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Abstract
Self-stabilization in distributed systems is a technique to guarantee convergence to a set of le-
gitimate states without external intervention when a transient fault or bad initialization occurs.
Recently, there has been a surge of efforts in designing techniques for automated synthesis of
self-stabilizing algorithms that are correct by construction. Most of these techniques, however,
are not parameterized, meaning that they can only synthesize a solution for a fixed and predeter-
mined number of processes. In this paper, we report a breakthrough in parameterized synthesis
of self-stabilizing algorithms in symmetric rings. First, we develop tight cutoffs that guarantee
(1) closure in legitimate states, and (2) deadlock-freedom outside the legitimates states. We also
develop a sufficient condition for convergence in silent self-stabilizing systems. Since some of our
cutoffs grow with the size of local state space of processes, we also present an automated technique
that significantly increases the scalability of synthesis in symmetric networks. Our technique is
based on SMT-solving and incorporates a loop of synthesis and verification guided by counter-
examples. We have fully implemented our technique and successfully synthesized solutions to
maximal matching, three coloring, and maximal independent set problems.
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Figure 1 SMT-based Counterexample-Guided Synthesis Technique.

1 Introduction

Program synthesis (often called the “holy grail” of computer science) is the problem of
automated generation of a computer program from a formally specified set of properties.
The program generated in this fashion is guaranteed to be correct by construction. Program
synthesis is known to be computationally intractable and, thus, is usually used to deal with
small but intricate components of a system, e.g., concurrent/distributed algorithms that may
exhibit obscure corner cases, where reasoning about their correctness is not straightforward.

Dijkstra [3] introduced the notion of self-stabilization in distributed systems, where
the system always converges to a good behavior even if it is arbitrarily initialized or is
subject to transient faults. Proof of self-stabilization is, however, often much more complex
than what it initially seems like. Dijkstra himself published the proof of correctness of his
seminal 3-state machine solution 12 years later [4]. This means that program synthesis
can play a prime role in designing and reasoning about the correctness of self-stabilizing
algorithms. In [8, 9, 11, 12, 10], we introduced a set of algorithms and tools for synthesizing
self-stabilizing protocols. Our techniques take as input the network topology, timing model
(asynchronous or synchronous), the good behavior of the protocol (either explicitly as a set
of legitimate states or implicitly as a set of temporal logic formulas), type of symmetry, and
type of stabilization (e.g., strong, weak, monotonic, ideal) and generate a set of first-order
modulo theory constraints. Then, a satisfiability modulo theory (SMT) solver solves these
constraints and, if satisfiable, produces a model that respects the input specification. Our tool
Assess [10] has successfully synthesized complex algorithms such as Raymond’s distributed
mutual exclusion [24], Dijkstra’s token ring [3] (for both three and four state machines),
maximal matching [23], weak stabilizing token circulation in anonymous networks [2], and the
three coloring problem [14]. Our algorithms are complete for a predetermined fixed number
of processes; i.e., if they fail to find a solution to the synthesis problem, then there does not
exist one. This completeness, however, comes at a big cost which is scalability. That is, for
most instances, we could only synthesize solutions up to 5 processes at best.

In this paper, our goal is to address scalability as well as the shortcoming that the previous
work can synthesize only a fixed and predetermined number of processes. To this end, we
focus on automated synthesis of self-stabilizing protocols in symmetric and parameterized
rings, where an unbounded number of processes exhibit identical behavior. We make two
main contributions. First, we show how to solve the parameterized synthesis problem based
on the notion of cutoffs [6] that can guarantee properties of distributed systems of arbitrary
size by considering only systems of up to a certain fixed size c ∈ N, and augment this by a
sound but incomplete abstraction-based synthesis approach for properties that are known to
be undecidable. In particular, we provide:
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cutoffs for the closure and deadlock-freedom properties, under the assumption that the
set of legitimate states is defined by a conjunction of predicates on the local state of
processes; we show that smaller cutoffs are possible under additional assumptions, and
that all our cutoffs are tight under the assumptions we consider.
an abstraction-based method for the convergence property, which is known to be unde-
cidable in general [19, 21]; we show how, for the class of silent algorithms, a sufficient
condition for convergence of the parameterized system can be efficiently checked on a
finite system that over-approximates the behavior of systems of arbitrary size.

Note that these results can be used for both synthesis and verification. A drawback of our
cutoffs is that they are quadratic in the state space of a single process, so even with a cutoff,
we need synthesis methods that scale to a large number of processes. Thus, as our second
contribution, we propose a counterexample-guided synthesis technique that exploits our
symmetry assumption. More specifically, it consists of fours steps (see Fig. 1):
1. First, we synthesize a solution for a small network of i processes using existing techniques;
2. Next, we trivially generalize this solution to a larger network with i+ 1 processes;
3. Then, we verify this solution using a model checker, and
4. If verification succeeds, we return to step 2 to attempt a larger network. Otherwise, we

obtain a counterexample that is added as a negative constraint for the synthesis algorithm,
and we return to step 1 for another round of synthesis with limited search space.

Using this approach and our cutoff results, we successfully synthesized parameterized self-
stabilizing protocols for well-known problems including three coloring, maximal matching,
and maximal independent set in less than 10 minutes. To our knowledge, this is the first
instance of such parameterized synthesis.

Organization. The rest of the paper is organized as follows. Section 2 introduces the
preliminary concepts. In Section 3, we present the formal statement of our synthesis problem.
The parameterized correctness results are presented in Section 4, while our counterexample-
guided synthesis approach is presented in Section 5. Experimental results and case studies
are reported in Section 6. Related work is discussed in Section 7, and finally, we make
concluding remarks and discuss future work in Section 8.

2 Preliminaries

2.1 Distributed Programs
Most self-stabilizing algorithms are defined in the shared-memory model. Assume V to be
the set of all variables in the system, where each variable v ∈ V has a finite domain Dv. We
define a state s as a valuation of each variable in V by a value in its domain. The set of all
possible states is called the state space, and represented by S. A transition is defined as an
ordered pair (s0, s1), where s0, s1 ∈ S. We denote the value of a variable v in state s by v(s).

I Definition 1. A process π is a tuple 〈Rπ,Wπ, Tπ〉, where
Rπ ⊆ V is the set of variables that π can read their values and is called the read-set of π;
Wπ ⊆ Rπ is the set of variables that π can write to, and is called the write-set of π, and
Tπ is the set of transitions of π, where for each transition (s0, s1) ∈ Tπ and each variable
v, such that v(s0) 6= v(s1), we have v ∈Wπ.

The third condition imposes the constraint that a process can only change the value of a
variable in its write-set, and the second condition states that this change cannot be blind. A
process π = 〈Rπ,Wπ, Tπ〉 is called enabled in state s0, if there exists a state s1, such that
(s0, s1) ∈ Tπ. The local state space of π is the set of all possible valuations of the variables
that π can read: Sπ =

∏
v∈Rπ Dv

OPODIS 2018
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Figure 2 One-bit maximal matching example.

I Definition 2. A distributed program is a tuple D = 〈PD, TD〉, where
PD is a set of processes over a common set V of variables, such that:

for any two distinct processes π1, π2 ∈ PD, we have Wπ1 ∩Wπ2 = ∅;
for each process π ∈ PD and each transition (s0, s1) ∈ Tπ, the following read restriction
holds:

∀s′0, s′1 : ((∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v 6∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s′1) ∈ Tπ (1)

TD is the set of transitions and is the union of transitions of all processes:

TD =
⋃
π∈PD

Tπ

Intuitively, the read restriction in Definition 2 imposes the constraint that for each process π,
each transition in Tπ depends only on the variables in the read-set of π. Thus, each transition
is an equivalence class in TD, which we call a group of transitions. The key consequence of
read restrictions is that during synthesis, if a transition is included (respectively, excluded)
in TD, then its corresponding group must also be included (respectively, excluded) in TD.

Example. We use the problem of distributed self-stabilizing one-bit maximal matching as a
running example to describe the concepts throughout the paper. Consider a ring of 4 processes
(see Fig. 2), and let V = {x0, x1, x2, x3} be the set of variables, where each xi is a Boolean
variable with domain {F, T}. Let D = 〈PD, TD〉 be a distributed program, where PD =
{π0, π1, π2, π3}. Each process πi (0 ≤ i ≤ 3) can write to the variable xi (i.e., Wπi = {xi}),
and read the variables of its own and its neighbors (Rπi = {xi, x(i+1) mod 4, x(i−1) mod 4}).
Notice that following Definition 2 and read/write restrictions of π0, (arbitrary) transitions

t1 = ([x0 = F, x1 = F, x2 = F, x3 = F], [x0 = T, x1 = F, x2 = F, x3 = F])
t2 = ([x0 = F, x1 = F, x2 = T, x3 = F], [x0 = T, x1 = F, x2 = T, x3 = F])

are in the same group. The reason is that π0 cannot read x2, and if, for example, t1 is
included in the set of transitions, while t2 is not, it implies that the execution in process π0
depends on the value of x2, which is not possible.

I Definition 3. An uninterpreted local function for a process maps the local state space of a
process to a domain Dlf . The interpretation of an uninterpreted local function for a process
π is a function:

Sπ → Dlf

where Sπ is the local state space of π.

In the sequel, we use “uninterpreted functions” to refer to uninterpreted local functions.
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Example. To formulate the requirements in the one-bit maximal matching example, we
assume each process πi is associated with an uninterpreted local function, called match, with
the domain Dmatchi = {l, r, n}, where l, r, and n correspond to the cases where the process
is matched to its left, right, and no neighbor (self-matched), respectively. The interpretation
of matchi is a function:

(matchi)I : {F, T} × {F, T} × {F, T} → {l, r, n}

In other words, the value of matchi depends on the value of the process and its neighbors’
Boolean variables.

I Definition 4. A local predicate of a process maps the local state space of a process to a
Boolean:

Sπ → {F, T}

We use this definition to define legitimate states in Section 2.3.

2.1.1 Network Topology
A topology specifies the communication model of a distributed program.

I Definition 5. A topology is a tuple T = 〈V, |PT |, RT ,WT 〉, where
V is a finite set of finite-domain discrete variables,
|PT | ∈ N≥1 is the number of processes,
RT is a mapping {0 . . . |PT | − 1} → 2V from a process index to its read-set,
WT is a mapping {0 . . . |PT | − 1} → 2V from a process index to its write-set, such that
WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |PT | − 1).

Example. The topology of our maximal matching problem is a tuple 〈V, |PT |, RT ,WT 〉:
V = {x0, x1, x2, x3}, with domains Dx0 = Dx1 = Dx2 = Dx3 = {T, F},
|PT | = 4,
RT (0) = {x0, x1, x3}, RT (1) = {x1, x2, x0},
RT (2) = {x2, x3, x1}, RT (3) = {x3, x0, x2}, and
WT (0) = {x0}, WT (1) = {x1}, WT (2) = {x2}, and WT (3) = {x3}.

I Definition 6. A distributed program D = 〈PD, TD〉 has topology
T = 〈V, |PT |, RT ,WT 〉 iff

each process π ∈ PD is defined over V
|PD| = |PT |
there is a mapping g : {0 . . . |PT | − 1} → PD such that

∀i ∈ {0 . . . |PT | − 1} : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i))

2.2 Symmetric Networks
Roughly speaking, a topology is symmetric, if the read-set and write-set of any two distinct
processes can be swapped (i.e., there is a bijection that maps read/write variables of a process
to another).

I Definition 7. A topology T = 〈V, |PT |, RT ,WT 〉 is symmetric, iff for any distinct
i, j ∈ {0 . . . |PT | − 1}, there exists

OPODIS 2018
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a bijection f : RT (i)→ RT (j), such that ∀v ∈ RT (i) : Dv = Df(v), and
a bijection g : WT (i)→WT (j), such that ∀v ∈WT (i) : Dv = Dg(v).

We call a symmetric topology a (bi-directional) ring (of size k = |PT |) if for every
i ∈ {0 . . . |PT | − 1}, we have RT (i) = WT (i− 1 mod k) ∪WT (i) ∪WT (i+ 1 mod k). Since
in this paper we only deal with rings, to simplify notation throughout the paper, arithmetic
on process indices is implicitly modulo the size of the ring.

Example. The topology of our one-bit maximal matching example is symmetric, and a ring
of size 4 (Fig. 2). For any two numbers i and j, function g is the mapping from xi to a xj ,
and function f maps xi 7→ xj , x(i+1) 7→ x(j+1), and x(i−1) 7→ x(j−1).

I Definition 8. A distributed program D = 〈PD, TD〉 is called symmetric iff

it has a symmetric topology, and
for any two distinct processes π, π′ ∈ PD, the following condition holds:

∀(s0, s1) ∈ Tπ : ∃(s′0, s′1) ∈ Tπ′ :(
∀v ∈ Rπ :

(
v(s0) = f(v)(s′0))

)
∧
(
∀v ∈Wπ : (v(s1) = g(v)(s′1)

)) (2)

where f and g are the functions defined in Definition 7.
In other words, in a symmetric distributed program the read- and write-sets of all processes
are identical up to renaming, and so are their transitions. Therefore, we also write T π for a
symmetric distributed program that has topology T and where all processes are identical up
to renaming to π.

2.3 Self-Stabilization
Given a subset of the state space, called the set of legitimate states (denoted by LS), a
self-stabilizing [3] program always recovers to a state in LS from any arbitrary state (e.g.,
due to bad initialization or occurrence of transient faults) in a finite number of steps, and
stays in LS thereafter.

I Definition 9. A computation of D = 〈PD, TD〉 is an infinite sequence of states s = s0s1 · · · ,
such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a computation reaches a state
si, from where there is no state s 6= si, such that (si, s) ∈ TD, then the computation stutters
at si indefinitely. Such a computation is called a terminating computation.

I Definition 10. A distributed program D = 〈PD, TD〉 is self-stabilizing for a set LS of
legitimate states iff

1. (Convergence) For any computation s = s0s1 · · · , there exists a state sj ∈ s (j ≥ 0),
such that sj ∈ LS .

2. (Closure) For any transition (s0, s1) ∈ TD, if s0 ∈ LS , then s1 ∈ LS .

I Definition 11. A distributed program D = 〈PD, TD〉 is silent with respect to a given LS
if for any transition (s0, s1) ∈ TD, if s0 ∈ LS , then s1 = s0.

I Definition 12. A set of legitimate states is locally defined if it can be defined by

s ∈ LS if and only if ∀i ∈ {0 . . . |PT | − 1} : LS i(s),

where LS i is a predicate on the read-set of process πi.
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Example. In a directed graph, a maximal matching is a maximal set of edges, in which
no two edges share a common vertex. In a ring topology, each process can be matched
to one of its two adjacent processes. To formulate this requirement, we assume each
process πi is associated with a local uninterpreted function, called matchi, with the domain
Dmatchi = {l, r, n}. LS can be locally defined with

LS i =
{
s | (matchi−1(ΠRπi−1

(s)) = r ∧ matchi(ΠRπi
(s)) = l ∧ matchi+1(ΠRπi+1

(s)) = n) ∨

(matchi−1(ΠRπi−1
(s)) = n ∧ matchi(ΠRπi

(s)) = r ∧ matchi+1(ΠRπi+1
(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi

(s)) = n ∧ matchi+1(ΠRπi+1
(s)) = r) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi

(s)) = r ∧ matchi+1(ΠRπi+1
(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = r ∧ matchi(ΠRπi

(s)) = l ∧ matchi+1(ΠRπi+1
(s)) = r)

}
The system is in its legitimate state, if and only if all processes are in their local legitimate
states. For example, in a ring of size three with the set of processes P = {π0, π1, π2}, the set
of legitimate states can be formulated as the following:

{s | LS0(s) ∧ LS1(s) ∧ LS2(s)}

Note how uninterpreted functions can be used to easily express LS . Without matchi, the
user has to explicitly specify the cases where a process is matched to its left, right or itself,
using the Boolean variables of its own and its adjacent processes (its read set).

3 Problem Statement

Our goal is to propose an automated method for parameterized synthesis of silent self-
stabilizing protocols in symmetric ring networks. That is, we consider a problem where the
size of the topology is a parameter, and we want to automatically synthesize the transition
predicate and the interpretation of the uninterpreted function of each process, such that the
resulting distributed program is silent self-stabilizing for any value of the parameter.

Formally, a parameterized topology is a sequence of symmetric topologies T1, T2, . . ., where
for all n we have |PTn | = n and bijections read-sets and write-sets, as required in Definition 7,
also exist between process indices from different elements of the sequence. A parameterized
program is a sequence of symmetric distributed programs D1,D2, . . . such that Di = T πi for
a parameterized topology T1, T2, . . ., and some process π.

The parameterized synthesis problem takes as input:
a parameterized topology, and
a set of locally defined legitimate states LS ,

and generates as output:
a process π such that for every element Tn of the topology, the program Dn = T πn is
self-stabilizing to LS .

I Definition 13. For a given parameterized topology and a property under consideration, a
cutoff is a natural number c such that for any given process π and a locally defined LS the
following holds: Dn = T πn satisfies the property wrt. LS for all n ∈ N iff Di = T πi satisfies
the property wrt. LS for all i ∈ {1 . . . c}.
Note that cutoffs can be used for both parameterized verification and synthesis. In Section 4,
we will present cutoffs for two properties: i) closure, and ii) the absence of deadlocks outside
of LS . Moreover, we will introduce an abstraction-based method that can be combined with
the cutoffs to solve the parameterized synthesis problem.

OPODIS 2018
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4 Parameterized Synthesis of Self-Stabilization in Symmetric Rings

In this section, we show how to reduce reasoning about parameterized programs to reasoning
about a finite number of finite programs. To prove self-stabilization, we need to prove that
the algorithm has the two properties of closure and convergence. We split the latter into two
properties: (1) the absence of deadlocks outside of LS , and (2) the absence of cycles outside
of LS . In the following, we provide tight cutoffs for closure and deadlocks outside of LS , as
well as a sound abstraction to prove the absence of cycles outside of LS . Finally, we provide
our main theorem that combines these results into a method for parameterized synthesis of
self-stabilizing algorithms in rings.

4.1 Cutoffs for Closure and Deadlock Detection
Assume that the write-set of each process has l valuations. In other words, if process πi has
WT (i) = {v1, . . . , vn}, then l = |Dv1 | × · · · × |Dvn |.

I Lemma 1. For self-stabilizing algorithms on a ring topology, the following are cutoffs for
the closure property:

c = l2 + 1, if LS is locally defined;
c = l + 1, if LS is locally defined and LS i only depends on WT (i) and WT (i+ 1), and
c = 3, if LS is locally defined and LS i only depends on WT (i).

All of the cutoffs are tight under their respective assumptions.

I Lemma 2. For self-stabilizing algorithms on a ring topology, the following are cutoffs for
the detection of deadlocks outside of LS :

c = l2 + 1, if LS is locally defined;
c = l + 1, if LS is locally defined and transitions of processes only depend on WT (i) and
WT (i+ 1) (i.e., the ring is uni-directional), and
c = 3, if LS is locally defined and transitions of processes only depend on WT (i) (i.e.,
processes are completely independent).

All of the cutoffs are tight under their respective assumptions.3

4.2 Process Abstraction for Convergence
As mentioned before, to prove self-stabilization of a parameterized program, we need to
prove closure and convergence. Closure can be proved based on Lemma 1, and Lemma 2
shows how to deal with deadlocks outside of LS . Thus, the missing part is a method to
prove that there are no cycles outside of LS that prevents a computation to eventually reach
LS . In contrast to the two previous problems, we now consider infinite behaviors of the
system. Since parameterized verification and synthesis of symmetric self-stabilization in rings
is known to be undecidable [19, 21], we cannot obtain cutoffs for this property. Therefore, we
resort to proving the absence of cycles based on a sound abstraction of the system behavior.

The basic idea is the following: we check whether there is a loop that starts and ends
in the same local state for an arbitrary process. If we can show that this is not possible,
then certainly no global loop is possible. Note that this is a stronger property than what we
want to prove; it proves that there could not be any loops in the protocol, neither inside nor

3 Detailed proofs for Lemmas 1 and 2 can be found at http://web.cs.iastate.edu/~borzoo/
Publications/18/OPODIS/opodis18.pdf.

http://web.cs.iastate.edu/~borzoo/Publications/18/OPODIS/opodis18.pdf
http://web.cs.iastate.edu/~borzoo/Publications/18/OPODIS/opodis18.pdf
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Figure 3 Blue processes act based on the algorithm and grey (with slanted lines) processes act
randomly.

outside LS. It is obvious that this property can only be satisfied for silent protocols. To this
end, we fix five processes (see Fig. 3), and define the following property:

S ⇒ ( S ∨ ¬ S),

where S is the local state of πi (i.e., the valuation of its read-set), is the ‘eventually’
operator and is the ‘always’ operator in temporal logic. That is, given a local state in
S, any future extension either reaches a state where S is continually true, or, S does not
become true infinitely often. Next, we attempt to prove the property in a ring of size 7,
where 5 processes behave according to the synthesized protocol, and the other two processes
have the same write-set, but can execute arbitrary transitions. The idea is that these two
processes over-approximate the possible behavior of all other processes. If we can prove the
property above in this abstraction of the system, then this implies that no loops are possible
in a concrete system in a ring of size ≥ 5. Note that the precision of the abstraction can be
refined by increasing the number of processes that behave according to the protocol, or by
including the local state of additional processes into S. For the problems we considered in
our experiments (see Sect. 6), the fixed abstraction with 5 + 2 processes was sufficient.

4.3 Parameterized Self-Stabilization
Based on Lemmas 1 and 2, and the approach in Section 4.2, we obtain our main result.

I Theorem 14. Let T1, T2, . . . be a parameterized ring topology, π a process, and let LS be
locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock detection wrt. LS,
respectively. If (1) closure holds in rings of size up to c1, (2) deadlocks outside of LS are
impossible in rings of size up to c2, and (3) the absence of cycles can be proven in rings of
up to size 4 and in an abstract system as above, then every instance of the parameterized
program D1 = T π1 ,D2 = T π2 , . . . is self-stabilizing to LS.

5 SMT-based Counterexample-Guided Synthesis

5.1 General Idea
In [8, 9, 11], we introduced SMT-based methods to solve the synthesis problem for self-
stabilizing systems. In a nutshell, our techniques generate a set of SMT constraints from the
input synthesis instance and produce a model that represents a self-stabilizing protocol. In

OPODIS 2018
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order to scale up these technique to synthesize solutions up to the cutoff point efficiently, in
this section, we propose a method, where we find a solution for a larger topology using a
solution for a smaller topology. Let us first entertain a naïve idea, where we first synthesize
a protocol for a small topology and then simply use this solution for larger topologies with
the hope that since the protocol is symmetric, a small solution works in a larger network as
well. We now show that this approach is not conceivable even for very simple protocols.

Example. When applying our latest algorithm [11] to the one-bit maximal matching example,
the first synthesized solution for 4 processes is the following transition relation encoded by
guarded commands for each process πi:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

and the following interpretation for uninterpreted function matchi:

matchi : (xi = T) ∧
(
(x(i+1) = T) ∨ (x(i−1) = F)

)
7→ l

(x(i+1) = T) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = F) 7→ n

Now, if we trivially use the synthesized protocol on a topology with 5 processes, the resulting
protocol is incorrect. In particular, the following is a counterexample (i.e., a finite computation
that violates the specification) in terms of predicate match:(

[match0 = n,match1 = n,match2 = n,match3 = n,match4 = n],

[match0 = l,match1 = n,match2 = n,match3 = n,match4 = l],

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]
)

This computation violates convergence, as it reaches a deadlock state in ¬LS . This example
shows that a synthesized symmetric solution cannot be trivially extended to larger topologies.

5.2 The Counterexample-Guided Synthesis Algorithm
In order to limit the search space of SMT-solvers for a solution, we incorporate a synthesis-
verification loop guided by counterexamples. Our approach consists of the following steps:
1. Given a topology with i processes and a set of legitimate states, we use our existing

approach [8, 9, 11] to formulate the synthesis problem as an SMT instance.
2. We use an SMT solver to find a solution for the SMT instance, as a transition relation

and an interpretation for each uninterpreted function. Note that due to symmetry, the
transition relations and the interpretation functions are identical for all processes.

3. Next, we generalize the solution for a topology with i+1 processes and verify this solution
using a model checker.

4. If the result of verification is positive, we go back to step 3 to check the properties for a
topology with i+ 2 processes. Otherwise, we transform the generated counterexample
into an SMT constraint and add it to the initial SMT instance and return to step 2.
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For reasons of space, we do not include the details of our SMT-based synthesis technique [8,
9, 11]. We now analyze the nature of counterexamples. In the context of closure and
convergence, a model checker may generate a counterexample of the form s = s0s1 · · · sn.
Observe that s is one of the following three types of counterexamples:

If closure is violated, then s = (s0, s1), where s0 ∈ LS and s1 6∈ LS .
If convergence is violated, s = s0s1 · · · sn, where for all i ∈ [0, n], si 6∈ LS and either
s0 = sn; i.e., a loop exists outside the set of legitimate states, or
there does not exist a state s, where (sn, s) is a valid transition; i.e., sn is a deadlock
state outside the set of legitimate states.

Dealing with the first type of counterexamples is pretty straightforward: we only add a
constraint to the SMT instance that disallows transition (s0, s1) in the transition relation. To
address deadlocks, we need to add a constraint to the SMT instance to enforce a change in the
resulting synthesized model, so that sn is not a deadlock state. To this end, we propose two
sets of heuristics to change either the transition relation or the interpretation of uninterpreted
functions in Section 5.3. Dealing with loops is a bit more complicated. For example, one
can remove a transition from the loop to break it, but the choice of transition may involve a
combinatorial enumeration to find the right transition. This type of counterexamples is not
our focus in this paper and we leave it for future work. Interestingly, all of our case studies
in Section 6 do not involve loop counterexamples.

5.3 Heuristics Considering Transition Relations

The simplest method to resolve a deadlock is to formulate a constraint imposing the existence
of an outgoing transition from sn. Since in this paper, our focus is on asynchronous systems,
a transition is the execution of one of the processes. We propose two strategies for selecting
a process to have an outgoing transition from a deadlock state.

Progress Heuristic. In this approach, we add a constraint stating that at least one of
the proceses should have an outgoing transition from sn. More formally, assume that the
current topology includes i processes, where the read-set of each process has r variables, with
domains D0, . . . , Dr−1, and the write-set of each process includes w variables, with domains
D′0, · · · , D′w−1. Note that since the goal is to synthesize a symmetric program, all processes
execute similarly according to the function Tp:

Tp :
( ∏
j∈[0,r−1]

Dj

)
→
( ∏
j∈[0,w−1]

D′j
)

and function f is of type:

f : N→
(
S →

( ∏
j∈[0,r−1]

Dj

))

Then, the constraint to be added to the SMT instance can be written as:

∀j ∈ [0, w − 1] : ∃valj ∈ D′j :
∨

k∈[0,i)

((
f(k)(sn), [val0, val1, · · · , valw−1]

)
∈ Tp

)
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Example. Consider the counterexample mentioned in Section 5.1. Each process can read
three Boolean variables and write to one Boolean variable and, hence, Tp is defined as follows:

Tp : {F, T} × {F, T} × {F, T} → {F, T}

Note that for each process πj , f(j) returns [x(j−1), xj , x(j+1)]. In the counterexample we
presented in the previous example, the last state where the deadlock happens is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

Thus, we add the following constraint to the SMT instance:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tp ∨ ([T, F, T], val) ∈ Tp ∨ ([F, T, F], val) ∈ Tp ∨

([T, F, F], val) ∈ Tp ∨ ([F, F, T], val) ∈ Tp
)

In the above constraint, the jth clause imposes a constraint on Tp to have an outgoing
transition considering the local state of the jth process. (Note that the first and third clauses
are the same, and we just put them for clarity.)

Local LS Heuristic. As mentioned in Section 2, we focus on sets LS that can be locally
defined, i.e., the set of legitimate states can be described as a conjunction over local legitimate
states of processes. In this case, a deadlock can be resolved by checking the local state of
each process and imposing a constraint to have an outgoing transition for at least one of
those processes that are not in their local legitimate states.

Example. For the counterexample of one-bit maximal matching with 4 processes, the local
set of legitimate states is already presented in the example below Definition 12, and the
deadlock state is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

For checking the local state of each process, we should first note the values of uninterpreted
functions matchi in this state:

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]

Processes π0, π1, π3, and π4 are not in a local legitimate state, and hence, the added
constraint to the original SMT model will be as follows:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tp ∨ ([T, F, T], val) ∈ Tp ∨

([T, F, F], val) ∈ Tp ∨ ([F, F, T], val) ∈ Tp
)

Note that although this method seems more efficient than the progress approach in terms of
having shorter constraints, it has the drawback of missing some solutions that the previous
approach can find. More specifically, for a process being in a legitimate local state in a
deadlock state, it may be the case that taking a transition by this process leads to a state,
from which its neighbors can take other transitions that finally leads to a legitimate state.
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5.4 Heuristics Considering Uninterpreted Functions
Our second class of heuristics focus on uninterpreted functions, where we impose a constraint
to change the interpretation function of at least one uninterpreted function in the deadlock
state. Similar to the heuristics introduced for transition relations, we introduce two approaches
for selecting at least one process to change the interpretation of its uninterpreted function.
Because of the similarity to the previous heuristics, we skip the details of this heuristic.

6 Case Studies and Experimental Results

We used the model finder Alloy [15] and model checker NuSMV [7] to implement our
counterexample-guided synthesis approach. Our experimental platform is an 2.9 GHz Intel
Core i7 processor, with 16 GB of RAM. Our synthesis results are reported in Table 1.

6.1 Three Coloring
We consider the three coloring problem [14] on a ring, where each process πi is associated
with a variable ci with domain {0, 1, 2}. Each value of the variable ci represents a distinct
color. A process can read and write its own variable. It can also read the variables of its
neighbors. LS includes all states, where each process has a color different from its both
neighbors. Thus, for a ring of 4 processes, LS is defined by the following predicate:

c0(s) 6= c1(s) ∧ c1(s) 6= c2(s) ∧ c2(s) 6= c3(s) ∧ c3(s) 6= c0(s)

Observe that the closure/deadlock-freedom cutoff point for this case study is 32 + 1 = 10
and, hence, we need to synthesize a solution for 10 processes. The synthesis time reported in
Table 1 is a bit smaller in the case of local LS heuristic, which is probably due to the smaller
constraints added in this case. The resulting protocols for the two heuristics are different.
Following is the one synthesized for the case of local LS:

πi : (ci = 2) ∧ (c(i+1) = 2) ∧ (c(i−1) 6= 0) → ci := 0
(ci 6= 0) ∧ (c(i+1) = 1) ∧ (c(i−1) = 2) → ci := 0
(ci = 1) ∧ (c(i+1) = 1) ∧ (c(i−1) 6= 2) → ci := 2
(ci = 0) ∧ (c(i+1) 6= 2) ∧ (c(i−1) = 0) → ci := 2
(ci 6= 1) ∧ (c(i+1) = 2) ∧ (c(i−1) = 0) → ci := 1

6.2 One-Bit Maximal Matching
This case study is the running example in this paper with cutoff point of 22 + 1 = 5 processes.
Note that using the heuristics considering transition relations, we could not synthesize a
protocol for this problem (Alloy reports unsatisfiablity after adding the counterexample
constraints). The interesting point about this case study is that the progress heuristic has
better efficiency compared to the local LS . The reason may be due to the fact that the
constraints added in the local LS heuristic are too restrictive, and hence, Alloy needs to
search more in order to find a solution. The synthesized solutions using both heuristics are
the same for this case study, where the transition relation is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

OPODIS 2018
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Table 1 Results for parameterized synthesis.

Problem cutoff # Heuristic Synthesis Model Checking
Time Time

Three Coloring 10 Local LS 7m 3sec 16 msec
Three Coloring 10 Progress 9m 5sec 16 msec
One-Bit MM 5 Local LS 1m 48sec 27 msec
One-Bit MM 5 Progress 1m 44sec 33 msec

Maximal Matching 10 Local LS 7m 59sec 36 msec
Maximal Matching 10 Progress 4m 57sec 37 msec

Maximal Independent Set 5 Local LS 10sec 18 msec

and the interpretation function for matchi is the following:

matchi : (xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ l

(x(i+1) = F) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) 7→ r

(xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = F) 7→ n

(xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ n

6.3 Maximal Matching
In this case study, we used the same problem as in Section 6.2, but instead of using one
Boolean variable for each process, we use a variable with three values {l, r, n} and, hence,
we do not need the uninterpreted functions anymore. The resulting protocols for the two
heuristics are different. As an example, the synthesized protocol for the case of local LS is
the following:

πi : (xi = n) ∧ (x(i+1) = n) ∧ (x(i−1) = n) → xi := r

(xi 6= r) ∧ (x(i+1) 6= r) ∧ (x(i−1) = l) → xi := r

(xi 6= n) ∧ (x(i+1) = r) ∧ (x(i−1) = l) → xi := n

(xi = n) ∧ (x(i−1) = r) → xi := l

(xi = r) ∧ (x(i+1) = r) ∧ (x(i−1) 6= l) → xi := l

6.4 Maximal Independent Set
An independent set in a graph is a subset of vertices in which no pair of vertices are adjacent.
To synthesize a protocol that finds a maximal independent set, we consider a set of processes
connected in a ring topology, where each process has a Boolean variable, the value of which
shows whether or not it is included in the maximal independent set. The set of legitimate
states include those states, where the processes whose variables have the true value form a
maximal independent set. As an example, if ci is the variable of the process πi, then the set
of legitimate states for the case of four processes is formulated by the following predicate:

(c0(s) = T∧c1(s) = F∧c2(s) = T∧c3(s) = F) ∨(c0(s) = F∧c1(s) = T∧c2(s) = F∧c3(s) = T)
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The point of this case study is that the resulting model for 4 processes worked for the size
5 as well, and hence, no counterexample is found. Therefore, the result for both heuristics is
the same. The resulting protocol is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

7 Related Work

Regarding the synthesis of self-stabilizing algorithms, one approach is to add self-stabilization
to a given algorithm. In contrast to our approach, the technique proposed by Ebnenasir
and Farahat [5] starts from a given non-stabilizing algorithm, it requires a more explicit
specification of the legitimate states, and it is not complete, i.e., it may fail to find a
solution even though there exists one. Klinkhammer and Ebnenasir show that adding strong
convergence is NP-complete in the size of the state space, which itself is exponential in the
size of variables of the protocol [18], and introduce a new method for adding self-stabilization
that is complete, but otherwise has the same limitations as mentioned above [20]. For ring
topologies, they have shown that parameterized verification of self-stabilization is undecidable
in uni-directional rings [19], while the parameterized synthesis problem is undecidable in bi-
directional rings, but surprisingly remains decidable in uni-directional rings [21]. Faghih and
Bonakdarpour introduced an SMT-based synthesis technique for automatically synthesizing
self-stabilizing systems [8, 9] that is complete and not based on existing non-stabilizing
algorithms. An extension of this work [11] allows to symbolically specify the legitimate states
as a set of requirements, and supports the synthesis of ideal-stabilizing systems.

While these approaches are promising and can automatically synthesize a number of
well-known self-stabilizing systems, they all suffer from the problem of scalability, as the
complexity of the problem increases exponentially in the number of processes. For example,
all results reported by Faghih and Bonakdarpour [8, 9, 11] correspond to automatically
synthesis of self-stabilizing systems with at most 5 processes. One way to address this
scalability issue in synthesis is to use a counterexample-guided synthesis method, as it has
been proposed for the completion of program sketches [25], for the lazy synthesis of reactive
systems [13], and for the synthesis of Byzantine-resilient systems [1]. The latter approach also
supports the synthesis of self-stabilizing systems, but counterexamples are only used to guide
the encoding of Byzantine-resilience, and the approach is limited to synchronous systems. In
all of these examples, a counterexample-guided approach can solve problems that are out of
reach for existing approaches. In our work, we for the first time used counterexamples to
guide synthesis for an increasing size of the topology, which allows us to scale the SMT-based
synthesis of self-stabilizing algorithms to systems with up to 200 processes.

Finally, the problem of scalability in the number of processes can be solved once and for
all by using a parameterized synthesis approach, as introduced by Jacobs and Bloem [16]
for (non-stabilizing) reactive systems. The approach relies on cutoff results, similar to the
ones we introduced in this work for closure and deadlock detection. Different techniques
are introduced in [17] to improve scalability of this approach in the complexity of the
specification, including the modular application of cutoff results in synthesis. An extension
of the approach [1] also supports the parameterized synthesis of self-stabilizing systems, but
only for synchronous systems, and not in all cases resulting in a completely symmetric system.
Finally, Lazic et al. [22] propose a method for synthesizing parameterized fault-tolerant
distributed algorithms. In contrast to our approach, synthesis is based on a sketch of an
asynchronous threshold-based fault-tolerant distributed algorithm, and the goal is to find
the right values for coefficients that may be missing in the guards.
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8 Conclusion

In this paper, we proposed a new method for parameterized synthesis of self-stabilizing
algorithms in symmetric rings using cutoff points. Furthermore, in order to scale the existing
synthesis solutions [8, 9, 11, 12, 10] up to the cutoff point, we introduced an iterative loop of
synthesis and verification guided by counterexamples. We demonstrated the effectiveness of
our approach by synthesizing parameterized self-stabilizing protocols for well-known problems.
For future, we plan to work on asymmetric and dynamic networks as well as the case, where
the protocol is live in the set of legitimate states.
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