
Secure Multi-Execution in Android
Dhiman Chakraborty

CISPA Helmholtz Center for
Information Security, Germany
Saarland University, Germany

dhiman.chakraborty@cispa.saarland

Christian Hammer
University of Potsdam, Germany
hammer@cs.uni-potsdam.de

Sven Bugiel
CISPA Helmholtz Center for

Information Security, Germany
bugiel@cispa.saarland

ABSTRACT

Mobile operating systems, such as Google’s Android, have become
a fixed part of our daily lives and are entrusted with a plethora
of private information. Congruously, their data protection mech-
anisms have been improved steadily over the last decade and, in
particular, for Android, the research community has explored var-
ious enhancements and extensions to the access control model.
However, the vast majority of those solutions has been concerned
with controlling the access to data, but equally important is the
question of how to control the flow of data once released. Ignor-
ing control over the dissemination of data between applications or
between components of the same app, opens the door for attacks,
such as permission re-delegation or privacy-violating third-party
libraries. Controlling information flows is a long-standing problem,
and one of the most recent and practical-oriented approaches to
information flow control is secure multi-execution.

In this paper, we presentAriel, the design and implementation of
an IFC architecture for Android based on the secure multi-execution
of apps. Ariel demonstrably extends Android’s system with sup-
port for executing multiple instances of apps, and it is equipped
with a policy lattice derived from the protection levels of Android’s
permissions as well as an I/O scheduler to achieve control over
data flows between application instances. We demonstrate how
secure multi-execution with Ariel can help to mitigate two promi-
nent attacks on Android, permission re-delegations and malicious
advertisement libraries.

CCS CONCEPTS

• Security and privacy → Information flow control; Mobile

platform security; Information flow control;

KEYWORDS

Android, Information flow control, secure multi-execution

ACM Reference Format:

Dhiman Chakraborty, Christian Hammer, and Sven Bugiel. 2019. Secure
Multi-Execution in Android. In The 34th ACM/SIGAPP Symposium on Applied
Computing (SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3297280.3297469

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297469

1 INTRODUCTION

Google’s Android is currently the most widespread [46] mobile
operating system. This has made Android popular beyond the com-
mon use-cases for end-users, including multi-purpose devices for
work tasks or even deployment in settings with higher security
and privacy settings. This has posed a challenge on how to secure
data with multiple security domains of distinct trust and access
levels. The research community has proposed a range of solutions
to domain isolation and also Google begun supporting isolation of
data and apps assigned to distinct (work) profiles [19].

However, Android’s vanilla design and past solutions to extend
Android’s security have been primarily concerned with control-
ling access to data. Equally important is the question of how to
control the flow of data once released to an app—a longstanding
challenge. Specifically for Android, approaches to information flow
control (IFC) have considered distributed IFC [32], static and dy-
namic taint tracking [4, 13, 25, 29, 49], control along user-interface
flows [33], or control between application components [6, 50, 52].
Unfortunately, in a practical deployment beyond restricted use-
cases [33] and with a strong attacker model, those approaches fall
short. Relying on security-critical code within (untrusted) applica-
tion sandboxes [13, 25, 49, 50] has been shown to be very hard if
not infeasible to achieve [23]; while frequent inter-app communica-
tion, that is encouraged by Android’s system, can easily lead to an
explosion of dynamic taint labels [32]. Often IFC-based solutions
do not incorporate the existing permission system but establish
parallel access control. Another paradigm of providing security
is by changing the application model to which app developers
have to adapt [12]. Those problems are not unprecedented outside
Android’s specific setting for information flow on commodity sys-
tems, as we discuss in more detail in Section 3. Building on past
experience from IFC for non-mobile devices, we propose in this
paper a new design direction to establish IFC on Android: the com-
paratively new instrument of secure multi-execution (SME) [11] to
achieve non-interference of information flows between Android
apps. SME already has shown good results in web browsers [11, 21]
and programming languages [27].

We present Ariel, an IFC framework in Android that imple-
ments secure multi-execution. With Ariel the execution of every
application process is labeled with a security level from a defined
security lattice. In particular, we extend Android’s vanilla design to
allow one instantiation of every app per security level (i.e., multiple
executions of apps). Ariel is accompanied with a secure sched-
uler, embedded inside Android’s framework, and controls the data
flow between different instances of multi-executing applications.
Realizing the policy enforcement through our scheduler inside
the Android framework forms a reliable, non-bypassable reference
monitor protected by a strong security boundary and preserves

1934

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249328039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

backwards compatibility from the app developers’ point of view.
The security lattice is specified using a partially ordered data flow
model [10] and for our prototype presented in this paper we de-
rived the lattice from Android’s permission system. Due to the
limited number of Android permissions, Ariel does not face the
the problem of policy explosion even if the IFC lattice policy is
fine-grained. Nevertheless, our design can be easily retrofitted to
accommodate other security policies, for instance, deriving security
labels from application meta-data like signatures [44]. Using our
prototype, we show how Ariel can be helpful in protecting against
applications leaking data unintentionally (confused deputies) or
application components containing untrusted, over-privileged third
party code.

To summarize, this paper makes the following contributions:
• We show how to create a multi-execution environment for
any application and describe the technical challenges in
reaching this goal.

• We introduce Ariel, an information flow control solution
based on secure multi-execution. Ariel’s security lattice is
derived from Android’s permission system and we introduce
a secure scheduler as part of Android’s Intent-based inter-
app communication to direct flows to app instances of the
correct security label.

• We provide a proof-of-concept implementation of Ariel and
show how Ariel can help mitigate two very well-known
attacks, permission re-delegation and over-privileged adver-
tisement libraries.

2 BACKGROUND

In this section, we will briefly explain the technical background on
Android and non-interference.

2.1 Android

We start by providing background information on Android’s app
sandboxing, inter-app communication, and app launch process.

Application Sandboxing. All Android applications and system ser-
vices are sandboxed and isolated from each other in terms of pro-
cessing and storage. The sandbox is defined by the Linux UID
assigned at install-time, under which all apps’ processes are exe-
cuted, and applications manage their own private data directory. To
access resources outside their sandbox, applications have to request
permissions from the user. For instance, access to the device geo-
location or user’s data has to be explicitly requested. Most of those
permission-protected resources are managed and protected by dedi-
cated system services (e.g., LocationService) and only a handful are
managed and protected by the Linux kernel (e.g., low-level Blue-
tooth functionality or Internet sockets). Android Permissions are
further classified into different protection levels, namely: (1) Nor-
mal: protects data considered harmless for user privacy and does
not need any further approval by the user; (2) Dangerous: protects
privacy-sensitive data (e.g., making a call, taking pictures,and sev-
eral others) and requires explicit user-approval either at install time
(prior to Android v6) or at runtime (since Android v6); (3) Signature:
can only be granted to applications signed with the same developer
key as the app declaring such a permission; (4) SignatureOrSystem:

similar to Signature permissions but are also granted to apps signed
with the system OEM key.

Inter-app communication and app components. Android applica-
tions can breach the isolation between them in a controlled manner
through system-controlled channels, where Binder IPC is the pri-
mary inter-app communication channel. To ease the use of inter-app
communication via Binder IPC, Android provides a stack of abstrac-
tions, where Intent messages form the highest level of abstraction.
Intents are message objects that describe an operation to be per-
formed and optionally contain a payload. When sending an Intent,
the receiving component can be explicitly stated or be implicitly
inferred from the Intent attributes. Whether an Intent message is
successfully delivered to a suitable receiver can be constraint by
permissions required by the sender and/or receiver.

An application can have four types of components accessed via
IPC by other applications: (1) Service: Runs in the background and
can be started with Intents or be bound to in order to make syn-
chronized remote procedure calls. Service is used for long running
processes that do not need to run in foreground. (2) Activity: Pro-
vides user interfaces and can be started with an Intent. Generally
an Activity is associated with one user-interface layout. (3) Broad-
castReceiver: Runs in background and handles broadcast Intents.
(4) ContentProvider : Provides access to locally stored, structured
data through an SQL-like interface. Although logically the inter-
app communication happens directly between the components of
different apps, all such communication has to be routed through the
ActivityManagerService (AMS), which resolves the corresponding
receiver component(s) and also enforces any potential permissions
required by either sender or receiver of the message. As such, the
AMS forms a reference monitor for inter-app communication that
cannot be bypassed and that executes behind a strong security
boundary.

Application Launch. In Android, all application processes are forked
from a "warmed-up," empty application process called zygote that al-
ready pre-loaded all necessary user level libraries. Upon application
launch, Android forks the zygote process and loads the application
into the newly forked process. The zygote process requires root
privileges for its operation and before handing control to the loaded
application code, all the privileges of the newly forked process are
changed according to the granted permission of the loaded app
using a setUID syscall to change from root to the app’s UID.

2.2 Non-Interference

If a user wants to keep data confidential, she can define policies,
such that the data tagged confidential will be invisible to other
users. This includes data affected by the confidential data as well.
This policy allows a program to modify private data as long as it is
not leaking any part of it [40]. The policy that governs this kind of
data accesses is called a non-interference policy [17]. An attacker is
allowed to see public data as output but not confidential data. The
usual way of showing a program is non-interfering is by showing
that the attacker is unable to distinguish the output between two
runs of the program that differ in their confidential input [18].

1935

3 RELATEDWORK

We present and discuss related works on Android security exten-
sions, general non-interference through IFC, IFC and process centric
policies in Android, and de-centralized IFC in Android.

3.1 Android Security Extensions

Over the last decade [1], a variety of Android security extensions
have been brought forward. At this point, we focus on the exten-
sions we deem most relevant for our work. For instance, Scippa [7]
and Quire [12] made the call chain of inter-app communication
available to IPC message receivers, allowing them to detect un-
trusted input and commands from unauthorized apps that have
been relayed (e.g., via deputy apps). However, Quire relies on app
developers for forwarding this information, while Scippa tries to es-
tablish the chains system-centric but still has to rely on code within
application sandboxes. Hence, both approaches are not ideal for con-
trolling information flows. With IPC inspection [15] the permissions
of IPC receiving apps are reduced to the intersection of their permis-
sions with those of the sending application. To better support par-
allel calls, receiver apps are also multi-instantiated. However, this
solution targets specifically the problem of confused deputies by pre-
venting a receiver app from exercising privileges its caller does not
hold. Different solutions addressed the problem of over-privileged,
privacy-invading advertisement libraries [9, 14, 20, 45, 47]. Gener-
ally the solution is to establish privilege separation between the
application and the ad-library by executing the library in a dif-
ferent process under a different UID with distinct permissions.
For instance, AdDroid [35], AdSplit [42], CompARTist [26], and
AFrame [55] implement this solution. In contrast, IFC with Ariel
does not separate the privileges, but controls data flow to and from
the library execution, hence preventing a library from misusing its
inherited permissions.

3.2 Non-interference through IFC

IFC helps enforcing data flow channels between two or more secu-
rity principals in the system according to policies. Enforcing IFC
policies has been an active area of research since the introduction of
the Bell-LaPadula or BIBA models for security enforcement and the
most commonly targeted policy of IFC is to ensure non-interference.
Two of the very well known flow enforcement techniques are
1) static information flow, using language-based technologies and
type systems [4, 6, 29, 40, 51, 52, 54] ; and 2) dynamic information
flow, using runtime monitoring techniques [5, 24, 34, 41]. But there
is an elemental conflict between static and dynamic analysis. It
is very hard to provide enough conviction to prove superiority of
one over the other [39], since they suffer the usual drawbacks of
dynamic and static analysis techniques. Although intuitively dy-
namic information flow enforcement seems more accurate due to its
capability to handle information flows at runtime with real inputs,
the execution paths that are not taken by the current execution are
impossible to observe and it is hard to reason that the enforcement
will in fact enforce the policy correctly on all paths. In contrast,
static analysis inherently includes all possible execution paths, but
often ends up with an over/under estimation of the result due to
the absence of real inputs and the inherent drawbacks of statically

analyzing code. To bridge the gap between static and dynamic anal-
ysis, SME was introduced [11, 22]. In contrast to monitoring data
leakage at runtime or detecting leaks in a program statically before-
hand, secure multi-execution prevents any data leaks during the
execution of the program by considering the program code as black-
box that is neither instrumented for runtime analysis nor verifiable
beforehand. Due to this reason, preventing leaks during program
execution demands strict policies implemented in the operating
system and a reliable reference monitor to enforce the policies. Our
approach is integrated into the operating system [14, 32], enforcing
a runtime security protocol and treating application sandboxes as
blackboxes, as we explain in more detail in Section 5.

3.3 Information flow control in Android

There are different approaches for information flow control based
security for Android. R-Droid [6] leveraged static analysis with
optimized slicing. FlowDroid [29], IccTA [4] implement static taint
tracking for Android applications. TaintDroid [13] implements a
dynamic taint tracking system to detect (undesired) data flows be-
tween applications. AppFence [25] extends TaintDroid to not only
track data but also enforce security policies that restrict the flows
of the tainted data. However, both TaintDroid and AppFence rely
on taint tracking and propagation logic within the untrusted appli-
cation sandboxes, putting their reliability at high risk. MOSES [38]
shows an implementation of context aware security profiling be-
tween different types of data groups, i.e., private and corporate.
The segregation of data is done by virtualization and directory
poly-instantiation. But only one security-profile is active at a time,
requiring a high frequency of context switching between security
profiles if used for IFC or very fine-grained security policies.

3.4 Secure Multi-Execution

SME is a new instrument in the information flow control toolbox.
SME was first introduced by Devriese and Piessens [11]. They in-
troduced SME with a small example implementation in the Google
Chrome V8 benchmark suite. The first full-scale browser proto-
type of SME is FlowFox [21]. FlowFox enforces policies to mitigate
three types of threats: 1) leaking session cookies, 2) history sniffing,
and 3) library tracking. Although Flowfox has substantial memory
overhead, it proved that a powerful and precise policy lattice can
refine the same-origin policy yet being compatible with existing
websites.Monad ME [27] has an SME implementation in the Haskell
compiler. An extensive proof on SME was done by Rafnsson and
Sabelfeld [37]. But an implementation of multi-execution based on
a security policy architecture is still absent in the mobile operating
system domain. We will provide more technical background infor-
mation on SME in the context of our system design in the following
Section 4.

3.5 Multiple faceted information flow

Austin et al. [5] presented Multiple Facets (MF) for dynamic infor-
mation flows as a novel information flow security in a dynamic flow.
MF uses faceted values, one for each security level. In MF, assign-
ment to a public variable in a context depending on a secret value
is skipped (based on Fenton strategies [16]). If the faceted values
are implemented properly, MF can simulate SME with the primary

1936

Program
High Input High Output

Low Input Low Output

Figure 1: Normal execution with non-interference for a se-

curity lattice with two levels.

benefit of providing higher performance. Still, an attacker might
deduce high information based on program termination. In compar-
ison to SME, MF only can guarantee termination-insensitive non-
interference, which is a strictly weaker property than termination-
sensitive non-interference [8], guaranteed by SME

3.6 De-centralized IFC (DIFC)

DIFC was first introduced by Myers and Liskov [31]. DIFC works
by labeling all variables, objects, storage locations, and so on that
are known as slots that store values. The model represents users
and authoritative entities as principals. The label on a value cannot
be changed but a new instance of the value can be created with a
new label. There are a few implementations of DIFC available for
Android [28, 33, 53]. One implementation in Android that has the
most properties in common with our implementation of SME is a
DIFC implementation in Android byNadkarni et al., calledWeir [32].
Weir has two interesting aspects, 1) lazy poly-instantiation and
2) forking existing process. Weir first taints all applications with
security labels and upon an IPC call between application processes,
the receiving application process is forked with a null taint and
then its taint set updated with the taint of the incoming IPC call.
This creates more than one instance of the receiving application,
one with all the permissions and others with tainted access. This
will make the forked process available to the incoming IPC call with
limited privileges. However, this solution is limited by the number
of possible forks. If the IPC sender has too fine-grained taints, then
for each and every call a new receiver process will be forked (taint
explosion), clogging the system and degrading performance. It is
unclear from the current DIFC implementation how those poly-
instantiated processes are cleaned-up. In contrast, SME with a fixed
lattice has a finite number of required multi-instantiated apps and
hence a fixed upper-bound for the number of processes.

4 SECURE MULTI-EXECUTION IN ANDROID

In this section, we will briefly explain the general design pattern of
secure multi-execution (SME) and how it preserves non-interference.
We describe later in Section 5 how the theoretical concept of SME
can be coupled with Android’s system design.

General concept. Secure multi-execution consists of two parts:
(1) a multi-execution setup and (2) security labeling for data.

The labels define usually the confidentiality of data and are par-
tially ordered, where one label is above another label if it represents
a higher level of confidentiality. The security lattice defines the or-
der of the security labels and data is allowed to flow upwards [10].
For instance, public data can become be private but not vice-versa.
The main idea of SME is to execute a program multiple times si-
multaneously, where each of those program executions is related
to a different security label derived from the security lattice. The

Program
(High

Execution)

Program
(Low

 Execution)

High Input

High Output

Low Input

Low Output

N
or

m
al

 w
or

ld
 v

ie
w

Se
cu

re
 M

ul
ti-

Ex
ec

ut
io

n
vi

ew

Figure 2: Secure multi-execution with non-interference for

a security lattice with two levels.

input and output channels are also labeled with a security label, i.e.,
for each level exists a dedicated input/output channel. The level
of the input channels is the same or lower than the level of the
execution, but never higher. Referring to Figure 1 that is based
on a security lattice with two levels (high and low), the general
security or information flow control can be separated into the high
input channel (private data channel) from the low input channel
(public data channel) and similar for the output channel. If we turn
this "classical" scenario for non-interference into a secure multi-
execution of the program for non-interference between high and
low, the result looks like Figure 2. SME creates multiple execution
instances of the program, where the number of parallel executions
is dependent on the number of security levels the security lattice is
defined on. Here, for a lattice of two levels high (private) and low
(public), two executions high execution (hi-ex) and low execution
(lo-ex) are needed. As the security lattice defines that low data can
become high data anytime, but not the other way around, hi-ex
receives both high input and low input and low-ex receives only
low input. Similarly the output of the executions are also controlled.
Hi-ex is restrained from generating low output and lo-ex is barred
from generating high output. In this scenario, non-interference can
intuitively be established. If we compare Figures 1 and 2, keeping in
mind that the attackers knowledge is gathered based on input and
output channels, then SME does not change the classical setup: in
both cases there exists only two input and only two output channels.
However, in the non-SME setup, knowledge or instrumentation of
the source/binary code of the program is needed to ensure non-
interference of the execution, while in SME the program is purely
controlled on its input and output channels through reliable sched-
uling of the right program execution and relaying inputs/outputs
to the right channels and executions.

Dummy inputs. By default, the SME setup requires presence
of a dummy input for low execution in case only high input is
available in order to ensure complete functionality of the program.
By complete functionality, we mean, if in any case the unauthorized
execution requires sensitive input, otherwise the execution will
crash. To prevent the leak of high data as well as the crash of the
unauthorized execution, dummy inputs are mandated for SME. But
we can bend this rule in the specific case of Android, thanks to
Android’s non-dependency on different communication channels.
For example, it is not mandatory to provide an Activity to the

1937

Service component of an application to function properly, allowing
us to skip such dummy inputs.

4.1 Precision and Soundness of SME

An important question for this kind of solution is the preservation
of soundness and precision of the multi-executing application.

Soundness. Any program preserves non-interference under secure
multi-execution. In secure multi-execution, any instance of execu-
tion is labeled with a security level. It only can produce output at
that level. As a result, SME is sound, given correct scheduling of the
executions and correct forwarding of inputs and outputs between
the executions at different security levels.

Precision. If a program is non-interfering in normal execution, then
its behavior under a normal execution and under SME are the
same [11]. SME shows per-channel transparency for a secure program
(used similar to precision) [37]. This means if the original program
is secure then, from the view point of each channel, the sequence
of input-output events in a given run of a program is the same in
the original execution (Figure 1) and in SME (Figure 2).

Design considerations. Enforcing soundness and precision strictly
also benefits the design of our secure multi-execution solution on
Android. First, we do not want to modify application code. There
exists no standard way to provide security guarantees for security
modifications through injection. We want to ensure that if an appli-
cation is non-interfering in normal execution then it is safe under
SME execution also, thus our solution benefits from abstaining from
code injections as done in prior works. Second, we do not want
to provide an application-specific customized security lattice and
I/O channeling policy. Providing customized policies is impossible
without involving developers for millions of applications that can
potentially run on a mobile phone. Thus, we want to provide a
generalized lattice structure derived from Android’s permission
system. Re-using the permission system will help us not only to
keep our lattice small and limited in structure, but also to keep
it compatible with all applications. Third, every application is an
ensemble of custom written program code. It is impossible to create
a general framework that will work for every application by simply
injecting some standard security code. I/O channels are provided
and controlled by the operating system (including the middleware
on Android) and it is easy to control the I/O channel with policies
enforced by the operating system.

4.2 Classification and model selection

We have two different types of SME implementation available. One
enforces totality of input environment where there is always an
input present when the system needs it and the inputs are parsed
by a cooperative scheduling [11]. But this behavior does not help
us understand progress blocking interactive systems [36] (i.e., no
progress in control flow until a new input enters the system). An-
droid works in a non-total environment mode. The time that the
user or an application provides input is by default totally random.
To guarantee protection against attacks powered by varied input
presence, Rafnsson and Sabelfeld [37] introduced a non-total envi-
ronment of input. We followed this design as an obvious choice.

5 SYSTEM DESIGN OF ARIEL

Realizing secure multi-execution in Android requires 1) multi-
execution of application sandboxes and 2) a new component to
label the I/O channels to the multi-executing application processes.

5.1 Multi-Execution

Multi-executing Android apps requires modifications of the appli-
cation launching process in Android. At this point, we explain the
launching process in more technical details and elaborate on how
we extend it to create a multi-executing environment for an applica-
tion. Figure 3 depicts the application launch process upon receiving
a request from the user, e.g., the user clicked the app’s icon in the
application menu. By default, starting an application is equal to
starting an Activity of the application. The user’s request first is
caught by the Activity handler through startActivityForResult() (A
in Figure 3) and passed on to the Android instrumentation (B).
The instrumentation class starts the Activity through execStartEx-
ecute() and passes it to ActivityManagerService through Activity-
ManagerServiceProxy (C , D , and E). Once the launch request
enters the ActivityManagerService (AMS), ActivityStackSupervisor
serves the request for launching a new Activity and locks the target
application. Locking helps synchronize the application state, so
no other process can interfere. Then AMS checks if there already
exists any running process of the target application. If found, the
same PID of the process will be returned to answer the incoming
request (H). Otherwise, the request is passed to the zygote dae-
mon through Process (F and G). Zygote forks itself and returns
an empty application process into which the application code is
loaded (see also Section 2). Once the new application process is
available, AMS adds the PID to an application map along with the
application’s name that can be used to serve subsequent requests
for the same app faster (H). As a consequence, if on vanilla An-
droid, a multi-execution of an app is requested, simply the already
existing application process is being used, but no additional ap-
plication process is being started. After inspecting the application
launch process, we identified the startSpecificActivityLocked() func-
tion of the AMS as the most suitable candidate to extend the default
application launch process with support for multi-execution of ap-
plications. This function calls the zygote daemon to fork and span
new processes. We augment this default control flow by adding
an additional branch for multi-executing processes. The overall
design is depicted in Figure 4. Steps 1 through 3 correspond
to the steps A through E of the default control flow described
above for Figure 3. In our extended control flow, before checking
whether an application process already exists for the target appli-
cation (5), we check whether multi-execution is needed or not
for that target application. This is done by adding a new option for
multi-execution in the application settings. If multi-execution is
not opted in, the normal flow of application launch will continue
and follow the steps described earlier (7 through 11 in Figure 3).
If multi-execution is opted in (6), then AMS will send the fork
request to zygote (12 and 13). After a successful forking, this
results in two (or more) different application processes loaded with
the same application code (14 and 15).

While zygote does not stop us from starting multiple processes
for the same application, the process handling for applications

1938

onClick
Event

from user
Acitvity Instrumenttion

Acitvity
Manager

Proxy

Activity
Manager

Native

Activity
Manager
Service

Process Zygote

Application Sandbox Android Operating System

A B C D E F G

H

Figure 3: Default control flow to request launching a new Activity of an application, potentially involving starting a new

application process.

User Interaction

Activity

Instrumentation

AMS Multi
Exec

Process
?

old Pid new process

Process Zygote

New VM

New
Process

Process Zygote

New VM New VM

1

2

3
4

5

6

7 8 9

10

11

12

13

14 15

Figure 4: Control flow of ActivityManagerService to launch

new application processes, extended with support for multi-

execution of applications. Vanilla Android is marked in

white boxes and Ariel extensions in black boxes.

within theAMShas to be further extended to supportmulti-execution
of the same app. First, if one process for an application is avail-
able and a newly created one suddenly appears, Android will only
consider the one with highest PID for dispatching events to this
application or forwarding Intent messages. All other application
processes of the same app with lower PIDs will be cleaned by the
garbage-collector. To stop this functionality, we augmented the
mPidSelfLocked list of AMS, that stores the relevant PID for every
application, to accommodate more than one process PID of the
same application, identified by processName, PID, and in Ariel also
the security level of the process. This allows us to execute one
application process for every defined security level of the security
lattice. In the next section, we will talk about the policy lattice
we are using. Second, among the two processes, one should be in
foreground and the other one(s) should be in background (i.e., not
visible to the user). The UI of an application in Android is always
handled by the process with its highest PID. This behavior is deeply
embedded in default Android (e.g., within Android’s SurfaceFlinger
responsible for processing events from the touchscreen) and can
only be changed through invasive refactoring of Android’s low-
level code base. We utilize this constraint on the foreground app
in our definition of the secure component (high) of an application
(Section 5.4) and the lattice (Section 5.2).

5.2 Security Lattice

After having a multi-executing environment for Android apps, we
need a policy lattice implementation for enforcing IFC. Different
policies are imaginable that can dictate the form of the lattice, e.g.,
the common Bell-LaPadula that is also supported by SELinux’ Multi-
Level Security (MLS) extension in Android. However, plain Android,

Dangerous Normal

Null

HIGH

LOW

Figure 5: Security lattice derived from protection levels of

Android permissions

even with SELinux MLS, does not define a lattice, and for our Ariel
implementation we derive our lattice from Android’s permission
system by mapping the permission protection levels to security
levels (Figure 5). We focus on the normal and dangerous protection
levels, which are used for the pre-defined permissions available
to app developers and exclude signature or signatureOrSystem
permissions that are used internally to apps and the system but not
to protect user data. Thus, we enforce a non-interference between
high executions with access to user-private data and low executions
of untrusted code without such access. Our lattice has, hence, two
security levels. We will call the execution with all privileges as
Hi-ex and the execution with no privileges as Lo-ex. We need only
two executions due to our two stage lattice settings. The high level
of the lattice will cover both dangerous and normal permissions for
high. The low level will have no permission or Null. As dangerous
permissions ⊂ normal permissions ⊂ null permission, by severity and
access hierarchy, our simple lattice design is partial in nature.

We can easily achieve a process with null permission in Android
by marking it as an isolated process [2] that causes the process
to execute with no permissions at all. The process management
in the AMS uses an internal data structure called processRecord
to store such information about application processes. A process-
Record involves all the data needed to manage running applications
and to answer application requests for inter-app communication,
including all Activities running, all Services running, or all Con-
tentProvider connections this process is currently holding. We use
this data structure for the Lo-ex process by turning the isolated
flag to TRUE, effectively denying this process any permissions in
the system, since any permission check for an isolated process will
automatically be denied by the reference monitors in the middle-
ware. It should be noted clearly, that this extension of Ariel affects
only the enforcement in the middleware, e.g., within the AMS, lo-
cation service, etc., but not the enforcement of filesystem-related
permissions (e.g., Internet sockets, as explained in Section 2). Those
permissions are enforced by the Linux kernel and are not affected
by the isolated flag in the processRecord alone, but instead Android

1939

would by default execute an isolated component under a transient
UID and GID that has no filesystem access at all. Covering those
filesystem permissions in Ariel would require an integration of
the lattice into the enforcement by the kernel, e.g., integration with
SELinux MLS as proposed in Section 7.

5.3 Input/Output channel classification

In addition to multi-executing and labeling application processes,
SME requires I/O channeling and labeling of data. In Android, inter-
component I/O channels are based on Intent based communication.
For instance, starting an Activity, contacting a BroadcastReceiver,
or starting a Service require Intent-based communication between
sender and receiver application. All Intents are being routed be-
tween sender and receiver through the AMS, i.e., the AMS is a
mandatory "man-in-the-middle" for Intents and responsible for re-
solving the receiver of Intents using its internal app management
data and for delivering the Intent to the corresponding, authorized
receivers.

Among the four app components, we consider Intents to an
Activity as high input to the application of that Activity. This is
motivated by the fact that Activities form a user interface that in-
cludes user interaction on screen and that the high execution of
any multi-executed application is privileged to handle user-data,
i.e., should also involve the user. In alternative policy settings, this
design decision might change (e.g., if the security label of an ex-
ecution depends on the code contained within the execution, the
I/O channel label might depend on that). All other three channels,
Service, ContentProvider and BroadcastReceiver, are considered low
input to the multi-executing application. This is due to their hidden
nature for the user. A Service request, a ContentProvider request, or
a Broadcast does not need user interaction to communicate with
another component from another application. We embed this I/O
channeling inside the scheduler model of Ariel, as described in
the following section.

5.4 Securing Multi-Execution with

Lattice-based Security Policy

Through our extensions to the AMS, we achieved basic support for
multi-execution of applications, adding all instances of an app to
the AMS’ process records to use them separately. We also marked
the Lo-ex process as isolated and the Hi-ex process as Activities
holding all granted permissions of the app, and we created a secu-
rity lattice based on the permission protection levels. To actually
secure the multi-execution of apps and enforce non-interference, the
SME design demands a scheduling over the I/O channels between
Hi-ex and Lo-ex. To this end, we implemented an I/O scheduling
module embedded inside the AMS. The primary functionality of
this module is to intercept all the Intent-based communication to
and from an application that is routed through the AMS. Once
there is an incoming message request, our scheduler first detects
the destination of the request using the default receiver resolution
of AMS. Then it queries the process records by processName (by
default the application name) to get the associated PIDs. If only
one PID is returned, the destination process is not multi-executing
and the communication will take place as in default Android. But
if two PIDs are returned, it will consider the PID with higher ID

Attacker
Application

Benign
Application

(Confused Deputy)

Android

callingUid = AttackerUID
getLocation()

callingUid = AppUID
getLocation()

insufficient permission

LocationLocation

Figure 6: Permission re-delegation attack

as the Hi-ex and forward all the incoming communication (both
high and low). In Ariel, only the Activity response from the Hi-ex
will be returned to the sender application. The process with lower
PID will be considered as Lo-ex and all the low communications
will be forwarded to the Lo-ex calling process, but none of the high
communication. In summary, this scheduling implements the SME
with non-interference as depicted in Figure 2.

6 CASE STUDIES

We have implemented Ariel in Android 6.0 (Marshmallow). To
illustrate the benefits of Ariel for information flow control, we
present two case studies for the protection of the user’s privacy:
mitigating permission re-delegation attacks [15] and mitigating
data leaks from untrusted third party code [9, 14, 20, 45, 47].

6.1 Permission Re-delegation Attack

In our experimental setup we use a custom, privileged, benign ap-
plication in combination with a custom attacker app as a running
example for establishing SME. The benign app emulates a messag-
ing app with an Activity to read messages and with a service API
that leaks location data. Our attacker app retrieves the location
data through service requests to benign app without holding the
necessary permission to access location data itself (see Figure 6).
This is an illustrative case for a permission re-delegation attack [15],
a specialized case of the more general confused deputy problem,
where a privileged application is tricked into misusing its privileges
on behalf of another, unprivileged app. Here, the messaging app
leaks its privileges for accessing the location data by leaking the
corresponding data to the attacker app through an unprotected
Service interface. Equivalent cases have been identified in the liter-
ature [1]. In past works, this problem has been tackled, for instance,
by creating call-chains [7, 12] that allow the callee (here Android)
to detect deputies, by reducing the privileges of callees [15], or by
tainting data and enforcing policies on tainted data flows [13, 49].
As discussed in Section 3, those solutions come with their respec-
tive sets of drawbacks in practice (e.g., relying on code within the
application sandboxes or involving the app developer).

Mitigation using SME. We show how to mitigate this problem by
secure multi-executing the benign app. For the security lattice we
use the two level security lattice introduced earlier (see Figure 5),
where the Hi-ex holds both dangerous and normal permissions and
Lo-ex has no permission at all. Location data is by default protected
by a dangerous permission and hence labeled as high data. Our
lattice hence implies that the input flowing to low execution cannot
end up in any data protected by any kind of permissions.

When we run the benign application in SME mode the setup
looks like Figure 7. As described in our system design in Section 5,
the Ariel extension to the AMS realizes a scheduler that forwards

1940

Application
(Malicious) Scheduler

Application
(High)

Application
(Low)

Isolated

H1 H2

H3

L4
L5

L6

L7

L8

Figure 7: Mitigating confused deputy with SME

Application

Android
PMS

Android
AMS

Android
Service ipc(uid)

ipc(uid)

Advert.
Network

Web
Services

network

network Library

Figure 8: Advertisement library attack

inter-app communication between the attacker and benign app
and is responsible for filtering input/output to and from the benign
app according to the security lattice and labels of the execution
instances. For our experiment we have considered only Activity
and Service communication between apps. ContentProvider and
BroadcastReceiver can be easily accommodated in the scheduler by
intercepting the communication channels within the AMS.

In Figure 7, the attacker application sends an Activity request for
reading messages (H1) and a service request to get location data
(L4). Both requests are intercepted by the scheduler in the AMS,
since the AMS has to be a mandatory relay in this communica-
tion, hence allowing our scheduler to operate as a non-bypassable
reference monitor that is simultaneously behind a strong security
boundary (separated process from the attacker app). The scheduler
finds both the high and low instances of the multi-executing mes-
saging app. The scheduler sends the activity request to the high
execution of the messenger app (H2) and the service request to
the low execution (L7) as well as the high execution (L6). The
high execution answers back to the activity request with a result
to the scheduler (via H2). The scheduler forwards the activity
result to the attacker application as high output of a high input (
H3), but it will drop the service response from the high execution
considering it as low output of a high execution (high↛low in L8

). Further, the low execution of the messaging app cannot answer
the service request of get location due to its isolation and answers
back with an error that is does not have enough permissions (via
L7) and the scheduler forwards the error message to the attacker
app (L5). The attacker application receives the messages from the
messaging Activity as intended but it is unable to leak the location
data though the messaging application Service. This way we can
protect a benign application from acting as a confused deputy.

6.2 Malicious Libraries

A second attacker scenario we take as a case study are malicious
advertisement libraries. Advertisement libraries are frequently in-
cluded by app developers to monetize their applications, however,
those libraries have repeatedly been shown [1, 9, 35, 42, 47] to be a
hazard to the user’s privacy. In Android’s sandboxing model, those
libraries execute under the UID of their host application (i.e., there

Application
(HIGH)

Application
(ad-lib)
(LOW)

Scheduler Android

isolation

H1
H2

H3
L4 L5

L6

H7
H9 H8

L10 L11

User
Input

Figure 9: Mitigating malicious libraries using SME in combi-

nation with Android’s process component attribute.

is a lack of same origin policies as known from the web domain [43])
and hence they automatically inherit all permissions assigned to
this UID. By actively using those privileges, libraries have been
shown to leak user data to their servers without the user’s explicit
consent. This attack is depicted in Figure 8.

Mitigation using SME. Mitigation of malicious ad libraries with
SME is not as simple as mitigating the permission re-delegation
we presented in the last section. Unlike permission re-delegation
mitigation, where the multi-executing application receives external
input that can be unambiguously routed to and from the application
instances, in the case of libraries a clear separation between calls
from application code and library code to the Android services
(e.g., AMS, location, etc.) is necessary. Several research works have
shown good promise on separating library calls from application
code. The research ranges from separating the library code into
dedicated advertisement system services or apps [35, 42] to appli-
cation byte-code rewriting [26, 30, 48]. A similar, more straight
forward approach to achieve the same goal with SME can be based
on Android’s process attribute [3] for app components. A compo-
nent tagged with this attribute will execute in a separate process
with a different PID then the rest of the app components (i.e., sepa-
rate entries in the processRecords of AMS), but with the same UID.
Hence, on default Android, the separate process would still have the
same permissions as the app, however, when used in combination
with SME we can control the data flows to and from those separate
processes. With this setup in place, we can move library code into
Activity components executing in a separate process and apply
SME to prevent unwanted data flows to and from the library code.

Figure 9 presents this setup and the mitigation against data leaks
by malicious libraries. The main application code, with which the
user interacts, is labeled as high execution. When this code requests
access to another Activity (H1), the scheduler will forward this
request to AMS (H2) and return data on the high channel (H2

and H3). If the main application requests access to another Service
component (L4), this is a low request and the scheduler will block
the request due to violation of non-interference property (L5 and
L6). In contrast, the ad library is executing in a low, isolated process,
where all the service requests to and from the process and Android
will be denied due to isolation (L10 and L11). Additionally, the
low process could send an Intent to another Activity (low→high
flow in H7 and H8), but any potential return value from that
Activity would be dropped by the scheduler (violating high↛low
flow in H9). Lastly, if the advertisement process requests access to
another service component (L10 and L11), which could result in a

1941

data leak to the advertisement library (e.g., location, user contacts),
the scheduler will forward this request, but the Android system
services refuse cooperation with the isolated, low advertisement
process.

7 DISCUSSION & FUTUREWORK

Ariel is the first realization of SME in Android and its elegantly
simple implementation can establish well-known non-interference
policies between application processes, but it naturally suffers some
limitations like any other security extension. In this section, we
discuss those limitations and also point out alternative policies and
future work that we consider interesting.

Security levels vs. performance overhead. The current implemen-
tation of Ariel supports only two levels, namely, high and low.
Accommodating more levels is fundamentally not difficult. Using
a more fine-grained lattice than our lattice will help include more
security levels, between which non-interference can be enforced by
the scheduler. But this will increase the number of multi-executing
instances, ultimately leading to higher performance overhead, since
for every new security level another instance of the same app has
to be spawned. Thus, as with SME outside the Android domain, this
requires a careful trade-off between the granularity of the security
policy and the acceptable overhead. It should be, however, noted
that other solutions like poly-instantiations for DIFC (e.g., [32]) or
IPC inspection [15] scale badly.

Support for declassification. Ariel does not support any kind of de-
classification policies. This makes the system more restricted, limit-
ing the number of policies it can support. Rafnsson and Sabelfeld [37]
showed how declassification policies can be integrated in presence
of a fine-grained security lattice and extending Ariel with such
support is left for future work.

More channels and different policies. Our current implementation
does not consider the filesystem as I/O channel between application
processes, since in that case we need to embed the SME security
lattice policy in the kernel, which is managing this communication
channel. This can be a potential future work by extending the un-
derlying Linux kernel to become aware of multi-execution of apps.
A potential alley to this end could be an integration with SElinux
MLS to enforce a fine-grained security lattice that governs which
app instances can communicate with which other app instances
via the filesystem (i.e., the security levels of the lattice are reflected
in the SELinux MLS security levels) or even Binder IPC.

Further, our current lattice is derived from the protection levels
of permissions and hence this governs what we consider as high
and low security levels. For instance, Activities and communication
between Activities are considered high and hence any data can flow
between Activities. Different policies and strategies to derive the
lattice could be explored. As a concrete example, in Aquifer [33]
data flows are controlled along UI-flows, e.g., an email app Activity
sends an attachment to a reader app Activity for displaying, and
Aquifer reduces the privileges of the reader app to prevent data
leakage. In Ariel, using a different policy for the security lattice
could establish the same protection by ensuring that the attachment
is scheduled to the low execution of the reader app (e.g., based on
the type of the forwarded data payload).

8 CONCLUSION

The plethora and extent of private information that is concentrated
on today’s mobile phones necessitates rigid and reliable privacy
controls. Over the last decade, a broad spectrum of research works
has proposed valuable extensions to Android’s security architecture
to enhance the control over user-data, such as location, contacts,
media files, etc. While those works made valuable contributions
to improve Android’s security, the majority of the solutions was
concerned with controlling the access to data. However, equally
important is the control of how data, once released to an app, can
flow between different apps or even the components of the same
app with different trust levels. Neglecting control of the information
flow opens the door for attacks, such as permission re-delegation
or malicious advertisement libraries.

Information flow control is a long-standing problem in the secu-
rity community and very often the proposed solutions face intri-
cate problems, such as requiring developer support (which hinders
backwards compatibility or developer-independent deployment) or
inlined security-critical code (which is notoriously hard to protect
against a maliciously acting app developer), to name two practical
concerns. One of the newer tools in the toolbox for information
flow control is secure multi-execution, which treats processes as
blackboxes and enforces non-interference policies through secure
scheduling between different instances of the same program at
different security levels of a lattice.

In this paper, we presented Ariel, the first implementation of
secure multi-execution for Android. We solved the technical chal-
lenge of multi-executing Android applications and integrating a
scheduler into Android’s ActivityManagerService to enforce non-
interference of the data flows between the instances of applications
at different security levels. We showed how SME with Ariel can
help mitigate two well-known attacks on Android, permission re-
delegation and malicious advertisement libraries, and pointed out
future directions of SME on Android to support other use-cases
and further inter-app communication channels.

Acknowledgments. This work was partially supported by the
German FederalMinistry of Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy, and Accountability
(CISPA) (AutSec/FKZ: 16KIS0753).

REFERENCES

[1] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. SoK: Lessons Learned From Android Security Research
For Appified Software Platforms. In Proc. 37th IEEE Symposium on Security and
Privacy (SP ’16). IEEE Computer Society.

[2] Android Developer Docs. 2017. Android Manifest File: Service. https://developer.
android.com/guide/topics/manifest/service-element. Last visisted: 06/12/2018.

[3] Android Developer Docs. 2018. Android Manifest File: Activity. https://developer.
android.com/guide/topics/manifest/activity-element. Last visisted: 06/13/2018.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM.

[5] Thomas H. Austin, Thomas Schmitz, and Cormac Flanagan. 2017. Multiple Facets
for Dynamic Information Flow with Exceptions. ACM Trans. Program. Lang. Syst.
39, 3 (2017), 10:1–10:56.

[6] Michael Backes, Sven Bugiel, Erik Derr, Sebastian Gerling, and Christian Hammer.
2016. R-Droid: Leveraging Android App Analysis with Static Slice Optimization.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security (ASIA CCS ’16). ACM.

1942

[7] Michael Backes, Sven Bugiel, and Sebastian Gerling. 2014. Scippa: system-centric
IPC provenance on Android. In Proc. 30th Annual Computer Security Applications
Conference (ACSAC ’14). ACM.

[8] Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: Secure Multi-
execution and Multiple Facets. In Proc. 21st European Symposium on Research in
Computer Security (ESORICS 2016). Springer.

[9] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal Analysis
of Android Ad Library Permissions. CoRR abs/1303.0857 (2013). http://dblp.
uni-trier.de/db/journals/corr/corr1303.html#abs-1303-0857

[10] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun.
ACM 19, 5 (1976), 236–243.

[11] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure
Multi-execution. In Proc. 31st IEEE Symposium on Security and Privacy (SP ’10).
IEEE Computer Society.

[12] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.
2011. QUIRE: Lightweight Provenance for Smart Phone Operating Systems. In
Proc. 20th USENIX Security Symposium (SEC ’11). USENIX Association.

[13] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Proc. 9th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10).
USENIX Association.

[14] William Enck, Damien Octeau, Patrick McDaniel, and Chaudhuri Swarat. 2011. A
Study of Android Application Security. In Proc. 20th USENIX Security Symposium
(SEC ’11). USENIX Association.

[15] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In Proc. 20th
USENIX Security Symposium (SEC ’11). USENIX Association.

[16] J. S. Fenton. 1974. Memoryless Subsystems. Comput. J. 17, 2 (1974), 143–147.
[17] Joseph A. Goguen and JosÃľ Meseguer. 1982. Security Policies and Security

Models. In Proc. 3rd IEEE Symposium on Security and Privacy (SP ’82). IEEE
Computer Society.

[18] Joseph A. Goguen and JosÃľ Meseguer. 1984. Unwinding and Inference Control.
In Proc. 5th IEEE Symposium on Security and Privacy (SP ’84). IEEE Computer
Society.

[19] Google. 2018. Put Android to Work. https://www.android.com/enterprise/
employees/. Last visisted: 06/13/2018.

[20] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. In Proc. 5th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’12). ACM.

[21] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In Proc. 19th ACM Conference on Computer and Communication Security (CCS ’12).
ACM.

[22] Gurvan Le Guernic. 2007. Confidentiality Enforcement Using Dynamic Information
Flow Analyses. Ph.D. Dissertation. Kansas State University, United States of
America.

[23] Hao Hao, Vicky Singh, and Wenliang Du. 2013. On the Effectiveness of API-
level Access Control Using Bytecode Rewriting in Android. In Proc. 8th ACM
Symposium on Information, Computer and Communication Security (ASIACCS ’13).
ACM.

[24] Daniel Hedin and Andrei Sabelfeld. 2012. Information-Flow Security for a Core
of JavaScript. In Proc. 25th Computer Security Foundations Symposium (CSF ’12).
IEEE Computer Society.

[25] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart E. Schechter, and David
Wetherall. 2011. These aren’t the droids you’re looking for: retrofitting android
to protect data from imperious applications. In Proc. 18th ACM Conference on
Computer and Communication Security (CCS ’11). ACM.

[26] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. 2017. The ART
of App Compartmentalization: Compiler-based Library Privilege Separation on
Stock Android. In Proc. 24th ACM Conference on Computer and Communication
Security (CCS’17). ACM.

[27] Mauro Jaskelioff and Alejandro Russo. 2011. Secure Multi-execution in Haskell.
In Ershov Memorial Conference (Lecture Notes in Computer Science), Vol. 7162.
Springer.

[28] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. 2013. Run-Time
Enforcement of Information-Flow Properties on Android - (Extended Abstract).
In Proc. 18th European Symposium on Research in Computer Security (ESORICS
2013). Springer.

[29] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. IccTA: Detecting Inter-component Privacy Leaks in Android Apps.
In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (ICSE ’15). IEEE Press.

[30] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient Privilege De-
Escalation for Ad Libraries in Mobile Apps. In Proc. 13th International Conference

on Mobile Systems, Applications, and Services (MobiSys ’15). ACM.
[31] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Informa-

tion Flow Control. In Proc. 16th ACM Symposium on Operating Systems Principles
(SOSP ’97). ACM.

[32] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Prac-
tical DIFC Enforcement on Android. In Proc. 25th USENIX Security Symposium
(SEC’ 16). USENIX Association.

[33] Adwait Nadkarni andWilliam Enck. 2013. Preventing Accidental Data Disclosure
in Modern Operating Systems. In Proc. 20th ACM Conference on Computer and
Communication Security (CCS ’13). ACM.

[34] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens. 2015. Runtime
Enforcement of Security Policies on Black Box Reactive Programs. In Proc. 42nd
Symposium on Principles of Programming Languages (POPL ’15). ACM.

[35] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. Ad-
Droid: privilege separation for applications and advertisers in Android. In Proc.
7th ACM Symposium on Information, Computer and Communication Security
(ASIACCS ’12). ACM.

[36] Willard Rafnsson, Daniel Hedin, and Andrei Sabelfeld. 2012. Securing Interactive
Programs. In Proc. 25th Computer Security Foundations Symposium (CSF ’12). IEEE
Computer Society.

[37] Willard Rafnsson and Andrei Sabelfeld. 2016. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. Journal of Computer Security
24, 1 (2016), 39–90.

[38] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. 2012.
MOSES: supporting operation modes on smartphones. In Proc. 17th Symposium
on Access Control Models and Technologies (SACMAT ’12). ACM.

[39] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive
Security Analysis. In Proc. 23rd Computer Security Foundations Symposium (CSF
’10). IEEE Computer Society.

[40] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications 21, 1 (2003), 5–19.

[41] Fred B. Schneider. 2000. Enforceable Security Policies. ACM Transactions on
Information and System Security 3, 1 (Feburary 2000), 30–50.

[42] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separat-
ing Smartphone Advertising from Applications. In Proc. 21st USENIX Security
Symposium (SEC ’12). USENIX Association.

[43] Kapil Singh, Alexander Moshchuk, Helen J. Wang, and Wenke Lee. 2010. On
the Incoherencies in Web Browser Access Control Policies. In Proc. 31st IEEE
Symposium on Security and Privacy (SP ’10). IEEE Computer Society.

[44] S. Smalley and R. Craig. 2013. Security Enhanced (SE) Android: Bringing Flexible
MAC to Android. In Proc. 20th Annual Network and Distributed System Security
Symposium (NDSS ’13). The Internet Society.

[45] Sooel Son, Google Daehyeok, KimKaist, and Vitaly Shmatikov. 2015. WhatMobile
Ads Know about Mobile Users. In Proc. 23rd Annual Network and Distributed
System Security Symposium (NDSS ’16). The Internet Society.

[46] Statista. 2018. Mobile OS market share. https://www.statista.com/statistics/
272307/market-share-forecast-for-smartphone-operating-systems/

[47] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.
Investigating user privacy in android ad libraries. InWorkshop on Mobile Security
Technologies (MoST). IEEE Computer Society.

[48] Mengtao Sun and Gang Tan. 2014. NativeGuard: protecting android applications
from third-party native libraries. In Proc. 7th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’14). ACM.

[49] Mingshen Sun, Tao Wei, and John C. S. Lui. 2016. TaintART: A Practical Multi-
level Information-Flow Tracking System for Android RunTime. In Proc. 23rd
ACM Conference on Computer and Communication Security (CCS’16). ACM.

[50] Eran Tromer and Roei Schuster. 2016. DroidDisintegrator: Intra-Application
Information Flow Control in Android Apps. In Proc. 13th ACM Symposium on
Information, Computer and Communication Security (ASIACCS ’16). ACM.

[51] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type
System for Secure Flow Analysis. Journal of Computer Security 4, 2/3 (1996),
167–188.

[52] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14). ACM.

[53] Yuanzhong Xu and Emmett Witchel. 2015. Maxoid: transparently confining
mobile applications with custom views of state. In Proc. 10th European Conference
on Computer Systems (EuroSys ’15’). ACM.

[54] Steve Zdancewic and Andrew C. Myers. 2003. Observational Determinism for
Concurrent Program Security. In Proc. 16th IEEE Computer Security Foundations
Workshop (CSFW ’13). IEEE Computer Society.

[55] Xiao Zhang, Amit Ahlawat, and Wenliang Du. 2013. AFrame: Isolating Adver-
tisements from Mobile Applications in Android. In Proc. 27th Annual Computer
Security Applications Conference (ACSAC ’11). ACM.

1943

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190107091858
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

