precondition,

• preA(a) is a conjunction over attacker proposition literals
called the attacker-state precondition,

• c(a) ∈ R+ is the action cost, and
• O(a) is a finite set of outcomes, each o ∈ O(a) consisting

of an outcome probability p(o) ∈ (0, 1] and a postcondition
post(o) over attacker proposition literals. We assume that∑
o∈O (a) p(o) = 1.

The stochastic effect post(o) ∈ O(a) can be used to model at-
tacks that are probabilistic by nature, as well as to model incomplete
knowledge (on the attacker’s side) about the actual network con-
figuration. Because post(o) is limited to attacker propositions, we
implicitly assume that the attacker cannot have a direct influence
on the network itself. Although this is restrictive, it is a common
assumption in the penetration testing literature (e. g. [14, 21, 32, 33]).
The attacker action cost can be used to represent the effort the at-
tacker has to put into executing what is being abstracted by the
action. This can, e.g., be the estimated amount of time an action
requires to be carried out, or the actual cost in terms of monetary
expenses.

Example 4.5. If an attacker controls a host which can access
a second host that runs a vulnerable service, it can compromise
the second host w.r.t. privacy, integrity or availability, depending
on the vulnerability. This is reflected, e.g., by an attacker action
a ∈ A which requires access to a vulnerableW within the DMZ, via
the internet, s.t. preN(a) = subnet(dmz,W) ∧ subnet(internet, I) ∧
haclz(internet, dmz, 443, tcp)∧vul_exists(cveW ,W , 443, tcp, integri-
ty). In addition, I needs to be under adversarial control (which is
the case initially), and W be available: preA(a) = controls(I) ∧
available(W).

The cost of this known vulnerability may be set to c(a) = 1, in
which case the adversarial budget above relates to the number of
such vulnerabilities used. More elaborate models are possible to
distinguish known vulnerabilities from zero-day exploits which may
exists, but only be bought or developed at high cost, or threats arising
from social engineering.

We define three different outcomes O(a) = {osuccess,ofail ,ocrash}
with probabilities

• post(osuccess) = compromised(W , integrity)∧controls(W) in
case the exploit succeeds,

• post(ofail) = ⊤ in case the exploit has no effect and
• and post(ocrash) = ¬available(W) if it crashesW .

For example, we may have p(osuccess) = 0.5, p(ofail) = 0.49, and
p(ocrash) = 0.01 because the exploit is of stochastic nature, with a
small probability to crash the machine.

Regarding the first action outcome, osuccess , note that we step here
from a vulnerability that affects integrity, to the adversary gaining
control overW . This is, of course, not a requirement of our formal-
ism; it is a practical design decision that we make in our current
model acquisition setup (and that was made by previous works on at-
tack graphs with similar model acquisition machinery e. g. [33, 41]),
because the vulnerability databases available do not distinguish be-
tween a privilege escalation and other forms of integrity violation.
We get back to this in Section 5. Regarding the third action outcome,
ocrash, note that negation is used to denote removal of literals, i. e.,
the following attacker state will not contain available(W) anymore,
so that all vulnerabilities onW cease to be useful to the attacker.

The syntax and state transition semantics just specified is standard
probabilistic planning. Thus, the state space of a penetration testing
task can be viewed as a Markov decision process (MDP). A solution
for an MDP is called policy and there are various objectives for
these policies, i. e., notions of optimality, in the literature. For attack
planning, arguably the most natural objective is success probability:
the likelihood that the attack policy will reach a goal state.

Unfortunately, it is EXPTIME-complete to find such an optimal
policy in general [28]. Furthermore, recent experiments have shown
that, even with very specific restrictions on the action model, finding
an optimal policy for a penetration testing task is feasible only for
small networks of up to 25 hosts [43]. For the sake of scalability
and following the lines of Stackelberg Planning [42], we thus focus
on finding critical attack paths, instead of entire policies.2 In a
nutshell, a critical attack path is a sequence of actions whose success
probability is maximal. We will also refer to such paths as optimal
attack plans, or optimal attack action sequences. In contrast to
policies, if any action within a critical attack path does not result in
the desired outcome, we consider the attack to have failed. Critical
attack paths are conservative approximations of optimal policies,
i. e., the success probability of a critical attack path is a lower bound
on the success probability of an optimal policy.

Example 4.6. Reconsider the outcomes of action a from Exam-
ple 4.5, O(a) = {osuccess,ofail ,ocrash}. Assuming a reasonable set of
attacker actions similar to the previous examples, no critical path

2Similar approximations have been made in the attack-graph literature. Huang et al.
[20], e.g., try to identify critical parts of the attack-graph by analysing only a fraction
thereof, in effect identifying only the most probable attacks.

Towards Automated Network Mitigation Analysis (extended) SAC’19, April 8-12, 2019, Limassol, Cyprus

will rely on the outcomes ofail or ocrash, as otherwise a would be
redundant or even counter-productive. Thus the distinction between
these two kinds of failures becomes unnecessary, which is reflected
in the models we generate in Section 5 and 6. The downside of
considering only single paths instead of policies can be observed
in the following example. Consider the case where a second ac-
tion a′ has similar outcomes O(a′) = {o′success,o

′
fail ,o

′
crash} to a, but

p(o′success) < p(osuccess) while p(o′crash) is considerably smaller than
p(ocrash). Assuming thatW is the only host that can be used to reach
S or D, an optimal policy might chose a′ in favour of a, while a
critical attack path will insist on a.

Finding possible attacks, e. g., through a penetration testing task
as defined above, is only the first step in securing a network. Once
these are identified, the analyst or the operator need to come up with
a mitigation plan to mitigate or contain the identified weaknesses.
This task can be formalized as follows.

Definition 4.7 (mitigation-analysis task [42]). Let PN be a set of
network propositions, and let Π = (PA,A, IA,G,bA0) be a penetration
testing task. A Π mitigation-analysis task is a triple M = (IN, F,bM0)

consisting of

• the initial network state IN ⊆ PN,
• a finite set of fix-actions F, and
• the mitigation budget bM0 ∈ R+ ∪ {∞}.

The objective in solving such a task — the defender’s objective
—will be to find dominant mitigation strategies within the budget,
i. e., fix-action sequences that reduce the attack probability as much
as possible while spending the same cost. We now specify this in
detail.

Fix-actions encode modifications of the network mitigating at-
tacks simulated through Π.

Definition 4.8 (fix-actions [42]). Each fix-action f ∈ F is a triple
(pre(f), post(f), cM(f)) of precondition pre(f) and postcondition
post(f), both conjunctions over network proposition literals, and
fix-action cost cM(f) ∈ R+.

We call f applicable to a network state sN if pre(f) is satisfied in
sN. The set of applicable f in sN is denoted by app(sN). The result of
this application is given by the state sNJf K which contains all propo-
sitions with positive occurrences in post(f), and all propositions of
sN whose negation is not contained in post(f).

Example 4.9. Removing a vulnerability by, e.g., applying a patch,
is modelled as a fix-action f with pre(f) = vul_exists(cveW ,W , 443,
tcp, integrity), post(f) = ¬pre(f) and cost 1.

We can represent adding a firewall between the DMZ and the
internet, assuming it was not present before, as a fix-action with
pre(f) = haclz(internet, dmz, 443, tcp)∧¬fwapplied(z2), post(f) =
¬haclz(internet, dmz, 443, tcp) ∧ fwapplied(z2) and cost 100. It is
much cheaper to add a rule to an existing firewall than to add a fire-
wall, which can be represented by a similar rule with fwapplied(z2)
instead of ¬fwapplied(z2) in the precondition, and lower cost.

Note that, in contrast to attacker actions, fix-actions f are deter-
ministic. A sequence of fix-actions can be applied to a network in
order to lower the success probability of an attacker.

Definition 4.10 (mitigation strategy [42]). A sequence of fix-
actions σ = f1, . . . , fn is called a mitigation strategy if it is applica-
ble to the initial network state and its application cost is within the
available mitigation budget , where

• f1, . . . , fn are said to be applicable to a network state sN if
f1 is applicable to sN and f2, . . . , fn are applicable to sNJf1K.
The resulting state is denoted sNJf1, . . . , fnK.

• Applying f1, . . . , fn costs cM(f1, . . . , fn) =
∑n
i=1 c

M(fi).

To evaluate and compare different mitigation strategies, we con-
sider their effect on the optimal attack. As discussed in the previous
section, for the sake of scalability we use critical attack paths (opti-
mal i. e. maximum-success-probability attack-action sequences) to
gauge this effect, rather than full optimal MDP policies. As attacker
actions in Π may contain a precondition on the network state, chang-
ing the network state affects the attacker actions in the state space
of Π, and consequently the critical attack paths. To measure the
impact of a mitigation strategy, we define p∗(sN) to be the success
probability of a critical attack path in sN, or p∗(sN) = 0 if there is no
critical attack path (and thus there is no way in which the attacker
can achieve its goal).

Definition 4.11 (dominance, solution [42]). Let σ1,σ2 be two
mitigation strategies. σ1 dominates σ2 if

(i) p∗(INJσ1K) < p∗(INJσ2K) and cM(σ1) ≤ cM(σ2), or
(ii) p∗(INJσ1K) ≤ p∗(INJσ2K) and cM(σ1) < cM(σ2).

The solution F to M is the Pareto frontier of mitigation strategies σ :
the set of σ that are not dominated by any other mitigation strategy.

In other words, we consider a mitigation strategy σ1 better than
another one, σ2, if either σ1 reduces the probability of an successful
attack to the network more, while not imposing a higher cost, or σ1
costs less than σ2 while it lowers the success probability of an attack
at least by the same amount. The solution to our mitigation-analysis
task is the set of dominant (non-dominated) mitigation strategies.

5 PRACTICAL MODEL ACQUISITION
In this section, we describe a highly automated approach to acquire
network models in practice, demonstrating our method to be readily
applicable. Our workflow follows the same idea, but in addition we
incorporate possible mitigation actions described in a concise and
general schema. Moreover, our formalism considers the probabilis-
tic/uncertain nature of exploits.

5.1 Workflow
This section describes the workflow for model acquisition and refine-
ment via network scanning depicted in Figure 2. In the first step, the
user scans a network using the Nessus tool, resulting in a report file.
Our current toolchain supports only network-wide scans. Nessus,
as well as several OVAL interpreters [4] supports host-wise scans,
which can be gathered centrally. This would give much more precise
results, which can be translated in a similar way. The user optionally
describes the network topology in a JSON formatted topology file
and sets the hosts that are initially assumed under adversarial con-
trol.3 If this file is not given, we assume all hosts are interconnected

3In practice, penetration testers have access to firewall rules in machine-readable formats
(e.g., Cisco, juniper), which can be used to create this file automatically.

SAC’19, April 8-12, 2019, Limassol, Cyprus Speicher et al.

NVD vulnerability.xml
provides

Nessus report.xml
creates

scans

describes

JSON fixes.json
creates

JSON topology.json∗

creates

JSON actions.json∗

creates

problem generator what-if analysis

result
refinement

refinement

Network

User

Figure 2: Workflow for model acquisition via network scanning, assuming a fixed attacker and mitigation budget. User input marked
with ∗ can be empty. The file topology.json can be left empty, in which case an open network is assumed.
w.r.t. every port that appears in the Nessus report. The user specifies
the fixes the analysis should consider. Initially, this list is (automat-
ically) populated by considering all known patches and a generic
firewall rule that considers adding a firewall at all possible positions
in the network, for the cost of five patches. The cost can be refined
step by step, and patches that are not applicable, e.g., because of
software incompatibilities, can be deleted from this file. The user can
also refine the attacker budget and the mitigation budget. Initially,
the attacker budget gives the number of exploits the attacker may
use, as all exploits are assigned unit cost. With this information, the
analysis gives a Pareto-optimal set of mitigation strategies within the
given budget. After observing the fix-actions, the user may refine the
fix-actions, as adopting some patches might be more expensive than
others (which can be reflected in the associated mitigation costs),
or some firewalls proposed might be too restrictive (which can be
reflected by instantiating the firewall rule).

5.2 Network Topology and Vulnerabilities
Like in Example 4.1, the network topology is given in terms of
network predicates subnet(z,h) ∈ IN for every host h in subnet z,
haclz(z1, z2, port, proto) ∈ IN for every z1, from where all hosts in
z2 are reachable via (port, proto), which are derived from a JSON
file, to allow for easy manual adjustment.

We translate the Nessus report to a set of network predicates
vul_exists(cve,h, port, proto, type) ∈ IN for CVE cve affecting h on
(port, proto), with effect on type ∈ {confidentiality, integrity, avail-
ability}, and an attack-actions a for each z1, h1 in the universe of
subnets and hosts, and h2 = h, such that

preN(a) =subnet(z1,h1) ∧ subnet(z2,h2)

∧ haclz(z1, z2, port, proto)

∧ vul_exists(cve,h2, port, proto, type),

and O(a) = {osuccess,ofail}. The value of type is determined from
the U.S. government repository of standards based vulnerability
management data, short NVD. As discussed in Example 4.6, the
future availability of a host is disregarded by critical path analysis.
Furthermore, the NVD does not provide data on potential side effects

in case of failure. Thus, we assume all hosts in the network to be
available throughout the attack.

We handle the success probability different from Example 4.5
by encoding it into the precondition, so an action with matching
probability is chosen. More precisely, for all z1, h1 in the universe of
subnets and hosts, and p′ in the universe of probabilities, and h2 = h,
there is an action a with

preN(a) =subnet(z1,h1) ∧ subnet(z2,h2)

∧ haclz(z1, z2, port, proto)

∧ vul_exists(cve,h2, port, proto, type,p′),

and O(a) = {osuccess,ofail}, with success probability p(Osuccess) = p
′

and p(Ofail) = 1 − p′, post(ofail) = ⊤. As a can only be applied if
p = p′, this implies p(osuccess) = p for osuccess the success outcome
of a matching action. The matching action is uniquely determined,
as in any reachable network state, there is at most one proposition
vul_exists(cve,h, port, proto, type,p) for any given cve, h, port, proto
and type.

Today, the NVD does not provide data on how vulnerabilities
may impact components other than the vulnerable component, e.g.,
in case of a privilege escalation. Such escalations are typically filed
with type = integrity. Hence we identify this vulnerability with
a privilege escalation. The latest version 3 of the CVSS standard,
released in June 2015, provides a new metric in_scope to specif-
ically designate such vulnerabilities. While this metric is still not
specific enough to accurately describe propagation, it at least avoids
this drastic over-approximation. As of now, all vulnerability feeds
provided by the NVD are classified using CVSSv2, hence we hope
for quick adoption of the new standard. Consequently, and as op-
posed to Example 4.5, preA(a) = compromised(h, integrity), and
post(osuccess) = compromised(h, type). CVSSv2 specifies one of
three access vectors: ‘local’, which we ignore altogether, ‘adjacent
network’, which models attacks that can only be mounted within
the same subnet and typically pertain to the network layer, and ‘net-
work’, which can be mounted from a different network. The second
differs from the third in that the precondition requires z1 and z2 to
be equal.

Towards Automated Network Mitigation Analysis (extended) SAC’19, April 8-12, 2019, Limassol, Cyprus

We assign probabilities according to the ‘access complexity’ met-
ric, which combines the probability of finding an exploitable con-
figuration, the probability of a probabilistic exploit to succeed, and
the skill required to mount the attack into either ‘low’, ‘medium’
or ‘high’. This is translated into a probability p of 0.2, 0.5, or 0.8,
respectively. Thus p(Osuccess) = p′ and p(Ofail) = 1 − p′, where
post(ofail) = ⊤. The action cost c(a) is set to 1. A separate input file
permits the user to refine both action cost and outcome probability
of osuccess to reflect assumptions about the skill of the adversary and
prior knowledge about the software configurations in the network.

5.3 Threat Model
The network configuration file defines subnets that are initially under
attacker control, in which case compromised(h, integrity) ∈ IA, and
subnets which the attacker aims to compromise, in which case the
goal condition is ∧
(z, type) marked as target in topology.json

zcompromised(z, type).

Additional artificial actions permit deriving zcompromised(z, type)
whenever compromised(h, type) ∧ subnet(z,h).

5.4 Mitigation Model
Our formalism supports a wide range of fix-actions, but to facilitate
its use, we provide three schemas, which we instantiate to a larger
number of actions.

Fix schema. The fix schema models the application of existing
patches, the development of missing patches and the implementation
of local workarounds, e.g., application-level firewalls that protect
systems from malicious traffic which are otherwise not fixable. The
user specifies the CVE, host and port/protocol the fix applies to.
Any of these may be a wild card *, in which case all matching fix
actions of the form described in Example 4.9 are generated. The
schema also includes the new probability assigned (which can be 0
to delete these actions) and an initial cost, which is applied the first
time a fix-action instantiated from this schema is used, and normal
cost which are applied for each subsequent use. Thus, the expensive
development of a patch (high initial cost, low normal cost) can be
compared with local workarounds that have higher marginal cost.
The wild cards may be used to model available patches that apply
to all hosts, as well as generic local workarounds that apply to any
host, as a first approximation for the initial model.

Non-zero probabilities may be used to model counter-measures
which lower the success probability, but cannot remove it completely,
e.g., address space layout randomisation. We employ a slightly indi-
rect encoding to accommodate this case, adding additional attack-
action copies for the lowered probability. The network state predicate
determines uniquely which attack-action among these applies. The
generated fix-action modifies the network state predicate accord-
ingly.

Firewall schemata. There are two firewall schemas, one for fire-
walls between subnets, one for host-wise packet filtering. The former
is defined by source and destination subnet along with port and pro-
tocol. Similar to the fix schema, any of the value may be specified,
or left open as a wild card *, in which case a fix-action similar to

the firewall fix in Example 4.9 is instantiated for every match. In
addition, initial costs and cost for each subsequent application can
be specified, in order to account for the fact that installing a firewall
is more expensive than adding rules. The second firewall schema
permits a similar treatment per host instead of subnets, which corre-
sponds to local packet filtering rules.

6 EXPERIMENTS
It is easy to see that Stackelberg planning is PSPACE-hard. We
hence explore the space of problems in which Stackelberg planning
performs well enough to be useful. To provide an intuitive account
of this space in terms of the network to be scanned, we we created
a problem generator that produces network topologies and host
configurations based on known vulnerabilities. This facilitates the
performance evaluation of our mitigation analysis algorithm w.r.t.
the number of hosts, fix actions and any combination of attacker and
mitigation budget. For details to the generator, we refer the reader to
Appendix A.

We evaluate our model using Speicher et. al’s Stackelberg plan-
ning algorithm [42] which was implemented on top of the FD plan-
ning tool [15]. Our experiments were conducted on a cluster of Intel
Xeon E5-2660 machines running at 2.20 GHz. We terminated a run
if the Pareto frontier was not found within 30 minutes, or the process
required more than 4 GB of memory during execution.

In our evaluation we focus on coverage values, i.e. the number of
instances that could be solved within the time (memory) limits. We
investigate how coverage is affected by (1) scaling the network size,
(2) scaling the number of fix actions, and (3) the mitigation budget,
respectively the attacker budget.

The budgets are computed as follows. In a precomputation step,
we compute the minimal attacker budget bAmin that is required for
non-zero success probability p∗(IN). The minimal mitigation budget
bMmin is then set to the minimal budget required to lower the attacker
success probability with initial attacker budget bA0 = b

A
min. We exper-

imented with budget values relative to those minimal budget values,
resulting from scaling them by factors out of {1, 2.5, 5, 7.5, 10,∞}.
We denote γM the factor which is used to scale the mitigation budget,
and vice versus γA the factor for the attacker budget.

In Figure 3(a), we observe that the algorithm provides reasonable
coverage > 50% for up to 800 hosts, when considering on average 5
vulnerabilities and 5 fix-actions per host. Unless both the attacker
and the mitigation budget are scaled to 1 (relative to γM and γA,
respectively), this result is relatively independent from the budget.
One explanation why it is independent from the budget is that there
is no huge difference between factors 5 and ∞ in the sense that the
attacker cannot find more or better critical paths and the defender
cannot find more interesting fix action sequences because of the
infinite budgets. In the case that both are scaled to 1, the searches for
critical paths and fix actions sequences are vastly simplified. Hence
the overall coverage is better. Note that the number of fix actions
scales linearly with the number of hosts, which in the worst case,
i.e., when all sequences need to be regarded, leads to an exponential
blowup.

In Figure 3(b), we have fixed the number of hosts to 500, but
varied the number of fixes that apply per host by scaling λF in inte-
ger steps from 0 to 10, which controls the expected value of patch

SAC’19, April 8-12, 2019, Limassol, Cyprus Speicher et al.

��

���

���

���

���

����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
�
�
�
��
�
�

�
��

�
�

���������������

��������
��������
������
������
����

��

���

���

���

���

����

�� �� �� �� �� ���

�
�
�
�
��
�
�

�
��

�
�

�����������������������

��������
��������
������
������
����

��

���

���

���

���

����

��� ��� ��� ��� �� �

�
�
�
�
��
�
�

�
��

�
�

����������������������

��������
��������
��������
��������
���������
������

(a) (b) (c)
Figure 3: % instances solved within time (memory) limits. (a) for scaling number of hosts and 5 fix-actions per host on average, (b)
for scaling number of fix-actions per hosts, but fixing H = 500, and (c) scaling budgets, but fixing the number of hosts to 500 and fixing
the number of fixes to 5 per host.
fixes generated per host. We then plotted the coverage with the total
number of fixes, i.e., the number of firewall fixes and patch fixes
actually generated. We tested 50 samples per value of λF and at-
tacker/mitigation budget. We cut of at above 11 fixes per host, where
we had too few data points. We furthermore applied a sliding average
with a window size of 1 to smoothen the results, as the total number
of actual fixes varies for a given λF . Similar to Figure 3(a), the in-
fluence of the attacker and mitigation budget is less than expected,
except for the extreme case where both are set to their minimal
values. The results suggest that the mitigation analysis is reliable up
to a number of 4 fixes per hosts, but up to 16 fixes per host, there is
still a decent chance for termination.

Figure 3(c) compares the impact of the mitigation- and attacker-
budget factors γM,γA ∈ {1, 2.5, 5, 7.5, 10,∞}. The overall picture
supports our previous observations. The attacker budget has almost
no influence on the performance of the algorithm. This, however, is
somewhat surprising given that the attacker budget not only affects
the penetration testing task itself, but also influences the mitigation-
analysis. Larger attacker budgets in principle allow for more attacks,
imposing the requirement to consider more expensive mitigation
strategies. It will be interesting to explore this effect, or lack thereof,
on real-life networks.

In contrast, the algorithm behaves much more sensitive to changes
in the mitigation budget. Especially in the step fom γM = 1.0 to
γM = 2.5, coverage decreases significantly (almost 20 percentage
points regardless of the attacker budget value). This can be explained
by the effect of the increased mitigation budget on the search space.
However, further increasing the mitigation budget has a less severe
effect. Again, we attribute this to the problems we generate: In many
cases, the mitigation strategy that results in the minimal possible
attacker success probability is cheaper than the mitigation budget
resulting from γM = 2.5. In almost half of the instances solved for
γM = 2.5, this minimal attacker success probability turned out to
be 0. In these cases specifically, the mitigation analysis can readily
prune mitigation strategies with higher costs, even if more mitigation
budget is available, as the Stackelberg planning algorithm maintains
the current bound for the cost of lowering the attacker probability to
zero.

7 CONCLUSION & FUTURE WORK
The mitigation analysis method presented in this work is the first of
its kind and provides a semantically clear and thorough methodology
for analysing mitigation strategies. We leverage the fact that network

attackers can be simulated, and hence strategies for mitigation can be
compared before being implemented. We have presented a highly au-
tomated modelling approach along with an iterative workflow. Based
on a detailed network and configuration model, we demonstrated the
feasibility of the approach and scalability of the algorithm.

Two major ongoing and future lines of work arise from this contri-
bution, pertaining to more effective algorithms, and to the practical
acquisition of more refined models. Regarding effective algorithms,
the effective computation of the Pareto frontier stands and falls with
the speed with which a first good solution — a cheap fix-action
sequence reducing attacker success probability to a small value —
is found. In case that happens quickly, our pruning methods and
thus the search become highly effective; in case it does not hap-
pen quickly, the search often becomes prohibitively enumerative
and exhausts our 30 minute time limit. In other words, the search
may, or may not, “get lucky”. What is missing, then, is effective
search guidance towards good solutions, making it more likely to
“get lucky”. This is exactly the mission statement of heuristic func-
tions in AI heuristic search procedures. The key difference is that
these procedures address, not a move-countermove situation as in
fix-action sequence search, but single-player (just “move”) situa-
tions (like at our attack-planning level, where as mentioned we are
already using these procedures). This necessitates the extension of
the heuristic function paradigm — solving a relaxed (simplified)
version of the problem, delivering relaxed solution cost as a lower
bound on real solution cost — to move-countermove situations. This
is a far-reaching topic, relevant not only to our research here but
to AI at large, that to our knowledge remains entirely unexplored.4

Notions of move-countermove relaxation are required, presumably
over-approximating the defender’s side while under-approximating
the attacker’s side of the game, and heuristic functions need to be
developed that tackle the inherent min/max nature of the combined
approximations without spending too much computational effort.
For our concrete scenario here, one promising initial idea is to fix
the attacker’s side to the current optimal critical attack path, and
setting the defender’s objective — inside the heuristic function over-
approximation — as reducing the success probability of that critical
attack path as much as possible, while minimizing the summed-up
fix-action cost. This results in an estimation of fix-action quality,

4Game-state evaluation mechanisms are of course widely used in game-playing, yet
based on weighing (manually or automatically derived) state features, not on a relaxation
paradigm automatically derived from the state model.

Towards Automated Network Mitigation Analysis (extended) SAC’19, April 8-12, 2019, Limassol, Cyprus

which should be highly effective in guiding the fix-action level of
the search towards good solutions quickly.

Regarding the model acquisition of more refined models, there
is a trade-off between the accuracy of the model, and the degree of
automation vs. manual effort with which the model is created. This
is partially due to the fact that vulnerabilities are often discovered
in the process of pentesting, which a simulation cannot reproduce.
(Although potential zero-day exploits can in principle be modeled
in our framework as a particular form of attack-actions, that exist
only with a given probability.) It is also due to the fact that current
vulnerabilities lack necessary information to derive these models
automatically. There are two factors to the latter. First, economically,
a more detailed machine-readable description of vulnerabilities cost
money, hence there needs to be an incentive to provide this data. The
successful commercial use of simulated pentesting at Core Security
shows that there is money to be made with fine-grained vulnerability
data. We hope that mitigation analysis methods such as ours will
be adopted and provide further incentives, as centralised knowledge
about the nature of vulnerabilities can be used to improve analysis
and hence lower mitigation cost. Declarative descriptions like OVAL
are well-suited to this end.

Second, conceptually, the transitivity in network attacks is not
understood well enough. Due to the lack of additional information,
we assume that integrity violations allow for full host compromise,
which is an over-approximation. While CVSSv3 provides a metric
distinguishing attacks that switch scope, it is unclear how exactly
this could be of use, as the scope might pertain to user privileges
within a service, sandboxes, system users, dom0-privileges etc. A
formal model for privilege escalation could be used to describe the
effect if a vulnerability in an abstract manner that can be instantiated
into a concrete outcome once an actual software configuration is
given and form the basis for the automated acquisition of realistic
network models.
Acknowledgments. This work has been partially funded by the Ger-
man Federal Ministry of Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Accountability
(CISPA, grant no. 16KIS0656).

REFERENCES
[1] 2010. Proceedings of the 20th International Conference on Automated Planning

and Scheduling (ICAPS’10). AAAI Press.
[2] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. 2002. Scalable, graph-

based network vulnerability analysis. In ACM Conference on Computer and
Communications Security. 217–224.

[3] Michael Backes, Jörg Hoffmann, Robert Künnemann, Patrick Speicher, and Marcel
Steinmetz. 2017. Simulated Penetration Testing and Mitigation Analysis. CoRR
abs/1705.05088v1 (2017). arXiv:1705.05088 http://arxiv.org/abs/1705.05088v1

[4] Jonathan Baker, Matthew Hansbury, and Daniel Haynes. 2011. The OVAL®
Language Specification. MITRE, Bedford, Massachusetts (2011).

[5] Mark Boddy, Jonathan Gohde, Tom Haigh, and Steven Harp. 2005. Course of
Action Generation for Cyber Security Using Classical Planning. In Proceedings
of the 15th International Conference on Automated Planning and Scheduling
(ICAPS-05), Susanne Biundo, Karen Myers, and Kanna Rajan (Eds.). Morgan
Kaufmann, Monterey, CA, USA, 12–21.

[6] Rainer Böhme and Márk Félegyházi. 2010. Optimal Information Security Invest-
ment with Penetration Testing. In Proceedings of the 1st International Conference
on Decision and Game Theory for Security (GameSec’10). 21–37.

[7] Blai Bonet and Héctor Geffner. 2001. Planning as Heuristic Search. Artificial
Intelligence 129, 1–2 (2001), 5–33.

[8] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson.
2006. Rational Choice of Security Measures Via Multi-parameter Attack Trees.
In 1st International Workshop on Critical Information Infrastructures Security
(CRITIS’06). 235–248.

[9] Ahto Buldas and Roman Stepanenko. 2012. Upper Bounds for Adversaries’ Utility
in Attack Trees. In Proceedings of the 3rd International Conference on Decision
and Game Theory for Security (GameSec’12). 98–117.

[10] Alan Calder and Geraint Williams. 2014. PCI DSS: A Pocket Guide, 3rd Edition.
IT Governance Publishing.

[11] Core Security SDI Corporation. [n. d.]. Core IMPACT. https://www.coresecurity.
com/core-impact, Core IMPACT uses model-based attack planning since 2010).

[12] Karel Durkota and Viliam Lisý. 2014. Computing Optimal Policies for Attack
Graphs with Action Failures and Costs. In 7th European Starting AI Researcher
Symposium (STAIRS’14).

[13] Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning: Theory
and Practice. Morgan Kaufmann.

[14] Nirnay Ghosh and S. K. Ghosh. 2009. An Intelligent Technique for Generating
Minimal Attack Graph. In Proceedings of the 1st Workshop on Intelligent Security
(SecArt’09).

[15] Malte Helmert. 2006. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 26 (2006), 191–246.

[16] Malte Helmert and Hauke Lasinger. 2010. The Scanalyzer Domain: Greenhouse
Logistics as a Planning Problem, See [1], 234–237.

[17] Jörg Hoffmann. 2015. Simulated Penetration Testing: From “Dijkstra” to “Turing
Test++”. In Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein (Eds.). AAAI Press.

[18] Jörg Hoffmann and Bernhard Nebel. 2001. The FF Planning System: Fast Plan
Generation Through Heuristic Search. Journal of Artificial Intelligence Research
14 (2001), 253–302.

[19] John Homer, Su Zhang, Xinming Ou, David Schmidt, Yanhui Du, S. Raj Ra-
jagopalan, and Anoop Singhal. 2013. Aggregating vulnerability metrics in enter-
prise networks using attack graphs. Journal of Computer Security 21, 4 (2013),
561–597.

[20] Heqing Huang, Su Zhang, Xinming Ou, Atul Prakash, and Karem A. Sakallah.
2011. Distilling critical attack graph surface iteratively through minimum-cost SAT
solving. In 27th Annual Computer Security Applications Conference (ACSAC).
31–40.

[21] Sushil Jajodia, Steven Noel, and Brian O’Berry. 2005. Topological Analysis of
Network Attack Vulnerability. In Managing Cyber Threats: Issues, Approaches
and Challenges. Chapter 5.

[22] Alexander Koller and Jörg Hoffmann. 2010. Waking Up a Sleeping Rabbit: On
Natural-Language Sentence Generation with FF, See [1].

[23] Alexander Koller and Ronald Petrick. 2011. Experiences with Planning for Natural
Language Generation. Computational Intelligence 27, 1 (2011), 23–40.

[24] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. 2013. ADTool:
Security Analysis with Attack-Defense Trees. In Proceedings of the 10th Interna-
tional Conference on Quantitative Evaluation of Systems (QEST’13). 173–176.

[25] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer. 2010.
Foundations of Attack-Defense Trees. In Proceedings of the 7th International
Workshop on Formal Aspects in Security and Trust (FAST’10). 80–95.

[26] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and
Milind Tambe. 2011. Stackelberg vs. Nash in Security Games: An Extended
Investigation of Interchangeability, Equivalence, and Uniqueness. J. Artif. Int. Res.
41, 2 (May 2011), 297–327. http://dl.acm.org/citation.cfm?id=2051237.2051246

[27] Viliam Lisý and Radek Píbil. 2013. Computing Optimal Attack Strategies Using
Unconstrained Influence Diagrams. In Pacific Asia Workshop on Intelligence and
Security Informatics. 38–46.

[28] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. 1998. The Compu-
tational Complexity of Probabilistic Planning. Journal of Artificial Intelligence
Research 9 (1998), 1–36. http://jair.org/abstracts/littman98a.html

[29] Jorge Lucangeli, Carlos Sarraute, and Gerardo Richarte. 2010. Attack Planning
in the Real World. In Proceedings of the 2nd Workshop on Intelligent Security
(SecArt’10).

[30] Sjouke Mauw and Martijn Oostdijk. 2005. Foundations of Attack Trees. In
Proceedings of the 8th International Conference on Information Security and
Cryptology (ICISC’05). 186–198.

[31] Margus Niitsoo. 2010. Optimal Adversary Behavior for the Serial Model of
Financial Attack Trees. In Proceedings of the 5th International Conference on
Advances in Information and Computer Security (IWSEC’10). 354–370.

[32] Steven Noel, Matthew Elder, Sushil Jajodia, Pramod Kalapa, Scott O’Hare, and
Kenneth Prole. 2009. Advances in Topological Vulnerability Analysis. In Pro-
ceedings of the 2009 Cybersecurity Applications & Technology Conference for
Homeland Security (CATCH’09). 124–129.

[33] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. 2006. A scalable approach
to attack graph generation. In ACM Conference on Computer and Communications
Security. 336–345.

[34] Cynthia Phillips and Laura Painton Swiler. 1998. A Graph-Based System for
Network-Vulnerability Analysis. In Proceedings of the New Security Paradigms
Workshop.

[35] Ronald W. Ritchey and Paul Ammann. 2000. Using Model Checking to Analyze
Network Vulnerabilities. In IEEE Symposium on Security and Privacy. 156–165.

http://arxiv.org/abs/1705.05088
http://arxiv.org/abs/1705.05088v1
https://www.coresecurity.com/core-impact
https://www.coresecurity.com/core-impact
http://dl.acm.org/citation.cfm?id=2051237.2051246
http://jair.org/abstracts/littman98a.html

SAC’19, April 8-12, 2019, Limassol, Cyprus Speicher et al.

[36] Wheeler Ruml, Minh Binh Do, Rong Zhou, and Markus P. J. Fromherz. 2011.
On-line Planning and Scheduling: An Application to Controlling Modular Printers.
Journal of Artificial Intelligence Research 40 (2011), 415–468.

[37] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. 2012. POMDPs Make Better
Hackers: Accounting for Uncertainty in Penetration Testing. In Proceedings of the
26th AAAI Conference on Artificial Intelligence (AAAI’12), Jörg Hoffmann and
Bart Selman (Eds.). AAAI Press, Toronto, ON, Canada, 1816–1824.

[38] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. 2011. An algorithm
to find optimal attack paths in nondeterministic scenarios. In Workshop on Security
and Artificial Intelligence. 71–80.

[39] B. Schneier. 1999. Attack Trees. Dr. Dobbs Journal (1999).
[40] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jeannette M.

Wing. 2002. Automated Generation and Analysis of Attack Graphs. In IEEE
Symposium on Security and Privacy. 273–284.

[41] Anoop Singhal and Xinming Ou. 2011. Security risk analysis of enterprise
networks using probabilistic attack graphs. Technical Report. NIST Interagency
Report 7788.

[42] Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert
Künnemann. 2018. Stackelberg Planning: Towards Effective Leader-Follower
State Space Search. In AAAI’18.

[43] Marcel Steinmetz, Jörg Hoffmann, and Olivier Buffet. 2016. Goal Probability
Analysis in MDP Probabilistic Planning: Exploring and Enhancing the State of
the Art. Journal of Artificial Intelligence Research 57 (2016), 229–271.

[44] Milind Tambe. 2011. Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press.

[45] Steven J. Templeton and Karl E. Levitt. 2000. A requires/provides model for
computer attacks. In Proceedings of the Workshop on New Security Paradigms
(NSPW’00). 31–38.

A SCENARIO GENERATOR

UNVD

VαV

C

N λ

H

hi

αH

i = 1, . . . , n

(uniform distr. over vulnerabilities)

(base distr. over configurations)

(distribution of hosts)

(host configurations assigned to net-
work nodes)

Figure 4: Probabilistic graphical model for the distribution of
configurations within the network.

The problems we generate are modelled exactly as described in
Section 5. We hence describe the scenario generation in terms of the
topology, i. e., subnet relations defined by the network proposition
subnet and connections described by the network proposition haclz,
and the assignment of configurations, i.e., the network proposition
vul_exists and corresponding actions.

Topology. The network topology generation follows previous works
on network penetration testing task generators [37]. Similar to the

running example, we generate networks which are partitioned into
four zones: users, DMZ, sensitive and internet. The internet consists
of only a single host which is initially under adverserial control, and
which is connected to the DMZ zone. The DMZ and the sensitive
zone each constitute a subnet of hosts, both subnets being connected
to each other. The user zone is an hierarchy, tree, of subnets, where
every subnet is connected to its parent and the sensitive part. Ad-
ditionally, the root subnet of the user zone is also connected to the
DMZ zone. A firewall is placed on every connection between sub-
nets. While the firewalls inside the user zone are initially empty,
i. e., they do not block anything, the firewalls located on connections
between two different zones only allow traffic over a fraction of
ports. The ports blocked initially are selected randomly. The size of
the generated networks is scaled through parameter H determining
the overall number of hosts in the network. To distribute H hosts to
the different zones, we add for each 40 hosts one to DMZ, one to the
sensitive zone, and the remaining to the user zone (cf.[37]).

Configurations. Now we come to the assignment of configurations,
i.e., set of vulnerabilities to hosts. In many corporate networks, host
configurations are standardized, e.g., workstations have equivalent
configurations or each machine within a cluster is alike. To this end,
we model the distribution of the totality of hosts used in the network
by means of a (nested) Dirichlet process.

Depending on the concentration parameter αH , the ith host Hi is,
with probability αH /(αH + n − 1), drawn freshly from the distribu-
tion of configurations C, which we will explain in the followup, or
otherwise uniformly chosen among all previous Hj , j = 1, . . . , i − 1.
Formally, H | C ∼ DP(αH ,C). Configurations are drawn using
the following process. First, the number of vulnerabilities a con-
figuration has in total is drawn according to a Poisson distribution,
N ∼ Pois(λV). This number determines how many vulnerabilities
are drawn in the next step by means of a second Dirichlet process.
This models the fact that the software which is used in the same
company tends to repeat across configurations. The base distribution
over which the Dirichlet process chooses vulnerabilities is the uni-
form distribution over the set of vulnerabilities in our database NVD,
i.e., V ∼ DP(αV ,UNVD).

A configuration C is now chosen by drawing n from N and then
drawing n samples from V , i.e.,

Pr[C = (c1, . . . , cn)] = Pr[V = n, c1 = V1, . . . , cn = Vn].

where V1, . . . ,Vn ∼ V . Observe that C are conditionally independent
given DP(αV ,UNVD), hence C may define the base distribution for
the above mentioned Dirichlet process. Now the configurations are
drawn from the distribution we just described, i.e., h1, . . . ,hn ∼ C.

We are thus able to control the homogeneity of the network, as
well as, indirectly, via αV , the homogeneity of the software configu-
rations used overall. For example, if αH is low but αV is high, many
configurations are equal, but if they are not, they are likely to not
have much intersection (provided NVD is large enough). If αV is
low but αH is high, many vulnerabilities reappear in different host
configurations.

Mitigation model. Akin to Section 5, we consider two different
types of fix-actions: closing open ports by adding rules to firewalls,
and closing vulnerabilities through applying known patches. For
the former, we generate for each subnet and each port available in

Towards Automated Network Mitigation Analysis (extended) SAC’19, April 8-12, 2019, Limassol, Cyprus

this subnet a fix-action f that in effect blocks all connections to this
subnet over this port, by negating the corresponding haclz propo-
sitions. Such fix-actions are always generated for all user subnets.
DMZ and sensitive conceptionally do not allow closing all ports,
as some ports must remain opened for services running in those
subnets. Hence, for DMZ and the sensitive zone, we randomly se-
lect a subset of open ports which must not be locked out through
firewall rules, and firewall fix-actions are then only generated for the
remaining ports. Patch fix-actions are drawn from the set of possible
patches described inside the OVAL database that is provided from
Center for Internet Security.5 In OVAL, each patch is described in
terms of an unique identifier, human readable metadata, and a list of
vulnerabilties that are closed through the application of this patch.
We assign patch actions to each generated configuration. Similar
to before, first, the number of patches a configuration has in total
is drawn according to a Poisson distribution, NF ∼ Pois(λF). For
each configuration, first the actual number of patches nF is sampled
from NF , and then nF patches are drawn uniformly from the set of
patches given by OVAL which affect at least one vulnerability for
this configuration.

5https://oval.cisecurity.org/repository

https://oval.cisecurity.org/repository

	Abstract
	1 Introduction
	2 Related Work
	3 Running Example
	4 Mitigation analysis as Stackelberg planning
	5 Practical Model Acquisition
	5.1 Workflow
	5.2 Network Topology and Vulnerabilities
	5.3 Threat Model
	5.4 Mitigation Model

	6 Experiments
	7 Conclusion & Future work
	References
	A Scenario Generator

