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Abstract

To be effective, software test generation needs to well cover
the space of possible inputs. Traditional fuzzing generates
large numbers of random inputs, which however are unlikely
to contain keywords and other specific inputs of non-trivial
input languages. Constraint-based test generation solves con-
ditions of paths leading to uncovered code, but fails on pro-
grams with complex input conditions because of path explo-
sion. In this paper, we present a test generation technique
specifically directed at input parsers. We systematically pro-
duce inputs for the parser and track comparisons made; after
every rejection, we satisfy the comparisons leading to re-
jection. This approach effectively covers the input space:
Evaluated on five subjects, from CSV files to JavaScript, our
pFuzzer prototype covers more tokens than both random-
based and constraint-based approaches, while requiring no
symbolic analysis and far fewer tests than random fuzzers.

CCS Concepts • Security and privacy → Software se-

curity engineering.
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1 Introduction

The field of software test generation aims at improving reli-
ability and robustness of software by subjecting it to artifi-
cially generated inputs. Since every behavior of a program,
including unwanted ones, can be triggered through its in-
puts, it is important to have valid inputs that reach program
functionality without being rejected as invalid, and to have
a large variety in these inputs in order to cover a maximum
of functionality. So far, both goals have been addressed by
two testing strategies.

• Traditional fuzzing [37] operates at the lexical level,
quickly producing large numbers of inputs with ran-
dom characters. Fuzzing is very easy to deploy, and
quickly finds bugs in lexical and syntactical processing.
For programs with nontrivial input languages, though,
a pure random approach is unlikely to generate com-
plex input structures such as keywords—already pro-
ducing a string like "while" by pure chance from let-
ters only is 1 : 265 (11 million), not to speak of a
condition or a statement that would have to follow the
keyword.
• Constraint-based test generation [5] operates at the se-
mantic level, considering the semantics of the program
under test. It satisfies conditions on the path towards
(yet) uncovered code, using constraint solving and sym-
bolic analysis to easily solve short paths, especially at
the function level. The problem of constraint-based
test generators, however, is scalability: For nontrivial
input languages, they quickly suffer from a combina-
torial explosion of paths to be explored.

In the above context, a “nontrivial” input language need not
be a programming language (although these probably rank
among the most complex input languages). The Wikipedia
page on file formats [33] lists 1,435 data input formats, from
AAC to ZZT; while all of these formats have at least one
parser, few of these formats have machine-readable gram-
mars or other language specifications. Even if a program
accepts a data exchange format with a fixed syntax such as
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XML or JSON, finding the valid tags and labels it accepts will
be hard. We thus pose the input language challenge: Given
a program with a nontrivial input language, the challenge is

to find a test generator that covers all lexical and syntactical

features of that language.

In this paper, we propose a novel syntax-driven approach

for the problem of generating plausible inputs. We call it
parser-directed fuzzing as it specifically targets syntactic pro-
cessing of inputs via input parsers. Our assumptions are
that the program under test (1) processes input elements
(characters) sequentially, that it (2) compares these elements
against possible valid values, and that it (3) either accepts
inputs as valid or rejects them as invalid—i.e., the typical
features of a syntactic parser. We also assume that we can
track comparisons of input characters; we do this through
dynamic tainting of inputs, which allows us to relate each
value processed to the input character(s) it is derived from.

Our approach relies on the observation that parsers rely
on a lookahead of a limited number of characters, which is
very often just a single character. Hence, rather than trying
to solve the complete input, we look for any character that
lets the parser advance further without erroring out.

Our approach, illustrated in Figure 1, specializes towards
parsers that process one input character at a time, join-
ing characters into tokens and these again into syntactic
structures—that is, the “textbook” approach to parsing. It
starts by feeding a small fixed string to the program (in gen-
eral one random character 1). This string is typically rejected
by the input parser. However, on rejection of the input, our
fuzzer derives the character comparisons made to each index
of the input. That is, it identifies the valid prefix in the input,
as well as the character comparisons made to the first invalid
character. The fuzzer then corrects the invalid character to
pass one of the character comparisons that was made at that
index, and the new string is fed back to the parser. This new
string will typically fail at the next character, at which point,
we repeat the process. This process is continued until the
parsing phase ends (that is, the string that was fed to the
program is accepted by the parser). The complete valid input
is saved as a possible input for the program.

After illustrating our approach on a detailed example (Sec-
tion 2), we present our two key contributions:

1. A test generator aimed at input parsers. Our ap-
proach, discussed in Section 3, is the first test genera-
tion approach that systematically explores and covers
the syntactical input space as accepted by input parsers.
It only requires dynamic tainting, tracking of compar-
isons, and structural coverage information, which is
far more lightweight than symbolic analysis. Our ap-
proach is guaranteed to produce valid inputs for input
parsers that scan ahead a fixed number of characters.

1Ignoring EOF detection for the time being. See Section 3 for details.

The prototype implementation (Section 4) works on C
programs, which it instruments using LLVM.

2. A comparison with lexical and semantical test

generators. In our evaluation on five subjects from
CSV to JavaScript (Section 5), we approximate cover-
age of the input space by assessing the set of valid
tokens produced; clearly, if a test generator fails to
produce some language token, it also cannot cover
the associated program features. We show that our
syntax-driven approach covers the input space better
than state-of-the-art “lexical” mutation-based fuzzers
such as AFL [37], while requiring fewer tests by orders
of magnitude; it also outperforms state-of-the-art “se-
mantic” constraint-based fuzzers such as KLEE [5]. All
of our inputs are syntactically valid by construction.

After discussing related work (Section 6), Section 7 points out
current limitations and directions to future work. Section 8
is the conclusion and thus concludes this paper.

2 Parser-Directed Fuzzing in a Nutshell

Consider the following problem: Given a program P , how
can we exhaustively cover the syntactic features of its input
language?
To illustrate our approach, let us assume we want to ex-

haustively test the program P . We know nothing about P ;
in particular, we have no documentation or example inputs.
What we know, though, is that

1. P accepts some input I sequentially as a string of char-
acters; and that

2. P can tell us whether I is a valid or an invalid input.
We further assume that we can observe P processing I : Specif-
ically, we need to be able to observe the dynamic data flow
of input characters from I as P processes them.

Figure 1 illustrates how we explore the capabilities of P ’s
input parser by means of directed test generation. The key
idea is to observe all comparisons an input character goes

through, and systematically satisfy and cover alternatives,
notably on rejection.

We start with an empty string as input, which is rejected
by P as invalid immediately as EOF is encountered. The EOF
is detected as any operation that tries to access past the end
of a given argument. This error is fixed in the next round by
testing P with a random string, say "A" (I = "A"). Indeed,
this input is also rejected by P as invalid. However, before
rejecting the input, P checks I for a number of properties.
Only after these checks fail does P reject the input:

1. Does I start with a digit?
2. Does I start with a ’(’ character?
3. Does I start with ’+’ or ’-’?
All these conditions are easy to satisfy, though—and this

is a general property of parsers, which typically only con-
sider the single next character. Our test generator picks one
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Figure 1. How parser-directed fuzzing works. We start with an empty string "" as input to the instrumented program. This
prefix is immediately rejected by the input parser, but we detect an attempt to access the index 0 of the input string. (An
attempt to access a character beyond the length of the input string is interpreted as the program encountering EOF before
processing is complete). Detecting this, we (1) choose a random character from the set of all ASCII characters, say ’A’, and
append it to the current input prefix "", resulting in "A". This prefix is again rejected by the program, but not before we detect
a number of failed comparisons at the index 0 where ’A’ was compared against ’(’, ’+’, ’-’ and digits ’1’, ’2’, . . .. We
replace our last appended character with a new character from this list of comparisons, say ’(’, and (2) the prefix "(" is sent
to the program again. We detect another EOF at this time, and we append (3) another random character from the ASCII set ’2’.
We get lucky at this time, however, and detect another EOF, and we (4) append another random character ’B’ to the prefix
resulting in "(2B", which is run again. Continuing this process, we reach a complete valid input "(2-94)".

condition randomly. Satisfying Property 2, it would produce
an open parenthesis input (that is, "("). This prefix would
now be accepted by P as valid.

After the acceptance of "(" as a partial input, P conducts
a check to see if another character follows "(" by accessing
the next character in the input. Since P reached the end of the
stringwe consider the prefix as valid and add another random
character. This results in the new prefix "(2". This prefix
however, is accepted as valid immediately, and the program
attempts to access the next character. After detecting this
attempt, we choose a random character from the set of all
characters: ’B’. This new prefix "(2B" is rejected after ’B’
is compared to the set of characters ’(’, ’)’, ’-’, ’+’, ’1’,
’2’, . . ., from which we choose a replacement ’-’. This is
again a valid partial input, and needs more characters to be
appended. For the next character the generator randomly
chooses ’)’ from the available list of all characters. This
however, is rejected as invalid, and in consequence, it gets
replaced by a valid character ’9’. Continuing this process,
we reach "(2-94)" which is accepted as a complete valid
input by the parser.

In a consecutive execution with another random seed, the
first condition to be addressedmight be Property 1. Satisfying
it yields ’1’, which is a valid input. At this point, we may de-
cide to output the string and reset the prefix to empty string,
or continue with the generated prefix. If we continued with
the prefix, we may append ’+’ which will again cause the
parser reaching the end of the input, so we append a random
character and get "1+B" as input. This is rejected, but only
after again checking for a number of expected characters

that could follow. These would be the same checks already
performed on the input "A": digits, parentheses, ’+’, and
’-’. We randomly choose the condition Property 2, where
again the prefix "1+(" would be invalid on its own, so we
again choose one prefix for further computations.

By continuing this process, we thus obtain more and more
inputs that systematically cover the capabilities of the parser.
In the end, we obtain a set of legal inputs that covers all the
conditions encountered during parsing:
1 11 +1 -1 1+1 1-1 (1)

We see that our mystery program P in fact takes arithmetic
expressions as inputs. Furthermore, instead of randomly
guessing a correct combination the input is built character
by character. Thus, building a valid input of size n takes in
worst case 2n guesses (assuming the parser only checks for
valid substitutions for the rejected character).

One might ask: How likely is it that one can instrument
the program under test but does not have enough knowledge
about the input format to apply more sophisticated fuzzing
approaches (like grammar based fuzzing)? Obviously, any
test generation approach, including parser-directed fuzzing,
can benefit from human knowledge, be it a grammar or just
the available keywords. Despite this, there are some good
reasons to still use parser-directed fuzzing:
• First, our approach is also applicable to binary code as
it only relies on dynamic tainting and the comparisons
made during execution, both are available for binary
code as well.
• Second, even if we knew the grammar, it is often not
available in a machine readable form and creating a
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correct grammar is a time consuming task. And even
if a formal grammar exists, it could contain errors or
encode more or less features than implemented in the
code. Concluding, parser-directed fuzzing makes it
possible to test the code fully automatic and without
any prejudice.

3 Testing Input Parsers

Whatwe thus introduce in this work is a test generator specif-
ically built to explore input parsers. Our fuzzer combines the
best of both lexical and constraint-based approaches: it solves
an easy constraint, namely that it replaces the character that
was lastly compared with one of the values it was compared
to. On the other hand, similar to random fuzzing, parser-
directed fuzzing produces new inputs rapidly and verifies
the correctness of each input using the program under test.
With this method, the search space is reduced significantly.
That is, the number of possible replacements at each position
of the input is constrained by the comparisons that are made
at this position (namely the ones the input parser expects
at this index). Identifying a replacement for the last char-
acter is computationally cheap, especially compared to full
fledged constraint solving. This combination of character
replacement and semi-random fuzzing on a small search
space makes parser-directed fuzzing efficient and effective
compared to its competition.
While the idea is simple in principle, it hides some com-

plexities in practice. For example, consider a simple paren-
thesis input language which require well-balanced open and
close parentheses. For this input language, at each step, a
parser would compare the last character of a valid prefix
with both ’(’ and ’)’. Hence, to extend the valid prefix say
"(()((", one could choose either ’(’ or ’)’. The problem is
that, when one appends an open parenthesis, a correspond-
ing close parenthesis has to be inserted at some point in the
future, and given that we are relying on random choice be-
tween ’(’ and ’)’. The probability of closing after n steps 2

is given by 1
n+1 . After 100 characters, this probability is about

1%, and continues to decrease as we add more characters.
Hence, relying on random choice to get us a valid complete
string does not work in practice.
Naively, one could think of using depth- or breadth-first

search to explore the possible character replacements. Depth-
first search is fast in generating large prefixes of inputs but
may not be able to close them properly as we have seen
before, and may therefore get stuck in a generation loop.
Breadth-first search on the other hand explores all combina-
tions of possible inputs on a shallow level and is therefore
2The parenthesis language is an instance of a Dyck path. The number of
total paths with 2n steps that stay positive is

(2n
n
)
. Out of these, those that

end in 0 after 2n steps is 1
n+1

(2n
n
)
. This is the nth Catalan number Cn .

Hence, the probability of a closed Dyck path is 1
n+1 , which after 100 steps

is 1% – We ignore those paths that reached zero and rebounded in both
denominator and numerator for convenience.

helpful in closing prefixes (like appending closing parenthe-
ses). Generating a large prefix is, however, hard as we have
to deal with the combinatorial explosion. A combination of
both would be useful for simple input structures but fails
for more complex ones as depth-first search might open too
many elements that need to be closed that is beyond the
capability of the breadth-first search to close within a given
computational budget.
pFuzzer uses a heuristic search to guide the input gen-

eration through the large search space of possible inputs.
It primarily takes structural coverage information into ac-
count for deciding which inputs should be executed next.
Structural coverage alone though would lead to a kind of
depth-first search which would generate large and complex
prefixes that are very hard to close and will likely never end
up in a valid input. Thus, the heuristic also tries to guide the
search to a closing path which will lead to smaller but valid
and diverse inputs.
The heuristic value used in pFuzzer is based on branch

coverage. However, we do not apply coverage naively but
rather combine different perspectives on the covered code to
help guidance through the search space based on the context.

3.1 Achieving Coverage

Algorithm 1 sketches the general generation loop of our ap-
proach. We start with an empty set that will later contain the
branches covered by valid inputs (Line 2). Furthermore we
store all non-executed inputs in a priority queue throughout
fuzzing (Line 3). The inputs in the queue are primarily sorted
based on the heuristic defined in the procedure in Line 47:
first the number of newly covered lines of the parent is taken
(Line 48), then the length of the input is subtracted and two
times the length of the replacement is added (Line 49). Us-
ing the length of the input avoids a depth-first search based
on the coverage as very large inputs have less priority. By
using the length of the replacement we can lead the algo-
rithm to more interesting values, e.g. values that stem from
string comparisons. Such replacements will likely lead to
the complex input structures we want to cover. Furthermore,
recursive-descent parsers increase their stack when new syn-
tactical features are discovered (e.g. an opening brace) and
decrease their stack on characters that close syntactical fea-
tures (e.g. a closing brace). Therefore, at Line 50 we take the
average stacksize between the second last and last compari-
son into account 3, larger stack sizes will give less priority
to the input. Finally, we add the number of parents to the
heuristic value (Line 50). This number defines how many
substitutions were done on the search path from the initial
input to the current input. Inputs with fewer parents but the
same coverage should be ranked higher in the queue to keep
the search depth and input complexity low.

3We omit a concrete implementation of avgStackSize here to keep the
algorithm short.
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Algorithm 1 Parser-Directed Fuzzing Algorithm.
1: procedure Fuzz
2: vBr ← ∅

3: queue← empty queue
4: input← random character

5: eInp← input

6: while True do
7: valid, comps← runCheck(input, vBr, queue)
8: if not valid then

9: valid, comps← runCheck(eInp)
10: if not valid then

11: addInputs(eInp, branches, vBr, comps)
12: end if

13: end if

14: input← queue.get( )
15: eInp← input + random character
16: end while

17: end procedure

18:
19: procedure addInputs(inp, branches, vBr, comps)
20: for all c in comps do

21: cov← heur(branches, vBr, inp, c)
22: new_input← replace c in inp

23: add new_input to queue based on cov

24: end for

25: end procedure

26:
27: procedure runCheck(inp, vBr, queue)
28: (exit, branches, comps)← run(inp)
29: if exit = 0 ∧ (branches \ vBr) , ∅ then
30: validInp(inp, branches, vBr, queue, comps)
31: return True, comparisons

32: else

33: return False, comparisons

34: end if

35: end procedure

36:
37: procedure validInp(input, branches, vBr, queue, comps)
38: print(input)
39: vBr ← branches ∪ vBr

40: for all inp in queue do

41: cov← heur(inp.branches, vBr, inp, inp.c)
42: reorder inp in queue based on cov

43: end for

44: addInputs(input, branches, vBr, comps)
45: end procedure

46:
47: procedure heur(branches, vBr, inp, c)
48: cov← size(branches \ vBr)
49: cov← cov − len(inp) + 2 ∗ len(c)
50: cov← cov − avgStackSize( ) + inp.numParents

51: return cov

52: end procedure

Each loop iteration while fuzzing consists of two program
executions. First the input without a random extension is
executed (Line 7), then the input with random extension is
executed (Line 9). We use this technique because the input
without extension is generated from an input by replacing
the last compared character with one of the characters it
was compared to (e.g. Line 22), which means that we would
never append a character but always replace the last char-
acter of the input.4 Therefore, we need to append a new
character to the end of the input, and check if it is used in
any comparisons—which in turn means that with a high
chance all previous characters are valid. On the other hand,
if we always append a new character, pFuzzer may be very
unlikely to produce a correct input because as soon as the
correct replacement was done, a new appended character
will make the input invalid again. By running both we can
ensure to not get stuck but also find all valid inputs along
the search path.

While looking for inputs that cover new code, we first con-
centrate on the number of branches that were not covered
by any valid input beforehand. Those inputs that cover new
branches have a higher priority in the queue. This metric
gives the strongest evidence on which input prefixes are the
most promising to explore further. As the already covered
branches only contain branches covered by valid inputs it
does not contain branches of error handling code. Hence, sim-
ply taking all covered branches would favor invalid inputs
at some point and guide the search to use invalid prefixes.
To avoid that the search gets stuck at paths with invalid
inputs, we only consider the covered branches up to the last
accepted character of the input. In particular, we consider
all covered branches up to the first comparison of the last
character of the input that is compared in the program.

3.2 Making the Input Valid

As soon as new code is covered the search algorithm needs
to “close” the input, i.e. make it valid. This is important as
trying to cover as much code as possible with each and every
input will lead to very complex inputs that are hard to close,
possibly taking hours of search to find the correct sequence
of characters that make the input finally valid. Think about
a simple bracket parser looking for the first valid input. Say
the parser is able to parse different kinds of brackets (round,
square, pointed, . . . ). As we never had any valid input any
time a different opening bracket is added, more code would
be covered and we might end up generating many different
opening brackets, closing them though might be hard as one
has to generate at each position the correct counter part for
the respective opening bracket. To avoid such a generation
loop we count each found new branch only once for each

4Not all parsers use an EOF check, hence we need the random extension to
check if a new character is expected or the substitution was wrong.
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input and also taking stack size and input length into account.
Hence, we generate small prefixes that are simple to close.

After the first few valid inputs are found, the majority of
the code is covered. At this point it gets significantly harder
to find characters that help closing an input by just consid-
ering the newly covered branches themselves. For example,
if we already generated an if()-statement in a valid input
beforehand, the code handling the closing brace would have
already been covered, we would not see any new coverage
on generating another closing brace for an if()-statement.
Therefore, we take input length, stack size and number of par-
ents into account to favor those inputs that are less complex
and keep the number of opened syntactical features low. This
makes it possible to leave coverage plateaus in the search
space since often a closing character would for example lead
to a lower stack. Finally, to avoid generation of inputs that
cover the same path as already generated inputs, pFuzzer
keeps track of all paths that were already taken (based on
the non-duplicate branches) and ranks inputs based on how
often they executed on the same path, ranking those highest
that cover new paths.
After an input was closed and covered new branches in

the code, all remaining inputs in the queue have to be re-
evaluated in terms of coverage. Due to the large search space,
re-running all inputs again on the subject under test takes too
much time. A faster way is storing all relevant information
to compute the heuristic along with the already executed
input, and simply re-calculating the heuristic value again
(e.g. the loop at Line 40).

4 Implementation

We have implemented our approach in a fuzzing tool called
pFuzzer. pFuzzer takes as input a C program, which it com-
piles and instruments using LLVM. The instrumentation
serves the purpose of parser-directed fuzzing in that it (1) dy-
namically taints input characters and derived values through-
out execution. When read, each character is associated with
a unique identifier; this taint is later passed on to values
derived from that character. If a value is derived from sev-
eral characters, it accumulates their taints. Runtime conver-
sion functions such as strcpy() are wrapped such that the
taints automatically propagate correctly. Any comparisons
of tainted values (mostly character and string comparisons)
are (2) tracked as well.
To drive the test generation heuristics, the instrumenta-

tion also tracks function and branch coverage, specifically
(3) the sequence of function calls together with current stack
contents, and (4) the sequence of basic blocks taken. pFuzzer
is not optimized for speed, and thus its instrumentation adds
considerable overhead; as a rule of thumb, executions are
slowed down by a factor of about 100. All the collected infor-
mation is saved after program execution, and then drives test
generation for the next program run as detailed in Section 3.

5 Evaluation

We evaluated the performance of pFuzzer against KLEE and
AFL. We evaluated the fuzzers on two aspects:

Code Coverage. The first measure we look at is the code
coverage obtained, i.e. how many of the branches in
the subject programs would actually be taken. Code
coverage is a common metric in testing and test gen-
eration; generally speaking, covering a piece of code
is necessary to uncover errors in this very code.

Input Coverage. The second measure we look at is in-
put coverage obtained, i.e. how many aspects of the
input language are actually covered. To this end, we
measure how many different tokens are produced and
what the characteristics of these tokens are. In general,
coverage of input language features is necessary to
trigger functionality associated with these features.

5.1 Evaluation Setup

Table 1. The subjects used for the evaluation.

Name Accessed Lines of Code

inih 2018-10-25 293
csvparser 2018-10-25 297
cJSON 2018-10-25 2,483
tinyC 2018-10-25 191
mjs 2018-06-21 10,920

For our evaluation, we use five input parsers with increas-
ing input complexity, summarized in Table 1.5 Starting with
the simple input formats ini [3] and csv [20], we also test
the tools on json [10], tinyC [22] (a subset of C) and mjs [6]
(a subset of JavaScript). We set up all programs to read from
standard input (a requirement for AFL), and to abort parsing
with a non-zero exit code on the first error (a requirement
for pFuzzer). Furthermore, we disabled semantic checking
in mjs as this is out of scope for this paper.
AFL is run with the standard configuration. As we can-

not change the CPU scaling policy on our computing server,
AFL_SKIP_CPUFREQ is enabled. Since AFL requires a valid
input to start with but we want to evaluate the ability of
all tools to generate valid inputs without program specific
knowledge, we give AFL one space character as starting
point. This character is accepted by all programs as valid
while still being generic enough such that we think AFL is
in no advantage compared to KLEE and pFuzzer not hav-
ing any input to start with. KLEE is run with the uclibc,
posix-runtime, and optimization options enabled. Fur-
thermore, we run KLEE to only output values if they cover
5As pFuzzer is a research prototype and thus we want to keep the engineer-
ing effort reasonable, we restrict ourselves to randomly selected recursive
descent parsers implemented in C as we need to special handle some library
functions (like strcmp()).
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new code (otherwise KLEE would produce millions of test
inputs, for which calculating the coverage would take weeks
and is therefore out of scope for this paper). For AFL and
KLEE, we determine the valid inputs by running the pro-
grams under test and checking the exit code (non-zero means
invalid input); pFuzzer by construction only outputs valid
inputs that cover new code.

Test generation for complex subjects needs time. All tools
were run for 48 hours on each subject in a single-core thread
on Intel processors with 3.3GHz running Ubuntu 14.04.5 in
the KLEE Docker container. All tests were run three times;
we report the best run for each tool.

5.2 Code Coverage

A general measure to assess the quality of the test suite is
code coverage. This metric is used to predict the general
chance of a set of tests to find an error in the program. It is
important to note that coverage of code is first and foremost
a necessity to find bugs in this code. To use it as a universal
measure for test quality, one must assume that bugs are
distributed evenly across code, and that all bugs are equally
likely to be triggered, which typically is not the case.
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Figure 2. Obtained coverage per subject and tool.

Figure 2 shows the coverage of the valid inputs generated
by each tool. Each input is parsed; tinyC andmjs also execute
the program. We use gcov to measure branch coverage. All
subjects may also contain to some extent code that is used
for parsing from a different input source, printing or even
generating (e.g. cJSON also functions as a library which
contains code to generate a json object). Since it is not always
clear which code can be covered and all tools run on the same
code, we decided to leave those artifacts in even though they
cannot be covered. All tools can still be compared on each
individual subject. In one case, we manually fixed an input

while(9); to while(0); to avoid an infinite loop during
the execution of the generated test input.6
csv and ini. Starting with the least complex input struc-

tures, csv and ini, we can see that AFL performs better than
pFuzzer in terms of coverage. For both subjects AFL has a
high advantage: it is random, shallow, and fast. Therefore, it
is able to generate many different characters in a short time,
almost all of which are accepted by ini and csv. For both sub-
jects, covering all combinations of two characters achieves
perfect coverage. As an example, one of the most challeng-
ing structures in the inputs of those parsers is the section
delimiter in ini which needs an opening bracket followed by
a closing bracket. Between those, any characters are allowed.
Hence, generating such valid inputs for those subjects is
easy. AFL is in advantage here as all those properties are
easy to reach and can be covered by exploring the input
space randomly. pFuzzer performs worse here as in some
circumstances semantic properties of the input are checked,
or non-printable characters are used in comparisons which
are not covered by our comparison extraction yet.

json. For json, both KLEE and AFL obtain a higher cov-
erage than pFuzzer, which misses the one feature set of
the conversion of UTF16 literals to UTF8 characters. The
problem is that the developers of the parser rely on an im-
plicit information flow and we currently do not handle them,
because naively tainting all implicit information flows can
lead to large overtainting [21].7 Therefore, we never reach
the parts of the code comparing the input with the UTF16
encoding. Nonetheless, in contrast to AFL, pFuzzer is able to
generate keywords such as true, false and null, and cover
the associated code.

tinyC. On tinyC, pFuzzer is actually able to generate
inputs that cover more code than AFL. The reason for this
lies in the complexity yet simplicity of the implementation of
tinyC: the subject accepts rather simple inputs (like simple
arithmetic expressions) but they cover only a small part of the
code and this coverage is easily achieved. To go beyond these
easy to reach code parts, one has to generate more complex
structures like loops and branching statements, which parser-
directed fuzzing can do.

mjs. For mjs, AFL achieves a much higher code coverage
than pFuzzer. KLEE, suffering from the path explosion prob-
lem, finds almost no valid inputs for mjs. Examining code
coverage, we found that AFL mostly covers code triggered
by single characters or character pairs. Again, as with tinyC,

6Such infinite loops would normally be addressed by implementing a time-
out; however, gcov loses all coverage information when the program under
test is interrupted. AFL also generates an input that triggers a hang in tinyC.
As this is an if-statement which should actually terminate, we are not able
to fix the hang.
7For example: the program may read the input character by character in a
loop header and processes it in the loop body. All values in the loop body
would be tainted, leading to an over-approximation of taints.
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those parts of the code that require very specific sequences
of characters to make the input valid are not covered by AFL.
Summarizing, AFL achieves its coverage by brute force,

trying out millions of different possible inputs, generating
1,000 times more inputs than pFuzzer. Thus, if one wants to
cover shallow code, AFL is the tool to choose.

AFL quickly covers code that is easy to reach.

However, our manual coverage investigation also shows
that as soon as it comes to more structured parts in the
program, both AFL and KLEE fail to generate inputs that
are able to cover them. Therefore, in the next section, we
attempt to capture the input features that characterize these
structured parts.

5.3 Input Coverage

In parser code, uncovered parts often are specific language
constructs that are optional and need to be specifically tested.
Think about tinyC: whatever input is given, it must contain
at least one expression, therefore expressions are tested in
depth anyway. Constructing a valid while loop on the other
hand, requires two elements:
• The while keyword itself. Such a long keyword is hard
to generate by pure chance—even if a fuzzer would gen-
erate letters only, the chance for producing it would
be only 265, or 1 in 11 million. Guidance by code cov-
erage, as implemented in AFL, does not help here, as
all five characters take the exact same path through
the program.
• The elements following the while keyword also must
be produced—i.e., a parenthesized expression and at
least an empty statement.

To assess input quality, we evaluate the variety of tokens

generated by each approach—notably, what kind of tokens
each of the approaches would be able to generate in its valid
inputs. To this end, we first collected all possible tokens by
checking the documentation and source code of all subjects
and then checked how many different tokens appear in each
subject. Tables 2, 3 and 4 contain the numbers of possible
tokens per length and for each length a set of examples.
Strings, numbers and identifiers are classified as one token
as they can consist of many different characters but will all
trigger the same behavior in the program. Any non-token
characters (e.g. whitespaces) are ignored from the count.

Table 2. json tokens and their number for each length.

Length # Examples

1 8 { } [ ] - : , number

2 1 string

4 2 null true
5 1 false

Our results are summarized in Figure 3, presenting the
different tokens generated for ini, csv, json, tinyC, and mjs.

ini and csv have few tokens; on ini, KLEE fails to detect
an opening and a closing bracket. Those are used to define a
section.

json has a structured input format, posing first challenges
for test generators. Aswe can see fromTable 2, AFLmisses all
json keywords, namely true, false and null. This supports
the assumption that the random exploration strategy of AFL
has trouble finding longer keywords. KLEE, however, is still
able to cover most of the tokens; only a comma is missing.
As KLEE works symbolically, it only needs to find a valid
path with a keyword on it; solving the path constraints on
that path is then easy. pFuzzer, by contrast, is able to cover
all tokens, more than the other tools.

Table 3. tinyC tokens and their number for each length.

Length # Examples

1 11 < + - ; = { } [ ] identifier number

2 2 if do
4 1 else
5 1 while

tinyC comes with few tokens, but a number of keywords,
listed in Table 3. As shown in Figure 3, simple constructs
needing only one or two characters are easy to generate
for AFL; the semi-random approach eventually guesses the
correct characters and their respective ordering. KLEE does
not find any keyword. pFuzzer is still able to cover 86% of
all tokens, missing only the do and else token. AFL still
covers 80% of all tokens but also misses a while token; and
while KLEE covers 66% of all tokens, it only covers short
ones, missing all keywords of tinyC.

Table 4. mjs tokens and their number for each length.

Len # Examples

1 27 { [ ( + & ? identifier number . . .
2 24 += == ++ /= &= |= != if in string . . .
3 13 === !== <<= >>> for try let . . .
4 10 >>>= true null void with else . . .
5 9 false throw while break catch . . .
6 7 return delete typeof Object . . .
7 3 default finally indexOf
8 3 continue function debugger
9 2 undefined stringify
10 1 instanceof

mjs is our most challenging test subject, and it continues
the trends already seen before. As shown in Figure 3, KLEE
mostly fails, whereas AFL can even generate short keywords.
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Figure 3. The number of tokens generated grouped by token length for ini, csv, json, tinyC and mjs.

Being able to produce a for deserves a special recommen-
dation here, as a valid for loop needs the keyword for, an
opening parenthesis, three expressions ending with a semi-
colon and a closing brace. As it comes to longer tokens and
keywords, AFL is quickly lost, though; for instance, it cannot
synthesize a valid input with a typeof keyword. pFuzzer
synthesizes a full typeof input and also covers several of the
longer keywords, thus also covering the code that handles
those keywords.

Summing up over all subjects, we see that for short tokens,
all tools do a good job in generating or inferring them. The
exception is KLEE on mjs, which results in a lower average
number:

Across all subjects, for tokens of length ≤ 3,
AFL finds 91.5%, KLEE 28.7%, and pFuzzer 81.9%.

The longer the token, though, the smaller the chance of
either AFL or KLEE finding it. pFuzzer, on the other hand, is
able to cover such keywords and therefore also the respective
code handling those keywords.

Across all subjects, for tokens of length > 3,
AFL finds 5%, KLEE 7.5%, and pFuzzer 52.5%.

This is the central result of our evaluation: Only parser-

directed fuzzing is able to detect longer tokens and keywords

in the input languages of our test subjects. By extension, this
means that only pFuzzer can construct inputs that involve

these keywords, and that only pFuzzer can generate tests that

cover the features associated with these keywords.

At this point, one may ask: Why only 52.5% and not 100%?
The abstract answer is that inferring an input language from
a program is an instance of the halting problem, and thus
undecidable in the first place. The more concrete answer
is that our more complex subjects such as tinyC and mjs

make use of tokenization, which breaks explicit data flow,
and which is on our list of challenges to address (Section 7).
The final and pragmatic answer is that a “better” technique
that now exists is better than an “even better” technique
that does not yet exist—in particular if it can pave the way
towards this “even better” technique.

6 Related Work

6.1 Fuzzing Techniques

Fuzzing was introduced by Miller et al. [26] for evaluating
the robustness of UNIX utilities against unexpected inputs.
The main difference between fuzzing and other blackbox
test generation methods is that fuzzing relies on very weak
oracles—checking only for crashes or hangs, which lets it
explore the input space automatically. Miller used a simple
random character generator to generate inputs to the pro-
grams under test, varying both input length and content
randomly. However, this kind of simple fuzzing is ineffective
against programs that expect structured inputs such as inter-
preters and compilers. Hence practitioners rely on different
techniques to generate syntactically valid (or near valid) in-
puts. These techniques are commonly classified as blackbox
techniques, whitebox techniques, and their hybrids [24].

6.1.1 Blackbox Fuzzing

Blackbox fuzzing techniques generate input data given some
information about the data, ignoring the program under test.
These include mutational approaches and generational ap-
proaches [27].Mutational fuzzing approaches [37] start with
a few sample inputs, and rely on simple mutations such as
byte swaps or character insertion to generate new inputs.
These techniques hope to explore the input regions close
to the mutation, by maintaining the global structure but
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varying the local structure sufficiently. These mutations may
be evolved based on some fitness function to ensure better
exploration of input space.

Generational approaches rely on some formal input specifi-
cation such as the input grammar or a data model to generate
valid inputs [34]. Test case generation using grammars has
been used for compiler testing [4, 17] from very early on.
One of the problems with simple generational approaches
has been the unavailability of input models. Another is that
simple input models may not adequately capture all con-
straints. A promising approach is to learn the model [1] and
constraints [32] from a sample corpus.

6.1.2 Whitebox Fuzzing

Whitebox fuzzing techniques make use of program code.

Whitebox fuzzing techniques are again classified into those
that rely on dynamic execution of program, and those that
rely on symbolic execution of the program.
In the dynamic execution approach, the program is typ-

ically instrumented such that the path taken by an execu-
tion for a sample input can be observed. The sample input
is then mutated [37], and mutations that take previously
unseen paths are given higher preference for further explo-
ration. The input mutation may be guided [8] using dynamic
taints [2, 11, 12], and constraint negation of executed paths.
In the symbolic execution approach, the program is sym-

bolically executed to infer constraints on inputs; a constraint
solver then generates inputs satisfying them. SAGE [13], was
one of the firstwhitebox fuzzers, and uses symbolic execution
and constraint solving to generate outputs for fuzzing (Sage
also relies on seed samples and their executions [14] for the
initial collection of constraints). Another is Mayhem [7] by
Cha et al. that won the DARPA Cyber Grand Challenge in
2016. Mayhem prioritizes the paths where memory access
to symbolic addresses that can be influenced by user input
is identified, or symbolic instruction pointers are detected.
A similar approach is concolic execution and hybrid concolic

execution which relies on fuzzing for initial exploration but
shifts to symbolic execution for resolution of checksums and
magic bytes [25, 36].

6.1.3 Hybrid Fuzzing

With Hybrid fuzzing techniques, researchers try to infer a
program model [31] or input grammar from either observing
the behavior of the program on multiple inputs, using for-
mal approaches [1], machine learning based on previously
available corpus [9, 15], or observing and summarizing the
program execution [19].

The main difference we have with these tools is that they
rely on a previously existing corpus of valid inputs for the
model generation. The problem with this approach is that,
the available inputs often encode assumptions about the pro-
gram behavior which need be neither correct nor complete.

It is precisely these assumptions that we seek to avoid with
parser-directed fuzzing.
We note that there has been a number of fuzzers that

specifically target parsers [16], especially interpreters and
compilers [18, 35], and special purpose parsers can often
incorporate domain knowledge to obtain better results.

6.2 Specific Fuzzing Tools

We compare with specific state-of-the-art competitors.
Driller [30] attempts to combine the advantages of sym-

bolic execution with those of fuzzing. It relies on fuzzing to
explore the input space initially, but switches to symbolic
execution when the fuzzer stops making progress—typically,
because it needs to satisfy input predicates such as magic
bytes.
Driller uses symbolic execution and is vulnerable to the

combinatorial path explosion [8] when trying to reach deep
program states. Since pFuzzer does not use symbolic execu-
tion, pFuzzer does not suffer from this problem and may be
able to achieve deeper coverage.

VUzzer [28] relies on the key observation that fuzzing
can be aided by a feedback loop from control and data flow
application features. VUzzer uses taint analysis to infer type
of data and offsets in input, which relates to branches. These
specific offsets and values are prioritized for mutation. One
of the problems with VUzzer is that the position of magic
bytes is fixed – the offsets are inferred statically. That is,
VUzzer can not deal with magic bytes whose location may
be different in different input files [8].
VUzzer is similar to pFuzzer in that it tracks both taint

information and character comparisons. However, unlike
VUzzer, the taint information and character comparison in-
formation in pFuzzer is collected and used dynamically. Sec-
ondly, unlike VUzzer, pFuzzer does not require an initial set
of seed inputs to operate.

Steelix [24] is another mutation based fuzzer. It improves
upon the state of the art by adding a comparison progress
feedback. The comparison progress can avoid problems with
multi-byte string comparisons by providing progress infor-
mation on the string being composed.

pFuzzer uses an approach similar to Steelix’s comparison
progress. The main difference from Steelix is that the muta-
tions for Steelix is primarily random, with local exhaustive

mutations for solving magic bytes applied only if magic bytes
are found. pFuzzer on the other hand, uses comparisons as
the main driver. The mutations always occur at the last index
where the comparison failed.

AFL [37] is a coverage-guided mutational fuzzer that can
achieve high throughput. In the absence of instrumentation,
it is also able to gracefully degrade to naive fuzzing using
blind exploration of input space. The effectiveness of AFL
depends highly on initial seed inputs,which it uses to explore
the input subspace near the given samples.
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AFL requires less overhead than pFuzzer since the only
instrumentation it requires is tracking coverage. Nonethe-
less, pFuzzer improves upon AFL in numerous ways. First,
pFuzzer leverages taint tracking and character comparison
tracking to bypass the requirement of initial seed samples.
Second, the mutations produced by pFuzzer are driven by
parser behavior, compared to the blind mutations by AFL.

AFL-CTP [23] is a transformation pass that converts calls
of strcmp() and memcmp() to nested if -statements to help
the coverage guidance of AFL. For strcmp() and memcmp()

AFL gets no coverage feedback until they report a match.
Splitting the comparison in if -statements makes it possible
to achieve new coverage on each matching character or byte.
The approach only transforms calls with argument size

known at compile time (i.e. one argument must be a string
literal for strcmp() respectively the number of compared
bytes must be a constant formemcmp()). In our subjects most
of the string comparisons do not fulfill this requirement, but
even if it was possible to drop this condition, in many parsers
code is heavily reused, i.e. different keywords are parsed with
the same code and the same comparison function is called
for different keywords. Hence, prefixes of different keywords
are indistinguishable regarding coverage: the prefix wh of
the while keyword would produce the same coverage as the
prefix fo of the for keyword. pFuzzer, on the other hand,
monitors the calls to strcmp() dynamically and therefore
recognizes the different comparisons made, hence it is able
to find and use the different keywords. If indeed it is possible
to transform strcmp() and memcmp() in such a way that for
different keywords AFL recognizes new coverage, AFL might
be able to achieve similar results in terms of token coverage
as pFuzzer does at the moment.
Angora [8] is a mutation based fuzzer that improves

upon AFL. It incorporates byte-level taint tracking, context-
sensitive branch coverage (that can distinguish different pro-
gram states reached), and type and shape inference and uses
search based gradient descent for help with checksum reso-
lutions. Of all the fuzzers, Angora is closest in approach to
pFuzzer.
We believe that Angora’s technique is relatively heavy-

weight in comparison to pFuzzer. This can be seen in [8]
Section 5.6, where the authors say that “Angora runs taint
tracking once for each input, and then mutates the input and
runs the program many times without taint tracking”. Each
time a new branch is detected with an input, Angora runs
the taint tracking, along with possibly thousands of runs
without taint tracking again until it hits on a new branch
(Algorithm 1, Line 16 [8]).

pFuzzer improves upon Angora in multiple ways.8 First,
unlike Angora, which tries to solve the complete path con-
straints, pFuzzer is only interested in generating inputs that

8 Angora is unavailable at this time, and a number of its technical details
can only be guessed at.

can pass a specified parser. Further, pFuzzer employs light
weight analysis of character comparisons to determine the
mutation, while Angora uses search based on gradient de-
scent, which is more heavy weight. Further, pFuzzer uses
a simple (mostly) monotonic increase in the input string
length, which means that only the last few (often a single)
characters need to be mutated for further exploration. This
reduces the computational expenditure significantly.

At the end of this comparison, let us point out that while
each approach has their specific strengths and weaknesses,
theymaywell complement each other. A pragmatic approach
could be to start fuzzing with a fast lexical fuzzer such as AFL,
continue with syntactic fuzzing such as pFuzzer, and solve
remaining semantic constraints with symbolic analysis.

7 Limitations and Future Work

While our approach surpasses the state of the art, it leaves
lots of potential for further improvement, addressing the
challenges of evenmore complex languages. Our future work
will address the following topics:

7.1 Table-Driven Parsers

Our current implementation is limited to recursive-descent
parsers. The coverage metric will not work on table-driven
parsers out of the box as such a parser defines its state based
on the table it reads rather the code it is currently execut-
ing. This is an obvious, yet not severe limitation. First, the
coverage metric still works as a general guidance—instead
of code coverage, one could implement coverage of table
elements. Thus, the general search heuristic would still work
especially as the implicit paths and character comparisons
do also exist in a table driven parser. Second, recursive de-
scent parsers, especially those produced by hand are one of
the most common types of parsers. A cursory look at the
top 17 programming languages in Github [29] shows that
80% of them have recursive descent parsers. Finally, tables
for a table driven parser are almost always generated using
parser generators such as Yacc and Antlr. Hence, a grammar
is already available, and one can thus apply grammar-based

fuzzing for superior coverage of input features. Table driven
parsers thus make a formidable challenge, but more from an
intellectual viewpoint than a practical one.

7.2 Tokenization

A second limitation is loss of taint information during tok-

enization. Programs that accept complex input languages
often have a lexical phase where a light weight parser that
accepts a regular language is used to identify logical bound-
aries in the incoming character stream, and split the char-
acter stream into tokens. This can happen either before the
actual parsing happens or, as in tinyC and mjs, interleaved
with the parsing, where the lexer is activated each time a
new token is required by the parser.
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The problem with tokenization is that tokens represent a
break in data flow. For example, consider this fragment that
generates a token LPAREN:
if (next_char() == '(')
return LPAREN;

The token LPAREN is generated without a direct data flow
from the character "(" to the token. As our prototype relies
on direct taint flow, it is unable to correctly taint LPAREN.
Our coverage metrics and other heuristics circumvent

this problem to some extent. Each time a token is accepted
that we have not seen before, a new branch is covered in the
parser. Let us assume we already saw an opening parenthesis,
e.g. in an input containing an if()-statement. If we now
want to generate a while()-statement and already have
the prefix while, putting an opening parenthesis after the
while will not cover new branches in the tokenizer. Still,
in the function parsing the while statement we would now
see that the branch checking if the opening parenthesis is
present is covered. Thus, based on the increased coverage,
we would use the prefix while( for further exploration, and
this is how pFuzzer can still generate complex inputs.
We are currently investigating means to identify typical

tokenization patterns to propagate taint information even in
the presence of implicit data flow to tokens, such that we
can recover the concrete character comparisons we need.

7.3 Semantic Restrictions

Our approach focuses on syntactic properties. Still, many
nontrivial input languages have semantic restrictions as
well—in many programming languages, it is necessary to
declare named resources before their use. These are context-
sensitive features and are usually verified after the parsing

phase. However, our technique has no notion of a delayed
constraint. It assumes that if a character was accepted by the
parser, the character is correct. Hence, the input generated,
while it passes the parser, fails the semantic checks. This,
to some extent, mirrors the difficulty with the lexing phase.
Such semantic restrictions need to be learned throughout
generation, and is one of the frontiers we want to tackle.

7.4 Recursion

Most complex input languages contain recursive structures.
While parser-directed fuzzing is a reasonable technique to ex-
plore comparatively short sequences of inputs, it is inefficient
to use it beyond a shallow exploration of the input features
without toomuch recursion. For generating larger sequences,
it is more efficient to rely on parser-directed fuzzing for initial
exploration, use a tool to mine the grammar from the result-
ing sequences, and use the mined grammar for generating
longer and more complex sequences that contain recursive
structures. The ability to mine grammars already exist [19],
and its incorporation will increase the effectiveness of our
tool chain. Indeed, the stumbling block in using a tool such as

AutoGram right now is the lack of valid and diverse inputs.
Using a human to produce these inputs runs the risk that
a human being will only produce inputs with features that
they think the program implements. However, such mental
models are based on assumptions about the program which
can be incomplete or incorrect even for comparatively sim-
ple programs. Using inputs thus produced runs the risk of
developing blind spots on the inputs composed using gram-
mar based fuzzers. A similar problem occurs when one relies
on pre-existing grammars (when available). These grammars
often encode knowledge of a programs input at some point
in time, and according to what an ideal program that im-
plements the grammar should behave. Specifications can
often change, and programs can incorporate new features
not seen in the original grammar. Hence, parser-directed
fuzzing, which does not rely on any such assumptions, fills
an important place in automatic test generation.

8 Conclusion

In a program, only valid inputs survive the parsing stage and
are able to test the actual program functionality. Yet, gen-
erating valid test inputs for parsers is a challenge. “Lexical”
approaches such as traditional fuzzing fail because of the
sheer improbability to generate valid inputs and keywords
(while being good at testing the input rejection capability of
a program’s parsing stage), whereas the symbolic constraint
solving of “semantic” approaches fails due to combinatorial
explosion of paths. With parser-directed fuzzing, we present
the first approach that, given nothing but the parser at hand,
infers and covers substantial parts of input languages—up to
the complexity of real programming languages.
Our approach relies on the key observation that most

parsers process and compare a single character at a time.
We use dynamic tainting to track the comparisons made
with the last character; we fix the last character when the
input is rejected; and we add new characters when the end
of input is reached without error. These steps are sufficient
to produce high quality inputs with tokens and keywords,
outperforming state-of-the-art “lexical” fuzzers such as AFL
or “semantic” fuzzers like KLEE.

Right now, nontrivial input languages are the main road-
block for effective test generation at the system level. “Syn-
tactic” parser-directed fuzzing thus has a large potential for
the future of test generation. As more and more of its limita-
tions will be lifted (Section 7), users will be able to generate
syntactically valid inputs for a large class of programs—and
thus easily reach, exercise, and test program functionality
in a fully automatic fashion. Once we can synthesize the
simplest Java program class C { public static void
main(String args[]) {} } from a Java compiler, syntax-
directed testing will have reached its full potential.

A replication package is available at:

https://github.com/uds-se/pFuzzer

https://github.com/uds-se/pFuzzer
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