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Abstract—Buggy and flawed third-party libraries increase
their host app’s attack surface and put the users’ privacy at
risk. To avert this risk, libraries have to be kept updated to their
newest versions by the app developers that integrate them into
their projects. Recent researches revealed that the prevalence
of outdated third-party libraries in Android apps is indeed
a rampant problem, but also suggested that there is a great
opportunity for drop-in replacements of outdated libraries, which
would not even require cooperation by the app developers to
update the libraries. However, all those conclusions are based on
static app analysis, which can only provide an abstract view.

In this work, we extend the updatability analysis to the
runtime of apps. We implement a solution to update third-party
libraries with drop-in replacements by their newer versions.
To verify the feasibility of this developer-independent update
mechanism, we dynamically test 3,000 real world apps for
3 popular libraries (78 library versions) for runtime failures
stemming from incompatible library updates. To investigate the
updatability of libraries in-depth, exploration enhanced dynamic
testing is adopted to monitor the runtime behaviors of 15 apps
before and after library updating. From our test, we find that
the prior reported updatability rate is under real conditions
overestimated by a factor of 1.57–2.06. Through root cause
analysis, we find that the underlying problems prohibiting easy
updates are intricate, such as deprecated functions, changed
data structures, or entangled dependencies between different
libraries and even the host app. We think our results not only
put a more realistic light on the library updatability problem in
Android, but also provide valuable insights for future solutions
that provide automatic library updates or that try to support the
app developers in better maintaining their external dependencies.

I. INTRODUCTION

Third-party dependencies are frequently imported into ap-
plications to quicken the app development process. Compared
with writing functional code from scratch, such as HTTP
communication, image loading, or advertising, an existing
well-encapsulated third-party package is a preferable choice
for app developers. However, such external dependencies are a
double-edged sword. Since third-party libraries are developed
by other organizations and the app developers know little to
nothing about the libraries’ internals, the attack surface of
the host app is unavoidably increased if an included library
contains vulnerabilities. Previous studies have highlighted this
problem for Android [4], [8], [14], [34] and have shown that
vulnerable third-party dependencies are actively used in apps,
e.g., a surprising ≈70% [33] of vulnerable free apps owe their
vulnerabilities to integrated libraries.

The most straightforward countermeasure against such vul-
nerabilities are updates: a third-party library vendor would
release a fixed version and then the applications that include
the vulnerable library version can be fixed by updating the
library as soon as possible. Unfortunately, most of the library
updates cannot be delivered to applications in such a smooth
way. Recent studies of third-party library updates [22], [30]
show that most of the developers do not deem library updates
as a reason for app version increment. Developers tend to
preserve the outdated library versions to avoid additional
efforts for resolving incompatibility with the newer library
versions. Investigation of vulnerable apps’ lifetimes [16], [31]
also reveals the lack of incentives for non-functional updates.
Considering this situation, an automated updating mechanism
could be a way out of this dilemma [22]. Purely based on
the API compatibility between versions of the same library,
it was estimated that with such automated library updates
85.6% of libraries have at least one higher version available for
update and 48.2% could even be updated to their latest version
without any additional host code adoption. The problem is that
the updatability rate is derived from static app analysis results,
which can only provide a glimpse into automated library
updates from a theoretical and syntactic perspective. It ignored
potential factors for version incompatibility that can come into
one’s mind immediately, such as obsolete APIs, intra-function
changes, or secondary dependencies. So far, no ground truth
exists about the existence and severity of those additional
factors. To bridge this gap, we try to answer in this paper
the open questions ”What is the actual library updatability?”,
”Do the updated libraries exhibit incompatibilities that prevent
an easy drop-in replacement of library versions?” and ”What
are the primary causes for those incompatibilities?”.

To answer those questions, we opt in this paper for studying
apps’ runtime behavior before and after applying drop-in
replacements of API-compatible library updates. The best ap-
proach to do so could be 1) an implementation of an automatic
library updating solution and 2) behavioral profiling of apps’
runtime for both the original app and the one with library
updates deployed. Several existing works have dug into the
problem of patching vulnerabilities in existing applications,
such as Appsealer [37], PatchDroid [28], or Instaguard [19].
Unfortunately, none of them specifically focuses on library
code. PatchMan [36] considered libraries, but only takes
system libraries into account. Most importantly, however, the
setting for a library updatability solution, which has to con-
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sider multiple update candidate versions, code changes beyond
”simple” function-level changes, and potentially entangled de-
pendencies (see Section VI-B), differs a lot from vulnerability
patching solutions (e.g., a static rewriting solution cannot deal
with entangled dependencies, or in-memory patching is limited
to very local, small changes). Thus, none of the existing
solutions is applicable as a suitable solution to the automated
library updatability problem.

To extend the status quo and investigate in-depth the pro-
posed drop-in replacement of API-compatible library versions,
this paper presents a two-stage experiment. In this experiment,
an automatic drop-in replacement library update framework
based on classloader customization is put forward in the first
stage, and then, in the second stage, dedicated, dynamic tests
are carried out to evaluate the runtime behavioral differences
between the original app and the one with an updated library.

To the best of our knowledge, this work is the first to in-
vestigate the semantic problems and consequences for Android
library updatability in a real-world setting in contrast to the
previously estimated numbers purely on syntactic updatability.
Our study focuses on three popular, previously studied libraries
(OkHttp, Facebook SDK, Facebook Audience). Our dynamic
analysis results revealed that at runtime 4.08% (success rate
95.92%) of the tested updates experienced crashes after the
drop-in library update. We discovered that multiple factors
impede the automatic integration of a compatible library
version. Through a source code study of crashed library
versions, we discover incompatibilities beyond the public API,
including deprecated public methods, changed data structures
and library initializations that are only documented in the
library changelogs, or entangled dependencies between the
updated library and other libraries or the host app. Further
analyzing the source code of 1,430 versions of 44 libraries
showed that those discovered impeditive factors are preva-
lent in all kinds of other libraries and the claimed library
updatability rate by prior works [22] should be adjusted.
To provide a clear understanding of the library updatability,
we re-calculate the updatability rate on a set of 332,432
apps after considering all those discovered factors. The com-
parison result shows that for OkHttp and Facebook SDK
the picture is rather bleak, and their updatability rates sink
93.40%↘45.45% and 94.06%↘53.69% in the worst case,
respectively, in comparison to previous estimates. Thus, our
work confirms the technical feasibility of an automatic drop-
in replacement for library updates, but our test results also
clearly show the existence of impeditive factors that prevent a
drop-in library update from working correctly in practice. We
think that our results provide valuable insights for the design
of projected library update solutions that are independent of
the app developer (e.g., drop-in replacements at the market
or on-device) as well as for solutions that want to support
app developers in maintaining up-to-date dependencies (e.g.,
through an IDE extension).
To summarize our contributions:

1) API-compatibility based library update framework: To
measure the realistic gap for drop-in library updates on An-

droid, we first need a library update framework that follows the
state-of-the-art proposal in prior work [22]. This work is first
to present the design and implementation of a drop-in based
Android library update framework. With this framework, a
new library version can be opted into the original app at app
launching time and be used as a replacement for the previous
library version, which enables us to hunt library update-related
runtime mal-functions further.

2) App runtime behavior profiling: Using our library up-
dating approach, two kinds of dynamic tests are carried out
on real-world apps to not only validate the feasibility of
our updating solution but also study the actual feasibility of
drop-in library updates and re-evaluate the results of static
app analysis in existing work [22]. By profiling the runtime
behaviors of apps before and after library updates, we detect
the occurrence of malfunctions introduced by the library
update despite the library versions being API-compatible.

3) In-depth study of the obstacles for functional drop-
in replacements: By analyzing the malfunctioning cases, we
discovered several factors brought by library evolution that
prohibit the drop-in replacement of a target library to be func-
tional. Based on those discovered factors, a follow-up study
is conducted to evaluate the prevalence of those impeditive
cases in other libraries. Our results show that those impeditive
factors are important considerations for future solutions that
target automatic library updates or that support app developers
in their task of updating libraries.

Outline: In Section II, we give a brief introduction
to Android’s software update ecosystem and background on
library updating. We motivate our work more explicitly in
Section III. Section IV describes our two-stage experiment to
practice and evaluate API-compatibility based drop-in library
updates. The experiment findings together with a follow-up
study of library source code are presented in Section V. In
Section VI, we discuss our work and future prospects. We
conclude our paper in Section VII.

II. ANDROID SOFTWARE UPDATING AND TESTING

A. Android Software Update Ecosystem

The official sources for updates for Android software can be
differentiated into four classes: App developers, Android Open
Source Project (AOSP) by Google, upstream Linux kernel, and
system-on-chip (SoC) manufacturers. The updates from those
sources can be delivered to end users and take effect in their
corresponding software stack layer through different update
routines as shown in Figure 1.

The Android platform is highly diversified and fragmented.
The updates from the lower layers are distributed in an
arduous and time-consuming way. All the updates from AOSP,
Linux kernel, and SoC manufacturers should be delivered
to device manufacturers first. After being integrated into the
manufacturers’ specific systems, some of those updates can be
pushed to the end users by device manufacturers, and some of
them should also go through a carrier technical acceptance test
at the network operator side before being delivered to users.
Existing work [32] has pointed out that device manufacturers



Fig. 1. Android Software Update Ecosystem

are the bottleneck in this update chain. Despite the founding
of the Android Update Alliance [12], phone vendors generally
lack the incentives to provide updates frequently, resulting in
a long update latency or, even worse, no updates at all.

The update routine for user applications is, in contrast,
pretty straightforward. The app developers submit new app
versions to Google Play, then the target app on end devices will
be reinstalled and replaced with the updated version [11]. The
app updates can be delivered to user devices efficiently without
any intermediate bottleneck. It is noteworthy that the updating
of third-party libraries, which we are concerned with in this
paper, follows a similar mode to the low layer components.
New versions of third-party libraries are released by the library
developers first, and after integrating the new versions into
the application code by app developers, those libraries can be
sent to end users together with upgraded apps through Google
Play. Despite the ”new library versions available” warning
provided by the built-in Lint plugin [6] of Android Studio—
the most commonly used IDE for Android app development—
the integration of the updated library is highly dependent
on the app developer incentives, and currently, there is no
official automatic mechanism to ease this process. Google
Play rejects apps (updates) that include libraries with known
security vulnerabilities to force the developers to update those
libraries through their app security improvement program1, but
this mechanism only works for a small, limited set of libraries,
e.g., Apache Cordova. A lot more vulnerable libraries are still
exempted from this vetting process.

B. Software Patching Techniques

Apart from going through the standard update chain de-
scribed earlier, an Android software can also be fixed by third-
party patches and application autonomous hotfixes.

Third-Party Patching reduces the vulnerability window of
software as much as possible. Since the patches or patching
framework are released by neither software developers nor
official sources, they are not bound to the standard release
procedure and can be deployed to fix software more effi-
ciently. Patchdroid [28] applies in-memory patching tech-
niques to update both userspace native code and Dalvik
bytecode at runtime. Embroidery [38] uses both static and
dynamic rewriting techniques to patch vulnerabilities in the
Android framework and kernel. To be resilient against Android

1https://developer.android.com/google/play/asi

fragmentation and ensure system functionality across devices,
Embroidery rewrites binaries at code-line granularity. With
reference hijacking [36] the underlying system libraries are
patched by redirecting library references to security-enhanced
alternatives. InstaGuard [19] takes advantage of debugging
features to enforce rules that block the vulnerability exploita-
tion and avoid injecting new code while patching. KARMA [20]
establishes a multi-level adaptive patching model to filter
malicious input to the kernel. Appsealer [37] alters an app’s
intermediate representation to mitigate component hijacking
attacks through a patched app version. None of the above
solutions focuses on patching third-party libraries inside user
apps. OSSPATCHER [23] targets at third-party libraries, but
only open-sourced C/C++ libraries are concerned. There are
also more works [24], [26] that automatically generate patches
from source code. However, they do not apply to libraries
included in applications that are usually not open sourced.
Most recent work [25] rewrites app code to provide a library
updating and sharing solution which is distinguished from our
incompatibility root cause investigation purpose.

Application Autonomous Hotfix is a technique for self-
healing apps where fixes to the app code are applied at runtime
by the application itself. Some hotfix frameworks [1], [2],
[9] have been put forward to ease the distribution of minor
patches. In those solutions, an official patch is first delivered
to the app, and then the patch code is dynamically loaded
into memory instead of outdated code. There is no need to
reinstall the target app. With autonomous hotfixes, small fixes
can be distributed to users swiftly without any user disturbance
or central distribution point (e.g., Play). Unfortunately, those
hotfix plugins are required to be integrated by app developers
and the patches should be released by them as well, which
highly depends on developer incentives and is not applicable
to efficiently update libraries within already existing apps.
However, the flexibility of those dynamic code integration
techniques and plugin techniques [5] is quite inspiring and
our third-party library updating solution is established based
on them.

Patching vs. updating: Most of the patching solutions use
techniques, such as static rewriting, in-memory function patch-
ing, or vulnerable path blocking, to mitigate vulnerabilities.
However, the scenario for library updatability includes but
is not limited to rolling out those pinpointed code fixes that
are prevalent in patching scenarios. Library updates usually
concern not only intra-function changes, but also inter-function
changes, secondary dependency updates, and resource file
changes, especially when upgrading across multiple versions.
For this reason, a full library drop-in replacement update
exceeds highly localized patching as described in the existing
works. Prior work [36] also applies full library replacement
for system libraries. However, the statically integrated third-
party libraries in apps, in contrast, vary from app to app
and in their versions, which prohibits a central, system-wide
replacement of a third-party library. Furthermore, our paper
studies the problem of library updatability and not specifically
of ”patching security vulnerabilities” since for the mobile



library ecosystem, prior work [22] reports that security and
privacy patches are unfortunately commonly mingled with
minor/major releases, and unfortunately very few library de-
velopers report security and privacy relevant changes in their
logs. There is an expected high dark figure of ”silent patches.”
Thus, patching security and privacy issues of libraries currently
boils down to keeping library dependencies up-to-date. Our
work tries to investigate the root causes of incompatibilities
in this process for auto-updates.

C. Android Test Input Generation

To evaluate the app behavior and identify differences caused
by a library update we rely on Android test input generation
techniques, which can be broadly classified according to their
underlying exploration engine into random, model-based, and
systematic. Testing tools with random exploration engines
create semi-random chains of events to explore the app’s
behavior. This type of strategy is employed by Monkey [10],
Android’s default test generator, which we used in our large-
scale experiment, as well as DroidMate [18], the open source
test generator we used in our runtime behavior profiling.
While these approaches are unlikely to perform complex tasks,
such as adequately logging in to an account, they have been
shown to perform effective explorations [21]. To overcome
the limitations of random testing in our analysis, we extend
DroidMate with a plug-in that contains specific, non-random
actions for relevant screens (e.g., login, registration) and allows
us to reach more functionality.

Model based tools infer models from apps using static
and/or dynamic analysis and use them to generate test cases.
Tools in this category include GUIRipper [13], which dynam-
ically traverses an app’s GUI and creates a state machine
model, and SmartDroid [39], which uses static analysis to
identify paths that should be dynamically explored. Droid-
Mate [18] relies mainly on dynamic analysis. It extracts an
app model during analysis and uses it for re-identification of
UI elements, reducing re-exploration of known UI elements
and guiding the test towards new ones.

Systematic testing tools employ different algorithms to ex-
haustively test apps or to generate tests which trigger specific
behaviors. Sapienz [27], for example, combines search-based
algorithms with random fuzzing to improve test coverage,
while IntelliDroid [35] uses symbolic execution to create
sequences of events to trigger specific behaviors. While these
approaches may lead to more accurate and useful explorations
in specific scenarios, their reliance on static information miti-
gates their applicability in scenarios where the app under test
heavily relies upon external sources (e.g., web content), native
code, or obfuscation (like reflection or encryption). In this
category, and closely related to this work, is Brahmastra [17],
which rewrites the app binary to jump-start specific third-
party code. While this approach significantly increases the
probability of reaching third-party code that is accessed deep
within the application, it modifies the app behavior, which
would affect the accuracy of our results.

Fig. 2. A typical scenario for API-compatibility based updatability.

III. MOTIVATION

Considering the alarming rate of outdated libraries and
the inefficient third-party library updating chain explained in
Section II-A, we put our focus in this paper on evaluating
the runtime library updatability situation under an automatic
third-party library updating framework, as well as tracing the
root causes for potential side-effects brought by updating.

Typical scenario for API-compatibility based updatability:
Existing studies have highlighted thrilling API compatibility
across different library versions. Here, we describe a typical
scenario based on Derr’s et al. work [22] and their LibScout
tool (see Figure 2). App A contains library L in version a with
invocations Call1 and Call2. If interfaces Call1 and Call2 still
exist in the successor version Lb, but only partially exist in
version Lc (e.g., parameters or types of a method have changed
or a method was removed), LibScout reports library Lb as
compatible with library La inside App A but not Lc.

Implementation of an automated library update framework:
To investigate the updatability and catch potential incom-
patibilities beyond the theoretical results of prior works, we
need a library update framework that follows the methodology
proposed in the existing studies. In our paper, we follow
the proposal of Derr’s et al. study [22]. Given the scenario
above, an implementation of an automated library update
framework should try to update library L from version a
to version b. Another precondition of this API-compatibility
based library updating solution is that the update should be a
drop-in replacement and no host code adoption performed. The
library upgrade could be done before or after app build without
new host code adoption. In our work, we focus on a post-
build upgrade, because compared with a pre-build upgrade,
which is done through IDE plugins by app developers, a post-
build upgrade is more flexible and can deliver the updated
library version promptly, circumventing the upgrading bottle-
neck brought by the developer-dependence. Considering the
complexity of the library updating scenario, which can include
changes, such as inter-function code changes, secondary de-
pendencies, or resource files, a naive static rewriting solution
would cause an immediate crash/misbehavior (e.g., app failed
to log into Facebook when the app’s signature was changed by
static rewriting), which is then detrimental to exploring update
incompatibilities. To try our best to eliminate unnecessary
interferences and explore incompatibilities as reliably as we
can while upholding conditions proposed in prior work [22],
here we borrow the idea of opting in codes by classloader
customization from existing frameworks [1], [5] and carefully
design a dynamic library drop-in replacement framework (with



Fig. 3. Overview of Library Update Framework with three modules Update
Execution Environment, Update Handler, and LibCenter.

secondary dependencies included) to support automatic library
upgrading across both minor and major versions.

Automated library update testing: The API-compatibility
based library updatability results presented in previous
work [22] are based on static app analysis, which can only
reflect a theoretical and syntactic situation. To understand the
actual feasibility of an API-compatibility based library update,
further runtime testing is necessary. The most established
dynamic app testing is automated user interface (UI) testing,
which performs a series of UI operations on the target app.
By doing so, the app behavior can be profiled, and potential
failures and dysfunctional behavior after library updating be
discovered by comparing the runtime profiles of the original
and the updated app. It is noteworthy that the feasibility of
our library update framework can be confirmed in this context
since behavioral correctness is a strict baseline for our testing.

IV. TWO-STAGE UPDATING EXPERIMENT

The goal of our study is to evaluate if a simple drop-in
replacement update is a viable option to solve the problem of
outdated libraries on Android. In this section, we describe a
two-stage experiment to test apps’ runtime behaviors before
and after a library update. In the first stage, we apply an
automated library updating framework that we developed
according to the proposal of prior work [22]. This framework
allows replacing an outdated library inside an app with a
newer version without additional host code adoption. During
the second stage, two automated user interface (UI) tests are
performed to evaluate the behavioral correctness of target apps
after drop-in replacements of library updates. This approach
allows us to report on the gap between the theoretical updata-
bility rate in the literature and the actual runtime rate and its
impeditive factors.

A. Stage-1: Automated Library Update Framework

To support automated library updating without host code
adoption, this work implements a dynamic updating frame-
work that takes advantage of the class domain isolation and

dynamic code loading features of Android’s classloader hier-
archy. The outdated libraries are automatically updated at app
load-time by loading the new library from a well-defined place
by a customized classloader, and in this process no additional
code adoption is required for the host app’s code.

The framework is composed of three modules as shown
in Figure 3: Update Execution Environment, Update Handler,
and LibCenter. Update Execution Environment is established
on a customized build of Android, which is extended with
components to support library updates. Update Handler is
a customized classloader chain together with auxiliary com-
ponents for applying library updates at app load-time. This
customized classloader chain isolates the loading of library
code and host components at runtime. As a result, the library
update can be opted-in as a replacement of the original library
by solely altering the library class loading path. LibCenter is
the centralized library management module. All the library
updates and included library information for installed apps
are maintained by it. It is also the user interface for update
configuration. Through this app, the library update for a
target app can be configured and delivered to the target app.
Together those three modules enable automatic distribution
and application of library updates without developer support
and ease our testing by allowing us to flexibly roll-out library
updates to the installed apps-under-test.

1) Update Execution Environment: To update a library of
an app, the updated version should be available to the app.
However, we have to abstain from modifying the app to avoid
malfunctions due to induced bugs and also to adhere to the
proposed methodology we are testing. Thus, the system should
opt in the updated version before app initialization, which
we accomplish through an update execution environment as
an extension to vanilla Android. This environment consists
of two key components (see also Figure 3): I an update
status manager to maintain a global update status of apps;
and II an app entrance diversification component to enable
library updating for an app. The internals of update execution
environment are illustrated in Figure 4.

I Update Status Management Component manages the
update status for each app and allows us to control if an
app runs with its original or an updated library version. Its
UpdateStatusService is a dedicated system service that records
each app’s update status according to update events sent by
LibCenter and unifies the update operations from system-
side in the II App Entrance Diversification Component and
the update configuration from user-side in LibCenter. Client
processes can reach the service over Binder IPC via a cus-
tom manager, UpdateStatusManager (O3), to set and get the
update status for each app. LibCenter sets the status of target
apps (O1) and II App Entrance Diversification Component
retrieves (O2) at app load-time the status for the loading app
to determine which library update actions should be taken.

II App Entrance Diversification Component is the actual
update deployment site and takes care of loading the up-
dated library version into the application process. As can be
seen in Figure 4, App Entrance Diversification Component



Fig. 4. Update Execution Environment: App Entrance Diversification Com-
ponent is a customized ActivityThread to run the target app.

is implemented as a customized app launching process with
an additional Application class interface. The Application
class is the first class loaded in each app’s process life-
cycle. Initialization of the app and of the included library
is usually executed inside the Application class to ensure
they take effect at an early stage in the process’ lifetime.
Through this Application class, we added a new app entrance
to an Update Application (Section IV-A2) to the original app
launching process so as to control which library version should
be loaded during app launching based on the updating status
gained from the I UpdateStatusService, which was set via
LibCenter. With this modified launch process, the target app
can switch between the original library version (O4) or the
updated version (O5). In case of a library update, Update
Handler continues the app launch process.

2) Update Handler: As shown in Figure 5, Update Handler
is a bridge connecting host app and library update and is re-
sponsible for activating a library update for the app. To ensure
any app on our modified Android can activate library updates,
we integrated Update Handler into the Android framework
as a static library that is automatically loaded into all app
processes. Update Handler is composed of an I Update
ClassLoader Chain for separating the target library code
loading from the rest of the app code loading, an II Update
Resources Loader to attach resources of the updated library to
the original app, and an III Update Application to activate
Update ClassLoader Chain and Update Resources Loader
before the initialization of the app-under-test.

I Update ClassLoader Chain is a customized classloader
chain specifically for dynamic library updating. Android in-
herited Java’s parent-delegation mode in which a series of
classloaders are chained together and each non-root class-
loader will delegate a class loading request to its parent
classloader first before loading the requested class by itself.
Only the root classloader will try to load the target class
by itself directly. This parent-delegation mode separates the

Fig. 5. Update Handler: Left part is the ClassLoader Chain for original
Android while right part shows Update ClassLoader Chain and the involved
components for library updating. (Suffix * indicates ClassLoader)

loaded code into different security domains according to
their path, which prohibits a low priority classloader from
exposing high priority code. For instance, PathClassLoader
is in charge of loading installed application classes (class
path in /data/app/package.name) and cannot load non-
installed packages (e.g., class path in /sdcard/). Same class
loaded by different classloaders is treated as different classes
and cannot be cast to each other. In our design, classes from
the updated library version should be loaded instead of the
original outdated ones. However, the app package, including
both the app code and libraries code, is a fixed bundle and
the classes inside a user application are in general loaded by
Android’s default PathClassLoader. To suppress the loading
of the originally contained library and opt-in the classes of
the updated library, a new classloader chain is introduced
in our design to isolate the loading of the updated library
from the host application. Different with existing classloader
customization based patching solutions [1], [7] which replace
all outdated classes to updated ones directly, our solution
constructs an isolated container for the interaction between
updated library and its updated dependencies. Thus, both of the
original and updated secondary dependencies are preserved in
this design while updating the target library (first dependency)
so as to provide better updating compatibility for cases where
host codes involve invocations to secondary dependencies.
Figure 5 shows how the two classloaders are customized for
this new classloader chain.

UpdateClassLoader is an extension of BaseDexClass-
Loader, which is capable of loading dex files from a des-
ignated path. It is responsible for loading updated libraries
without additional app code merging (H1 in Figure 5). This
update-specific classloader is independent of the update, i.e., as
soon as a newer library version becomes available, that version
can be integrated with the host app by simply replacing the
library file for updates and without touching the app package
itself. However, objects created by different classloaders are
not available to each other, which could complicate the interac-
tion between the library and host application. To alleviate this



problem, UpdateClassLoader has to be a node in the system
classloader chain. It is linked as a child to ProxyClassLoader,
the newly created classloader for application code.

ProxyClassLoader is an extension of PathClassLoader,
which can only load installed applications files. Apart from
loading the updated library’s classes, the original host appli-
cation should also be loaded. The app code is simply loaded
by the default PathClassLoader. However, the original library
code is intertwined with the host components inside the orig-
inal app package (i.e., dex file). The original library code will
also be loaded automatically by PathClassLoader when being
invoked by the host components. To create a clear boundary
between the host components and the library code that should
be replaced with the updated version, ProxyClassLoader is
constructed to delegate the loading of all updated library
classes to UpdateClassLoader. To minimize the impact of this
modification, ProxyClassLoader is initialized on the basis of
the original PathClassLoader. Everything of PathClassLoader
is preserved (H2) except for an additional class name filter
when loading classes. When the class to load is from the target
library, the name filter in ProxyClassLoader will distinguish
the library package prefix in the class name and the loading
request for this class is delegated to UpdateClassLoader (H3),
which will finish the class loading (H1). This way, the original,
tightly integrated library will be replaced at app loading time
with the newer library version.

II Update Resources Loader integrates the resources of
the updated library (H4) into the app. Though not all libraries
require additional resources, still a large fraction does in
order to enhance their functionality, e.g., Facebook SDK re-
quires resources to customize the login button. Since Android
resources are labeled with a 32-bit ID, there could be ID
conflicts between the original app resources and resources
of the drop-in library. Our solution is to compile the library
update within a wrapper application (com.wrapper) as a shared
library, so the generated resource IDs will not be constants
and can be reassigned to a separate range at runtime. To
enable the usage of resources inside the added library update,
its resources should be attached to the app space through
addAssetPathAsSharedLibrary interface. Since the assigned
IDs for the new resources might differ from the resource IDs
used with the library code, we rewrite all of the individual
library R classes with values in the merged resource file from
wrapper package. After that, the new resources are available to
both the library code and host application and no ID collision
can happen between the original and the new library resources.

III Update Application is a customized Application class.
The main idea is to ensure the updated library is activated
before any host application code takes control. Considering
that some library initialization is by default done in app’s
Application class, the activation of the new library should be
handled before that. The most convenient and least intrusive
solution is to hook the application initialization process by
replacing the original app Application class with Update
Application class that is described in Section IV-A1. After
the replacement, the system will treat it just as the origi-

nal Application class and finish the application initialization
process. In this initialization process, a request for library
updates will be sent to LibCenter from the target app’s process
space (H5). LibCenter will return an authorized URI that can
be used to copy the library package and configuration files
to the target app’s storage (H6). Furthermore, the creation
and initialization of both I Update ClassLoader Chain
and II Update Resources Loader are also accomplished
here based on the files retrieved from LibCenter. Last but
not least, the newly generated classloader chain is enabled
and the application can be launched as usual. To minimize
system modifications in integrating the new classloader chain,
we follow the classloader hooking approach used in former
works [1], [5].

3) LibCenter: LibCenter acts as a centralized library repos-
itory from which library updates are retrieved. All pre-
compiled library packages and metadata are stored here. Using
LibScout2 as part of LibCenter, we collect all installed apps’
metadata including information about used libraries and library
compatibility information based on the library API calls from
the host apps. LibCenter uses that information together with
user preferences set via LibCenter’s UI to create linking
information about which API-compatible library update can
be exposed to the Update Handler in target apps through an
Update Provider (see Figure 3).

Precompiled Updates are a set of wrapper applications
containing different versions of different libraries. Once an
update is activated, its corresponding wrapper application will
be copied to the app’s process space so the updated library
version inside the wrapper is available to the target app
(see description earlier). The generation of wrappers for each
library version is automated using Gradle with a template
app. By altering the dependency library information in the
build.gradle file of the template app, Gradle can synchronize
the specific library version from its central repository and
build the final wrapper application for this library version.
There are two advantages in wrapping the updated library
in an application with Gradle. First, considering that those
target libraries also need their own dependencies, e.g., OkHttp
depends on okio, we automatically bundle the target library
together with its dependencies to avoid conflicts between the
newly added library and the original library dependencies.
Second, by wrapping the library bundle into an apk file,
the resource file R.java can be generated and automatically
arranged with aapt3, which is necessary when invoking library
calls that need resources. Here we compile libraries as shared
libraries to avoid resource ID conflicts as described earlier.

Update Configurations are a set of files that describe the
generated wrapper packages. As mentioned in Section IV-A2,
information such as library class prefix and resource classes
are necessary for correctly loading library code and resources.
Update Configurations carry all the requested information of

2https://github.com/reddr/LibScout
3https://android.googlesource.com/platform/frameworks/base/+/master/tools/aapt



a library update and are sent to the target app together with
the library package.

User Interface allows personalized settings for library up-
dates, e.g., the target app, target library, and update version
and is used by us to set up our test scenarios.

Update Linking Rules are created to dispatch a proper
library update to a target app. They depend on both the
LibScout generated library API compatibility metadata and
user preferences (e.g., targeted library version). Library API
compatibility metadata records the relationship between the
host application and target libraries gained from offline library
detection. For example, in the scenario described in Figure 2,
a profile for the relation between app A and library L version
a will be created in a form of quintuple [A, A’s version, L, a,
[b]], where [b] is the list of API-compatible library versions.
User preference designates the target app and library as well as
the target library version. Combining the quintuple and user
preference for an app, LibCenter can link a specific library
update to the target app. This linking information will be
used by Update Provider for exposing the correct wrapper
application to the target app.

Update Provider is simply a FileProvider to share files, here
wrapper applications, between target apps and LibCenter. It
uses Intents containing the URI for the corresponding wrapper
application in response to requests by Update Handler to allow
Update Handler to retrieve the library update from LibCenter.

B. Stage-2: Automated User Interface Tests

In the second stage of this experiment, we choose top
ranking libraries as our case studies for library updates and
run multiple dynamic tests on real-world apps from Google
Play that include those libraries in order to have a close look at
apps’ runtime behaviors after API-compatible library updates.
To ensure the comprehensiveness of this experiment, firstly, we
carried out a large-scale dynamic test to provide a macro-view
of not only the feasibility of our update framework but also of
immediate malfunctions, like crashes, in target apps brought
by those drop-in library replacements. Second, we execute a
more intensive test to explore more app functionality so as to
trigger more hidden malfunctions introduced by the updates,
e.g., changed side-effects of library methods, although a full
anomaly detection is beyond the scope of this paper.

1) Target Libraries & Apps: Different libraries have differ-
ent integration approaches with their host apps. We carefully
select three libraries, with 78 library versions in total, from
different library categories [3] as target libraries: OkHttp from
Development Tools, Facebook SDK from Social SDKs and
Facebook Audience from Ad Networks. Those three libraries
are the most popular libraries from reputable companies which
are well-maintained and include secondary dependencies. In-
stead of targeting more libraries, the experiment setting here is
more to utilize limited dynamic testing in highlighting a lower
bound on the existence of incompatibilities when considering
various library versions. To compile a list of apps that contain
those libraries, we run LibScout on an app repository contain-
ing 332,432 free apps crawled from Google Play with 128

Fig. 6. Monkey Evaluation Results for Apps including OkHttp, Facebook
SDK, Facebook Audience

library profiles for three libraries from the LibScout project.
We found 379,429 library-app pairs. LibScout can not only
provide a list of apps that contain a target library but also the
detailed API usage of the library. To make the evaluation more
comprehensive, we extend LibScout with a ranking module
to cluster apps into different sets based on the library APIs
invoked in the host app components. For dynamic testing, we
select 3,000 apps, 10 apps from each of the top 100 frequently
used API sets for each target library. There are 78 library
versions (25 from OkHttp, 33 from Facebook SDK, 20 from
Facebook Audience) in our final data set.

2) Monkey Test: Our update execution environment is
deployed on Android v7.0. We test our framework on two
Pixel C devices that are flashed with our customized system.
In this large-scale evaluation, we try to update each library
to the latest, API-compatible version. To measure the hit rate
of (updated) libraries during testing, we used soot4 to inject
log statements into the frequently invoked interfaces of each
library. To better scale the dynamic testing, we chose the open
source monkey-troop tool5 to install test apps and execute them
using Google’s official application exerciser, Monkey [10], on
both devices in parallel and automatically. In each monkey
run, 500 random events will be explored. During this process,
the execution log is recorded for measuring the library hit rate.

Ground truth: Considering that some apps could be mal-
functioning for reasons like failed download, obsolete APIs for
our test platform, buggy design, etc., we first run monkey-troop
on the original apps. Only if the first run executes successfully
without errors, those apps remain in the test app set and are
considered for library updates.

Test results: UI exploring results for the 3 libraries are
shown in Figure 6. The uppermost graph describes the update
result for OkHttp library, where 781 of 804 supported tested
apps passed Monkey without a crash, giving a success rate

4https://github.com/Sable/soot/wiki/Tutorials
5https://github.com/Project-ARTist/monkey-troop



97.14%. Among all those apps supported, 60.95% of them
hit the updated library. For Facebook SDK library, 813 of
880 supported target apps did not crash during monkey ex-
ploration, resulting in a 92.39% success rate, and 61.48% of
those supported cases hit the library. The result for Facebook
Audience is quite similar with a 98.31% success rate for
the 890 supported apps and a 62.58% hit rate. From all
those results, we can see a success rate of 95.92% in total,
which is close to ideal. However, the overall hit rate of
61.69% is not very inspiring. More than 38 percent of apps
passed Monkey without hitting the library. The reason could
be, for instance, that the library is integrated at a hidden
position, which cannot be hit easily (e.g., the target library
is only invoked after purchasing a product successfully), or
the Monkey failed to explore the specific path (e.g., clicking
at a specific position on screen to jump to another page). Those
are the common limitations of large-scale dynamic testing with
random exploration by Monkey and have already been noticed
in various existing works. To complement our results, a more
in-depth but also time-intensive testing based on DroidMate
is conducted to evaluate the internal misbehaviors of the host
app after library updating.

3) DroidMate Test: In our second test, we focus on measur-
ing the impact of updating a library onto the apps’ behavior.
Changes in behavior between the original app and the one
with library update might indicate more intricate errors than
crashes (e.g., changes in side-effects of library methods). For
this experiment, we selected a random subset of 15 apps—
5 for each library—from the monkey test and performed a
comparative analysis of its behavior before and after updating.
We consider as app functionality its source code blocks—
including libraries—executed at runtime and as behavioral
change a variation of the blocks reached before and after
updating (for instance, exception handling routines would
cause a deviation of the behavior).

To reach deeper functionality and obtain a more accurate
impact measurement, we developed a plug-in for the open
source DroidMate [18] platform6 to bypass restrictions of the
monkey analysis, such as lack of login/registration informa-
tion. We performed this second test using four Pixel C devices
and four emulators, also configured as Pixel C. Both sets of
devices used the same customized version of Android v7.0
from the monkey-based testing. To ensure the accuracy of the
results, each app was entirely tested either on a Pixel C device
or on an emulator. We instrumented each test app, including
libraries, with ARTist7 [15] and obtained a list of all possible
blocks, which we use as ground truth. This list may be an
over-approximation of the actual possible behavior, as some
blocks may be unreachable due to app’s usage or to our test
configuration. During the test execution, we logged all reached
blocks—except for those belonging to the targeted library
which by design would differ between tests—and monitored
the log for a library reached tag to ensure that the target library

6https://github.com/uds-se/droidmate
7https://github.com/Project-ARTist

was hit. We discarded runs that did not reach the library.

Test design: For each app, we executed the original app and
the updated one until we obtained 10 executions of each that
have reached the library. We opted for 10 runs to mitigate the
variability caused by the random exploration as well as by
non-deterministic content such as advertisements, while also
achieving a reasonable time trade-off for testing duration. Each
execution consists of 500 events on valid UI elements, such
as clicks, long clicks, and swipes, where valid UI elements
are those that are visible, enabled, and can be clicked on the
screen. Our DroidMate plug-in executed predefined actions on
login and registration screens—entering user name, entering
password, and clicking the login button—and explored the
remaining screens with DroidMate standard biased-random
approach, which prioritizes UI elements that have not been
previously interacted with in order to increase chances for
discovering new path and code coverage. For evaluation, we
grouped the executions output in two clusters: original (O) and
updated (U ). For each cluster we computed the set of reached
blocks (BO and BU ), that is, the set of blocks that were
reached by at least one run. To measure the behavior change
between the original and updated app, we compared the inter-
section between these clusters (BI = BO ∩ BU ) against the
set of blocks reached in the original runs (|BO −BI |). If this
difference is greater than 3×standard deviation of the average
coverage among the elements in BO (|BO−BI | > 3×σ(O))—
which covers 99.7% of the values assuming the coverage
variation follows a normal distribution—we considered that
there was a behavioral change.

Test results: The test results are shown in Table I. For
each app we evaluated the overall block coverage, i.e., the
percentage of blocks from both the app and its libraries, which
could be reached during testing, as well app code coverage,
i.e., considering only blocks belonging to the same package
as the app. We use this coverage as an indication of the test
depth and relevance.

Our DroidMate plug-in achieved, on average, 37% overall
block coverage on the original apps and 36% on the updated
ones, with a minimum of 12.66% and a maximum of 60.86%.
Considering only app block coverage, it achieved 35% cover-
age on both app versions, with a minimum of 11.76% and a
maximum of 60.50%, which falls within the range of expected
coverage for state-of-the-art test generators [21].

Using the 3 standard deviation tolerance as a metric, only
the SnapOdo app, which uses the Facebook SDK, displayed
a behavioral change. A manual inspection of the exploration
results of the updated version showed that this app was no
longer able to log in to Facebook, which in turn restricted the
number of reachable blocks for exploration. LOOM CLUB also
showed a significant coverage difference (5%), however, due
to the highly non-deterministic nature of the app, this same
difference was observed within the runs of its original version
and thus was characterized as exploration noise.



TABLE I
RESULTS OF IN-DEPTH ANALYSIS WITH DROIDMATE PLUG-IN. COMPARISON BETWEEN CODE COVERED FOR ORIGINAL AND UPDATED APP.

App Original Updated
Name Version Library App Overall St.Dev. App Overall Change

Shalom Shalom Radio 2.0 OkHttp 18.59% 17.81% 3.17% 19.36% 16.76% No
Maurin Hyundai 3.0.4 OkHttp 13.33% 48.93% 1.06% 13.33% 48.93% No
Blur Effect Keyboard 1.185.1.102 OkHttp 31.36% 37.36% 2.87% 33.58% 35.85% No
UK Online FM 1.0 OkHttp 48.35% 60.86% 0.71% 48.35% 60.46% No
Sanimedius Apotheke 2.1.10 OkHttp 56.58% 37.94% 3.07% 57.89% 37.90% No
LOOM CLUB 4.785 Facebook 23.62% 29.03% 2.26% 20.25% 23.98% No
Farmacia Charo Ferrá 0.01 Facebook 11.76% 36.80% 4.16% 11.76% 34.62% No
SnapOdo 0.1.0 Facebook 11.76% 51.61% 1.24% 11.76% 46.53% Yes
Close Up 2.2 Forest Facebook 58.60% 54.38% 0.17% 57.67% 54.26% No
Stevenson Student Activities 5.63 Facebook 42.72% 48.29% 0.46% 42.55% 46.91% No
Metal Tombstone 4.1 Pea Green FacebookAudience 60.50% 19.88% 0.12% 61.00% 19.65% No
Personal Tracker 1.5 FacebookAudience 54.72% 30.54% 1.14% 64.15% 30.78% No
Paris Metro Map 1.1 FacebookAudience 23.08% 25.72% 2.81% 23.08% 25.83% No
Burak Yeter Songs 1.4 FacebookAudience 50.00% 50.00% 0.00% 50.00% 50.00% No
Maquillaje Halloween 2017 13.0.0 FacebookAudience 24.49% 12.66% 1.55% 24.23% 12.56% No

TABLE II
CATEGORIZED EXCEPTIONS REPORTED BY MONKEY TEST.

Exception Category #App %Failure Library Version Updated (#) Error Message Example

AbstractMethodError 17 73.91% OkHttp 3.0.0-RC1 – 3.9.0 (17)

java.lang.AbstractMethodError:
abstract method ”void
okhttp3.Callback.onResponse(okhttp3.Call,
okhttp3.Response)”

ClassNotFoundException 4 17.39% OkHttp 3.2.0 – 3.9.0 (2) 3.3.0 – 3.9.0 (1)
3.3.1 – 3.9.0 (1)

java.lang.NoClassDefFoundError: Failed res-
olution of: Lokhttp3/internal/Platform

FacebookException 52 77.61% Facebook

4.0.1 – 4.26.0 (1) 4.1.0 – 4.26.0 (2)
4.2.0 – 4.26.0 (1) 4.3.0 – 4.26.0 (1)
4.5.0 – 4.26.0 (1) 4.6.0 – 4.26.0 (8)
4.7.0 – 4.26.0 (1) 4.8.0 – 4.26.0 (1)
4.8.2 – 4.26.0 (8) 4.9.0 – 4.26.0 (15)
4.16.0 – 4.26.0 (1) 4.17.0 – 4.26.0 (12)

java.lang.RuntimeException: A valid Face-
book app id must be set in the An-
droidManifest.xml or set by calling Face-
bookSdk.setApplicationId before initializing
the sdk

This table only lists library related exception cases.
#App: the number of failed apps that reported this exception.

%Failure: the percentage of apps that failed for this exception among all the monkey failures of this library.

V. ROOT CAUSE ANALYSIS

Our two-stage experiment in Section IV demonstrates the
occurrence of app runtime behavioral deviations after API-
compatible library updates and shows that library updating is
not as straightforward as the existing work [22] claimed it to
be. In this section, we deep-dive into the failure cases in our
tests to study the factors that impede library updating.

A. Findings from Monkey Testing

We analyze the Monkey logs of the failed apps and catego-
rize all failures according to the reported exception messages.
Though we did a pre-run on Monkey for each app to filter out
those apps with innate faults, a flawed app can still survive the
first run and crash in the second run because of the random
behavior triggered by Monkey. Since we are not working on
app debugging, investigating the failure reasons for all failure
cases would be a wild-goose chase. Here, we concentrate
only on the failures that have an obvious relationship with
updating libraries. We consider all the failures that contain
library specific keywords in their exception messages. Table II
provides an overview of those failure instances.

It can be observed that both OkHttp and Facebook SDK have
interesting exceptions at runtime after updating them, while
we discovered nothing of interest for Facebook Audience.
For OkHttp, 17 apps failed because of AbstractMethodError
and 4 apps failed because of ClassNotFoundException, which
together make 91.30% of all failure cases for OkHttp. Library
Facebook SDK has 52 apps throwing FacebookException,
which equals 77.61% of all failures for that library.

1) AbstractMethodError: This exception is thrown when an
abstract method is called but the definition of a target class,
here class okhttp3.Callback, is incompatible with the currently
executing method. All of the 17 crashes happened when
updating OkHttp from version 3.0.0-RC1 to 3.9.0. Version
3.0.0-RC1 is the first version with the 3.x API. This is
a breaking upgrade that even changed their package name
from com.squareup.okhttp to okhttp3. Version 3.9.0 is the
latest OkHttp version in our library repository. With all those
background information and our test setting that libraries are
always updated to their newest version among all the com-
patible versions, this is a strong indication for incompatible
changes between those two library versions.



1 // version 3.0.0-RC1 release date: 2016-01-02
2 public interface Callback {
3 void onFailure(Request request, IOException e);
4 void onResponse(Response response) throws IOException;
5 }
6
7 // version 3.0.0 release date: 2016-01-13
8 public interface Callback {
9 void onFailure(Call call, IOException e);

10 void onResponse(Call call, Response response) throws
IOException;

11 }
12
13 // version 3.9.0 release date: 2017-09-03
14 // the same as 3.0.0

Listing 1. Evolution trace of okhttp3.Callback class.

Source code analysis: Library OkHttp is open source, and
we investigate the source of okhttp3.Callback and find its
evolution trace, which is shown in Listing 1. We find that
in version 3.0.0, OkHttp modified the interfaces defined in
Callback by taking an additional Call object as a parameter
for both onFailure and onResponse interfaces to facilitate
invocations to the Call object inside the Callback as described
in its changelog. This change remained up to the newest
version. This kind of mismatch should be detected as an
incompatibility between versions, and its update should be
disallowed in our test settings. However, LibScout detects
library invocations via root package matching. Since interface
implementations are usually named under a host package
prefix (e.g., com.host.package.Callback), they are at-
tributed as a host call by LibScout when invoking onResponse
interfaces of a Callback host implementation and escape from
the library compatibility check. To eliminate this kind of false
positive cases, LibScout should also take the library’s public
interfaces into consideration. In this case, all of the 17 apps
will be non-updatable under these new constraints. Also, the
claimed update rate by earlier work should be updated.

2) ClassNotFoundException: This exception is thrown
when a classloader failed to load the target class by name
in the classloader chain. While updating OkHttp from various
versions to the newest one, four apps were reported as a crash
because of a failure in finding class okhttp3.internal.Platform
in the path of the library update.

Source code analysis: We discovered that Platform
class in versions before 3.4.0-RC1 of OkHttp is named
as okhttp3.internal.Platform, which conflicts with the
one named okhttp3.internal.platform.Platform in version
3.9.0. From the exception stack, we know that those
failed apps all include OkHttp Logging Interceptor
(okhttp3.logging.HttpLoggingInterceptor) library, which
is a sibling library of OkHttp and uses it as a dependency.
As mentioned before, LibScout uses a root package matching
to detect library invocations. That way, invocations between
sibling libraries like OkHttp Logging Interceptor and OkHttp,
whose method signatures start with the same root package,
will be misreported as a library internal call. Thus, changes
in interfaces exposed to sibling libraries will be missed by
LibScout. Even finding such cases with auxiliary information
besides the library API is hard, for instance, the OkHttp

1 // version 4.18.0 November 30, 2016
2 public static synchronized void sdkInitialize(...){}
3
4 // version 4.19.0 January 25, 2017
5 @Deprecated
6 public static synchronized void sdkInitialize(...) {
7 ...
8 // We should have an application id by now if not throw
9 if (Utility.isNullOrEmpty(applicationId)) {

10 throw new FacebookException("A valid Facebook app id
must be set in the AndroidManifest.xml or set by
calling FacebookSdk.setApplicationId before
initializing the sdk.");

11 }
12 ...
13 }
14
15 // version 4.26.0 August 24, 2017
16 // the same as 4.18.0

Listing 2. Evolution trace of sdkInitialize method.

changelog for the whole okhttp family does not mention
an internal Platform class renaming, since this class is not
supposed to be invoked from outside this library family.
To update the library based on API compatibility more
effectively, a more fine-grained matching filter for sibling
libraries and internal public interfaces should be applied
to the lib usage detection logic of LibScout, which would
very likely decrease the reported rate for updates to the max
version. For example, in this case, 3 out of 4 apps could still
be updated to the intermediate library version 3.3.1, the last
version before Platform renaming.

3) FacebookException: This exception is a Facebook cus-
tom exception that is thrown when an internal error hap-
pened in Facebook SDK. In our test set, 52 Facebook SDK
failure apps reported an application ID missing error during
SDK initialization after update to version 4.26.0 (the newest
Facebook SDK version in our repository) and the original
library versions vary from 4.0.1 to 4.17.0. Thus, the Facebook
SDK initialization must have changed with some version after
4.17.0. We look into the Facebook SDK upgrade guide and
find a description about upgrading 4.18.0 to 4.19.0:

”The Facebook SDK is now auto-initialized on Application
start. If you are using the Facebook SDK in the main process
and don’t need a callback on SDK initialization completion,
you can now remove calls to FacebookSDK.sdkInitialize.”

Source code analysis: To verify if this modification is
the main reason of failures, we check the source code of
Facebook SDK and discover that before version 4.19.0, the
Facebook SDK is usually initialized manually via interface
FacebookSdk.sdkInitialize (see Listing 2). The application ID
could be set either in AndroidManifest.xml file or setAp-
plicationId method. The ID could be set either before or
after sdkInitialize. However, starting from version 4.19.0,
interface sdkInitialize is labeled as deprecated, and now it
is called by Facebook SDK automatically without explicit
code invocation in host components. Deep within the ini-
tialization code, we find that the application ID must be
set before invoking sdkInitialize as shown in Listing 2 or
otherwise an exception is thrown. Thus, the application ID
should be set as early as possible to avoid any failure. In



1 // file assets/www/js/services.js
2 facebookConnectPlugin.api(’/me?fields=about,bio,
3 email,name,first_name,last_name&access_token=’ +

authResponse.accessToken, null, ...);

Listing 3. Graph Request in SnapOdo.

fact, to support automatic initialization, Facebook imported
a new ContentProvider component FacebookInitProvider in
4.19.0. ContentProvider components can be initialized at the
beginning of app launching ahead of any other components. By
invoking FacebookSdk.sdkInitialize in FacebookInitProvider,
the Facebook SDK can be initialized at a very early stage. In
a standard Facebook SDK integration, FacebookInitProvider in
Facebook SDK’s custom library AndroidManifest.xml file will
be merged with the app’s AndroidManifest.xml file during app
building, and the application ID should be configured in An-
droidManifest.xml file to ensure the application ID is available
during FacebookInitProvider initialization at app launching
time. Changes to the AndroidManifest.xml are excluded from
our test settings, and all the original library SDK configuration
is kept as in the original app. Thus, some apps with lower
library versions that set the application ID after invoking
sdkInitialize will fail with the newer library versions.

B. DroidMate Finding

To explore the incompatibility of libraries beyond crashes,
we investigate the case for which we found a deviation in
the runtime behavior in the DroidMate test after updating the
Facebook SDK library. The Facebook SDK of app SnapOdo
is updated from version 4.15.0 to the latest version 4.26.0
and after that failed to login to the facebook account. From
the official changelog, we know that a Graph API upgrade
occurred in version 4.16.1. According to the changelog of
Graph API version 2.8, some deprecations happened, including
the removal of a ”bio” field on the User node. In Android
apps, GraphRequest is usually created by either JavaScript or
Java code integration with some fields defined in the graph
path string. We decompile the SnapOdo package and find
the GraphRequest creation in a JavaScript file as shown in
Listing 3. The usage of the ”bio” field is incompatible with
the new Graph API used in newer Facebook SDK versions
and leads to the login failure in this app. This case reflects
potential updating obstacles beyond API-compatibility. For
both integration options, field ”bio” works just as a part of a
string parameter that is definitely out of the range of LibScout
detection.

C. Case Study

From those failure cases, we noticed that even though
the APIs of different library versions are compatible, some
internal execution logic changes could prohibit a simple drop-
in update. We use the factors discovered in case of the
Facebook exception as a case study and perform a large-
scale analysis to evaluate the prevalence of such impeding
factors for drop-in replacements in other libraries. It is worth
noting that 1) Facebook SDK labeled interfaces which are not
recommended to use after some updates with a ”deprecated”
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annotation instead of removing them directly, which puts
them outside of LibScout’s API compatibility analysis; 2) a
drop-in update cannot change the configurations defined in
AndroidManifest.xml file, which could be different between
different versions.

Deprecated methods: We carried out a statistical analysis
of the source code of 1430 different versions of 44 open
source libraries that we gathered from maven repository. We
extend javadocextractor8, which is a wrapper of javaparser9,
to check the occurrence of deprecated interfaces in libraries.
We find that 32 of 44 (72.73%) libraries have deprecated
methods. Among all those libraries with deprecated interfaces,
24 of them have deprecated interfaces present in more than 5
versions, which indicates the prevalence and permanence of
deprecated methods. Figure 7 lists the deprecated API details
for 10 libraries. To quantify the impact of those deprecated
methods in real-world apps, we compared those deprecated
interfaces that exist in more than 5 library versions with
library invocation calls detected by LibScout from a more
extensive app repository which contains 9,902,533 profiles for
2,041,017 apps. Since an interface is usually used before being
deprecated, we also distinguished the usage situation for both
non-deprecated versions and deprecated versions. Our results
show that 20 of 24 libraries, 158 APIs in total, are detected as
used in real-world apps. In those 20 libraries, 15 of them with

8https://github.com/ftomassetti/javadoc-extractor
9https://github.com/javaparser/javaparser



TABLE III
LIBRARY MANIFEST CHANGES ACROSS DIFFERENT VERSIONS.

Manifest Entries #Changed Cases #Library Concerned

Activities 16 ACRA, CleverTap, Facebook-Audience, Facebook, HockeyApp, Paypal, braintree-payments, leakcanary, vkontakte
Services 7 ACRA, MapBox, Parse, braintree-payments
Content Providers 2 ACRA, Facebook
Broadcast Receivers 3 CleverTap, vkontakte
Permissions 10 ACRA, CleverTap, Facebook-Audience, HockeyApp, Parse, Paypal, braintree-payments, leakcanary

TABLE IV
RULES TO IDENTIFY INCOMPATIBLE UPDATES WHEN CONSIDERING OUR DISCOVERED FACTORS.

Library Side Effect Original Version Update Version Features

OkHttp AbstractMethodError = 3.0.0-RC1 > 3.0.0-RC1 Existing host implementation of okhttp3.Callback
OkHttp ClassNotFoundException < 3.4.0-RC1 >= 3.4.0-RC1 Using library LoggingInterceptor together with OkHttp.

Facebook Sdk FacebookException < 4.19.0 >= 4.19.0 Invoking sdkInitialize without either invoking setApplicationId or
defining applicationId in AndroidManifest.xml.

Facebook Sdk Login Failed < 4.16.1 >= 4.16.1 Using field ”bio” in graph requests.

TABLE V
RESULTS OF LIBRARY UPDATABILITY RE-ESTIMATION(* INDICATES RE-ESTIMATION RESULTS).

Library #Apps #Updatable #Latest Updatable *#Updatable *#Latest Updatable

OkHttp 104,046 97,176 (93.40%) 45,962 (44.17%) 94,550 (90.87%) 37,934 (36.46%)
Facebook Sdk 199,007 187,191 (94.06%) 145,817 (73.27%) 187,189 (94.06%) 134,035 (67.35%)
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Fig. 9. Number of apps that use public deprecated APIs (exist in more than
5 versions) and their usage (total vs. with ”deprecated” label).

94 (59.49%) APIs in total, are used under deprecated status.
Figure 8 shows the target API usage details and highlights the
deprecated usage for 15 libraries. The amount of apps affected
by deprecated APIs is also remarkable. In our results, 561,671
app profiles are reported containing target API calls, while
47,966 of them include those calls under deprecated status.
Figure 9 lists the number of apps that include target APIs under
deprecated status for 15 libraries. From the results above, we
can see that most of the libraries have deprecated methods.
A deprecated method is supposed to be removed in the near
future, but based on our results, those methods usually remain
for an extended period, which gives developers the chance
to keep using outdated code and also brings false positives to
API-compatible library updating. The prevalence of deprecated
cases further shows that a plain drop-in replacement cannot

work as good as expected.
Manifest changes: Usually, library developers define nec-

essary components and permissions in library manifest files
which will be automatically merged with the app’s manifest
file when building the app with Gradle. This process could be
opaque to app developers. In a drop-in replacement library
updating, those manifest modifications, e.g., FacebookInit-
Provider registration in our test, will be ignored since no app
rebuilding is performed. This can impede the library updating
as we have discovered for the Facebook SDK. To gain insights
on the extent of this problem, we gathered 362 Android
Archive packages (i.e., manifest plus code) for 15 libraries and
analyze the component and permission changes in manifest
files across different versions. The result is shown in Table III.
Among all 15 libraries, 16 Activity changes happened in
9 libraries, 7 Service changes happened in 4 libraries, 2
ContentProvider changes in 2 libraries, 3 BroadcastReceiver
changes in 2 libraries, and 10 permission changes in 8 libraries.
In other words, 11 out of 15 libraries have at least one entry
modified between versions. These frequent changes indicate a
high potential for incompatible drop-in replacements despite
API compatibility.

D. Library Updatability Re-Estimation

Our dynamic testing results reveal that failed library updates
come from both flaws in the LibScout tool and library internal
changes. Our case study confirms the prevalence of those
factors across different libraries. The API-compatibility based
updatability rate reported by LibScout should be adjusted.
Here, we set OkHttp and Facebook SDK libraries as two typ-



ical examples and re-estimate the API-compatible based up-
datability rate after considering the discovered factors. We use
the same app set as in our automated UI tests (332,432 apps in
total). First, we gathered the theoretical API-compatible based
updatability rate according to the compatibility definition of
LibScout [14]. Then, we create rules to identify apps with
incompatible library updates when considering our findings,
as shown in Table IV. Lastly, we scan app profiles and filter
out all the apps that match one of the rules. Method call
information like sdkInitialize and setApplicationId is gath-
ered by LibScout already, we only need to extend it with
host interface implementation checking, manifest metadata
(applicationId), and JavaScript analysis results (field ”bio”).
Considering field ”bio” can be added to graph requests through
not only JavaScript but also Java code, we take advantage of
the Artist [15] tool to filter any field ”bio” usage in graph re-
quest construction relevant string flows. The final re-estimation
results are shown in Table V. We find that the updatability
rate varies between 93.40% to 90.87% for OkHttp and stays
(94.06%) for Facebook SDK. However, the updatability rate
to the latest version varies more significantly between 44.17%
and 36.46% for OkHttp and between 73.27% and 67.35% for
Facebook SDK. The re-estimation result exhibits a decrease of
the updatability rate compared to plain LibScout, in particular,
the latest version updatability rate, when taking our discovered
impeding factors into consideration. With runtime app behav-
ior profiling, we find that a drop-in replacement for library
updates is technically possible, but if a functioning continuous
updating model is expected, the joint efforts from library
developers, app developers, and LibScout tool developers are
necessary to address those factors.

VI. DISCUSSION

We discuss the limitations and prospects of our study.

A. Research Sample

We used three libraries from different categories for our
study. Although those are popular libraries, their results might
not generalize and cover all kind of potential problems.
However, our work still revealed important issues of library
updates and shows that API-compatibility alone is not a good
indicator for library updates. Further, we investigated 1.4k
other library versions and 2M real word apps for identical
problems and could confirm the prevalence of those problems,
which we think makes them representative. Moreover, scaling
the analysis to larger-scale and more intricate problems is
naturally limited by the small-scaling of dynamic testing.
Future work could investigate certain problem classes in a
focused way.

B. Entangled Dependencies

A crucial observation of our tests is entangled dependencies
between different libraries and even the host app. For instance
Figure 10: both the app and the library La depend on library
Lb. When updating La, not only Callha but also Callab should
be taken into consideration. A more complicated case is that

Fig. 10. An example of entangled dependencies inside an app.

the host application creates an object from secondary depen-
dency Lb and passes it to La as a parameter. It is not supported
by our classloader customization based test framework. API
static analysis result from our test samples shows that 1.7% of
library APIs could be affected by this problem and also two
failure cases in the unknown crashes of the dynamic test are
confirmed to be related to this problem. This exceptional case
is the limitation of our framework setting, but we here only
focus on incompatibility cases brought by library updating.
The crash cases reported in Section V are not affected by this
exceptional case. Apart from that, our framework ensures that
all dependencies are correct for host app and updated library
respectively since the original library and its dependencies
are still in the app. Obviously, the numbers reported in
previous Section V-D are an optimistic estimate when no
direct dependency conflicts occur. The situation for entangled
dependencies in real-world might be far from desirable. We
looked into the impact of dependencies on library updatabil-
ity. We crawled library dependency information from Maven
Repository10 and limit a library’s possible update to only
versions that share the same dependency set with the original
one. Compared to a purely API-compatibility based update,
this API/dependency-based update shrinks the updatability rate
significantly. The rate for the same 332,432 apps reduces
by 47.95% (93.40%-45.45%) for OkHttp, 40.37% (94.06%-
53.69%) for Facebook SDK, and 36.38% (99.94%-63.56%)
for Facebook Audience. This multiple dependency situation is
not a corner case. Static analysis of those apps shows that
57.50% of the apps that integrate OkHttp have invocations
to OkHttp’s dependencies in either their host code or other
libraries and even 96.03% for Facebook SDK and 97.76% for
Facebook Audience. Hence, whether a lib can be updated in
reality might also be constrained by further dependencies by
other libs or app code to its own dependencies and, hence, in
case of a conflict, prevent an update of the target lib without
doing extensive updates of other libraries (potentially creating
a ”dependency hell”).

C. Framework and UI-based Testing Limitations

Although very carefully designed to avoid errors/crashes of
the apps and libraries due to erroneous drop-in replacements,
we cannot entirely exclude that some of the crashes of apps
come from our framework, since it is unrealistic to debug all
the failed apps from our testing. However, our investigation
focused on those crashes with clear problems stemming from
the library integration and internal changes. Further, we only
test control flows starting at Activities and achieve with this

10https://mvnrepository.com/



on average 35% app block coverage. Thus, our results form a
lower bound on the potential problems of the tested libraries.
The emphasis of our work is on confirming the existence
of API-compatibility based update problems and identifying
advice for future library update tool developers/researchers
about what impedes library updatability.

D. Efforts from Multiple Parties

The main idea of this work is evaluating ways of (sup-
porting developers in) maintaining dependencies, starting with
evaluating the feasibility of drop-in updates and discussing the
relevance of our results for library updatability. Our discovered
problems are intricate, and hence any support for automatic
lib updates or even tools that help developers in making a
judgment of the library updatability have to consider those
non-trivial problems, e.g., clear connections to changelogs,
changed data structures, or code annotations. Multiple parties
are involved in the library update chain and there is a call for
action to better support lib updates in the mobile ecosystem,
including better tools for app developers to judge and realize
library updates or a call to system vendors to rethink the static
linking of libraries in favor of more dynamic approaches (e.g.,
on Linux) that not only can profit compartmentalization of
third-party code [29] but also its updatability.

E. Updating in Automated App Testing

In our DroidMate test, we observed a case of a highly
non-deterministic app that resulted in exploration noise. The
reason for the non-determinism is that the app has a lot of
random actions, for example, loading different advertisements
in different runs. Considering that our update framework opts
in library updates as a replacement of the original library
without any actual app code modification, we plan to inves-
tigate the possibility of migrating our lightweight framework
to blacklisting unwanted libraries in automatic app testing.

VII. CONCLUSION

Outdated third-party libraries are prevalent in apps. To
alleviate the unpleasant situation, prior work suggested an
API-compatibility based library update solution using drop-
in replacements of outdated libraries. In this paper, we study
the library updatability using such drop-in updates. We imple-
mented a library update framework for Android and used it on
3,000 real-world apps for 3 popular libraries. Using dynamic
testing of those apps, this gave us insights into the runtime
behavior of an API-compatibility based updating solution. To
discover more intricate incompatibility cases, an automated
user interface testing was carried out on 15 apps both before
and after library updates. Our tests revealed intricate factors
that prevent a drop-in replacement of libraries. Studying the
source code of libraries that failed to update and using static
app analysis, we confirm the prevalence of those problems
in other libraries. Our re-estimation of prior estimates of the
library updatability rate under consideration of the discovered
impeding factors shows a decrease in the rate by more than
half due to entangled library dependencies. This work is

the first to confirm the existence of API-compatibility based
update problems and can provide valuable insights for future
library update tool developers/researchers on what should be
taken into account when updating libraries.
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