
Ring Signatures: Logarithmic-Size, No Setup —
from Standard Assumptions

Michael Backes1, Nico Döttling1, Lucjan Hanzlik1,2, Kamil Kluczniak1, and
Jonas Schneider1

1 CISPA Helmholtz Center for Information Security
Saarland Informatics Campus

{backes,doetling,hanzlik,kamil.kluczniak,jonas.schneider}@cispa.saarland
2 Stanford University

lucjan.hanzlik@stanford.edu

Abstract. Ring signatures allow for creating signatures on behalf of an
ad hoc group of signers, hiding the true identity of the signer among the
group. A natural goal is to construct a ring signature scheme for which
the signature size is short in the number of ring members. Moreover, such
a construction should not rely on a trusted setup and be proven secure
under falsifiable standard assumptions. Despite many years of research
this question is still open.
In this paper, we present the first construction of size-optimal ring signa-
tures which do not rely on a trusted setup or the random oracle heuristic.
Specifically, our scheme can be instantiated from standard assumptions
and the size of signatures grows only logarithmically in the number of
ring members.
We also extend our techniques to the setting of linkable ring signatures,
where signatures created using the same signing key can be linked.

Keywords: ring signatures, linkable ring signatures, standard model

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman-Kalai [35] allow a
signer to hide in a crowd, or ring of potential signers. More specifically, the
signing algorithm of a ring signature scheme takes as additional input a list of
verification keys R and outputs a signature. Such a signature can be verified given
the ring R. The feature of interest of ring signatures is that given such a signature,
no one, not even an insider in possession of all the secret keys corresponding to
the verification keys in the ring, can tell which key was used to compute this
signature. The original motivation for ring signatures was whistleblowing, where
the leaking party can hide her identity and at the same time convince outsiders
that the leaked information is genuine (by using a ring composed only of people
with access to this information). In terms of security two properties are required
of ring signatures: unforgeability and anonymity. The first property requires
that an efficient adversary should not be able to forge a signature on behalf

2 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

of an honest ring of signers. Anonymity requires that signatures do not give
away by which member they were created. This can be cast as an experiment in
which the adversary has to guess which one out of two ring members created a
signature.

The notion of linkable ring signatures [29] is an extension of the concept
of ring signatures such that there is a public way of determining whether two
signatures have been produced by the same signer. Linkable ring signatures yield
a very elegant approach to e-voting [40]: Every voter is registered with their
verification key. To cast a vote, all a voter has to do is to sign his or her vote
on behalf of the ring of all registered voters. Linkability prevents voters from
casting multiple votes. This can even be turned into an augmentation of the
voting functionality by allowing voters to revote, where only the most recently
cast votes of a set of votes that link counts.

Recently, linkable ring signature have also drawn attention in the domain
of decentralized currencies, where they can be used to implement a mechanism
for anonymized transactions. Linkable ring signatures are, for instance, used
in a cryptocurrency called Monero [32], where they allow payers to hide their
identity in an anonymity set composed of identities from previous transactions.
Currently Monero uses a setup-free Schnorr based ring signature scheme [37]
where the size of signatures scales linearly in the size of the ring. To decrease
the size of the transaction by default Monero uses small rings, which provide
only a limited amount of anonymity. The anonymity definition for linkable ring
signatures needs to be different from the definition for standard ring signatures.
We will elaborate further on this topic below. In both of the above applications
two aspects are of the essence:

– The ring signature scheme should not rely on a trusted setup. Especially in
the e-voting application it is of paramount importance for the acceptance of
such a system that there cannot exist a trapdoor that enables deanonymiza-
tion of voters.

– For practical purposes, e.g. for elections with millions of voters, the size of
individual signatures should be essentially independent of the size of the ring
of signers.

1.1 Our Contributions

In this work, we provide the first construction of ring signatures which simulta-
neously

– does not rely on a trusted setup or the random oracle heuristic,
– can be proven secure under falsifiable standard assumptions, namely the

existence of non-interactive witness indistinguishable proofs [17, 4, 25, 8]
and additional standard assumptions such as the hardness of the Decisional
Diffie Hellman problem [18] or the Learning with Errors problem [34],

– has signatures of size log(`) ·poly(λ), where ` is the size of the ring of signers
and λ the security parameter.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 3

Our work therefore settles the problem of size-optimal ring signatures in the
standard model, which has been a long standing open problem. Furthermore, we
extend our techniques to the domain of linkable ring signatures, i.e. we construct
linkable ring signatures of size log(`) ·poly(λ) without setup and in the standard
model. Along the way, we introduce new techniques that enable us to use NIWI
proofs instead of NIZK proofs, which may be of independent interest.

As an additional contribution, we propose a stronger security model for link-
able ring signatures and prove that our linkable ring signature scheme is secure
in this model.

1.2 Our Techniques

To describe our scheme, it is instructive to recall the standard model ring signa-
ture scheme of Bender, Katz, and Morselli [6]. In the BKM scheme, a verifica-
tion key VK = (vk, pk) consists of a verification key vk for a standard signature
scheme and a public key pk for a public key encryption scheme. To sign a message
m given a signing key sk and a ring R = (VK1, . . . ,VK`), one proceeds as follows.
In a first step, locate verification key VKi∗ = (vki∗ , pki∗) corresponding to the
signing key sk in the ring R. Now compute a signature σ of m using the signing key
sk and encrypt σ under pki∗ to obtain a ciphertext cti∗ . Next, for all i 6= i∗ com-
pute filler ciphertexts cti as encryptions of 0λ under pki, where VKi = (vki, pki).
Finally, use a non-interactive3 witness-indistinguishable proof π for the state-
ment (m, ct1, . . . , ct`,VK1, . . . ,VK`) to show that there exists an index i∗ such
that cti∗ encrypts a signature σ and that σ verifies for the message m under the
verification key vki∗ . The ring signature is now given by Σ = (ct1, . . . , ct`, π). To
verify a signature Σ for a message m and ring R, use the NIWI verifier to verify
that π is a proof for the statement (m, ct1, . . . , ct`,VK1, . . . ,VK`).

We also briefly review how unforgeability and anonymity of this scheme are
established. To establish unforgeability, note that by the perfect soundness of
the NIWI proof π one of the cti must actually be an encryption of a signature
of m under vki. The security reduction can therefore set up all the pki such that
it knows the corresponding secret keys and decrypt the signature. Establishing
anonymity relies on witness indistinguishability of the NIWI proof system. That
is, the reduction can set up the signature Σ such that in fact two different ci-
phertexts cti0 and cti1 encrypt a valid signature (each under their corresponding
verification key). We can now use witness indistinguishability to switch the wit-
ness from index i0 to i1. Thus we can establish that signatures computed using
ski0 are computationally indistinguishable from signatures computed using ski1 .
The size of the signature is linear in the ring size `. There are two major obstacles
in making the size of the signatures sublinear:

1. The signature contains all the ciphertexts ct1, . . . , ct`.

3 Bender et al. [6] actually use 2-message public-coin witness-indistinguishable proofs
(ZAPs) rather than NIWI proofs, which is a slightly weaker primitive than NIWI
proofs.

4 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

2. The witness for the validity of statement (m, ct1, . . . , ct`,VK1, . . . ,VK`) is
also of size linear in `.

Reducing the number of Ciphertexts. Starting from the BKM scheme, our first
idea is that if we use an appropriate public key encryption scheme PKE, then
we do not need to include all the ciphertexts ct1, . . . , ct` in the signature, but
only two ciphertexts ct and ct′. The additional property we need from PKE is
that a ciphertexts ct cannot be linked to the public key pk that was used to
compute ct, unless one is in the possession of the corresponding secret key sk.
This property immediately holds if the public key encryption scheme PKE has
pseudorandom ciphertexts. In fact, many constructions of public key encryption
have pseudorandom ciphertexts, e.g. the classic ElGamal scheme based on DDH
[18] or Regev’s scheme based on LWE [34].

Our first modification is thus to compute ct by encrypting the signature σ
under pki∗ and choosing ct′ uniformly at random. We also compute the proof π
differently. Namely, we prove that for a statement of the form (m, ct, ct′,VK1, . . . ,
VK`) it holds that there exist indices i∗ and i† such that either ct is an encryp-
tion of a signature σ∗ of m with respect to the verification key vki∗ under the
public key pki∗ , or ct′ is an encryption of a signature σ† of m with respect to
the verification key vki† under the public key pki† . In this modified scheme, a
signature Σ = (ct, ct′, π) consists of the two ciphertexts ct, ct′ and the proof π.
Verification checks that π is a proof for the statement (m, ct, ct′,VK1, . . . ,VK`).
We will briefly argue that this scheme is still unforgeable and anonymous. First
observe that if the proof π for the statement (m, ct, ct′,VK1, . . . ,VK`) verifies,
then by the perfect soundness of the NIWI proof system either ct or ct′ must
encrypt a signature under a public key pki∗ or pki† respectively. Therefore, we
can again construct a reduction which knows all the secret keys corresponding
to the pki. This way, the reduction will be able to decrypt the signature σ from
ct or ct′. To show anonymity, we transform a signature computed with ski0 into
a signature computed with ski1 via a sequence of hybrids. In the first hybrid step
we will make ct′ an encryption of a signature σ1 of m with respect to the key vki1
under the public key pk1. This change is possible as the ciphertexts of PKE are
pseudorandom. Next, we will use witness-indistinguishability of NIWI to switch
the witness for the statement (m, ct, ct′,VK1, . . . ,VK`). The new witness shows
that ct′ encrypts a valid signature of m. This means that we do not need a wit-
ness for ct anymore. Thus, in the next hybrid steps, we replace the ciphertext
ct by a random string, and then replace this random string by an encryption of
the signature σ1 under the public key pki1 . In the next steps, we can switch the
witness we use to compute the proof π back to using the witness for ct, and in
the last hybrid we make ct′ uniformly random again. Thus, Σ is now computed
using ski1 .

Compressing the Witness. The bigger challenge, however, is reducing the size of
the witness for the membership proofs to linear in log(`). A natural approach
would be to prove membership of the verification key VKi in the ring via a
Merkle-tree accumulator (as e.g. in the ROM-scheme of [15]). In this approach,

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 5

one first hashes the ring R into a succinct digest h, and can then prove member-
ship of VKi in the ring via a log(`)-sized root-to-leaf path. To sign a message
under a ring R, the signer first hashes R into a digest h and computes a NIWI
proof π which simultaneously proves membership of his own key VKi in R via
a succinct membership witness and that ct encrypts a signature for VKi. To
verify such a signature, the verifier recomputes the root hash h for the ring R
and verifies the proof π. While this idea seems to resolve the above issue at first
glance, it raises serious issues itself. First and foremost, we will not be able to
prove unforgeability as above, as membership proofs for Merkle trees only have
computational soundness, but in order to prove unforgeability as above we need
perfect soundness. The problem is that an adversary might also produce a proof
by finding a collision in the Merkle tree instead of forging a signature. If, in fact,
we could use an NIZK proof of knowledge, then this proof strategy can be im-
plemented with routine techniques. NIZK proofs however need a setup, and we
only have NIWI proofs at our disposal. Moreover, for a Merkle tree to be bind-
ing it is necessary that the hashing key is honestly generated, as unkeyed hash
functions are insecure against non-uniform adversaries. Thus, it is also unclear
where the hashing key for the Merkle tree should come from. Consequently, the
Merkle tree approach seems fundamentally stuck in the standard model.

There is, however a loophole in the above argument. Upon closer inspection,
we actually do not need the Merkle tree hash function to be collision resistant.
Instead, we need a guarantee that the hash value h binds to at least one specific
value in the database, which is under the control of the signer. The key ingre-
dient we use to make the construction work is somewhere statistically binding
(SSB) hashing [27]. An SSB hash function allows to compress a database into a
digest h such that h uniquely binds to a specific database entry. More specifically,
the key generator for a SSB hash function takes as an additional input an index
i∗ and produces a hashing key hk. When a database db is hashed into a digest
h using the hashing key hk, the digest h uniquely defines dbi∗ . In other words,
any database db′ with db′i∗ 6= dbi∗ hashes to a digest h′ 6= h. To enable short
membership proofs, we require a SSB hash function with local opening. That is,
given a hashing key hk, a digest h of a database db, an index i and a value x,
there is witness τ of size linear in log(|db|) which demonstrates that dbi = x. Be-
sides the somewhere statistically binding property, we also require that the SSB
hash function is index-hiding, i.e. the hashing key hk computationally hides the
index i at which it is binding. Finally, as there is no trusted setup which could
define the key for the SSB hash function, we must let the signer generate the
hashing key hk itself. However, this again introduces an additional problem. The
standard notion of SSB hashing requires that the somewhere binding property
holds with overwhelming probability over the coins of the key generator, but not
with probability 1. However, as we let the signer generate the hashing key, the
signer may in fact choose bad random coins for which the hashing key is not
binding. We address this problem by using somewhere perfectly binding (SPB)
hashing instead of SSB hashing. In fact, many constructions of SSB hashing are
already SPB, e.g. the LWE-based construction of [27] can be made SPB via stan-

6 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

dard error-truncation techniques, and the DDH- and DCR-based constructions
of [33] are immediately SPB. One additional aspect we require is that generating
a hashing key hk for a database db of size ` can be performed by a circuit of size
linear in log(`), but this is the case for the instantiations above. Equipped with
SPB hashing, we can now construct succinct membership proofs with perfect
soundness as follows. The signer generates a hashing key hk binding at position
i (where VKi is the signer’s verification key) and uses hk to compress R into a
digest h. The membership witness shows that hk is binding at position i and that
h opens to VKi at position i. Essentially, a pair (hk, h) of SPB hashing key hk
and digest h form a perfectly binding commitment to VKi, where we can prove
that (hk, h) opens to VKi at position i using a witness of size linear in log(`).

Relaxing the requirements on SPB hashing. It turns out that we do not need
the opening witnesses for the SPB hashing scheme to be publicly computable.
Indeed, we may allow the opening witness to depend on the private coins used by
the key generator as we need to prove that hk is binding at position i anyway. We
therefore define a slightly weakened notion called Somewhere Perfectly Binding
Hashing with private local Opening. As observed in [33], this notion can imme-
diately be realized from any private information retrieval (PIR) scheme with
fully efficient client (i.e. the clients overhead is logarithmic in the database-size).
Such a PIR scheme can be immediately constructed from fully homomorphic
encryption [19, 12, 20], avoiding the Merkle tree based approach of [27].

Our Scheme. Armed with these techniques, we can now provide our unlinkable
ring signature scheme. Key generation is as described above. To sign a message
m with a signing key ski, the signer computes a signature σ on m using ski
and encrypts σ under pki obtaining a ciphertext ct. The ciphertext ct′ is chosen
uniformly random (as in the scheme above). The signer now generates two hash-
ing keys hk and hk′ which are binding at position i and computes the hash of
R = (VK1, . . . ,VK`) under both hk and hk′, obtaining hash values h and h′. Fi-
nally, the signer computes a NIWI proof π which proves that either (hk, h) bind
to a key VKi and that ct encrypts a signature of m for VKi or (hk′, h′) bind to a
key VKi′ and that ct′ encrypts a signature of m for VKi′ . The signer then outputs
the signature Σ = (ct, ct′, hk, hk′, π). To verify a signature Σ = (ct, ct′, hk, hk′, π)
for a message m and a ring R = (VK1, . . . ,VK`), the verifier first computes the
hashes h and h′ of R using hk and hk′ respectively. Now it checks if the NIWI
proof π verifies for (m, ct, ct′, hk, hk′, h, h′), and if so it outputs 1. Unforgeabilty of
this scheme is established in pretty much the same way as described above: If the
proof π verifies, then by the somewhere perfectly binding property of SPB and
the perfect soundness of the NIWI proof, one of the two ciphertexts ct, ct′ must
in fact encrypt a valid signature. The unforgeability reduction can now recover
this signature by setting up the pki such that it knows a secret key for each of
them and can therefore recover a forge. The idea of establishing anonymity can
be outlined as follows. From a high level proof perspective, SPB hashing allows
us to collapse a ring R of ` verification keys into a ring of just two keys. In other
words, we only care about the keys to which (hk, h) and (hk′, h′) bind. With

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 7

this in mind, we can essentially implement the same proof strategy as before,
pretending that our ring just consists of two keys. As before, we will transform a
signature computed using a signing key ski0 into a signature computed using ski1
via a sequence of hybrids. In the first hybrid, we use the index hiding property
of the SPB hash function to move the binding index of hk′ from i0 to i1. Next,
we proceed in a similar way as above, namely compute a signature σ′ using
ski1 and encrypt σ′ under pki1 obtaining a ciphertext ct′. Indistinguishability
of this hybrid from the previous hybrid can be argued via the pseudorandom
ciphertexts property of PKE. In the next step, we switch the witness used to
compute the NIWI proof π. That is, instead of proving that ct encrypts a valid
signature under pki0 , we prove that ct′ encrypts a valid signature under pki1 .
Both are valid witnesses as we are proving an or-statement. Therefore, witness-
indistinguishability of NIWI yields that this hybrid is indistinguishable from the
last one. We can now perform the same hybrid modifications to hk and ct and
finally switch the witness again. Therefore, in the last hybrid we get a signature
Σ computed using ski1 . For details on this construction, refer to Section 4.

Definitions of Linkable Anonymity. The exact definition of linkable anonymity
seems to vary between different authors. However, it seems that all these defini-
tions assume that there always remain unspent verification keys in an anonymity
set. Take for instance the definition of linkable anonymity in [30] (Definition 10
on page 13). Their definition of linkable anonymity is essentially the same as
the definition of unlinkable anonymity, with the difference that the adversary is
not given access to a signing oracle. We propose a simple definition for linkable
anonymity similar in spirit to the blindness definition of blind signatures. The
experiment is essentially identical to the anonymity experiment for unlinkable
ring signatures, with the following modification:

– The adversary is not allowed to corrupt the challenge keys VKi0 and VKi1

– In the challenge phase, the adversary submits two message-ring pairs (m0,R0)
and (m1,R1) such that both R0 and R1 contain both VKi0 and VKi1 .

– The experiment flips a bit b ←$ {0, 1}, computes Σ0 ← Sign(SKib ,m0,R0)
and Σ1 ← Sign(SKi1−b

,m1,R1) and returns (Σ0, Σ1) to the adversary
– The adversary must now guess bit b.

Note that the signature Σ0 is computed exactly as in the experiment for unlink-
able anonymity, but now we additionally provide the adversary with a signature
Σ1 computed with the signing key SKi1−b

. Consequently, this definition imme-
diately implies e.g. the definition of [30], but does not impose the restriction
that no signatures under VKi1−b

can be issued. Like the blindness definition for
blind signatures, our definition naturally extends to larger challenge spaces, i.e.
considering challenges of size 2 is complete. For details on this new definition
refer to Section 5.

A linkable Ring Signature Scheme. We will now extend our techniques to the
setting of linkable ring signatures. The underlying idea is rather basic. Every
verification key VK contains a commitment com to a random tag tag. When

8 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

a signer signs a message m, he includes tag into the signature Σ and proves
that com unveils to tag. This proof can naturally be included in the NIWI proof
for the validity of the encrypted signature. Now, whenever a secret key SK is
used to sign a message m, its corresponding tag tag is spent. Thus, we can link
signatures by checking whether they have the same tag.

While this idea seems to check out at first glance, we run into trouble when
trying to prove linkable anonymity. In the linkable anonymity experiment the
adversary gets to see the tags of both challenge signatures. This means the
reduction must be able to provide witnesses that both the commitment in VKi0

and the commitment in VKi1 open to the respective tags tagi0 and tagi1 . The
fact that we need to be able to open both commitments, however, makes it
apparently impossible to use the hiding property of the commitments in order
to flip the challenge bit in the security proof. Once again, the situation could
be resolved easily if we had NIZK proofs at our disposal, yet we can only use
witness indistinguishability.

Our way out of this conundrum is based on the following observation. To
achieve linkability, we do not actually need that every verification key has a
unique tag. Instead, a weaker condition is sufficient. Namely, for a ring of size `
it should not be possible to generate `+ 1 valid signatures with pairwise distinct
tags. We leverage this idea by allowing the commitments in the verification keys
to be malformed in a controlled way. More specifically, instead of putting only
one commitment to a tag tag in the verification key VK, we put 3 commitments
to tag in VK.

As before, each signature contains two hashing keys and two hash values.
Moreover, in the linkable anonymity proof we will set up things in a way such
that for both challenge signatures Σ0 and Σ1, one of (hk, h) and (hk′, h′) will
point to VKi0 and the other one to VKi1 . Assume that a signature Σ contains
a tag tag and that the SPB hash (hk, h) points to VKi, whereas (hk′, h′) points
to VKi′ . We will make the following consistency requirement: If i = i′ we will
require that all three commitments in VKi unveil to the same tag tag. However,
if i 6= i′, then we only require that out of the six commitments in VKi and VKi′

that

– at least two unveil to tag,
– at least two unveil to a tag tag′ 6= tag,
– at most one commitment does not unveil correctly.

This relaxed binding condition now allows us to exchange the tags of VKi and
VKi′ even though we are handing out signatures which use these tags! We prove
linkable anonymity via a sequence of hybrids. As above, it is instructive to think
that SPB hashing collapses a ring R of ` keys into a ring of just two verification
keys. Call these verification keys VK0 and VK1. In the linkable anonymity ex-
periment, there are two signatures, Σ0 and Σ1 for m0 and m1 respectively. In the
first hybrid the challenge bit of the experiment is 0, that is Σ0 is computed using
the signing key SK0 whereas Σ1 is computed using SK1. In the final experiment,
Σ0 will be computed using SK1 and Σ1 will be computed using SK0. The critical
part of this proof is to switch the tags. Our proof strategy relies critically on the

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 9

fact that the tags tag0 and tag1 are identically distributed. Namely, we will not
switch the tags in the signatures, but switch the tags in the verification keys.
More specifically, in the first hybrid VKi0 contains commitments to tag0 and
VKi1 contains commitments to tag tag1. In the last hybrid, VK0 will commit to
tag1 and VK1 will commit to tag0. But since the tags are identically distributed
we can now simply rename them. Therefore, this hybrid is identical to the link-
able anonymity experiment with challenge bit 1. In a first step we make both
signatures Σ0 and Σ1 use both keys VK0 and VK1 by modifying the binding
indices in hk′ appropriately for both signatures. Now, our relaxed binding con-
dition allows us to exchange the tags between VK0 and VK1 one by one. That
is, the relaxed binding condition allows us to forget the unveil information of
one of the six commitments in VK0 and VK1. Say we forget the unveil informa-
tion of the first commitment in VK0. We can then turn this commitment into a
commitment of tag1. Next, we change the first commitment in VK1 into a com-
mitment of tag0. We continue like this alternating between VK0 and VK1, until
we have completely swapped tag0 and tag1. Note that in each step the relaxed
binding condition holds, thus we can argue via witness indistinguishability and
the hiding property of the underlying commitments. Finally, using random tags
tag alone does not achieve the strongest notion of non-framemability, where the
adversary is allowed to steal tags. Thus, we use an idea due to Dolev, Dwork and
Naor [16] commonly used to achieve non-malleability4: We replace the tag tag
by the verification key vk of a signature scheme Sig and additionally sign (m, Σ)
with respect to vk. This, however, has the somewhat surprising consequence that
we do not need the encrypted signatures anymore, we can rely entirely on the
unforgeability of Sig! For details, refer to Section 6.

1.3 Related Work

After the initial work of Rivest, Shamir and Tauman [35], a number of works
provided constructions in the random oracle model under various computational
hardness assumptions [1, 9, 26]. The scheme of Dodis et al. [15] was the first
to achieve sublinear size signatures in the ROM. Libert, Peters, Qian [28] con-
structed a scheme with logarithmic size ring signatures from DDH in the ROM.
Schemes in the CRS model include [38, 10, 36, 13, 21, 23] achieving varying
degrees of compactness but focusing mainly on practical efficiency. Standard
model ring signatures were simultaneously proposed by Chow et al. [14] and by
Bender, Katz, and Morselli [6]. Malavolta and Schröder [31] build setup free and
constant size ring signatures assuming hardness of a variant of the knowledge of
exponent assumption. Recently, Backes et al. [3] provided a standard model con-
struction with signatures of size

√
` from a new primitive called signatures with

flexible public key. Linkable Ring signatures were introduced by Liu et al. [29]
as linkable spontaneous anonymous group signatures. They propose a notion of
linkability which requires that signatures created by the same signer using the
same ring must be publicly linkable. In their security model, a scheme achieves

4 e.g. in the construction of IND-CCA secure encryption schemes

10 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

a weaker, non-adaptive model of anonymity called signer-ambiguity, if given one
signature under signing key SK and ring R as well as a subset of the signing keys
corresponding to the keys in the ring which does not include SK, the probability
of determining the actual signer as SK is at most negligibly better than guess-
ing one of the remaining keys in the ring uniformly at random. This model is
extended by Boyen and Haies [11], introducing signing epochs which allow for
forward secure notions of anonymity and unforgeability. Recently, several works
described linkable ring signature schemes in post-quantum setting, e.g. [39] based
on the hardness of the Ring-SIS problem or [5] based on the Module-SIS and
Module-LWE problems. Finally, the idea of replacing NIZK proofs with NIWI
proofs in standard model constructions has gained momentum recently, e.g. in
the construction of verifiable random functions (VRFs) [7, 24].

2 Preliminaries

We will denote by y ← A(x; r) the execution of algorithm A outputting y, on
input x and random coins r. We will write y ← A(x) if the specific random
coins used are not important. By r ←$ S we denote that r is chosen uniformly
at random from the set S. We will use [n] to denote the set {1, . . . , n}. When
defining experiments we implicitly assume the procedures take as input 1λ as
well as some additional parameters which should be clear form the context. We
will use the symbol ∅ to denote an undefined value.

2.1 Signature Schemes

Definition 1. A signature scheme Sig consists of three PPT algorithms (KeyGen,
Sign,Verify) with the following syntax.

KeyGen(1λ): Takes as input the security parameter 1λ and outputs a pair of
verification and signing keys (vk, sk).

Sign(sk,m): Takes as input a signing key sk and a message m and outputs a
signature σ.

Verify(vk,m, σ): Takes as input a verification key vk, a message m and a signa-
ture σ and outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: It holds for every security parameter λ ∈ N and every message m
that given that (vk, sk)← Sig.KeyGen(1λ), σ ← Sig.Sign(sk,m), then it holds
that Sig.Verify(vk,m, σ) = 1.

Existential Unforgeability under Chosen Message Attacks: It holds that
every PPT adversary A has at most negligible advantage in the following ex-
periment.

ExpEUF-CMA(A): 1. The experiment generates a pair of verification and sign-
ing keys (vk, sk)← Sig.KeyGen(1λ) and provides vk to A.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 11

2. A is allowed to make signing queries of the form (sign,m), upon
which the experiment computes σ ← Sig.Sign(sk,m). Further the ex-
periment keeps a list of all signing queries.

3. Once A outputs a pair (m∗, σ∗), the experiment checks if m∗ was not
queried in a signing query and if it holds that Sig.Verify(vk,m∗, σ∗) =
1. If so it outputs 1, otherwise 0.

The advantage of A is defined by AdvEUF-CMA(A) = Pr[ExpEUF-CMA(A) =
1].

2.2 Non-Interactive Commitment Schemes

Definition 2. A commitment scheme Com syntactically consists of two PPT
algorithms (Commit, Verify) with the following syntax.

Commit(1λ,m): Takes as input a security parameter 1λ, a message m and out-
puts a commitment com and unveil information γ.

Verify(com,m, γ): Takes as input a commitment com, a message m and unveil
information γ and outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: It holds for every message m that given (com, γ)← Commit(m),
it holds that Verify(com,m, γ) = 1.

Perfect Binding: It holds that every unbounded adversary A that:

Pr

[
(com,m0, γ0,m1, γ1)← A :

m0 6= m1 ∧ Verify(com,m0, γ0) = Verify(com,m1, γ1) = 1

]
= 0.

Computational Hiding: We say that a commitment scheme Com = (Commit,
Verify) is computationally hiding if for every pair of messages (m0,m1) it
holds that

com0 ≈c com1,

where (com0, γ0) ← Commit(1λ,m0) and (com1, γ1) ← Commit(1λ,m1). We
denote the advantage of A in distinguishing the commitments as AdvHiding(A).

Non-interactive commitment schemes can be constructed from any injective
one-way function via the Goldreich-Levin hardcore bit [22].

2.3 Public Key Encryption

Definition 3. A public key encryption scheme PKE consists of 3 PPT algo-
rithms (KeyGen,Enc,Dec) with the following syntax.

KeyGen(1λ): Takes as input a security parameter 1λ and outputs a pair of public
and secret keys (pk, sk).

Enc(pk,m): Takes as input a public key pk and a message m and outputs a
ciphertext ct

12 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct and outputs a
message m or ⊥

We require the following properties of a public key encryption scheme.

Perfect Correctness: We say a public key encryption scheme PKE is perfectly
correct, if it holds for all security parameters λ ∈ N and all messages m that
given that (pk, sk) ← PKE.KeyGen(1λ), ct ← PKE.Enc(pk,m), then it holds
that PKE.Dec(sk, ct) = m.

Pseudorandom Public Keys: We require that public keys are computation-
ally indistinguishable from uniform.

Pseudorandom Ciphertexts: We require that it holds for every message m
that

(pk, u) ≈c (pk,Enc(pk,m)),

where pk and u are chosen uniformly at random.

We denote the advantages of A in breaking pseudorandom public keys and pseu-
dorandom public keys as AdvIND-PK(A) and AdvIND-ENC(A) respectively. Note that
the pseudorandom public keys and pseudorandom ciphertext properties together
immediately imply the standard notion of IND-CPA security.

Such public key encryption schemes can be constructed e.g. from the DDH-
problem [18] or the LWE-problem [34].

2.4 Somewhere Perfectly Binding Hashing

Somewhere statistically binding (SSB) hashing [27] allows a negligible fraction
of the hashing-keys to be non-binding. For our constructions we actually only re-
quire something slightly weaker, a primitive we call somewhere perfectly binding
hashing with private local opening. This notion relaxes the definition of some-
where perfectly binding hashing in that we allow the Gen algorithm to output a
private key shk which the Open algorithm takes as additional input. Below we
give our relaxed definition which we use throughout our paper. For completeness
we recall the original definition of SSB hashing [27] in the full version of this pa-
per [2] further remark that the LWE-based construction of SBB hashing in [27]
can be made somewhere perfectly binding by a noise truncation argument, and
the DDH- and DCR-based schemes of [33] are immediately somewhere perfectly
binding.

Definition 4. A somewhere perfectly binding hash family with private local open-
ing SPB is given by a tuple of algorithms (Gen,Hash,Open,Verify) with the fol-
lowing syntax.

Gen(1λ, n, ind): Takes as input a security parameter 1λ, a database size n and
an index ind and outputs a hashing key hk and a private key shk.

Hash(hk, db): Takes as input a hashing key hk and a database db and outputs a
digest h.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 13

Open(hk, shk, db, ind): Takes as input a hashing key hk, a private key shk a
database db and an index ind and outputs a witness τ .

Verify(hk, h, ind, x, τ): Takes as input a hashing key hk, a digest h, an index ind,
a value x and a witness τ and outputs either 0 or 1.

Again, to simplify notation, we will not provide the block size of databases as
an input to SPB.Gen but rather assume that the block size for the specific appli-
cation context is hardwired in this function. We require the following properties.

Correctness: We say that SPB = (Gen,Hash,Open,Verify) is correct, if it holds
for all λ ∈ N, all n = poly(λ), all databases db of size n and all indices ind ∈
[n] that given that (hk, shk) ← SPB.Gen(1λ, n, ind), h ← SPB.Hash(hk, db)
and τ ← SPB.Open(hk, shk, db, ind), it holds that

Pr[SPB.Verify(hk, h, ind, dbind, τ) = 1] = 1.

Efficiency: The hashing keys hk generated by Gen(1λ, n, ind) and the witnesses
τ generated by Open(hk, shk, db, ind) are of size log(n) · poly(λ). Moreover,
Verify(hk, h, ind, x, τ) can be computed by a circuit of size log(n) · poly(λ).

Somewhere Perfectly Binding: It holds for all λ ∈ N, all n = poly(λ), all
databases db of size n, all indices i ∈ [n], all database values x and all
witnesses τ that if h = SPB.Hash(hk, db) and Verify(hk, h, ind, x, τ) = 1, then
it holds that x = dbind.

Index Hiding: Every PPT-adversary A has at most negligible advantage in the
following experiment.
ExpI-Hiding(A) :

1. A sends (n, ind0, ind1) to the experiment.
2. The experiment chooses a random bit b←$ {0, 1}, computes (hk, shk)←

SPB.Gen(1λ, n, indb) and provides hk to A.
3. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise

0.
The advantage of A is defined by AdvI-Hiding(A) =

∣∣Pr[ExpI-Hiding(A) = 1]− 1
2

∣∣
Notice that this definition provides a stronger somewhere perfectly binding

guarantee in that we do not have to require that hk has been generated cor-
rectly. We can immediately construct a SPB hash family SPB with private local
opening from any SPB hash family SPB′ with local opening via the following
construction.

SPB.Gen(1λ, n, ind):
Choose random coins r ← {0, 1}λ, compute hk ← SPB′.Gen(1λ, n, ind; 1λ; r)
and output hk and shk← r.

SPB.Hash(hk, db) :
Output SPB′.Hash(hk, db).

SPB.Open(hk, shk = r, db, ind):
Compute τ ′ ← SPB′.Open(hk, db, ind) and output τ ← (τ ′, r).

SPB.Verify(hk, h, ind, x, τ = (τ ′, r)):
If SPB′.Gen(1λ, n, ind; r) = hk and SPB′.Verify(hk, h, ind, x, τ ′) = 1 output
1, otherwise 0.

14 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

Correctness and index-hiding of SPB follow directly from the correspond-
ing properties of SPB′, the somewhere perfectly binding property follows from
the fact that SPB.Verify ensures explicitly that hk is perfectly binding at index
ind. Consequently, also this property follows from the corresponding property of
SPB′. Moreover, we can also realize a SPB hash family with private local open-
ing from any 2-message private information retrieval scheme with fully efficient
verifier and perfect correctness. This was also observed by [33]. The construc-
tion is straightforward: A hashing key hk for index i consists of the PIR receiver
message, to hash a database db run the PIR sender algorithm on hk and db. The
index hiding property follows by PIR receiver privacy, whereas the SPB prop-
erty follows form perfect correctness. Finally, the receivers private coins serve as
succinct private membership witness.

2.5 Non-Interactive Witness-Indistinguishable Proof Systems

Let R be an efficiently computable binary relation, where for (x,w) ∈ R we
call x a statement and w a witness. Moreover, we denote by LR the language
consisting of statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 5 (Non-Interactive Proof System). Let R be an efficiently com-
putable witness relation and LR be the language accepted by R. A non-interactive
witness-indistinguishable (NIWI) proof system NIWI for LR consists of two al-
gorithms (Prove,Verify) with the following syntax.

Prove(1λ, x, w): Takes as input a security parameter 1λ, a statement x and a
witness w, output either a proof π or ⊥.

Verify(x, π): Takes as input a statement x, a proof π and outputs either 0 or 1.

We require the following properties.

Perfect Completeness: It holds for all security parameters λ ∈ N, all state-
ments x ∈ LR and all witnesses w that if R(x,w) = 1 and π ← NIWI.Prove(1λ,
x, w), then it holds that NIWI.Verify(x, π) = 1.

Perfect Soundness: It holds for all security parameters λ ∈ N, all statements
x /∈ LR and all proofs π that NIWI.Verify(x, π) = 0.

Witness-Indistinguishability: Every PPT adversary A has at most negligible
advantage in the the following experiment.
ExpWI(A) :

– A sends (x,w0, w1) with R(x,w0) = 1 and R(x,w1) = 1 to the
experiment.

– The experiment chooses a random bit b ←$ {0, 1}, computes π∗ ←
Prove(1λ, x, wb) and provides π∗ to A.

– A outputs a guess b′. If b′ = b the experiment outputs 1, otherwise
0.

The advantage of A is defined by AdvWI(A) =
∣∣Pr[ExpWI(A) = 1]− 1

2

∣∣.
Proof-Size: For π = NIWI.Prove(1λ, x, w) it holds that |π| = |Cx| · poly(λ),

where Cx is a verification circuit for the statement x, i.e. (x,w) ∈ R iff
Cx(w) = 1.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 15

Non-interactive witness-indistinguishable proofs can be constructed from NIZK
proofs and derandomization assumptions [17, 4], from bilinear pairings [25] and
indistinguishablity obfuscation [8].

3 Ring-Signatures

In this section we provide the definitions related to ring signatures.

Definition 6 (Ring Signatures). A ring signature scheme RS is given by a
triple of PPT algorithms (KeyGen,Sign,Verify) such that

KeyGen(1λ): takes as input the security-parameter 1λ and outputs a pair (VK,SK)
of verification and signing keys.

Sign(SK,m,R): takes as input a signing key SK, a message m ∈ Mλ and a list
of verification keys R = (VK1, . . . ,VK`), and outputs a signature Σ.

Verify(R,m, Σ): takes as input a ring R = (VK1, . . . ,VK`), a message m ∈ Mλ

and a signature Σ, and outputs either 0 or 1.

Correctness: We say that a ring signature scheme RS = (KeyGen,Sign,Verify)
is correct, if it holds for all λ ∈ N, all ` = poly(λ), all i∗ ∈ [`] and all
messages m ∈ Mλ that if for i ∈ [`] (VKi,SKi) ← RS.KeyGen(1λ) and
Σ ← RS.Sign(SKi,m,R), where R = (VK1, . . . ,VK`), then it holds that

Pr[RS.Verify(R,m, Σ) = 1] = 1− negl(λ),

where the probability is taken over the random coins used by RS.KeyGen and
RS.Sign.

Anonymity: We say that a ring signature scheme RS = (KeyGen,Sign,Verify)
is anonymous against full key exposure, if for every q = poly(λ) and every
PPT adversary A it holds that A has at most negligible advantage in the
following experiment.
ExpRS-Anon(A):

1. For all i = 1, . . . , q the experiment generates the keypairs (VKi,SKi)←
RS.KeyGen(1λ, ri) using random coins ri.

2. The experiment provides VK1, . . . ,VKq and r1, . . . , rq to A.
3. The adversary provides a challenge (R,m, i0, i1) to the experiment,

such that VKi0 and VKi1 are in the ring R. The experiment flips
a random bit b ←$ {0, 1}, computes Σ∗ ← RS.Sign(SKib ,m,R) and
outputs Σ∗ to A.

4. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise
0

The advantage of A is defined by AdvRS-Anon(A) =
∣∣Pr[ExpRS-Anon(A) = 1]− 1

2

∣∣.
Note: We allow that the ring R chosen by A in step 3 may contain maliciously
chosen verification keys that were not generated by the challenger.

Unforgeability: We say that a ring signature scheme RS = (KeyGen,Sign,Verify)
is unforgeable with respect to insider corruption, if for every q = poly(λ) and
every PPT adversary A, it holds that A has at most negligible advantage in
the following experiment.

16 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

ExpRS-Unf(A):
1. For all i = 1, . . . , q the experiment generates the keypairs (VKi,SKi)←

RS.KeyGen(1λ, ri) using random coins ri. It sets VK = {VK1, . . . ,VKq}
and initializes a set C = ∅.

2. The experiment provides VK1, . . . ,VKq to A.
3. A is now allowed to make the following queries:

(sign, i,m,R) : Upon a signing query, the experiment checks if VKi ∈
R, and if so computes Σ ← RS.Sign(SKi,m,R) and returns Σ to
A. Moreover, the experiment keeps a list of all signing queries.

(corrupt, i) : Upon a corruption query, the experiment adds VKi to
C and returns ri to A.

4. In the end, A outputs a tuple (R∗,m∗, Σ∗). If it holds that R∗ ⊆ VK\C
(i.e. none of the keys in R∗ were corrupted), A never made a signing-
query of the form (sign, ·,m∗,R∗) and it holds that

RS.Verify(R∗,m∗, Σ∗) = 1,

then the experiment outputs 1, otherwise 0.

The advantage of A is defined by AdvRS-Unf(A) = Pr[ExpRS-Unf(A) = 1].

4 Construction of Ring-Signatures

In this section we will provide a construction of a ring signature scheme. Let

– PKE = (KeyGen,Enc,Dec) be a public key encryption scheme with pseudo-
random keys and ciphertexts,

– Sig = (KeyGen,Sign,Verify) be a signature scheme,
– SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-

tion with private local opening and,
– NIWI = (Prove,Verify) be a NIWI-proof system for the language L defined

as follows. We define a witness-relation R: If x = (m, ct, hk, h) and w =
(VK, ind, τ, σ, rct), where VK = (vk, pk), let

R(x,w)⇔ SPB.Verify(hk, h, ind,VK, τ) = 1

and PKE.Enc(pk, σ; rct) = ct

and Sig.Verify(vk,m, σ) = 1

and let L′ be the language accepted by R. Now, define the language L by

L = {(m, ct1, ct2, hk1, hk2, h1, h2) | (m, ct1, hk1, h1) ∈ L′ or (m, ct2, hk2, h2) ∈ L′}.

Our ring signature scheme RS = (KeyGen,Sign,Verify) is given as follows.

RS.KeyGen(1λ; r = (rSig, rpk)):
– Compute (vk, sk)← Sig.KeyGen(1λ; rSig)
– Compute pk← rpk
– Output VK← (vk, pk) and SK← (sk,VK)

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 17

RS.Sign(SK = (sk,VK),m,R = (VK1, . . . ,VK`)):
– Parse VK = (vk, pk)
– Compute σ ← Sig.Sign(sk,m)
– Find an index ind ∈ [`] such that VKind = VK
– Compute (hk1, shk1)← SPB.Gen(1λ, |R|, ind)
– Compute (hk2, shk2)← SPB.Gen(1λ, |R|, ind)
– Compute h1 ← SPB.Hash(hk1,R)
– Compute h2 ← SPB.Hash(hk2,R)
– Compute τ ← SPB.Open(hk1, shk1,R, ind)
– Compute ct1 ← PKE.Enc(pk, σ; rct)

– Compute ct2 ←$ {0, 1}
λ

– Set x← (m, ct1, ct2, hk1, hk2, h1, h2) and w ← (VK, ind, τ, σ, rct)
– Compute π ← NIWI.Prove(x,w)
– Output Σ ← (ct1, ct2, hk1, hk2, π)

RS.Verify(R,m, Σ):
– Parse Σ = (ct1, ct2, hk1, hk2, π)
– Compute h′1 ← SPB.Hash(hk1,R)
– Compute h′2 ← SPB.Hash(hk2,R)
– Output NIWI.Verify((m, ct1, ct2, hk1, hk2, h

′
1, h
′
2), π)

4.1 Correctness

We will first show that our scheme is correct. Assume that VK = (vk, pk) and
SK = (sk,VK) were generated by RS.KeyGen and Σ = (ct1, ct2, hk1, hk2, π)
is the output of RS.Sign(SK,m,R), where R = (VK1, . . . ,VK`). We will show
that it holds that RS.Verify(R,m, σ) = 1. First note that since SPB.Hash is de-
terministic, it holds that h′1 = h1 and h′2 = h2. Also, it obviously holds that
VK = VKind (where ind is the index of VK in R). Now, notice further that
by the correctness of SPB it holds that SPB.Verify(hk1, h1, ind,VKind, τ) = 1.
Moreover, by the correctness of Sig it holds that Sig.Verify(vk,m, σ) = 1. Conse-
quently, (m, ct1, ct2, , hk1, hk2, h1, h2) ∈ L and w = (VK, ind, τ, σ, rct) is a witness
for membership. Thus, by the correctness of NIWI it holds that

NIWI.Verify((m, ct1, ct2, hk1, hk2, h1, h2), π) = 1

and consequently RS.Verify(R,m, Σ) outputs 1.

4.2 Signature Size

For a signature Σ = (ct1, ct2, hk1, hk2, π), the size of the ciphertexts ct1, ct2 is
poly(λ) and independent of the ring-size `. By the efficiency property of SPB
the sizes of the hashing keys hk1, hk2 is bounded by log(`) · poly(λ). Also by the
efficiency property of SPB this size of the witness τ is log(`)·poly(λ) and the SPB-
verification function Verify can be computed by a circuit of size log(`) · poly(λ).

Consequently, the verification circuit Cx for the language L and statement
x = (m, ct1, ct2, hk1, hk2, h1, h2) has size log(`) · poly(λ). By the proof-size prop-
erty of the NIWI proof it holds that |π| = |Cx| · poly(λ) = log(`) · poly(λ). All
together, the size of signatures Σ is log(`) · poly(λ).

18 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

4.3 Unforgeability

We will turn to showing that RS is unforgeable.

Theorem 1. The ring signature scheme RS is unforgeable, given that NIWI has
perfect soundness, SPB is somewhere perfectly binding, PKE is perfectly correct,
PKE has pseudorandom public keys and Sig is unforgeable.

The main idea of the proof is that since the NIWI proof has perfect soundness,
it must either hold that (m, ct1, hk1, h1) ∈ L′ or (m, ct2, hk2, h2) ∈ L′. If the
first statement is true, then hk1 corresponds to an index ind1 and A must have
produced a forge for a key VKind1 in R. Likewise, if the second statement is true,
then A must have produced a forge for a key VKind2 in R.

Proof. Let A be a PPT-adversary against the unforgeability experiment of RS
and let further q = poly(λ) an upper bound on the number of key queries of A.
Consider the following two hybrids.

H0: This is the real experiment.
H1: The same as H0, except that for all i ∈ [q] the challenger generates the

public keys pki in VKi by (pki, ŝki) ← PKE.KeyGen(1λ) instead of choosing
pki uniformly at random. Moreover, the challenger stores all the secret keys

(ŝki)i∈[q].

We will first argue that H0 and H1 are computationally indistinguishable
given that the public keys of PKE are pseudorandom.

Claim. There exists a reduction R1 such that AdvIND-PK(RA1) ≥ |Pr[H0(A) =
1]− Pr[H1(A) = 1]|

The reduction R1 is given as follows.

Reduction RA1 (pk∗)

– Choose an index i∗ ←$ [q] uniformly at random.
– Simulate H0 with the following modifications. For all indices i < i∗

generate (VKi,SKi) as in H0. For i > i∗ generate (VKi,SKi) as in H1.
– Generate (VKi∗ ,SKi∗) as follows:

• Compute (vki∗ , ski∗)← Sig.KeyGen(1λ; rSig)
• Set VKi∗ ← (vki∗ , pk

∗) and SKi∗ ← (ski∗ ,VKi∗)

– Output whatever the simulated experiment outputs.

Let PK 0 be the uniform distribution and PK 1 be a distribution sampled by

computing (pk∗, ŝk
∗
)← PKE.KeyGen(1λ) and outputting pk∗. First observe that

when i∗ = q − 1 and pk∗ was chosen from PK 0, then RA1 perfectly simulates
H0(A). On the other hand, if i∗ = 0 and pk∗ was chosen from PK 1, thenRA1 per-
fectly simulates H1(A). Moreover, observe that for j = 1, . . . , q− 1 it holds that

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 19

RA1 (PK 0)|i∗=j−1 and RA1 (PK 1)|i∗=j are identically distributed. Consequently,
we get that

AdvIND-PK(RA1) = |Pr[RA1 (PK 0)]− Pr[RA1 (PK 1)]|

= |
q−1∑
j=0

Pr[i∗ = j] · (Pr[RA1 (PK 0)|i∗ = j]− Pr[RA1 (PK 1)|i∗ = j])|

=
1

q
· |(Pr[RA1 (PK 0)|i∗ = q − 1]− Pr[RA1 (PK 1)|i∗ = 0]

+

q−1∑
j=1

(Pr[RA1 (PK 1)|i∗ = j]− Pr[RA1 (PK 0)|i∗ = j − 1]))|

=
1

q
· |(Pr[H0(A) = 1]− Pr[H1(A) = 1])|.

Claim. There exists a reductionR2 such thatRA2 breaks the EUF-CMA security
of Sig with probability AdvH1(A)/q.

The reduction R2 is given as follows.

Reduction RA2 (VK∗)
– Guess an index i∗ ←$ [q]. For all i 6= i∗ generate VKi and SKi as in H1.

Generate VKi∗ = VK∗ as follows. Generate (pk∗, ŝk
∗
) ← KeyGen(1λ)

and set VK∗ ← (vk∗, pk∗), where vk∗ is the verification key provided by

the EUF-CMA experiment. Moreover, store ŝki∗ = ŝk
∗
.

– If A asks to corrupt VK∗ abort.
– If A sends signature query (m,VK∗,R), send m to the signing oracle of

the EUF-CMA game to obtain a signature σ. Compute the signature Σ
by
• Let ind∗ be the index of VK∗ in R.
• Computing (hk1, shk1)← SPB.Gen(1λ, |R|, ind∗)
• Computing (hk2, shk2)← SPB.Gen(1λ, |R|, ind∗)
• Computing h1 ← SPB.Hash(hk1, R)
• Computing h2 ← SPB.Hash(hk2, R)
• Computing τ ← SPB.Open(hk1, shk1, R, ind

∗)
• Computing ct1 ← PKE.Enc(pk∗, σ; rct)
• Computing ct2 ←$ {0, 1}λ
• Computing

π ← NIWI.Prove((m, ct1, ct2, , hk1, hk2, h1, h2), (VK∗, ind∗, τ, σ, rct))

• Output Σ ← (ct1, ct2, hk1, hk2, π)
– Once A outputs a forge Σ∗ for (m∗,R∗), check if it is valid, that is

in the query phase A has not requested a signature of m∗ for any key
in R∗, none of the keys in R∗ has been corrupted and it holds that
RS.Verify(R,m∗, Σ∗) = 1. If the forge is valid proceed.

20 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

– Parse Σ∗ as Σ∗ = (ct∗1, ct
∗
2, hk

∗
1, hk

∗
2, π
∗).

– Let |R∗| = ` and let i1, . . . , i` be the indices of the keys in R∗, i.e.
R = (VKi1 , . . . ,VKi`).

– For j = 1, . . . , `:
• Compute σ̌1 ← Dec(ŝkij , ct

∗
1) and σ̌2 ← Dec(ŝkij , ct

∗
2).

• If Sig.Verify(vk∗,m∗, σ̌1) = 1 stop and output σ̌1
• If Sig.Verify(vk∗,m∗, σ̌2) = 1 stop and output σ̌2

First note that the key-pair (pki∗ , ŝki∗) is correct for all messages. Notice
further that, unless A asks to corrupt VK∗, H1 and the simulation of R2 are
identically distributed from the view of A. Observe that with probability at least
1/q the adversary A does not trigger an abort. Thus, conditioned that no abort
happened, from the view of A the index i∗ is distributed uniformly random.
Assume now that A outputs a valid forge Σ∗ for (m∗,R∗) with R∗ = (VKi1 , . . . ,
VKi`). By the perfect soundness of NIWI, it holds that either (m∗, ct∗1, hk

∗
1, h
∗
1) ∈

L′ or (m, ct∗2, hk
∗
2, h
∗
2) ∈ L′. Assume w.l.o.g. that (m, ct∗1, hk

∗
1, h
∗
1) ∈ L′. That is,

there exist (VK†, ind†, τ †, σ†, rct) with VK† = (vk†, pk†) such that

SPB.Verify(hk∗1, h
∗
1, ind

†, V̌K, τ̌) = 1

and PKE.Enc(pk†, σ†; rct) = ct∗1

and Sig.Verify(vk†,m∗, σ†) = 1

As SPB.Verify(hk∗1, h
∗
1, ind

†, V̌K, τ̌) = 1 and h∗1 = SPB.Hash(hk∗1,R) it holds by
the somewhere perfectly binding property of SPB that VK† = VKi

ind†
, i.e.

vk† = vk†i
ind†

and pk† = pki
ind†

. Moreover, by the above it also holds that

ct∗1 = PKE.Enc(pki
ind†
, σ†; rct) and Sig.Verify(vki

ind†
,m∗, σ†) = 1.

Now observe that, as i∗ is uniformly random from the view of A, it holds
that iind† = i∗ with probability at least 1/q. Assume therefore that iind† = i∗. As

(pki∗ , ŝki∗) are correct for all messages, it holds that σ̌1 = PKE.Dec(ŝki∗ , ct
∗
1) =

σ†. Therefore it holds that Sig.Verify(vki
ind†
,m∗, σ̌1) = 1 for the signature σ̌1

decrypted by RA2 , i.e. σ̌1 is a valid signature of m∗ under vk∗. We conclude that
AdvEUF-CMA(RA2) ≥ 1

q |AdvH1(A)− ν|.
All together, as AdvH1

(A) ≥ |AdvH0
(A)−q·AdvIND-PK(RA1)| and AdvH0

(A) =
AdvRS-Unf(A), we can conclude that

AdvRS-Unf(A) ≤ q · Adv(RA1) + q · AdvEUF-CMA(RA2) + ν.

This concludes the proof.

On Tightness. Using a public key encryption scheme with tight multi-user se-
curity, we can improve the bound on the advantage above to

AdvRS-Unf(A) ≤ Adv(RA1) + q · AdvEUF-CMA(RA2) + ν.

However, getting rid of the q factor for q · AdvEUF-CMA(RA2) seems beyond the
scope of current techniques.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 21

4.4 Anonymity

We will now turn to establishing anonymity of RS.

Theorem 2. The ring signature scheme RS is anonymous, given that SPB is
index hiding, PKE has pseudorandom ciphertexts and NIWI is computationally
witness-indistinguishable.

Our strategy is to first move the index of hk2 from i0 to i1 and argue indis-
tinguishability via the index-hiding property of SPB. Next we switch ct2 to an
encryption of a signature σ′ of m for the verification key VKi1 . This modification
will not be detected due to the pseudorandom ciphertexts prooperty of the PKE.
Now, we can switch the NIWI witness to a witness for (m, ct2, hk2, h2) ∈ L′.
Next, we perform the first two changes above for hk1 and ct1, switch the wit-
ness back to the witness for (m, ct1, hk1, h1) ∈ L′, and finally replace ct2 with a
random string. The signature in the last experiment is now a real signature of
m under VKi1 .

Proof (Sketch). Let in the following ind0 be the index of VKi0 in R and ind1
be the index of VKi1 ind R, where (i0, i1,m

∗,R) is the challenge query of A.
Consider the following hybrids:

H0: This is the real experiment with challenge-bit b∗ = 0.
H1: Same as H0, except that in Σ∗ we compute hk∗2 using (hk∗2, shk

∗
2) ←

SPB.Gen(1λ, |R|, ind1) instead of computing (hk∗2, shk
∗
2) ← SPB.Gen(1λ, |R|,

ind0). Moreover, also compute τ ′ ← τ ← SPB.Open(hk2, shk2,R, ind1).
H2: Same as H1, except that we compute ct∗2 by

– σ′ ← Sig.Sign(ski1 ,m
∗)

– ct∗2 ← PKE.Enc(pki1 , σ
′; rct2)

instead of ct∗2 ←$ {0, 1}λ.
H3: The same asH2, except that we use the witness w′ ← (VKi1 , ind1, τ

′, σ′, rct2)
instead of w ← (VKi0 , ind0, τ, σ, rct1) to compute π, i.e. we compute π ←
NIWI.Prove(x,w′).

H4: The same as H3, except that we compute ct∗1 by ct∗1 ←$ {0, 1}λ.
H5: The same asH4, except that we compute hk∗1 by (hk∗1, shk

∗
1)← SPB.Gen(1λ,

|R|, ind1) instead of (hk∗1, shk
∗
1)← SPB.Gen(1λ, |R|, ind0). Moreover, also com-

pute τ by τ ← SPB.Open(hk1, shk1,R, ind1).
H6: The same as H5, except that we compute ct∗1 by

– σ ← Sig.Sign(ski1 ,m
∗)

– ct∗1 ← PKE.Enc(pki1 , σ; rct1)
instead of ct∗1 ←$ {0, 1}λ.

H7: The same asH6, except that we use the witness w′′ ← (VKi1 , ind1, τ, σ, rct1)
instead of w′ ← (VKi1 , ind1, τ

′, σ′, rct2) to compute π, i.e. we compute π ←
NIWI.Prove(x,w′′).

H8: The same as H7 except that we compute ct∗2 by ct∗2 ←$ {0, 1}λ. This is
identical to the real experiment with b∗ = 1.

It follows by inspection that the above hybrids are indistinguishable. The full
proof can be found in the full version of this paper [2].

22 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

5 Linkable Ring-Signatures

In this section we introduce our new model for linkable ring signatures.

Definition 7 (Linkable Ring Signatures.). Syntactically, a ring signature
scheme LRS is given by PPT algorithms (KeyGen, Sign, Verify, Link) such that

KeyGen(1λ): takes as input the security-parameter 1λ and outputs a pair (VK,SK)
of verification and signing keys.

Sign(SK,m,R): takes as input a signing key SK, a message m ∈ Mλ and a list
of verification keys R = (VK1, . . . ,VKq), and outputs a signature Σ.

Verify(R,m, Σ): takes as input a ring R = (VK1, . . . ,VKq), a message m ∈ M
and a signature Σ, and outputs either 0 or 1.

Link(Σ1, Σ2,m1,m2): takes as input two signatures and two messages and out-
puts either 0 or 1.

We say that a linkable ring signature scheme LRS = (KeyGen, Sign, Verify,
Link) is correct, if it holds for all λ ∈ N, all q = poly(λ), all i∗ ∈ [`] and all mes-
sages m ∈Mλ that, if (VKi,SKi)← LRS.KeyGen(1λ) and Σ ← LRS.Sign(SKi,m,
R), where i ∈ [q] and R = (VK1, . . . ,VKq), then

Pr[LRS.Verify(R,m, σ) = 1] = 1− negl(λ),

where the probability is taken over the random coins used by LRS.KeyGen and
LRS.Sign.

We will now define security properties of linkable ring signatures and begin
with the core property called linkability. Informally, we may think of it as the
requirement that any two or more uses of a secret key can be publicly linked.
We model this property by letting an adversary output q verification keys and
signatures, where none of the signatures links with each other. In order to break
linkability the adversary has to output one additional signature which does not
link with any of the former signatures. Note that producing q signatures which
do not link is easy. The adversary only has to use the q different secret keys. But
producing the one additional signature without an additional verification key, is
required to be infeasible.

Definition 8 (Linkability). We say that a linkable ring signature scheme LRS =
(KeyGen, Sign, Verify, Link) has linkability property, if for every q = poly(λ) and
every PPT adversary A, it holds that A has negligible advantage in the following
experiment.

ExpLRS-Link(A):
1. A outputs a set of tuples (VKi, Σi,mi,Ri) for i = 1, . . . , q and another

tuple (σ∗,m∗,R∗). Denote as VK the set of cardinality q such that VKi ∈
VK for i = 1, . . . , q.

2. The experiment outputs 1 if the following conditions hold:
– For all i ∈ [q] we have Ri ⊆ VK and R∗ ⊆ VK

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 23

– For all i ∈ [q] we have LRS.Verify(Ri,mi, Σi) = 1 and LRS.Verify(R∗,
m∗, Σ∗) = 1

– For all i, j ∈ [q] such that i 6= j, we have LRS.Link(Σi, Σj) = 0 and
LRS.Link(Σi, Σ

∗) = 0
Otherwise, the experiment returns 0.

The advantage of A is defined by AdvLRS-Link(A) = Pr[ExpLRS-Link(A) = 1].

We now turn to anonymity. Since, in linkable ring signatures, there is a public
link function, it is easy to tell whether multiple signatures were produced by the
same signer or not. However, it should still be infeasible to tell which exact user
from a ring produced the signature. We argue that, in contrast to the state-
of-the-art definitions, in our definition anonymity is not lost at the moment an
adversary obtains the first signature of a user. In reality, even when an adversary
obtains multiple signature from the same member, identity of the signer should
still be unknown, i.e. it should be infeasible to associate the signatures with a
verification key. We model this by letting the adversary choose two users, which
need to be always in the same rings, and imposing a permutation on the secret
keys. If an adversary would be able to associate a signature of one of this users
with its verification key, then the adversary would also be able to guess the
permutation.

Definition 9 (Linkable Anonymity.). We say that a linkable ring signature
LRS = (KeyGen, Sign, Verify, Link) is linkably anonymous, if for every q =
poly(λ) and every PPT adversary A, it holds that A has negligible advantage in
the following experiment.

ExpLRS-Anon(A):
1. For all i = 1, . . . , q the experiment generates (VKi,SKi)← LRS.KeyGen(1λ,

ri) using random coins ri and samples b ∈ {0, 1} uniformly at random.
2. The experiment provides VK = {VK1, . . . ,VKq} to A.
3. A outputs a set of verification keys U ⊂ VK and two challenge verifica-

tion keys VK∗0,VK∗1 ∈ VK \ U . We denote the secret keys corresponding
to VK∗0,VK∗1 as SK∗0,SK∗1 respectively. The experiment returns ri for all
VKi ∈ U .

4. The adversary queries for signatures on input a ring R and a verification
key VK ∈ VK \ U such that VK ∈ R.
– If VK∗0 or VK∗1 ∈ R but {VK∗0,VK∗1} 6⊆ R, then the experiment

returns an uniformly random bit and aborts.
– If VK 6∈ {VK∗0,VK∗1}, then the experiment outputs Σ∗ ← LRS.Sign(SK,

m,R) where SK corresponds to the queried VK.
– If VK = VK∗0 the experiment outputs Σ∗ ← LRS.Sign(SK∗b ,m,R).
– If VK = VK∗1 the experiment outputs Σ∗ ← LRS.Sign(SK∗1−b,m,R).

5. A submits b̂ ∈ {0, 1} and the experiment outputs 1 if b̂ = b, otherwise it
outputs 0.

The advantage of A is defined by AdvLRS-Anon(A) = |Pr[ExpLRS-Anon(A, q, λ) =
1]− 1/2|.

24 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

Finally, we require that a linkable ring signature is non-frameable. This prop-
erty guarantees that it is infeasible for an adversary to forge a signature which
would link with an honest users’ signature, even when the adversary saw a num-
ber of his signatures in the past.

Definition 10 (Non-Frameability). We say that a linkable ring signature
LRS = (KeyGen, Sign, Verify, Link) is non-frameable, if for every q = poly(λ)
and every PPT adversary A, it holds that A has negligible advantage in the
following experiment.

ExpLRS-Frame(A):
1. For all i = 1, . . . , q the experiment generates (VKi,SKi)← LRS.KeyGen(1λ,

ri) using uniformly random coins ri. The experiment sets VK = {VK1,
. . . ,VKq} and initializes a set C = ∅.

2. The experiment provides VK1, . . . ,VKq to A.
3. A is now allowed to make the following queries:

(sign,VKi,m,R) : Upon a signing query, the experiment checks if VKi ∈
R, and if so computes Σ ← LRS.Sign(SKi,m,R) and returns Σ to A.
Note that we don’t require R ⊆ VK, so the ring R may contain veri-
fication keys generated by A.

(corrupt,VKi) : Upon a corruption query, the experiment adds VKi to
C and returns ri to A.

4. In the end of Phase-1, A outputs (R∗,m∗, Σ∗).
5. The experiment now provides all random coins ri for all i = 1, . . . , q used

to generate the keys to the adversary A.
6. The adversary A outputs (R†,m†, Σ†) and the experiment returns 1 if

the following conditions hold:
– LRS.Verify(R∗,m∗, Σ∗) = 1 and LRS.Verify(R†,m†, Σ†) = 1,
– R∗ ⊆ VK and for all VKi ∈ R∗ we have VKi 6∈ C, i.e. all verification

keys in R∗ are from honest users,
– A didn’t obtain Σ∗ from the signing oracle,
– Link(Σ∗, Σ†) = 1.

Otherwise the experiment returns 0.

The advantage of A is defined by AdvLRS-Frame(A) = Pr[ExpLRS-Frame(A) = 1].

Remark 1 (Unforgeability). Beside the properties defined above, we also require
the standard unforgeability property from ring signatures to hold for linkable
ring signatures.

6 Construction of Linkable Ring Signatures

We will now provide a construction of linkable ring signatures from the following
primitives. Let

– Com = (Commit,Verify) be a non-interactive commitment scheme.
– Sig = (KeyGen,Sign,Verify) be a signature scheme.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 25

– SPB = (Gen,Hash,Open,Verify) be a somewhere perfectly binding hash func-
tion with private local opening.

Before we define the NIWI-proof system NIWI, we will define an algorithm
JointVerify. The algorithm takes as input two commitment triples VK = (comj)j∈[3]
and VK′ = (com′j)j∈[3], two inputs vk and vk′ as well as two unveil triples
γγγ = (γj)j∈[3], γγγ

′ = (γ′j)j∈[3]. The algorithm checks that one of the commitments
com1, com2, com3, com

′
1, com

′
2, com

′
3 at least two open to vk and at least two open

to vk′ and at least 5 open to either vk or vk′. The last condition can be rephrased
as at most one of the 6 commitments does not verify and all the others open
to either vk or vk′. As the name suggests, the algorithm verifies if the triples
VK and VK′ jointly commit to the values vk and vk′, but we allow some leeway
which of the 6 commitments actually commit to which value.

JointVerify(VK,VK′, vk, vk′, γγγ,γγγ′):
– Parse VK = (comj)j∈[3] and VK′ = (com′j)j∈[3]
– Parse γγγ = (γj)j∈[3], γγγ

′ = (γ′j)j∈[3]

– Compute s←
∑3
j=1(Com.Verify(comj , vk, γj)+Com.Verify(com′j , vk, γ

′
j))

– Compute s′ ←
∑3
j=1(Com.Verify(comj , vk

′, γj)+Com.Verify(com′j , vk
′, γ′j))

– If it holds that s ≥ 2 and s′ ≥ 2 and s+ s′ ≥ 5 output 1, otherwise 0.

We remark that the expression JointVerify(VK,VK′, vk, vk′, γγγ,γγγ′) = 1 can be un-
rolled into a short (constant size) sequence of conjunctions and disjunctions over
expressions of the form Com.Verify(comj , vk, γj) = 1, Com.Verify(com′j , vk, γ

′
j) =

1, Com.Verify(comj , vk
′, γj) = 1 and Com.Verify(com′j , vk

′, γ′j) = 1 for j = 1, 2, 35.

– NIWI = (Prove,Verify) be a NIWI-proof system for the language L and with

witness-relation R defined as follows. For x = (vk, (hk(i), h(i))i∈[3]) and w

= ((ind(i), VK(i), τ (i), γγγγγγγγγ(i))i∈[3], vk
′), where VK(i) = (com

(i)
1 , com

(i)
2 , com

(i)
3)

and γγγ(i) = (γ
(i)
1 , γ

(i)
2 , γ

(i)
3) for i = 1, . . . , 3, let

R(x,w)⇔ SPB.Verify(hk(1), h(1), ind(1),VK(1), τ (1)) = 1

and ∀j ∈ [3] : Com.Verify(com
(1)
j , vk, γ

(1)
j) = 1

or

ind(2) 6= ind(3)

and ∀i ∈ {2, 3} : SPB.Verify(hk(i), h(i), ind(i),VK(i), τ (i)) = 1

and JointVerify(VK(2),VK(3), vk, vk′, γγγ(2), γγγ(3)) = 1.

Let L be the language accepted by R.

Our linkable ring signature scheme LRS = (KeyGen,Sign,Verify) is given as
follows.

5 The expression can be unrolled into a disjunction of 6 ·
((

5
2

)
+

(
5
3

))
= 480 clauses,

where each clause is a conjunction of 5 Com.Verify statements

26 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

LRS.KeyGen(1λ):
– Compute (vk, sk)← Sig.KeyGen(1λ)
– For i = 1, 2, 3 compute (comj , γj)← Com.Commit(1λ, vk)
– Set γγγ ← (γj)j∈[3]
– Output VK← (comj)j∈[3] and SK← (sk,VK, vk, γγγ)

LRS.Sign(SK,m,R = (VK1, . . . ,VK`)):
– Parse SK = (sk,VK, vk, γγγ)
– Parse VK = (comj)j∈[3]
– Find an index ind ∈ [`] such that VKind = VK

– For i = 1, 2, 3 compute (hk(i), shk(i)) ← SPB.Gen(1λ, |R|, ind) and

h(i) ← SPB.Hash(hk(i),R)

– Compute τ (1) ← SPB.Open(hk(1), shk(1),R, ind)

– Set x← (vk, (hk(i), h(i))i∈[3])

– Set w ← ((ind,VK, τ (1), γγγ), ∅, ∅, ∅)
– Compute π ← NIWI.Prove(x,w)

– Compute σ ← Sig.Sign(sk, (m, (hk(i), h(i))i∈[3], π))

– Output Σ ← (vk, (hk(i))i∈[3], π, σ)
LRS.Verify(R,m, Σ):

– Parse Σ = (vk, (hk(i))i∈[3], π, σ)

– For i ∈ [3] compute h̃(i) ← SPB.Hash(hk(i),R)

– Set x← (vk, (hk(i), h̃(i))i∈[3])
– Check if NIWI.Verify(x, π) = 1, if not output 0

– Check if Sig.Verify(vk, (m, (hk(i), h̃(i))i∈[3], π), σ) = 1, if not output 0
– Output 1

LRS.Link(Σ1, Σ2):

– Parse Σ1 ← (vk1, (hk
(i)
1)i∈[3], π1, σ1)

– Parse Σ2 ← (vk2, (hk
(i)
2)i∈[3], π2, σ2)

– If vk1 = vk2 output 1, otherwise 0

6.1 Correctness

Again, we will first show correctness of our scheme. Assume that VK = (com1,
com2, com3) and SK = (sk,VK, vk, γγγ) with γγγ = (γ1, γ2, γ3) were generated by

LRS.KeyGen and Σ = (vk, hk(1), hk(2), hk(3), π, σ) is the output of LRS.Sign(SK,
m, R), where R = (VK1, . . . ,VK`). We will show that it holds that LRS.Verify(R,
m, Σ) = 1. As SPB.Hash is deterministic, it holds for the hashes h̃(1), h̃(2), h̃(3)

computed by LRS.Verify(R,m, Σ) that h̃(i) = h(i) (for i = 1, 2, 3), where the
h(i) are the hashes computed by LRS.Sign(SK,m,R). Also, it obviously holds

that VK = VK(1). Now, notice further that by the correctness of SPB it holds
that SPB.Verify(hk(1), h(1), ind,VK, τ (1)) = 1. By the correctness of the commit-
ment scheme Com, it holds that Com.Verify(comj , vk, γj) = 1 for j = 1, 2, 3.
Thus, w = ((ind,VK, τ (1), γγγ)), ∅, ∅, ∅) is a valid witness for the statement x =

(vk, (hk(i), h(i))i∈[3]). Consequently, by the correctness of NIWI it holds that
NIWI.Verify(x, π) = 1. Finally, by the correctness of Sig we get that Sig.Verify(vk,

(m, (hk(i), h(i))i∈[3], π), σ) = 1 and LRS.Verify(R,m, Σ) outputs 1.

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 27

6.2 Signature Size

For a signature Σ = (vk, (hk(i))i∈[3], π, σ), the size of the signature component
σ is poly(λ) and independent of the ring-size `. By the efficiency property of

SPB the sizes of the hashing keys hk(1), hk(2), hk(3) is bounded by log(`) ·poly(λ).

Furthermore, for a statement x = (vk, (hk(i), h̃(i))i∈[3]), the size of the verification
circuit Cx is dominated SPB.Verify, which by the efficiency property of SPB can
be computed by a circuit of size log(`) · poly(λ). All other algorithms can be
computed by circuits of size poly(λ) and independent of `. Consequently, it holds
that |Cx| = log(`)·poly(λ). By the efficiency property of the NIWI proof, it holds
that |π| = |Cx| · poly(λ) = log(`) · poly(λ). All together, we can conclude that
|Σ| = log(`) · poly(λ).

6.3 Security

Theorem 3. The ring signature scheme LRS is unforgeable, given that NIWI has
perfect soundness, SPB is somewhere perfectly binding, Com is perfectly binding
and Sig is unforgeable.

Theorem 4. The ring signature scheme LRS is linkably anonymous, given that
SPB is index hiding, Com is computationally hiding and NIWI is computationally
witness-indistinguishable.

Theorem 5. The ring signature scheme LRS is perfectly linkable, given SPB
is somewhere perfectly binding, Com is perfectly binding and NIWI has perfect
soundness.

Theorem 6. Given that Sig is unforgeable, Com is perfectly binding and NIWI
is perfectly sound, the scheme LRS has non-framability.

Full proofs of these theorems can be found in the full version of this work [2].

7 Conclusions

Ring signatures are a well-studied cryptographic primitive with many applica-
tions that include whistleblowing and cryptocurrencies. In this paper we im-
proved the state-of-the-art by introducing a scheme with signature size that is
logarithmic in the number of ring members, while at the same time relying on
standard assumptions and not requiring a trusted setup. We use novel tech-
niques that combine somewhere statistically binding hashing and NIWI proofs
forming a membership proof. An interesting open question is whether one can
build structure-preserving SSB hashing that can be combined with pairing based
NIWI proofs. Such combination would substantially increase the efficiency of the
proposed membership proof and decrease its size.

28 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

Acknowledgments. This work has been partially funded/supported by the
German Ministry for Education and Research through funding for the project
CISPA-Stanford Center for Cybersecurity (Funding numbers: 16KIS0762 and
16KIS0927).

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501
of Lecture Notes in Computer Science, pages 415–432, Queenstown, New Zealand,
Dec. 1–5, 2002. Springer, Heidelberg, Germany.

2. M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, and J. Schneider. Ring signa-
tures: Logarithmic-size, no setup — from standard assumptions. Cryptology ePrint
Archive, Report 2019/196, 2019. http://eprint.iacr.org/2019/196.

3. M. Backes, L. Hanzlik, K. Kluczniak, and J. Schneider. Signatures with flexi-
ble public key: Introducing equivalence classes for public keys. In T. Peyrin and
S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume
11273 of Lecture Notes in Computer Science, pages 405–434, Brisbane, Queensland,
Australia, Dec. 2–6, 2018. Springer, Heidelberg, Germany.

4. B. Barak, S. J. Ong, and S. P. Vadhan. Derandomization in cryptography. In
D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 299–315, Santa Barbara, CA, USA, Aug. 17–21,
2003. Springer, Heidelberg, Germany.

5. C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-time
linkable ring signatures. Cryptology ePrint Archive, Report 2018/107, 2018.
https://eprint.iacr.org/2018/107.

6. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and con-
structions without random oracles. In S. Halevi and T. Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer
Science, pages 60–79, New York, NY, USA, Mar. 4–7, 2006. Springer, Heidelberg,
Germany.

7. N. Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In Y. Kalai and L. Reyzin, editors, TCC 2017: 15th The-
ory of Cryptography Conference, Part II, volume 10678 of Lecture Notes in Com-
puter Science, pages 567–594, Baltimore, MD, USA, Nov. 12–15, 2017. Springer,
Heidelberg, Germany.

8. N. Bitansky and O. Paneth. ZAPs and non-interactive witness indistinguishabil-
ity from indistinguishability obfuscation. In Y. Dodis and J. B. Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lec-
ture Notes in Computer Science, pages 401–427, Warsaw, Poland, Mar. 23–25,
2015. Springer, Heidelberg, Germany.

9. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, Advances in Cryp-
tology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 416–432, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

10. X. Boyen. Mesh signatures. In M. Naor, editor, Advances in Cryptology – EURO-
CRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 210–227,
Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

http://eprint.iacr.org/2019/196
https://eprint.iacr.org/2018/107

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 29

11. X. Boyen and T. Haines. Forward-secure linkable ring signatures. In W. Susilo and
G. Yang, editors, ACISP 18: 23rd Australasian Conference on Information Security
and Privacy, volume 10946 of Lecture Notes in Computer Science, pages 245–264,
Wollongong, NSW, Australia, July 11–13, 2018. Springer, Heidelberg, Germany.

12. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In R. Ostrovsky, editor, 52nd Annual Symposium on Foundations
of Computer Science, pages 97–106, Palm Springs, CA, USA, Oct. 22–25, 2011.
IEEE Computer Society Press.

13. N. Chandran, J. Groth, and A. Sahai. Ring signatures of sub-linear size without
random oracles. In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors,
ICALP 2007: 34th International Colloquium on Automata, Languages and Pro-
gramming, volume 4596 of Lecture Notes in Computer Science, pages 423–434,
Wroclaw, Poland, July 9–13, 2007. Springer, Heidelberg, Germany.

14. S. S. M. Chow, V. K.-W. Wei, J. K. Liu, and T. H. Yuen. Ring signatures without
random oracles. In F.-C. Lin, D.-T. Lee, B.-S. Lin, S. Shieh, and S. Jajodia, editors,
ASIACCS 06: 1st ACM Symposium on Information, Computer and Communica-
tions Security, pages 297–302, Taipei, Taiwan, Mar. 21–24, 2006. ACM Press.

15. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In C. Cachin and J. Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
609–626, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

16. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended ab-
stract). In 23rd Annual ACM Symposium on Theory of Computing, pages 542–552,
New Orleans, LA, USA, May 6–8, 1991. ACM Press.

17. C. Dwork and M. Naor. Zaps and their applications. In 41st Annual Symposium
on Foundations of Computer Science, pages 283–293, Redondo Beach, CA, USA,
Nov. 12–14, 2000. IEEE Computer Society Press.

18. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology
– CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 10–18,
Santa Barbara, CA, USA, Aug. 19–23, 1984. Springer, Heidelberg, Germany.

19. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

20. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA, USA,
Aug. 18–22, 2013. Springer, Heidelberg, Germany.

21. E. Ghadafi. Sub-linear blind ring signatures without random oracles. In M. Stam,
editor, 14th IMA International Conference on Cryptography and Coding, volume
8308 of Lecture Notes in Computer Science, pages 304–323, Oxford, UK, Dec. 17–
19, 2013. Springer, Heidelberg, Germany.

22. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions.
In 21st Annual ACM Symposium on Theory of Computing, pages 25–32, Seattle,
WA, USA, May 15–17, 1989. ACM Press.

23. A. González. A ring signature of size O(3
√
n) without random oracles. Cryptology

ePrint Archive, Report 2017/905, 2017. http://eprint.iacr.org/2017/905.
24. R. Goyal, S. Hohenberger, V. Koppula, and B. Waters. A generic approach to con-

structing and proving verifiable random functions. In Y. Kalai and L. Reyzin, edi-
tors, TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678 of

http://eprint.iacr.org/2017/905

30 M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider

Lecture Notes in Computer Science, pages 537–566, Baltimore, MD, USA, Nov. 12–
15, 2017. Springer, Heidelberg, Germany.

25. J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques
for NIZK. In C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA,
USA, Aug. 20–24, 2006. Springer, Heidelberg, Germany.

26. J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In T. Jo-
hansson and S. Maitra, editors, Progress in Cryptology - INDOCRYPT 2003: 4th
International Conference in Cryptology in India, volume 2904 of Lecture Notes in
Computer Science, pages 266–279, New Delhi, India, Dec. 8–10, 2003. Springer,
Heidelberg, Germany.

27. P. Hubacek and D. Wichs. On the communication complexity of secure function
evaluation with long output. In T. Roughgarden, editor, ITCS 2015: 6th Con-
ference on Innovations in Theoretical Computer Science, pages 163–172, Rehovot,
Israel, Jan. 11–13, 2015. Association for Computing Machinery.

28. B. Libert, T. Peters, and C. Qian. Logarithmic-size ring signatures with tight
security from the DDH assumption. In J. López, J. Zhou, and M. Soriano, edi-
tors, ESORICS 2018: 23rd European Symposium on Research in Computer Secu-
rity, Part II, volume 11099 of Lecture Notes in Computer Science, pages 288–308,
Barcelona, Spain, Sept. 3–7, 2018. Springer, Heidelberg, Germany.

29. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In H. Wang, J. Pieprzyk, and
V. Varadharajan, editors, ACISP 04: 9th Australasian Conference on Information
Security and Privacy, volume 3108 of Lecture Notes in Computer Science, pages
325–335, Sydney, NSW, Australia, July 13–15, 2004. Springer, Heidelberg, Ger-
many.

30. X. Lu, M. H. Au, and Z. Zhang. Raptor: A practical lattice-based (linkable) ring
signature. Cryptology ePrint Archive, Report 2018/857, 2018. https://eprint.

iacr.org/2018/857.
31. G. Malavolta and D. Schröder. Efficient ring signatures in the standard model. In

T. Takagi and T. Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
Part II, volume 10625 of Lecture Notes in Computer Science, pages 128–157, Hong
Kong, China, Dec. 3–7, 2017. Springer, Heidelberg, Germany.

32. S. Noether. Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098, 2015. http://eprint.iacr.org/2015/1098.

33. T. Okamoto, K. Pietrzak, B. Waters, and D. Wichs. New realizations of somewhere
statistically binding hashing and positional accumulators. In T. Iwata and J. H.
Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452
of Lecture Notes in Computer Science, pages 121–145, Auckland, New Zealand,
Nov. 30 – Dec. 3, 2015. Springer, Heidelberg, Germany.

34. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In H. N. Gabow and R. Fagin, editors, 37th Annual ACM Symposium on Theory
of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

35. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, ed-
itor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 552–565, Gold Coast, Australia, Dec. 9–13, 2001.
Springer, Heidelberg, Germany.

36. S. Schäge and J. Schwenk. A CDH-based ring signature scheme with short signa-
tures and public keys. In R. Sion, editor, FC 2010: 14th International Conference
on Financial Cryptography and Data Security, volume 6052 of Lecture Notes in

https://eprint.iacr.org/2018/857
https://eprint.iacr.org/2018/857
http://eprint.iacr.org/2015/1098

Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions 31

Computer Science, pages 129–142, Tenerife, Canary Islands, Spain, Jan. 25–28,
2010. Springer, Heidelberg, Germany.

37. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 239–252, Santa Barbara, CA, USA, Aug. 20–24, 1990.
Springer, Heidelberg, Germany.

38. H. Shacham and B. Waters. Efficient ring signatures without random oracles. In
T. Okamoto and X. Wang, editors, PKC 2007: 10th International Conference on
Theory and Practice of Public Key Cryptography, volume 4450 of Lecture Notes
in Computer Science, pages 166–180, Beijing, China, Apr. 16–20, 2007. Springer,
Heidelberg, Germany.

39. W. A. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta, N. Bhattacharjee,
M. H. Au, and J. Cheng. Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0).
In W. Susilo and G. Yang, editors, ACISP 18: 23rd Australasian Conference on
Information Security and Privacy, volume 10946 of Lecture Notes in Computer
Science, pages 558–576, Wollongong, NSW, Australia, July 11–13, 2018. Springer,
Heidelberg, Germany.

40. P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash
and attestation. In International Conference on Information Security Practice and
Experience, pages 48–60. Springer, 2005.

	Ring Signatures: Logarithmic-Size, No Setup — from Standard Assumptions

