
Automatic Test Transfer across Applications

Andreas Rau
Saarland University

Saarbrücken, Germany
rau@st.cs.uni-

saarland.de

Maximilian Reinert
Saarland University

Saarbrücken, Germany
mreinert@st.cs.uni-

saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-
saarland.de

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation; State systems; •Information sys-
tems → Web applications; Document topic models; Web
crawling;

Keywords
Software Testing; Web Testing; Porting Tests

ABSTRACT
Building test suites for the Web is hard. We present a novel
technique to automatically transfer and adapt existing Se-
lenium test suites from one web application to another. By
mapping functional states using topic analysis, we identify
which actions yield the same result. This mapping allows
for fully automatic test transfer—even across different ap-
plications in the same domain: we can take a shopping test
that buys a product at Amazon and automatically adapt it
to run on eBay or other eCommerce sites.
In an evaluation of test traces of 16 real world applications

— encompassing more than 1200 user actions — Attaboy
was able to successfully transfer 49.3% of all test cases with-
out any human intervention in domains such as eCommerce,
knowledge bases, search engines, and news sites.

1. INTRODUCTION
What does it take to create a test suite for a web ap-

plication? Developing a test case includes the creation of
valid and invalid input values, identifying the correct target
elements on a page and verifying that an executed action
yields the correct result. The correct result is typically as-
serted by checking the presence of certain key elements in
the web page, e.g. the presence of a button labeled with
’Proceed to Checkout’. A test suite combines these single
process snippets into a “story”, expressing for instance the
use case scenario for buying a product. Figure 1 represents

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2017 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

Payment/Shipping

goto
cart

goto
cart

select
entry

proceed checkout

loginconfirm

Product Page

LoginConfirmation

goto
cart
goto
cart

Shopping CartSearch Result

$

search
coffee

Figure 1: Test sequence for buying a product on
https://www.amazon.com

a simplified view of a complete order process in Amazon, in-
cluding the search for a product, over to a login procedure,
passing the payment information until finally the “Purchase
Complete” page pops up. The test has succeeded if the final
page has been reached.
As humans, we can read a scenario like the one in Fig-

ure 1 and easily apply it again and again on Amazon. But
we can also apply it on other eCommerce sites, checking
whether purchasing a product works as intended. The indi-
vidual steps on other sites may be slightly different, but we
should always be able to start with a search and end with a
confirmation of our purchase.
In this paper, we present a technique to take a scenario

like the one in Figure 1 and automatically transfer it to web
sites in a similar domain, which considerably reduces the
effort for test development. Given an existing test suite for
a source application A, Attaboy crawls the target applica-
tion B and generates a new test suite for B. The key idea
is to leverage a set of Natural Language Processing (NLP)
techniques to identify states and their context in the original
application, and to map these states to similar states in the
target application.
Our Attaboy prototype executes the test suite for appli-

cation A and records a behavioral model encompassing the
applied actions and resulting states. Figure 2 shows such
a mapping between two behavioral models. Once we know
that two states are equivalent, we can transfer scenarios from
one application to another by following similar paths from
start to end. The resulting test suite for the target appli-
cation B consists of the crawled actions, altogether with a
new oracle telling what the supposed outcome of this action
was in the source application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249327848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.amazon.com


Product
Details

Shopping
Cart

Product
Page

Product
Page

Login ErrorPrivacy
Policies

Product
Details

Product
Page

Login

Reviews

Contact

Start Page Start Page

Web Application A Web Application B

Figure 2: Simplified functional state overview on two eCom-
merce web applications. States with equal labels are clus-
tered and represent the same functional state. Dashed ar-
rows indicate a mapping to functional similar states. Nodes
are labeled with their main topics.

After discussing related work (Section 2), this paper makes
two central contributions:

Test Transfer Across Applications
A novel method for transferring test suites across Web ap-
plications (Section 3), as implemented in the Attaboy pro-
totype, building on novel techniques for visual element clus-
tering (Section 3.1), noise reduction (Section 3.2), clus-
tering functional states (Section 3.3), mapping states via
natural language topic analysis (Section 3.4), and mapping
across applications (Section 3.5).

Domain Specific Process Analysis
An evaluation (Section 4) on common process snippets across
16 representative web applications covering eCommerce sys-
tems, knowledge bases, news websites and search engines,
both on manually written tests, as well as auto-generated
ones. In our evaluation, Attaboy was able to fully auto-
matically transfer an average of 59% of manual tests, and
49.3% of automatically generated tests.

After discussing threats to validity (Section 5), we close with
conclusion and future work (Section 6).

2. BACKGROUND
Modern web applications incorporate many features, are

highly dynamic and interactive. Typically, they try to follow
established usability standards to ease the effort for their
users to familiarize themselves with the underlying func-
tionality. In other words, it is of high interest to a service
provider to avoid steep learning curves. Reusing standard
usability patterns like login or address forms, shopping carts
or confirmation pages allows users to deduce from experi-
ence on what they are supposed to do at any given mo-
ment. Changing element styles or reordering functional sim-
ilar states can improve the user experience and may repre-
sent a unique feature giving an edge over competitors, but
should not prevent the user from understanding what he is
supposed to do.
Although the back-end code is hidden from the user, the

web interface can still be mined for information and allows
us to build a behavioral model, i.e. by specifying the single

states a web application can be in and which actions are re-
quired to change this state. Literature offers a wide range of
data mining and information retrieval techniques to extract
the state of an application through the browser interface.
Mesbah et al. [12] presented Crawljax, a crawler, which
creates a state model of an application by analyzing changes
in the user interface. Dallmeier et al. [5] presented an alter-
native approach to leverage this information and introduced
a methodology to identify cross-browser related issues, i.e.
unwanted changes which occur if an application is executed
on different browsers.
Choudhary et al. [15] map features, i.e. elements of a web

page, in a cross platform setting, allowing to check the con-
sistency of features throughout desktop and mobile plat-
forms. Despite the hardware induced differences in mobile
and desktop versions, both platforms are supposed to of-
fer the same information and functionality, while possibly
following different usability patterns. Their methodology
allows to check both the presence and absence of certain
features across platforms, but cannot guarantee, that the
interaction with these elements produces the expected re-
sult. Furthermore, it is restricted to be executed within the
same application. Structural differences and mismatches be-
tween the unique identifiers restrict the mapping capabilities
across applications.
In modern development, automatically testing web appli-

cations on a system level has become increasingly important
to meet the requirements of short release cycles. Selenium,
an automation engine based on JavaScript, serves as an in-
terface to a large set of test-browsers, translating commands
to simulated user actions executed on the browser under
test. The Selenium framework sets up a web server in-
terface, controlled by simple HTTP commands in order to
create a new browser session (i.e. a new browser instance
is started and available as a web driver) and to send user
commands (e.g. GET opens the given URL or CLICK clicks a
previously identified target web element). As part of a test
automation framework, a Selenium test suite can be used
to check the presence of certain functionalities, control flows
or likewise. In contrast to random crawlers [6, 12, 5], such
a test suite is designed with domain specific knowledge and
can test all user accessible functionality. Though random
crawlers also test the behavior of an application, they lack
this domain specific knowledge and thus usually less efficient
and thorough. Furthermore, this kind of automatic testing
technique has no knowledge on what the correct state of
an application is supposed to be after an action has been
executed.
Leveraging existing unit tests for further application anal-

ysis is not a new concept [13], but is limited to be executed
on different states of the same application. This restriction
is implied by the inability to identify how the current state
of the target application is related to the source application.
Traditional mapping techniques — based on structural el-
ement distribution or styling attributes — are insufficient.
Therefore, transferring the actions of a source application
to a target application cannot infer, if the produced result
is actually correct.
The question is, how can a human decide on what he

is supposed to do for instance to purchase a product? How
does he know that the action was successful? Understanding
that a product order requires to enter ‘username’ and ‘pass-
word’ is a previously learnt behavior. The application under



test dictates where in the process the information has to be
provided. The outcome of the interaction is determined by
the input (valid username/password) and the process (lead-
ing for instance to an authorized state). For a human user,
the surrounding text implies what action is required and the
success/failure can be derived from the text in the next state
as well. The actual wording is of minor importance, as long
as the actual meaning is clear.
NLP techniques have proven useful to analyze the under-

lying topic model of texts, even allowing for a classification
model, if a description matches the proposed functionality.
Gorla et al. [7] even showed that the description of an ap-
plication can help to decide which underlying functionality
(in this case API method calls) are to be expected.
The combination of the presented ideas of information re-

trieval and automated test case generation – i.e. crawling –
together with a novel model generation and mapping tech-
nique based on topic analysis, allows Attaboy to transfer
given test suites across applications and thus create new test
suites for applications within the same domain.

3. MODEL GENERATION
Attaboy is leveraging a given Selenium test suite to

generate test traces for the application under test. Our
prototype features an extended version of a standard Sele-
nium server, allowing us to intercept given commands (i.e.
in terms of HTTP requests given to the Selenium grid).
Attaboy records the commands and applies the presented
information retrieval techniques [5] to extract the current
state of the application as currently shown in the web driver
instance. The test itself is not changed. Accordingly, test
traces consist of single states of an application, connected
by sequences of Selenium commands. Such a state repre-
sents a single page of the application. The structure of a
page is specified in an underlying Document Object Model
(DOM) in which every element of the page is expressed as
a node. This tree structure contains one node for every sin-
gle element on the page, together with the node content, its
styling properties (e.g. CSS classes), visibility information
or likewise. Figure 3 presents an overview on Attaboy’s
process pipeline.
Considering the initial example of buying a product on

Amazon (Figure 1), the sample test trace consists of going to
the landing page, searching for a product, selecting a prod-
uct, adding it to the shopping cart, clicking on ‘Proceed to
Checkout’, logging in (entering a valid ‘username’ & ‘pass-
word’ combination) and confirming the payment and ship-
ping options. The consistency of the application is tested
by asserting the presence of certain key elements in the in-
termediate pages. A new state is extracted whenever a user
action is executed on the browser under test (i.e. a non-
native Selenium action like implicitWait, findElement).
After the test traces have been generated, Attaboy pre-

processes the traces into a behavioral model by applying
visual element clustering (see Section 3.1), noise reduction
(Section 3.2) and functional state clustering (Section 3.3).
After this pre-processing phase, we extract the main top-
ics describing the content and functionality of a page (Sec-
tion 3.4). Mapping the topic model of the functional states
against another test suite (either an automatically generated
or another Selenium based one) allows us to automatically
transfer the tests across applications.

3.1 Visual Element Clustering

Algorithm 1: Visual Element Clustering - Recursive
algorithm extracting blocks of a given DOM tree.
Input: n, root node of a DOM tree
Result: B, a list of block b
// LBN = LineBreakNodes
// IN = InlineNodes
begin

Let C ← n.getChildren()
if C 6= ∅ then

for c in C do
if isValid(c) then

applyRules(c)
else if
(c ∈ LBN ∧ c /∈ IN ∧ c.getChildren 6= ∅)
then

blockExtraction(c)
end

end
end

The DOM of a single page may consist of thousands or
hundreds of thousands elements, i.e. nodes. Before we can
identify common web elements or structures throughout the
entire web application, we group individual web elements
within a single state based on their visual coherence. These
groups are then mapped throughout the web applications.
Instead of comparing hundreds of thousands single elements
we only have to match a few hundred groups. In addition,
we also use the resulting segments in order to identify noise
in the next step. Although the DOM already structures
elements hierarchically, this structure may not follow the
actual presentation within the browser, is hard to generalize
and shows unsatisfactory results [16].
Literature offers a large amount of studies, which focus on

webpage segmentation. Kohlschütter et al. [9] introduced a
densitometry approach for page segmentation based on text
density. The area of application is restricted to the pur-
pose of information retrieval where a large amount of text
is present. Cai et al. [4] present a vision-based page seg-
mentation algorithm to extract the page structure based on
its visual perception. Their technique depends on visual
separators and a set of predefined heuristic rules. To gen-
erate the final vision-based structure, many iterations are
required. Improved versions of the VIPS algorithm [1, 16]
circumvent this limitation and represent the basic idea of
our visual element clustering solution.
We first remove all invalid nodes, i.e. nodes with no visual

representation like STYLE, SCRIPT or META, out of the DOM.
After that—starting with BODY as the root node—the tree
is traversed recursively. For each node, the algorithm (see
Algorithm 1) checks, if it is in between predefined bound-
aries isV alid(), i.e. that an element is within the viewport
of the page and has no empty dimensions. Afterwards, the
node properties are checked against a set of extended VIPS
rules (see Table 1). However, if a node is invalid, possible
child nodes are still traversed. Otherwise, container nodes
with zero height or width would be excluded and we could
not achieve the desired granularity. Furthermore, we allow
setting the maximum number of children per block and a
maximum DOM tree depth for the analysis.



Pre–Processing Test Suite TransferBehavioral Model

Visual Element Clustering
Noise Reduction
Functional State Clustering

Auto-Generated
Test Suite

Test Suite Test Traces

Topic Analysis
Functional State Matching
Action Translation

StartPage

Behavioral ModelSo
ur

ce
 A

pp
lic

at
io

n
Ta

rg
et

 A
pp

lic
at

io
n

1

2

43 5 6

Crawler

Figure 3: Attaboy Process Pipeline for automatic test suite generation. A given reference test suite is executed (1) and
processed (3). Meanwhile a random test suite for the target application is created (2) and processed as well. Afterwards the
resulting behavioral models (4) are transferred by matching the topic set of each functional state (5). In the last step the
action translation is performed to generate the final target test suite (6).

Table 1: VIPS rules for element clustering. If the node
property is fulfilled for a certain node, the listed action is
executed. ’NB’ creates a new basic block. ’T’ - traverse
recursively and analyze child nodes

Action Node Property
NB tag is HEADER, FOOTER NAV
T dimensions equal to parent-node dimension
NB all children are virtual text nodes1

NB tag is UL or OL and has only one child
T tag is UL or OL and has multiple children
NB tag is LI, i.e. list item

NB & T tag is TD or TR (table row or cell), width > 100
pixel

NB & T is line-break node
T is not an inline node

3.2 Noise Reduction
With our page segmentation functionality in place, the

next step is to filter out common blocks with redundant in-
formation throughout the complete state model of the appli-
cation. Noise — in our model reoccurring structures, which
offer no classification power over the underlying context or
functionality of a page — is a common problem in the field
of information retrieval and web data mining. Noise is typ-
ically introduced by default templates or advertisements.
Service providers for instance have to add imprints to the
footer (due to legal regulations) or include navigation ele-
ments to every single page of their application.
Kohlschütter et al. [8] presented a tool that automatically

identifies templates and effectively removes content which is
not related to the main content. As with their previously
mentioned page segmentation algorithm, this approach is
optimized for information retrieval, where a large amount of
text is present. Yi et al. [17] instead build a so called Site
Style Tree (SST), which basically is a merged DOM tree of

1An inline node that contains text and/or (inline) child
nodes with text content

a web application. The SST is built by adding the DOM
for each page and joining it with the existing tree. For each
new page, the page count is incremented for equal nodes.
Noise is identified by checking the number of the nodes. The
higher the frequency, the more likely it represents noise. The
algorithm needs around 500 pages of a given web application
pages as training data before it can effectively classify noise.
Although we could train or model by randomly crawling the
web application, we also want the possibility to generate or
model on smaller traces produced by small Selenium test
suite featuring less than fifty user actions.
Alassi et al. [2] introduced a VIPS based algorithm able to

cope with a much smaller set of training data. We compute
the noise value for all block-pairs of all states based on their
structural similarity. The structural similarity is computed
by traversing both blocks in depth-first manner and count
equal nodes. Two nodes are considered equal if they have
the same relative XPath. The normalized block similarity is
computed by

SBlock = 2 ∗M
S1 + S2

(1)

whereM is the number of equal nodes and Sn is the num-
ber of nodes in each block. The final noise value for a single
block is the average of all block matchings .
The next step is to find a suitable cut-off value, to de-

cide whether a block is considered noise. Instead of using
a global cutoff value for the whole application, we compute
a dynamic threshold (see Algorithm 2) that is dependent
on the average and maximum noise value per state. Noise
is typically not uniformly distributed throughout the appli-
cation. Start pages typically contain navigational elements
that are not present if the user is prompted for credentials on
a separate login-page. The dynamic threshold allows for a
more fine-grained analysis of the states, thus minimizing the
effect of removing elements with valuable data for the later
topic classification. Still, a domain specific tuning value t
can be provided to handle domain specific difference of the
noise distribution. Thus, t can be manually defined in the
training phase of each reference model.
Finally, advertisements represent a significant source of



Algorithm 2: Dynamic Noise Threshold - Algorithm to
compute a dynamic cutoff value for noise classification.
Input:
s, page of web app
t = {t ∈ N|0 < t ≤ 100}, tune value
Result: T , noise threshold
begin

Let µ← s.getAvgNoise()
Let m← s.getMaxNoise()
T = (m/100) * t
if T < µ then

T = ((m− µ)/2) + µ
return T

end

noise to modern web applications. They typically are not
stable, meaning that based on the behavior of the user they
change over time. Even a simple refresh of a page reloads
the embedded advertisement. Some advertisement origi-
nates from the application itself, e.g. recommendations to
other products or articles. It is part of the template and
are covered by the dynamic threshold analysis. Cross-origin
advertisements on the other hand, are hard to analyze. Em-
bedded iframes pointing to external sources are therefore
completely ignored in our state extraction and translated to
a non-empty noise block with the dimensions of the iframe.

3.3 Functional State Clustering
Let us again consider an eCommerce application. We

often find several states representing the same functional
meaning. This may be, for instance, states presenting a list
of products or a product description. In other words, they
provide a common functionality, which we aim to group to-
gether. Every produced cluster contains a set of states which
are functional similar and henceforth referred to as func-
tional states. We cluster states using a cluster algorithm
with a custom distance measure. For that purpose, we in-
tegrate the agglomerative clustering algorithm provided by
LingPipe2. The functional states can later on be transferred
to other applications in the same domain.
Assuming that functional states share a common layout,

they also share the same set of styling attributes. To style
the layout of a website one usually uses Cascading Style
Sheets (CSS). Furthermore, it is a standard practice to de-
fine CSS classes to efficiently style HTML elements. For this
reason, our distance measure for clustering states is based
on the used CSS classes in a state. More specifically, we
collect all CSS classes and styling properties within a state
in a set and calculate the intersection to the comparative
set. To compute the actual distance, we reuse Equation 1
for SBlock, whereM denotes the number of matching classes
(the intersection) and Sn the respective size of a set. A con-
figurable cut-off value designates the level of abstraction we
want to use for our model. The smaller the intersection ra-
tio of the CSS classes, the less likely it this that two states
are presenting the same functionality.

3.4 Natural Language Processing (NLP)
Using the pre-processed input data, we collect the text

content of all non-noisy nodes within a state to determine
2http://alias-i.com/lingpipe/

Processing pipeline

Raw text input

Removing illegal 
characters Tokenization Stopword removal Lemmatization

Topic Extraction

Figure 4: Topic extraction pipeline implemented in Mal-
let. Starting with the raw text input of a webpage, result-
ing in a list of topics

the overall topic of a given state. Standard NLP techniques
allow to process the textual content and extract the main
topics. Blei et al. [3] introduced the Latent Dirichlet alloca-
tion (LDA), a probabilistic topic model to annotate doc-
ument archives with thematic information. Probabilistic
topic model algorithms are able to discover topics in large
and unstructured document collections without any prior
annotation or labeling of the documents. LDA assumes that
the order of words in a document is irrelevant. Thus, a topic
is defined as a distribution over a fixed vocabulary.
In order to extract topics from a single web page with

LDA, we first have to divide a page into different segments
consisting of multiple elements. Take a web element rep-
resenting a button that is labeled with ’OK’ for instance.
Although we can technically extract the topic of this la-
bel, LDA is more appropriate to extract topics of larger
texts. Instead of applying topic extraction on every sin-
gle element, we have to take its context into consideration.
This is where page segmentation is used again: Extracting
blocks and feeding their textual content into LDA gener-
ates a list of topics. Each topic consists of a ranked list of
words. The Mallet3 framework [11], a popular Java-based
machine learning tool kit, features a very fast and scalable
LDA implementation using Gibbs-sampling. This method
allows us to extract a fixed number of topics for any web
page.
We implement a sequence of text processing steps as Mal-

let pipes as depicted in Figure 4. The raw text content of
the non-noisy blocks is cleaned from illegal characters (e.g.
new line characters or unknown symbols) before tokeniza-
tion forms useful semantic units for further processing. In
the stopword removal step, the most common words in the
language (e.g. “a”, “for”, “I”) are removed, allowing the
later topic extraction to focus on actual keywords. Finally,
we integrate a morphological stemming technique presented
by Minnen et al. [14] called Morpha Stemmer4 for lemma-
tization. Reducing the inflectional forms (e.g. the words
‘speak’, ‘spoke’ and ‘speaking’ are substitutes of the word
‘speak’) improves topic extraction and accelerates the se-
mantic comparison. Finally, the LDA based topic extraction
takes place and returns a number of tokens for each state.
However, topic extraction on single states has a huge dis-

advantage. Consider two knowledge base articles presenting
two different countries. Topic extraction will extract a num-
ber of tokens in each page, heavily influenced by the actual
content of the page, but less by the underlying functionality.
Although the two sample pages still share common topics,
like economic status or population, an article describing a
certain person will not match anymore. To circumvent this
3MAchine Learning for LanguagE Toolkit
4https://github.com/knowitall/morpha

http://alias-i.com/lingpipe/
https://github.com/knowitall/morpha


‘overfitting’, we fall back to our previous functional state
clustering. We cluster all states of a web application, collect
the LDA topics for each state and return the intersection.
The resulting topic set is an abstraction of all states within
a cluster.

3.5 Cross App Analysis
Our key idea is that applications within the same domain

share common process snippets to achieve a previously de-
fined goal. Selenium test cases represent single workflow
traces through the application and may fail if the absence of
a certain ‘key’ element is detected, e.g. the element labeled
with ‘Purchase Complete’ is present. Attaboy treats these
traces mostly as independent, although test cases may in-
fluence each other, if for instance the application keeps some
internal state which is not observable by the test case.
Our information retrieval framework is configured to gen-

erate a new test trace whenever a new Selenium session is
requested. A new state is extracted if a user action is ex-
ecuted, i.e. an action which might change the state of the
application and is not a control command for the browser
like implicitWait or findElement. More precisely, we do not
consider time as a factor to change the state of an applica-
tion, thus ignoring corner cases like timeouts (auto-logouts)
or automatically sliding elements. Finally, the single test
traces are combined into a single unified behavioral model
as shown in Figure 3 by applying the pre-processing methods
presented earlier.
When relating two behavioral models, two key aspects

have an impact on the overall mapping: The abstraction
level of the application under test, determining the cutoff
value for the functional state clustering and the threshold
εT to measure semantic equivalence of the topic model. The
topic set of each cluster is compared against each cluster
in the cross application using a performance optimized ver-
sion of DISCO [10]. DISCO calculates the semantic text
similarity of the topic sets. Figure 5 shows a sample match-
ing between two shopping carts in Amazon and eBay. The
highlighted topic set (cart, item gift, ship and add) repre-
sents the best match in this cluster pair. Three of the topics
are exactly identical, although the content of the shopping
carts are divers, the matching process efficiently filters out
the uncommon elements. The order of the words within
the single set is ignored by the semantic text similarity of
DISCO, following the intuition that the actual wording is of
minor importance to understand the overall meaning of the
presented text.

4. EVALUATION
In order to test the generality of our approach, we se-

lected a set of representative web applications from three
different website categories obtained from the Open Direc-
tory Project5. We manually created a Selenium test suite
covering the most typical user behavior, which is, for ex-
ample in the eCommerce domain, searching for products,
adding them to a shopping cart and finally making a pur-
chase. Table 2 shows the selected test candidates. The
Size of Test Suite represents the number of user actions ap-
plied in the Selenium test suite, i.e. internal actions like
implicitWait, findElement or likewise are not part of this
metric as discussed before. They are not supposed to cause
5dmoz.org

Table 2: Overview on training candidates for manual test
case translation. Size of Test Suite is the number of executed
user actions; #Functional States is the number of covered
functional states in the behavioral model.

Start Page Size of
Test Suite

#Functional
States

K
n

ow
le

d
ge

B
as

e

en.wikipedia.org 35 3
en.wikiversity.org 15 9
en.citizendium.org 15 7
wikitravel.org/en 17 4

eC
om

m
er

ce amazon.com 32 7
ebay.com 34 6
homedepot.com 17 4
walmart.com 18 6

S
ea

rc
h

E
n

gi
n

es

google.com 16 8
uk.yahoo.com 30 7
bing.com 32 7
duckduckgo.com 15 4

a visible change to the content of the website. To have equal
conditions, the test cases on the other application within
the domain test the same functional behavior and contain
a comparable distribution of similar states. #Functional
States hereby expresses the size of the extracted reference
graph after processing the model as presented in Section 3.
In a second phase (see Section 4.2) we extended the set

of test subjects by yet another domain (’news papers’), but
instead of manually creating test cases, we applied random
crawling to automatically generate test traces through the
applications of all four domains and compared them in terms
of model similarity and the possibility to share basic test
suites.

4.1 Transferring Test Suites

RQ1 Can a given Selenium test suite be transferred to
the test suite of another application within the same
domain?

Transferring a test suite across applications is the key idea
of the Attaboy-prototype. It executes our manually cre-
ated test suites against our instrumented Selenium server
and matches the intermediate result states (after each single
user action has been executed). Figure 6 presents the results
for transferring the test suites across different domains.
On average we were able to transfer 65% of the eCom-

merce test suites, 50% of the search engine test suites and
62% of the knowledge base test suites denoted by the fact
that the correct functional states have been matched across
the applications. Even more interesting is the distribution
of the result. When translating search engines, the fluc-
tuation of the results is almost nonexistent, meaning that
although we could only translate half of the tests, all appli-
cations feature almost identical functional states within the
covered parts. eCommerce systems on the other hand fea-
ture a wider variety of functional states. The Walmart web
shop encapsulates the search & order process in only four

dmoz.org
en.wikipedia.org
en.wikiversity.org
en.citizendium.org
wikitravel.org/en
amazon.com
ebay.com
homedepot.com
walmart.com
google.com
uk.yahoo.com
bing.com
duckduckgo.com


0.616

0.611

0.706

0.868

0.556

1: bottle, nalgene, mouth, rating, star

2: home, library, book, baby, service

3: pair, sock, solo, heatgear, armour

4: sport, game, prime, amazon, video

5: cart, item, gift, ship, add

1: french, state, western, country, al

2: ebay, center, card, category, accessory

3: item, seller, save, ship, cart

4: false, true, island, republic, saint

5: new, ch, condition, board, usb

Figure 5: Topic category matching with DISCO across the shopping carts of Amazon (left) and eBay (right). For each topic
list, semantic similarity is computed to the topic lists in all cross application cluster

eCommerce Search Engines Knowledge
Base

0.
2

0.
4

0.
6

0.
8

1.
0

To
pi
c
Ba
se
d
Te
st
C
ov
er
ag
e

Figure 6: Attaboy’s results for transferring the manual test
suites across eCommerce, search engine and knowledge base
applications.

functional states. Amazon in comparison uses seven func-
tional states and displays certain pieces (e.g. billing address
and payment information) in different states.
Accordingly, a greedy mapping algorithm pursuing the

best possible match cannot efficiently map these two test
setups. Finally, knowledge data bases show an even wider
range in the matching result. Although 62% of the tests
were successfully transferred, the translation process of At-
taboy is not equally successful to match the states correctly
through all applications. The fact that the applications are
used to present different articles, causes the topic analysis
to overfit on the underlying content. Increasing the ratio of
article pages, might improve the result, since the functional
clustering would group multiple articles. The subsequent
topic extraction would collect only the common topics, thus
avoiding the overfitting.
The same variance can be observed in the knowledge bases,

although the overall result of 62% is pretty good, the effect of
the clustering techniques comes a bit to a surprise. All four
test candidates are written in the MediaWiki content man-
agement system, thus sharing common styling attributes.
Nevertheless, the clustering technique collapses the inter-
mediate states on Wikipedia and Wikitravel far stronger

than their competitors, e.g. due to the content distribu-
tion within articles like images, table of contents entries or
likewise. The matched states are featuring the login func-
tionality and editorial pages, but the article pages cannot
be matched. Within this small subset of tests are struc-
tural analysis might yield better results or the data has to
be enriched with more states covering more news articles.

� Attaboy is able to transfer an average 59% of the
manual Selenium test suite across all domains.

4.2 Usage for Test Generation

RQ2 Can we transfer automatically generated test suite
across applications?

So far, Attaboy was able to transfer test suites actually
designed to verify the correct behavior of the application
under test across other applications with appropriate per-
formance. Writing Selenium test cases requires serious ef-
fort and is error prone if the application evolves by adding
new features or the structure of the pages is changed. On
the other hand, the usability standards dictate the expected
outcome of each action. Those standards are typically not
changing drastically. If they are consistent throughout the
application, we might be able to infer them from other a
applications within the domain.
As a consequence, RQ2 investigates if an automatically

generated test suite can also be transferred. In the second
step of this evaluation, we analyze how efficient Attaboy
works when integrated with an automatic black box test
generator for web applications. Random crawling solutions
like Crawljax [12] or crawler4j [6] can be leveraged to
test the behavior of web applications, although they do not
provide an oracle as to whether the reached state is the one
we expect after applying the crawling action. We provide
this oracle by mapping the functional states across applica-
tion, thus learning the expected behavior from an existing
reference.
Integrating the random crawler into Attaboy is straight-

forward. The crawling techniques can be run against a cen-
tral Selenium grid, where we intercept the applied actions
and provide them as discussed earlier in form of test traces
into our information retrieval method. Attaboy takes the
resulting models and compares them against the models gen-
erated in the same domain. Table 3 shows an overview on
the generated application models created by the crawler.



Table 3: Evaluation setup of automatically generated tests
across four domains. Again Size of Test Suite is the number
of executed user actions; #Functional States is the number
of covered functional states in the behavioral model. Starred
test suites have been cut short after one hour of exploration.

Start Page Size of
Test Suite

#Functional
States

K
n

ow
le

d
ge

B
as

e

en.wikipedia.org 35 11
en.wikiversity.org 100* 11
en.citizendium.org 100* 8
wikitravel.org/en 63 9

eC
om

m
er

ce amazon.com 100* 27
ebay.com 138* 16
homedepot.com 86 18
walmart.com 100* 18

N
ew

s
W

eb
si

te

edition.cnn.com 21 6
europe.newsweek.com 35 8
bbc.com 49 14
nytimes.com 100* 6

S
ea

rc
h

E
n

gi
n

es

google.com 100* 7
uk.yahoo.com 44 11
bing.com 100* 7
duckduckgo.com — —

A fourth category (’News Website’) has been added to the
test set in order to analyze the performance of Attaboy
without training it on existing tests first. Notable is the
ratio in between the number of applied actions against the
number of discovered functional states. Especially in the do-
main of search engines and knowledge databases the crawler
did apply a significant number of actions, most of them re-
sulting within the same functional state. As a side effect
of randomly crawling the applications, the distribution of
functional state is different compared to manually written
tests. In other words, the knowledge bases are providing
thousands of articles, but for instance only one distinct lo-
gin or sign-up page. Here, the overfitting against the actual
article content is both reduced by the noise reduction and
the clustering technique. Hence, the functional state dis-
tribution is more uniform. Except Amazon and BBC, all
applications show more or less the same number of func-
tional states, while we used the same level of abstraction in
the pre-processing phase.
Figure 7 shows the success on transferring the randomly

generated test traces. On average, Attaboy is able to trans-
late 49.3% of all automatically generated test cases. Espe-
cially compared against the previously presented results of
the manual tests on knowledge databases, which showed a
high fluctuation caused by the different topics within the
news articles, the random trace through the application re-
vealed far more articles and the functional state clustering
allowed us the reduce the topic overfitting on single articles.
In the previous analysis, knowledge bases had a fluctuation
of almost 43%, the more general tests in the random test-
ing result has only a fluctuation of 23%, while the average
result is more or less stable. In contrast, the variance in the
eCommerce sector has stayed the same, although the average

0.
2

0.
4

0.
6

0.
8

1.
0

To
pi
c
Ba
se
d
Te
st
C
ov
er
ag
e

eC
om

m
er
ce

Ra
nd
om

Se
ar
ch

En
gi
ne
s

Ra
nd
om

Kn
ow
le
dg
e
Ba
se

Ra
nd
om

Ne
ws
Pa
pe
r

Ra
nd
om

Figure 7: Attaboy’s results for transferring automatically
generated test suites across domains

mapping result has dropped. Not surprisingly, the random
crawling technique did not manage to login or purchase a
product, both established patterns in the eCommerce sec-
tor and clearly distinguishable from other functional states.
Instead, other random pages like imprints or even job oppor-
tunities have been discovered. Since the models are far from
being complete, e.g. no authorized state has been reached.

� Attaboy is able to transfer an average of 49.3% of
the automatically generated Selenium test suite
across all domains.

4.3 Application Similarity

RQ3 How similar are web applications regarding their fea-
tures and feedback mechanisms?

Transferring the randomly generated Selenium test suites
across domains provides us also with a notion on how similar
two applications are and how established their usability and
feedback patterns are. A closer look at the random matching
data in Figure 7 reveals that the matched functional states
are common throughout the applications. The dimensions
of the boxes in the plot indicate a range of approximately
20%, meaning certain functional states are found through-
out all applications. The fact that the actual content of
the application can be abstracted to extract the underlying
concepts shows the global acceptance of usability standards
throughout the applications. For a human being, this comes
as no surprise and follows the intuition of global concepts
for logging in, shopping carts or sign up functions.
The test analysis in Section 4.2 also showed the possibil-

ity to transfer complete and complex process snippets across
application boundaries. Not only is the functionality of sin-
gle pages a transferable concept, but a sequence of actions
leading to the same goal is transparent to further analysis.

en.wikipedia.org
en.wikiversity.org
en.citizendium.org
wikitravel.org/en
amazon.com
ebay.com
homedepot.com
walmart.com
edition.cnn.com
europe.newsweek.com
bbc.com
nytimes.com
google.com
uk.yahoo.com
bing.com
duckduckgo.com


5. THREATS TO VALIDITY
As any empirical study, this one faces threats to its validity:

Abstracting the application model
A severe challenge is the underlying model abstraction.
Based on the chosen level/cutoff value, a functional state
can contain the whole application (i.e. cutoff value equals
0) or almost every single action leads to a new functional
state if only on element is different. The chosen represen-
tatives allowed us to manually configure the cutoff value
throughout whole domains of applications, but web appli-
cations tend to be developed very fast and this behavior
might change over time.

Noise Reduction
The same can be said about the noise reduction. Due to the
dynamic calculation of the noise threshold, the algorithm
is rather robust against changes of the application under
test. Nevertheless, some information like common menu
structures contains valuable classification information, e.g.
filtering options on result lists, which Attaboy considers
to be noisy. Changing the test subjects or performing the
same analysis on a newly generated test setup might change
the results.

Generality of Selenium Test Suites
Attaboy shows the ability to transfer complete test suites,
even analyzing the commonalities in the resulting state mod-
els. Still, not all possible decisions within Selenium tests
can be translated — they are Turing complete. Imagine a
test case which dynamically collects all items in a shopping
cart and checks whether the overall price matches the ac-
tual sum of all items. If not, it fails. Attaboy is not able
to draw the same conclusion, i.e. it would detect that the
previous action indeed ended up within the shopping cart,
but not that a displayed element shows the incorrect result.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Attaboy—a novel approach

to transfer web application test suites across applications.
Attaboy maps functional states using topic analysis to iden-
tify which actions yield similar results, and leverages this
mapping to transfer test suites. This approach is effective:
On average, Attaboy translates 59% of domain specific use
cases (manual Selenium tests) and 49.3% of the overall
behavior (random test case generation) across applications
within the same domain. With this, Attaboy lays a founda-
tion for further research in mining, comparing and analyzing
web applications.
Besides addressing general concerns such as robustness

and ease of use as well as the specific issues raised in Sec-
tion 5, our future work will be to continue to integrate NLP
features to identify commonalities and discrepancies across
multiple applications. This will open several interesting re-
search opportunities:

Usability Analysis
The first and most noteworthy research area would be to
learn common usability scenarios by exploring multiple ap-
plications within a domain. Finding outliers in the behav-
ioral models would allow us to classify the usability of an ap-
plication based on learnability, memorability, performance
and error proneness.

Information Flow
Privacy has become a severe challenge. Knowing what in-
formation is required to access certain functionality within
the application is straightforward. From a security perspec-
tive, it is interesting to learn if a user can reach a certain
state without providing this information or if a competitor
allows another methodology to reach the same goal.

Automated Test Case Generation
Learning domain specific knowledge is essential to actually
apply the learned specifications across domains. Leverag-
ing unit tests has already been done [13], but we would like
to investigate if it is possible to actually extend existing
test generators with knowledge transferred from other ap-
plications in the domain. Random crawling techniques face
the problem to generate correct input for domain specific
fields. Transferring this knowledge might allow us a better
coverage of the application’s behavior.

To learn more about Attaboy and to access all test suites
and data described in this paper, visit our project page

7. REFERENCES

[1] M. E. Akpinar and Y. Yesilada. Vision based page
segmentation algorithm: Extended and perceived
success. In Revised Selected Papers of the ICWE 2013
International Workshops on Current Trends in Web
Engineering - Volume 8295, pages 238–252, New York,
NY, USA, 2013. Springer-Verlag New York, Inc.

[2] D. Alassi and R. Alhajj. Effectiveness of template
detection on noise reduction and websites
summarization. Inf. Sci., 219:41–72, Jan. 2013.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
Dirichlet Allocation. Journal of Machine Learning
Research, 3(4-5):993–1022, 2012.

[4] D. Cai, S. Yu, J. R. Wen, and W. Y. Ma. VIPS: a
visionbased page segmentation algorithm. Beijing
Miciosoft Research Asia, pages 1–29, 2003.

[5] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
WebMate: Generating test cases for web 2.0. Software
Quality. Increasing . . . , 2013.

[6] Y. Ganjisaffar. Crawler4j website.
https://github.com/yasserg/crawler4j, March 2016.

[7] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
ICSE ’14: Proceedings of the 2014 International
Conference on Software Engineering, pages 292–302.
ACM Press, June 2014.

[8] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate Detection using Shallow Text Features.
Text, pages 441–450, 2010.

[9] C. Kohlschütter and W. Nejdl. A densitometric
approach to web page segmentation. Proceedings of
the 17th ACM conference on Information and
knowledge management, pages 1173–1182, 2008.

[10] P. Kolb. Disco: A multilingual database of
distributionally similar words. Proceedings of
KONVENS-2008, Berlin, (2003):37–44, 2008.

https://github.com/yasserg/crawler4j


[11] A. K. McCallum. Mallet: A machine learning for
language toolkit.
http://www.cs.umass.edu/ mccallum/mallet, 2002.

[12] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[13] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah.
Leveraging existing tests in automated test generation
for web applications. Proceedings of the 29th
ACM/IEEE international conference on Automated
software engineering - ASE ’14, pages 67–78, 2014.

[14] G. Minnen, J. Carroll, and D. Pearce. Applied
morphological processing of English. Natural Language
Engineering, 7(03):207–223, 2001.

[15] S. Roy Choudhary, M. R. Prasad, and A. Orso.
Cross-platform feature matching for web applications.
In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, pages
82–92, New York, NY, USA, 2014. ACM.

[16] C. S. Win. Web Page Segmentation and Informative
Content Extraction for Effective Information
Retrieval. International Journal of Computer &
Communication Engineering Research (IJCCER),
2(2), 2014.

[17] L. Yi, B. Liu, and X. Li. Eliminating noisy information
in Web pages for data mining. Proceedings of the ninth
ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’03, page 296, 2003.


	Introduction
	Background
	Model Generation
	Visual Element Clustering
	Noise Reduction
	Functional State Clustering
	Natural Language Processing (NLP)
	Cross App Analysis

	Evaluation
	Transferring Test Suites
	Usage for Test Generation
	Application Similarity

	Threats to Validity
	Conclusions and Future Work
	References

