
Don’t Trust The Locals:
Investigating the Prevalence of Persistent

Client-Side Cross-Site Scripting in the Wild

Marius Steffens∗, Christian Rossow∗, Martin Johns†, and Ben Stock∗
∗CISPA Helmholtz Center for Information Security: {marius.steffens,rossow,stock}@cispa.saarland

†TU Braunschweig: m.johns@tu-braunschweig.de

Abstract—The Web has become highly interactive and an
important driver for modern life, enabling information retrieval,
social exchange, and online shopping. From the security per-
spective, Cross-Site Scripting (XSS) is one of the most nefarious
attacks against Web clients. Research has long since focused
on three categories of XSS: Reflected, Persistent, and DOM-
based XSS. In this paper, we argue that our community must
consider at least four important classes of XSS, and present
the first systematic study of the threat of Persistent Client-Side
XSS, caused by the insecure use of client-side storage. While
the existence of this class has been acknowledged, especially by
the non-academic community like OWASP, prior works have
either only found such flaws as side effects of other analyses or
focused on a limited set of applications to analyze. Therefore, the
community lacks in-depth knowledge about the actual prevalence
of Persistent Client-Side XSS in the wild.

To close this research gap, we leverage taint tracking to
identify suspicious flows from client-side persistent storage (Web
Storage, cookies) to dangerous sinks (HTML, JavaScript, and
script.src). We discuss two attacker models capable of
injecting malicious payloads into storage, i.e., a Network Attacker
capable of temporarily hijacking HTTP communication (e.g., in
a public WiFi), and a Web Attacker who can leverage flows into
storage or an existing reflected XSS flaw to persist their payload.
With our taint-aware browser and these models in mind, we
study the prevalence of Persistent Client-Side XSS in the Alexa
Top 5,000 domains. We find that more than 8% of them have
unfiltered data flows from persistent storage to a dangerous sink,
which showcases the developers’ inherent trust in the integrity
of storage content. Even worse, if we only consider sites that
make use of data originating from storage, 21% of the sites are
vulnerable. For those sites with vulnerable flows from storage
to sink, we find that at least 70% are directly exploitable by
our attacker models. Finally, investigating the vulnerable flows
originating from storage allows us to categorize them into four
disjoint categories and propose appropriate mitigations.

I. INTRODUCTION

The Web is arguably the most important platform of today’s
Internet. It offers a plethora of applications, from widely
used social media platforms to full-fledged office applications.
Given the growth of functionality implemented for the client,

the complexity of client-side code rises. This trend is natu-
rally accompanied by an increase in flaws. One of the most
devastating attacks is Cross-Site Scripting (XSS), allowing an
adversary to execute arbitrary JavaScript code in the context
of a vulnerable application. This can be used to, e.g., exfiltrate
sensitive information such as access tokens or to post content
in the name of the victim.

Cross-Site Scripting was first discussed in 2000 and was
believed to be a server-side issue. Klein [26] was the first
to discuss its client-side counterpart, which he dubbed DOM-
based Cross-Site Scripting or XSS of the Third Kind given
that it (ab)used functionality in the Document Object Model
(DOM), and appeared to be a third kind of XSS (in addition to
reflected and persistent XSS on the server). This notion of three
types of XSS has been upheld for years in research [32, 36, 43]
and widely accepted textbooks [67]. Apart from these, all
other types of XSS have been treated as niche problems (e.g.,
mutation-based XSS [19]). Similarly, due to the absence of
empirical evidence about its prevalence, Cross-Site Scripting
enabled by persistence APIs on the client has not been
acknowledged as an important type of XSS. The detection,
mitigation, and prevention of Persistent Server-Side XSS and
reflected client-side XSS have received much attention (e.g.,
[12, 13, 25, 26, 29, 32, 36, 43, 54, 55, 57]). However, while
prior work has found anecdotal evidence of Persistent Client-
Side XSS [17, 31, 32, 68], the dangers of insecure client-side
uses of stored code and data under potential control of an
adversary have not been studied systematically.

To close this research gap, in this paper, we investigate the
risk of using data from client-side storage in JavaScript, show-
ing that Persistent Client-Side XSS must, in fact, be considered
as a real threat to modern Web applications. To demonstrate
its prevalence, we investigate how many sites could potentially
fall victim to Persistent Client-Side XSS flaws. We leverage
taint tracking in the browser to find exploitable flows of data
from Web Storage or cookies to dangerous sinks, such as
eval. Considering a Network Attacker capable of temporarily
hijacking a non-encrypted connection, and a regular Web
Attacker capable of forcing her victims to visit arbitrary URLs,
we report on a study of vulnerabilities in the Alexa Top 5,000
domains. We show that over 8% of the analyzed sites exhibit
exploitable flows from client-side storage to code-executing
sinks, and even a 21% ratio if we only consider applications
which make use of any client-side persisted data. Of all
domains with vulnerable flows from storage, we find that at
least 70% are exploitable by widely accepted attacker models.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23009
www.ndss-symposium.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249327844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Based on our insights, we investigate the intended uses of the
vulnerable data flow and discuss appropriate countermeasures.

To sum up, our paper makes the following contributions:

• Based on the notion of Persistent Client-Side XSS, which
we present along with two different attacker models to
persist their malicious payload on the client (Section III),
we outline a methodology to determine which sites on
the Web are susceptible to such attacks and discuss our
implementation (Section IV).

• We report on a large-scale empirical study of the Alexa
Top 5,000 domains w.r.t. the prevalence of Persistent
Client-Side XSS flaws (Section V).

• We showcase the underlying problems which enable ex-
ploitation on 418 of the Alexa Top 5,000 domains and
evaluate specific countermeasures for issues we discov-
ered in our large-scale analysis (Section VI).

II. TECHNICAL BACKGROUND

In this section, we briefly discuss the relevant technical
background, i.e., means of persistent storage on the client as
well as the concept of (reflected) Client-Side XSS.

A. Persistent Storage on the Client

HTTP as a protocol does not have a notion of state, but
rather comprises a single connection between client and server
to transmit data. Any state is lost once the connection is
closed. To overcome this, Netscape Mosaic introduced the
idea of cookies in 1994 [67]. These simple key-value stores
are used by browsers to persist small pieces of string data,
which are sent along in every HTTP request to matching
servers. This allows sites to overcome the inherent limitation
of HTTP, i.e., the lack of state. Cookies are widely used for
session management when sites offer a login and for tracking
purposes, but are also often used to store preferences, such
as the selected language. Cookies in browsers are bound to a
domain or hostname. Depending on the browser, not specifying
a host restricts cookies to only the exact host. However, cookies
can also be set with a specific host (which must be a parent
domain of the current host). In that case, they are valid for
any subdomain of the set host. This is important to note, since
sub1.example.org can set cookies for *.example.org
(including example.org), and a non-HTTPS site can set
cookies for its HTTPS counterpart [39, 68].

Cookies have a number of drawbacks, specifically related
to the type and length of content they can store. RFC 2965
states that browsers should offer at least 4096 bytes of storage
per cookie [28], which is, e.g., in Chrome/Chromium imple-
mented as the maximum value1. In the interest of implementing
more complex applications on the client, which in turn required
more storage for persistent data, the WHATWG (and later
W3C) introduced the Web Storage API [21]. It consists of
two containers, namely Session and Local Storage. While the
former only persists data for the duration of a browsing session
and is unique for each window, Local Storage makes it possible
to indefinitely persist data on the client. In contrast to cookies,
this is meant for larger pieces of information and allows for

1https://chromium.googlesource.com/chromium/src/+/master/net/cookies/
parsed cookie.h#25

var externalScript = document.createElement("script");
script.src = "https://example.com/foo.js";
document.body.appendChild(externalScript);

Fig. 1. Example usage of script.src

easily setting and retrieving data (in JavaScript, reading a
cookie’s value requires parsing a string containing all cookies).
Unlike cookies, Web Storage is bound to an origin. This
denotes the tuple of protocol, host, and port of a document.
This means that https://a.com and http://a.com do
not share the same Local and Session Storage.

B. Client-Side Cross-Site Scripting

The most basic security policy in browsers it the Same-
Origin Policy [67]. This policy governs interactions between
sites, specifically as they relate to the access from JavaScript
to another window. Whenever a JavaScript snippet tries to
gain access to resources from another window (e.g., popup
or iframe), the action is only allowed if the accessed resource
shares the origin of the JavaScript. This way, a malicious site
including an iframe to another domain cannot read the content
of the rendered document from that domain.

Cross-Site Scripting (XSS) is a code injection attack, in
which an adversary is able to add JavaScript code of her
choosing to a vulnerable site. This code is then executed in
the origin of the vulnerable application, allowing the code to
interact with the vulnerable page as the user could. In our
notion, XSS can be roughly categorized in two dimensions.
Specifically, it can be reflected or persistent, and can be located
in the server-side or client-side code. Reflected here refers to
the fact that the vulnerable code reflects back some attacker-
controllable information, e.g., using PHP’s echo functionality
to print part of the requested URL on the server. Persistent in
turn means that the malicious payload is not directly echoed
back by the code, but rather stored and later retrieved. Since
this paper investigates the prevalence of Persistent Client-Side
XSS, we omit further details on its server-side counterpart.

Abstractly speaking, an XSS attack occurs if some attacker-
controllable piece of data flows into a dangerous sink. On
the client, these sinks can be classified into three categories:
rendering of HTML, execution of JavaScript, and the inclu-
sion of additional script resources. For HTML, sinks include
document.write or innerHTML, whereas for JavaScript,
the dreaded eval construct (among others) can be used
to convert strings to JavaScript code during runtime. The
Document Object Model (DOM) in browsers also allows for
the direct assignment of properties for any HTML node. This
can be used at runtime to dynamically add script resources.
Figure 1 shows an example of this. Using createElement,
a script element is created and the script’s src property is sub-
sequently specified. When the script element is then appended
to the document’s body, the rendering engine downloads and
executes the referenced script. These sinks merely exemplify
the different categories. In addition to the sinks used by prior
work [32, 36], we also consider script.src.

Prior works have already investigated the prevalence and
nature of reflected Client-Side XSS [32, 36, 55]. In these
cases, a reflected Client-Side XSS occurs whenever data

2

https://chromium.googlesource.com/chromium/src/+/master/net/cookies/parsed_cookie.h#25
https://chromium.googlesource.com/chromium/src/+/master/net/cookies/parsed_cookie.h#25

http://vuln.com

<script>
eval(getStorage());

</script>

attack();

1

2

3

Fig. 2. Persistent Client-Side XSS Attack

originating from the URL is insecurely used by JavaScript.
The URL can be accessed over several different APIs, e.g.,
location.href. In the following section, we outline the
differences between reflected and persistent XSS on the client
and explain the different attacker models we consider for a
Persistent Client-Side XSS attack.

III. PERSISTENT CLIENT-SIDE XSS

In this section, we discuss the notion of persistent Client-
Side Cross-Site Scripting, highlighting how the insecure use
of persisted data can be abused by an adversary to execute her
malicious code. We then relate this concept to its server-side
counterpart and introduce two attacker models, which enable
storing payloads in her victim’s persistence APIs, allowing for
a persistent XSS attack.

An XSS attacker’s goal is often to hijack the session of their
victim, i.e., steal the authentication cookies. This problem is
mitigated by the use of HTTP-only cookies, which ensure that
cookies cannot be accessed from JavaScript and are therefore
out of reach of the adversary. Additionally, the attacker can
also force the victim’s browser to perform certain actions, such
as post content. This attack becomes more powerful if the
attacker conducts a resident XSS attack [23], which leverages
the existing XSS to ensure that all links a user may visit
are also XSS-infested. However, once the victim closes the
browsing session, even this threat is eliminated. If, however,
the malicious payload is persisted on the client, i.e., in cookies
or Local Storage, the XSS attacker’s code is revived on every
subsequent load of the flawed site, even without the necessity
to add the payload to, e.g., the URL. Hence, this allows
the attacker to mount attacks such as JavaScript keyloggers2,
Cryptominers [11], or the previously outlined scenarios even
long after the initial attack has occurred. Especially in the case
of a network-based adversary, the danger is aggravated due to
the fact that cookies are shared between HTTP and HTTPS
sites. We discuss a particularly high-profile case we discovered
in our analysis in Section V-D.

A. Vulnerable Use of Persisted Data

Figure 2 shows the basic steps to a successful execution of
attacker-controlled code in a Persistent Client-Side Cross-Site
Scripting attack. The vulnerable site hosts a JavaScript snippet
which extracts additional code from storage and subsequently
executes this code using eval (1). The browser accesses the

2e.g., https://blog.rapid7.com/2012/02/21/metasploit-javascript-keylogger/

var value = localStorage.getItem("entryPage");
document.write("start over");

// Assume adversary sets entryPage to
'><script>alert(1)</script>↪→

document.write("<script>alert(1)</script>'>start
over")↪→

Fig. 3. Example vulnerability involving a data flow from Local Storage to
document.write

storage (2), retrieving the code to be executed. In the third
step, if this code is under the control of the adversary, the
malicious code is executed in the origin of the vulnerable site
(3). In this example, the data originating from Local Storage
was passed to eval in an unfiltered manner, indicating that
the actual purpose of this storage entry was to persist code.

Such vulnerable patterns are not specific to the scenario in
which code is persisted in Local Storage. In fact, the intended
purpose of Local Storage is to store data. However, in practice,
eval is also often (ab-)used to parse JSON [45] data, even
though secure alternatives exist. Moreover, storage can be used
to store unstructured data, which may be used in a flawed way.
For example, Figure 3 shows a snippet which uses stored data
in an insecure way. The purpose of this snippet is to extract
the URL of the page on which a user’s workflow started and
use it to create a link back to that URL. However, the value
extracted from storage is neither checked for its format nor
encoded to ensure that the extracted value cannot be abused
to add additional HTML markup. Specifically, if the adversary
gains control of the stored value, she can modify it to break
out of the a tag, and inject a new script element (see Figure 3).
We report on the specific patterns of such vulnerable flows we
discovered in our study in Section VI.

Web Storage is not the only feature that can be abused
for Persistent Client-Side XSS. The outlined attack can be
transferred to cookie sources as well. While cookies have only
limited storage, the size of each cookie is still sufficient to
exploit an unfiltered flow from a cookie. Although in general,
Session Storage allows to persist data on the client, it is bound
to a browsing window and deleted when said window is closed.
Hence, we do not consider Session Storage for our work, as its
short-term persistence does not add any capabilities a regular
XSS attacker lacks.

B. Differences From Persistent Server-Side XSS

Persistent XSS on the server side has been studied for
several years and is widely known. In one of the most recent
papers, Dahse and Holz [12] found several PHP-based applica-
tions to be susceptible to persistent XSS, including the popular
OpenConf submission system. Such vulnerabilities occur when
an adversary’s input is not filtered or encoded before being
written to persistent storage, such as a SQL database. A famous
example of such an attack is the hack of the Ubuntu forums
in 2013 [59]. Attackers leveraged a persistent XSS flaw in
the deployed forum software to take over an administrative
account, leading to a complete database compromise. The post-
mortem analysis showed the evidence for these actions, given
that the malicious payload was in fact stored in the database
(and hence could be recovered).

3

https://blog.rapid7.com/2012/02/21/metasploit-javascript-keylogger/

In contrast to its server-side counterpart, Persistent Client-
Side XSS does not leave any trace in a central database
and is therefore harder to detect. Rather, this attack targets a
user’s storage. For the adversary, this means she must persist
her malicious payload into the storage of every user she
wants to attack. At the same time, when the JavaScript code
causing the vulnerable flow from storage to sink is included
in every page of a domain, a single injection means that
regardless of which URL on the domain is visited, the attack
succeeds (assuming the JavaScript snippet causing the flow
is included). Moreover, a single error or misconfiguration on
such a domain is sufficient to persist a payload. We discuss
the specific requirements for persisting a payload as well as
the accompanying attacker models in the following.

C. Persisting Malicious Payloads

The prerequisite to the two outlined attacks is that the
adversary controls the content of her victim’s storage. In the
following, we outline two attacker models capable of injecting
arbitrary payloads into the aforementioned persistence APIs
once, allowing for subsequent exploitation on every page visit.

1) Network Attacker: A network-level adversary is able
to inject arbitrary packets into any unencrypted connection
between a client and server. Moreover, she can choose to
completely drop all packets to the actual server requested by
the client and instead respond with an HTML page of her
choosing. We do not assume that this adversary can obtain
valid TLS certificates for the sites she wants to attack. Hence,
whenever the connection between the client and desired server
is secured via TLS, the adversary cannot inject anything into
the HTML page. Given these characteristics, the adversary
can conduct attacks over HTTP connections, allowing her
to modify cookies as well as Local Storage. This Network
attacker, which is in line with prior research in the Web
security area [17, 51, 68], might be the owner of a coffee shop
providing free WiFi to her customers. A security-aware user
might refrain from performing any sensitive actions in such
an open network, e.g., performing a login or doing online
banking. However, using a Persistent Client-Side XSS, the
attacker can implant a malicious payload which lies dormant
and is used only later to attack a victim. One such scenario is
a JavaScript-based keylogger, which is triggered upon visiting
the site with infected persistent storage in a seemingly secure
environment, e.g., at home. If we consider a recent attack
on MyEtherWallet [44], in which attackers used rogue BGP
advertisements to take over routes, the threat of a Network
Attacker becomes even more severe. For such an attack to
work, the malicious payload needs to be persisted in the
browser of the victim. In the following, we briefly outline how
this can be achieved for the two persistence APIs we consider.

Cookies can be manipulated either by setting them in the
faked HTTP response, or by delivering JavaScript code which
achieves the same. Moreover, given the fact that cookies are
not bound to an origin, but rather the domain, this allows the
adversary to set cookies for any parent domain as well as the
HTTPS-enabled variant. The ability to inject arbitrary cookies
is hindered by HTTP Strict Transport Security (abbreviated
HSTS) [22]. This HTTP header ensures that a site will only
be accessible via HTTPS. This way, even if an adversary tries
to force her victim to connect to the HTTP site, the victim’s

http://vuln.com

<script>
persist();
</script>

1

23

Fig. 4. Network Attacker Persistence

browser would automatically establish an HTTPS connection
to the site. Given that the attacker has full control over the
HTML presented to her victim, she can also force the victim’s
browser to connect to any other domain over HTTP, for which
the attacker again controls the HTML. This means that if the
victim visits a.com over an unencrypted HTTP connection,
the adversary can inject an iframe pointing to b.com over
HTTP (assuming this site did not deploy HSTS). Intercepting
this subsequent request allows the adversary to also deploy
code running on b.com. Even if b.com deploys an HSTS
header, but is missing the includeSubDomains option,
the adversary can simply point the iframe to foo.b.com,
enabling her to set cookies for b.com. If a cookie with the
same name has already been set by the parent domain, an
attacker can leverage the fact that browsers only allow a fixed
limit of cookies per domain [46]. As of this writing, Chrome
and Firefox support up to 180 cookies per domain. Therefore,
the cookie with the duplicate name can be flushed easily, and
subsequently be set to the attacker’s chosen value.

Unlike to cookies, the Local Storage is bound to the origin
of a domain, i.e., a site loaded via HTTP cannot inject any
content into its HTTPS counterpart. Therefore, we assume
that the adversary can set or remove any item from the Local
Storage for the origin. Hence, while in the aforementioned
scenario, the adversary could control the Local Storage for
http://b.com, she cannot access or modify the Local
Storage for https://b.com.

Figure 4 shows the attack by a Network Attacker. The
user visits a vulnerable site (containing a flow from persistent
storage to a sink) over HTTP (1). Since the attacker can
arbitrarily modify packets, she intercepts the response from the
server (2), manipulating the content to her liking. Specifically,
she adds an additional script resource (3), which is used to
persist the payload necessary to conduct subsequent attacks,
which work even in the absence of the Network Attacker.

2) Web Attacker: Contrary to the Network Attacker, this
type of adversary cannot inject any packets into arbitrary
connections. Instead, she can host her own site and lure the
victim there. On that site, she can force her victim’s browser
to load any resource from arbitrary origins, controlling the
HTTP parameters. This enables two scenarios for persisting a
malicious payload into cookies or Web Storage.

The first vector for abusing an existing reflected XSS flaw
to persist the payload is to use a regular flow of data from
the URL into any of the persistence APIs. This pattern is
similar to a persistent XSS attack on the server side. This
does not require any other flaw on the site itself. Instead, the

4

http://attacker.com

http://vuln.com/?vuln=persist()

<script>
persist();
</script>

1

2

3

Fig. 5. Web Attacker Persistence

site must execute JavaScript code which conducts said data
flow. More importantly, just any flow from URL to storage is
not sufficient: it must be a flow into the storage item which is
later insecurely used. Moreover, while an adversary executing
JavaScript can easily control all parameters to the invocation
of document.cookie (including the domain for which the
cookies are to be set), she might not have the same level of
control when trying to abuse an existing flow into a cookie.

An alternative attack vector requires a site to be vulnerable
to a reflected Client-Side Cross-Site Scripting flaw. By forcing
her victim’s browser to load the vulnerable page, the adversary
can execute her JavaScript code in the origin of the vulnerable
site. This code can then access and modify cookies (for any
parent domain) as well as Local Storage (for the specific
origin). Hence, the adversary can craft this initial payload such
that rather than exploiting the existing flaw (e.g., to exfiltrate
sensitive data), it persists the actual payload into cookies or
Local Storage. If the manipulated value is used later on, e.g., in
a call to eval, the actual payload gets executed. Notably, this
then occurs on every page load, without the adversary needing
to force her victim to visit a crafted URL.

The different steps of this attack are depicted in Figure 5.
First, the attacker lures her victim to a site of her choosing, e.g.,
by hosting interesting content such as cat pictures (1). Apart
from the actual image of a cat, this page also contains a hidden
iframe, which points to the vulnerable site (2). Specifically,
the attacker carefully crafts the URL such that the existing
reflected XSS vulnerability is triggered. The injected code,
which runs in the origin of the vulnerable site, now puts the
desired payload into storage (3).

IV. METHODOLOGY

In this section, we outline our methodology to detect
Persistent Client-Side XSS in Web applications. Technically,
we search for exploitable flows from either cookies or Web
Storage to a dangerous sink. Specifically, we are interested in
answering the following questions:

• How many sites make use of data originating from storage
in their client-side code?

• On how many sites can such a data flow be abused if an
adversary can gain control over the storage?

• Out of these, how many sites can be successfully attacked
by a Network and Web adversary?

To that end, this section presents our flow and storage
collection, followed by an explanation of our enhanced exploit
generation scheme. With this generation in place, we outline

how we can determine whether a site is vulnerable, assuming
an attacker controls arbitrary storage items. We end the section
with a discussion on how we can determine whether a site
which is theoretically vulnerable can be exploited by a network
or Web adversary.

A. Flow and Storage Collection

Previous taint tracking approaches to discover XSS vul-
nerabilities have primarily focused on reflected XSS. Our prior
work in 2013 introduced an automated taint-aware system [32]
to detect this type of XSS and in 2018, Melicher et al. [36]
open-sourced a reimplementation on a more current version of
Chromium.

Our engine is based on Chromium and is capable of
attaching taint information to strings. Moreover, all JavaScript
string operations (e.g., concatenation or substrings) as well
as the built-in encoding functions like escape pass on the
taint. We taint all values from relevant sources (e.g., Local
Storage and cookies). We modified Chromium to report invo-
cations with tainted data to numerous sinks. Specifically, this
includes all sinks which allow for creation of HTML (e.g.,
document.write or innerHTML, execution of JavaScript
code (e.g., eval) as well as adding additional script resources
(via script.src). Apart from these flows which might lead
to a direct JavaScript execution, the engine also collects those
flows that end in a persistent storage, specifically cookies and
Local Storage. On top of this, we build a crawling extension,
which recursively crawls a given domain, and reports all found
data flows to a database.

Besides the collection of relevant flows, our crawling
extension iterates over all cookies and all elements in Local
Storage. This collection is done via JavaScript injected into the
page itself. This does not allow us to collect HTTPOnly cookies
(which are meant only to be sent in HTTP requests, and are
not accessible from JavaScript). Nevertheless, if a vulnerable
flow within JavaScript is to occur, it cannot originate from
such an HTTPOnly cookie. Therefore, our collection method
suffices to gather all cookies which can be the source of a
flow. For all elements, we store both key and values, allowing
us to determine which cookies or storage items to modify in
the exploit generation phase.

B. Exploit Generation

The second step towards finding Persistent Client-Side
XSS in the wild is a fully automated approach to generating
exploits. We extend the approaches previously presented by us
[32] and incorporate techniques presented by Melicher et al.
[36], which were tailored to build reflected XSS payloads. We
refer the reader to the previous works for exact technical details
and instead provide a brief overview of the techniques here.

In general, exploits generated by either method use a break-
out sequence, which, depending on where the attacker controls
parts of the executed code, closes all preceding elements
(e.g., string quotations or function declarations), allowing for
subsequent injection of the attacker’s code. We consider the
example from Figure 6. To craft an exploit, our original
approach would generate a sequence which breaks out of the
existing context and subsequently calls some function, e.g.,
alert. It would then add a generic break-in sequence, i.e., a

5

var userinfo = getCookieValue("userinfo");
eval("var user = '" + userinfo + "';");

Fig. 6. Example of context-aware break-out/break-in

sequence which comments out the rest of the line (and differs
between HTML and JavaScript sinks). Hence, the algorithm
determines that the value of userinfo should be set to
’;alert(1);//. If this value originates from the URL (not
shown in the example for brevity), the resulting sequence is
then substituted into the URL at the position of the tainted data.
However, this neglects the possibility that the tainted data is
part of structured data. Additionally, the break-out sequence is
overly aggressive, which leads to problems given the simplistic
break-in sequence proposed, especially in scenarios where the
usable character set is limited (such as cookies). Thus, we
extend both approaches in three dimensions: a context-aware
break-out and break-in sequence, an improved replacement
strategy, and a fuzzy matching approach to find the correct
storage item to replace. Our codebase is open-source3 and we
outline our enhancements in the following.

1) Context-Aware Break-Out/Break-In: The enhanced
break-out and break-in strategy can be best illustrated with
the snippet shown in Figure 6, assuming that the function
getCookieValue returns the value of the cookie with the
key userinfo. As previously discussed, the result of the
exploit generation from prior works is ’;alert(1);//.
However, the ; acts as the delimiter between two cookies.
Hence, setting the cookie’s value accordingly would have no
effect, since only the ’ would be extracted when the cookie
is accessed. To overcome this drawback, we implement our
exploit generation such that in these cases, instead of trying
to completely break out of the existing context, we use an
alternative that does not require the use of a ;. In JavaScript,
almost all types of data can be concatenated. Therefore, a
payload that triggers our injected code is ’ + alert()
+ ’. This way, we concatenate two empty strings with the
invocation of alert, hence executing the injected function.
Naturally, alert is merely a placeholder, which could be
replaced with arbitrary JavaScript code. Note also that it is
feasible to craft a payload to add additional scripts merely
using eval and String.fromCharCode, which does not
require the use of a ;.

2) Improved Replacement Strategy: As the third improve-
ment over existing approaches, we implement an enhanced
replacement algorithm. For this, consider the code snippet
shown in Figure 7. The code here reads a value from the
Local Storage, parses it with JSON.parse and then uses
the property id in an invocation of document.write.
Based on the invocation of document.write, our exploit
generation scheme determines that the required payload is
"><script>alert(1)</script>, which first breaks out
of the a tag and subsequently adds a new script ele-
ment. The previous approaches [32, 36] use simple string
replacement. If we apply this here, i.e., replace the string
test123 with the aforementioned payload, and store the
value accordingly in the Local Storage, JSON.parse will fail.
This is because the stored value would now be {"id":

3https://github.com/cispa/persistent-clientside-xss

// Local Storage userinfo originally contains
{"id":"test123"}↪→

var userinfo = JSON.parse(localStorage.getItem("userInfo"));
document.write('<a href="/profile/' + userinfo["id"] +

'">Profile');↪→

Fig. 7. Example of exploit generation, involving use of JSON.parse before
sink access

""><script>alert(1)</script>"}. In this case, the
injected double quote breaks the JSON format. Therefore,
instead of simply replacing the values, our replacement al-
gorithm first checks if the stored data is JSON. If this is
the case, it is parsed to a Python dictionary, in which the
value test123 is replaced. As the last step, the dictionary is
converted back to JSON, ensuring that the necessary double
quote is properly encoded. This is done in an analogous
manner for data that is encoded, e.g., using JavaScript’s built-
in functions encodeURI or escape.

3) Fuzzy Matching: Another difference between exploits
for a URL and a storage item is the fact that the storage items
are regularly modified during runtime. Due to its light-weight
nature, our taint tracking approach can be used to track that
a piece of data originates from a persistent source, but not
from which specific entry. Therefore, we need to implement a
matching approach to find the correct item to replace. Consider
the example in Figure 8. Here, eval is used to parse JSON,
meaning that our taint tracking engine records an invocation
of eval, passing {"visits": 1}. However, the value is
subsequently increased and updated in the Local Storage. Since
our crawlers only record the final state of the storage after the
page has been loaded, they would collect {"visits": 2}.
As a result, the value which was originally involved in the flow
is no longer in the storage. To tackle this issue, when no direct
match can be found, we determine whether the value in the
sink contained JSON. If so, we parse the value and determine
if our database contains an entry, which (after being parsed)
has the same keys. This way, we know which storage item to
replace in the next step.

C. Determining Exploitability

Our exploit generation scheme produces a tuple of a
potentially vulnerable URL, the type of storage (cookie or
Local Storage), the storage key, and the corresponding value to
which said key must be set. To determine how many domains
are potentially susceptible to an attack, we visit each of the
URLs with our crawlers. Before starting to analyze a new
URL, all storage entries are cleared as to avoid side-effects
from previous checks. For each of the tuples in our database,
our analysis system then visits the URL under examination
once to populate the storage as the site would normally do.
After a timeout of two seconds, we overwrite the storage key
with the value generated by our exploit generator. Specifically,

// Local Storage visitinfo originally contains {"visits":1}
var visitinfo = eval(localStorage.getItem("visitinfo"));
visitinfo["visits"] += 1;
localStorage.setItem("visitinfo", visitinfo);

Fig. 8. Example of fuzzy matching of storage elements

6

https://github.com/cispa/persistent-clientside-xss

the payload output by the generator contains a call to a function
which logs the successful exploitation to our database. Once
the storage entry has been overwritten, we reload the page to
see if our injected payload is executed.

To ensure that the payload is indeed persisted, the adversary
can craft her payload such that write access to the storage
is blocked. Given the dynamic nature of JavaScript, almost
all functionality can be modified at runtime. This allows
the attacker to deploy code which ignores invocations of
Local Storage’s setItem or removeItem functionality,
and drops assignments to document.cookie if either of
them would overwrite the malicious payload stored there.
This can be implemented by overwriting the functions for
setItem and removeItem on Local Storage, as well
as by modifying the setter for document.cookie (using
Object.defineProperty [40]). The implementation of
a single case is trivial; automatically crafting this payload for
each site we test, however, is not feasible. Therefore, we do
not implement this for each specific case. Additionally, cookies
may also be set by the server. However, this assignment occurs
in the initial response phase, before any JavaScript is executed.
Hence, if our payload is, in fact, overwritten by the server-sent
cookie headers, our attack on the second load of the page fails.

With the aforementioned techniques, we collect all those
sites that are potentially susceptible to a Persistent Client-
Side XSS attack. ”Potentially” here refers to the fact that we
assume an omnipotent adversary, who can control the storage
of arbitrary origins. In practice, however, this does not hold
true. Therefore, to determine whether a site is vulnerable under
our attacker models, we conduct additional analyses, which we
outline in the following.

1) Network Attacker: The Network Attacker is able to
hijack any HTTP communication, i.e., any site delivered over
HTTP is vulnerable to be attacked, allowing the adversary to
persist her payload. In an actual attack, we assume that the
adversary would deploy an HTML page of her choosing to
overwrite the storage values. This holds true for both cookies
as well as Local Storage. While Local Storage is bound to
an origin (i.e., the combination of protocol, host, and port),
cookies are stored for a domain, i.e., ignore both protocol and
port. Hence, when a site is delivered over HTTPS, but does not
deploy HSTS, it is vulnerable. Note that HSTS must use the
includeSubDomains modifier [27]. Otherwise, since any
child domain can set cookies for its parent, an attacker could
simply force the victim to visit a site for which HSTS is not
set and overwrite the cookies. We conservatively assume that
our victim has visited the vulnerable site at least once before,
meaning that if a site deploys HSTS, the victim’s browser has
already recorded this and will only connect via HTTPS. To
that end, we connect to each HTTPS origin on which we had
discovered an exploitable data flow. If the site does not send
an HSTS header, and moreover the domain is not contained
in the HSTS preload list [9], we mark the origin (and its
corresponding second-level domain) as vulnerable.

2) Web Adversary: To measure how many sites are sus-
ceptible to a Web Attacker, we need to analyze two types of
attack vectors. First, if a site contains flows from the URL to
a storage, where that stored value is later used insecurely in
a flow to a sink, it is exploitable. Second, if the site carries a
Reflected XSS flaw, it also has a persistable XSS vulnerability,

i.e., a single-shot XSS can be turned into a persistent XSS due
to the insecure use of storage data on the site. Our taint-aware
browsing engine records all flows from the URL, i.e., those
that directly end in sinks like document.write or eval,
as well as flows into the storage.

To tackle the first attack vector, i.e., a flow of data from
the URL to one of our considered persistance APIs and a
subsequent flow (potentially on a different URL) from that
storage to a dangerous sink, we first determine which storage
keys were used in the vulnerable flow from storage to sink.
Given this information, we search for occurrences of a write
access to the corresponding keys. If such a write access is
found, our exploit generator builds a URL which it believes
can cause this flow. Subsequently, we set our crawlers to first
visit the crafted URL, such that the payload is persisted. We
then visit a URL on which the flow from storage to sink was
detected and mark this as exploitable if visiting the second
URL results in a successful invocation of our logging function.

For a persistable XSS, given the information about a flow
from URL to execution sinks, we use the exploit generation
scheme to derive payloads and to determine how each URL
must be modified to craft an exploit. This is in line with
our prior work [32] and the results presented by Melicher
et al. [36]. In doing so, once we collect all origins on which
a reflected XSS vulnerability could be discovered, we check
these against the origins on which a flow from storage to sink
has occurred. Again, given the nature of cookies, it is sufficient
to find an XSS on a subdomain to exploit its parents, whereas
for Local Storage the origins must match.

V. RESULTS OF LARGE-SCALE ANALYSIS

In this section, we analyze the prevalence of Persistent
Client-Side XSS vulnerabilities on the Web. As a seed, we
extracted the 5,000 highest ranked domains from the Alexa
Top 1M list of April 28th, 2018 and ran our crawlers from
May 2nd to May 4th, 2018. For each domain, we crawled
up to 1000 sub-pages of at most depth 2 (in a breadth-first
manner), where the start page is considered to have depth 0.
In total, we visited 3,078,360 URLs. As most sites are not
merely a single HTML page, but rather incorporate additional
content in frames, our crawlers analyzed a total of 12,489,576
frames/documents.

A. Collected Data Flows

Table I shows the total number of flows into each of these
sinks, split by the originating source. Within each combination
of source and sink, the table also shows how many of the data
flows ended in the sink without any encoding applied to them
(denoted as the Plain columns). We observe that for HTML
and JavaScript sinks, between 71% and 89% of flows from
the URL are not encoded. As shown by previous work [32,
36], this leads to a number of exploitable flows which cause
a reflected Client-Side XSS flaw. For flows originating from
cookies, the fraction of plain flows ranges from 69% to 98%.
Most interestingly, though, we observe that virtually all flows
that originate from a Local Storage source have no encoding
applied to them, indicating that this data appears to be trusted
by the developers of the JavaScript applications.

7

URL Sources Cookie Source Local Storage Source
Sink Total Plain Fraction Total Plain Fraction Total Plain Fraction

HTML 11,388,607 10,161,040 89.2% 555,323 382,608 68.9% 2,180,680 2,149,839 98.6%
JavaScript 77,360 54,910 71.0% 535,047 522,205 97.6% 635,843 635,798 100.0%
Script Source 4,252,532 640,977 15.1% 1,458,687 256,034 17.6% 377,626 103,418 27.4%

Cookie 922,761 621,695 67.4% 31,391,553 12,615,945 40.2% 732,407 461,334 63.0%
Local Storage 890,808 878,139 98.6% 2,000,863 1,932,335 96.6% 66,635,820 66,175,494 99.3%

TABLE I. FLOW OVERVIEW, SHOWING HOW MANY DATA PARTS ORIGINATED FROM SOURCES (COLUMNS), ENDING IN THE SINKS OF INTEREST (ROWS).
BESIDES THE TOTAL NUMBER OF FLOWS, IT SHOWS THE ABSOLUTE AND RELATIVE NUMBER OF FLOWS WHICH ARE NOT ENCODED.

Considering the results of the use of tainted data in the
assignment of a script’s source, we find that a much smaller
fraction is used without encoding. This would seem to indicate
that additional care is taken by developers when incorporating
potentially attacker-controllable data in such assignments. The
pattern, however, is due to the use of such tainted values,
which are for the most part used in parameters to a URL.
Hence, applying a function like encodeURIComponent
merely ensures that the parameters are properly sent to the
server, and is not necessary to avoid injections.

In addition to the flows to directly exploitable sinks, we find
that more than 1.8M flows occurred from the URL to either
cookies or storage (the last two rows in Table I), with many
of them being unencoded. We also find evidence for numerous
flows from cookies to cookies, as well as from storage to
storage. This is to be expected, given that these are meant
to store state, which is modified at runtime with JavaScript. In
addition, we find that around 2M flows originate from cookies
and end in a Local Storage sink, whereas another 732,407 flow
in the opposite direction.

Note that the table shows absolute numbers, not a unique
set of flows. This is due to the fact that determining uniqueness
for these flows is infeasible. Earlier works [32, 36] used
the combination of sink, domain, and code location of the
sink access for uniqueness purposes. This, however, does
not guarantee unique results, given that if multiple parts of
an application’s code use the same wrapper function (e.g.,
jQuery’s html), all such flows would be counted as one.

Instead of identifying individual flows in the complete
dataset, we now focus on the number of domains with invo-
cations of HTML, JavaScript, and script source sinks. Table II
shows the result of this analysis, indicating how many domains
had any flow from cookies or Local Storage to a sink, as well
as how many of these contained unencoded data. Note that the
row Total is not a sum of the rows above, but rather a unique
count of domains—attributed to the fact that a domain may
have more than one type of flow. In total, we find that 1,946
domains in the 5,000 highest ranked sites make use of data
from persistence APIs in a flow to either HTML, JavaScript,
or a script’s source. Within the domains, 1,645 have flows from
cookies to sinks, and 941 use data from Local Storage in the
invocation of sinks. For us, however, not all these domains
are of interest, as we focus on those domains that have at
least one unencoded flow from the persistence APIs to a sink.
Therefore, in the following, we analyze the 906 cookie and 654
Local Storage domains with unencoded flows in more detail.
This amounts to 1,324 unique domains for our analysis.

Cookie Local Storage
Sink Total Plain Expl. Total Plain Expl.

HTML 496 319 132 234 226 105
JavaScript 547 470 72 392 385 108
Script Src 1,385 533 17 626 297 11

Total 1,645 906 213 941 654 222

TABLE II. NUMBER OF DOMAINS WHICH MAKE USE OF A
COOKIE/STORAGE VALUE IN A SINK (“TOTAL”), ON WHICH AT LEAST ONE

OF THESE FLOWS IS UNENCODED (“PLAIN”), AND ON WHICH AN
ATTACKER COULD THEORETICALLY EXPLOIT SUCH A FLOW (“EXPL.”).

B. Exploitable Flows from Persistent Storage

In order to determine how many of these flows could, in
fact, be exploited, we first determined how many domains
would be attackable by an unlimited adversary, i.e., an ad-
versary capable of modifying cookies or Local Storage for
arbitrary origins. To that end, we used a Chrome extension to
first visit each URL in question, modify the storage accord-
ingly, and reload the site (see explanation in Section IV-C1).
If on the second page visit, the payload is triggered, we mark
the site as exploitable. In total, we found that 418 of the
1,324 domains we considered in fact contained an exploitable
flow from cookies or Local Storage. The exact number of
domains for the combination of sinks and sources is shown
in Table II in the respective third columns. Note that the sum
of all exploitable domains in the table amounts to more than
418, as several domains suffered from more than one flaw.

We find that for HTML, 132 of 319 domains with un-
encoded flows from a cookie were exploitable, whereas 105
of 226 domains were determined to contain an exploitable
flow from Local Storage to an HTML sink. This high ratio
of domains, i.e., 40–46%, does not hold up for JavaScript
sinks, where 72 of 470 (15%) and 108 of 385 (28%), re-
spectively, were vulnerable. For both sink types, the data
indicates the fraction of exploitable sites is higher for Local
Storage than for cookie sites. In our experiments, we found
this to have two reasons. First, since cookies are sent along
to the server in every HTTP request, they are subject to
inspection by deployed Web Application Firewalls (WAFs).
Although we did not specifically record when a page was
not loaded due to our cookies containing JavaScript or HTML
markup, sampling sites on which our payload had not triggered
frequently led to error pages clearly caused by WAFs. Second,
our payload frequently required either ; (for JavaScript) or
= (for HTML) characters to work. Whenever a JavaScript
program accesses the document.cookie property to gain
access to the cookies, all cookies are extracted at once, in
the format key1=value1;key2=value2. Similarly, when
setting a cookie via JavaScript, the ; character carries a special

8

meaning, since it separates multiple directives. Therefore,
through the use of these characters, our payload is destroyed.
Although we believe that some sites may decode cookie values
before use (therefore allowing us to properly encode the
two characters when setting the cookie), our fully automated
approach does not specifically target these corner cases.

For both cookies and Local Storage, the remaining cases
where we could not exploit flows were caused by input
validation, e.g., ensuring that only integer values were used
or that the data being passed to eval matched the format of
a JSON string. We defer the investigation of the use cases of
persisted data in all sinks to the following section. It is worth
noting, however, that for HTML and JavaScript, more than
half of the domains that had a flow from Local Storage to a
sink could be exploited, indicating that little care is taken in
ensuring the integrity and format of such data.

The number of exploitable flows for the assignment of a
script’s source with (partially) tainted data is much lower than
for the other two sink types, at around 3%. We investigated
these domains to determine the exact reason and found that
the values from storage were often merely used to send along
unique identifiers or version numbers of scripts to be included.
In the 28 cases where we could successfully exploit the flows,
however, the persisted values contained the domain name of
the script to be included.

C. Mapping Domains to Our Attacker Models

Our analysis shows that more than 8% of the top 5,000
domains are potentially susceptible to a Persistent Client-Side
XSS vulnerability. Moreover, considering only such domains
which make any use of tainted data in dangerous sinks, a stag-
gering 21% (418/1,946) are vulnerable. Considering only the
top 1,000 domains, we even found that 119 of them contained
an unfiltered and unverified flow from cookies or Local Storage
to an execution sink. While this fraction of almost 12% already
indicates that such insecure use of persistently stored values is
a widespread problem, our investigation of failed exploits also
shows that in several cases the existing flaw was mitigated by
WAFs (we verified that the injection did in fact work by using
benign HTML markup). Given this fact, as well as the limited
coverage of the crawled applications (e.g., without logins),
we believe that these results are lower bounds on the actual
number of potentially vulnerable sites.

Until now, we have considered an omnipotent adversary,
who can inject arbitrary content into cookies and Local Stor-
age. This model, naturally, does not hold true in practice. In-
stead, in the following, we consider the two models introduced
in Section III, namely a Network Attacker capable of injecting
packets into an unencrypted HTTP connection, as well as a
Web Attacker, who can force the victim’s browser to make
arbitrary requests (e.g., to leverage a reflected XSS attack).

Considering the Network Attacker, we found that 293 of
the 418 domains would, in fact, be exploitable, either due to a
complete lack of HTTPS or due to a missing or incomplete (no
includeSubDomains) deployment of HSTS, which allows
for an HTTP-hosted site to set cookies for its HTTPS counter-
part and parents. For the 213 cookie domains, we found that
only 86 made use of HTTPS at all and 29 additionally deployed
HSTS. Only 9 sites deployed the includeSubDomains

flag, leaving a total of 204 cookie flow domains exploitable
by the Network Attacker. The remaining 89/293 domains stem
from HTTP domains, i.e., an attacker can also poison the Local
Storage to persist her payload.

For the Web Attacker, we first check for flows from a URL
to a storage entry, where that storage entry is later used in an
unfiltered flow to a sink. However, out of the 20 domains for
which we discovered such a flow, none could be exploited, for
three reasons. First, flows originated from GET parameters in
the URL, which when changed led to a 404 page. Second, only
the host part of the URL was used to set the domain property
of a cookie, meaning that we were unable to overwrite the
cookie’s value. Third, data from the URL was sanitized (e.g.,
the HTML brackets), rendering our payload non-functional.

To determine the number of persistable XSS flaws, we
follow the methods outlined by prior works [32, 36] and
found that 468 of the top 5,000 domains were susceptible to
a reflected Client-Side XSS attack. Combining these domains
with those domains that have flows from persistent storage
to a sink, we determined that 65 of 418 domains allowed
an adversary to persist her payload, making them altogether
susceptible to Persistent Client-Side XSS. Again, it must
be noted that this merely represents a lower bound, as our
approach only considered reflected Client-Side XSS flaws.
Additionally, since our crawlers neither log in nor try to cover
all available code paths, the number of sites susceptible to
such Client-Side XSS flaws is likely higher. In practice there
are some minor caveats which need to be considered when
using reflected XSS to persist a malicious payload, e.g., Safari
separates the Web Storage and cookies of the normal and
framed version of an origin4. An adversary thus needs to resort
to a noisier infection vector such as pop-ups.

Overall, however, our results show that the flaws we
discovered are not only theoretically exploitable. The high
fraction of Web sites with a combination of code snippets
which are susceptible to both reflected and Persistent Client-
Side XSS (Web Attacker) underlines the relevance of this
threat. Considering a more powerful adversary (like similar
works in this space did [17, 51, 68]), capable of injecting
arbitrary packets into any unencrypted HTTP connection (e.g.,
an arbitrary untrusted WiFi access point), shows that about
6% of the most frequented sites are susceptible to a Persistent
Client-Side Cross-Site Scripting attack.

D. Case Study: Stealing Credentials from Single Sign-On

Based on the data we collected, we determined which types
of sites could be susceptible to an end-to-end attack. In our
study, we found the single sign-on part of a major Chinese
website network to be susceptible to both a persistent and a
reflected Client-Side XSS flaw. While abusing the reflected
XSS could have been used to exfiltrate the cookies of the
user, these were protected with the HttpOnly flag. Given the
fact that the same origin also made insecure use of persisted
code from Local Storage, however, rather than trying to steal
the cookie, we built a proof of concept that extracted creden-
tials from the login field right before the submission of the
credentials to the server. This way, although a single session
cannot be hijacked, the attacker can easily steal the credentials

4https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/

9

https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/

when these are entered by the unknowing victim. Given that
the credentials are extracted before the form is posted, this
also allows extending the exploits discussed by prior works
on stealing credentials from password managers [50, 53]. To
counter this specific exploit as well as the other flaws we found
in our analysis, we investigate the different use cases that were
meant to be implemented by the vulnerable code and show how
each class of cases can be secured in the following section.

VI. RESOLVING PROBLEMATIC PATTERNS

In this section, we investigate the root causes of the vul-
nerabilities and analyze the developer’s underlying intention.
Subsequently, we explore secure alternatives to the identified
problematic practices. Addressing the issues found is not
straightforward, as the applications’ requirements leading to
exposed insecurities are diverse. For this reason, we divide
the identified cases into classes, representing the desired func-
tionality. For each class, we then propose suitable application-
level measures to address the Persistent Client-Side XSS
flaw without loss of functionality. We identified four distinct
types of data from client-side persisted data ending up in a
potentially problematic sink: unstructured data, structured data,
code, and configuration information. Each of these patterns
requires specific defensive practices that we present in the
following. We defer a discussion of more generic defenses
to the end of the section.

A. Storage of Unstructured Data

The most common cases are scenarios in which the appli-
cation’s client-side code uses the persistence mechanisms to
persist and retrieve textual data. This data is used in HTML
sinks to add textual data to the Web document. In our dataset,
we identified 214 domains, in which the legitimate data within
the client-side storage did not contain any syntactical compo-
nents, i.e., had no traces of HTML or JavaScript code. Thus,
in such scenarios, the application can be protected effectively
and robustly using context-aware sanitization [32, 36], which
applies the appropriate encoding based on the syntactical
context of the insertion point in the DOM.

B. Storage of Structured Data

The second unsafe use pattern that we were able to isolate
in our dataset involved cases in which the applications persist
JSON-like data structures. However, instead of using the safe
browser-provided JSON.parse API or a custom parser after
retrieval of the data from storage, these unsafe implementations
instead passed the data structures directly into the eval
instruction – an archaic way of parsing JSON dating back
to the days in which browsers had no native support for the
format. In consequence, manipulated data items directly lead
to execution of injected JavaScript (similar to Figure 2).

Hence, replacing eval with the browser’s native JSON
capabilities is sufficient to robustly secure these cases. Indeed,
a total of 81 vulnerable domains in our dataset could be fixed
by simply using JSON.parse. However, eval-based JSON
parsing is much more forgiving with respect to syntactical
constraints compared to the browser’s fairly strict JSON parser.
Besides these straightforward cases, 27 domains use data
formats that resemble JSON and can be “parsed” with eval,

but are incompatible with JSON.parse. Thus, resolving
these issues either requires changes to the stored format or
introducing a safe custom parser to replace eval.

C. Storage of Code

The most challenging pattern in our dataset consists of
scenarios in which applications use the persistence mecha-
nisms to deliberately store HTML or JavaScript code, e.g.,
for client-side caching purposes. In this setting, the attacker is
able to completely overwrite the contents of the corresponding
storage entry with their own code. We could identify that
in several cases these flaws are actually introduced by third-
party libraries, among them Cloudflare and Criteo. In these
scenarios, the use case mandates that the code semantics
remain intact, as the HTML is meant to be reintroduced into
the DOM and the JavaScript is meant to be executed. Hence,
fully sanitizing the persisted information is not an option to
resolve the issue, as this would break the application. Instead,
we explore dedicated measures tailored to specific subclasses.

a) JavaScript Resources: A total of 90 sites persist
JavaScript code, which is passed directly to eval on page
load. Based on an analysis of the stored JavaScript code, we
find that in the majority of the examined cases, the site caches
JavaScript libraries to speed up page load time — such as
Cloudflare’s “Rocket Loader” [10], which we observed on
33 sites. This functionality ensures that all external scripts
are cached in the Local Storage by substituting them with
custom script media types, such that the browser does not
fetch them on page load. The library then ensures that these
resources are fetched, executed, and cached, allowing each
subsequent visit to use the cached version. Thus, to securely
enable this pattern, a method is needed that allows explicit
caching of JavaScript resources on the client while keeping
the code out of the adversary’s reach. In modern browsers,
Service Workers [47], which were introduced as a more capable
replacement of the AppCache mechanism, can be leveraged
for this purpose. They allow Web sites to introduce their own
custom caching and offline mechanism, which is based on
JavaScript-driven interception of HTTPS requests. For brevity,
we omit further technical details on Service Workers and refer
the reader to [47] for more information. In the context of
the targeted functionality — client-side caching of JavaScript
libraries — Service Workers can be used as follows: On the
first retrieval of the JavaScript resource, the Service Worker
intercepts the associated HTTPS response and persists the
code, e.g., using the browser’s Cache API or the IndexedDB.
From now on, whenever a Web document of the application
uses a JavaScript resource that is persisted this way, the
Service Worker intercepts the request and directly provides the
requested JavaScript. In parallel, after the script code has been
provided to the page, the Service Worker can update its cached
version asynchronously, thus removing any potential temporary
poisoning of the stored data, without affecting the site’s perfor-
mance. As the Service Worker code runs completely separated
from the document’s JavaScript, this functionality cannot be
influenced by the Web Attacker and, as Service Workers are
an HTTPS-only feature, the Network Attacker is also rendered
harmless. Unfortunately, Service Workers are comparatively
new and, thus, browser support is not yet universal5.

5https://caniuse.com/#search=serviceworker

10

https://caniuse.com/#search=service worker

var hostname = localStorage.getItem("hostname");
var script = document.createElement("script");
script.src = hostname + "foo.js";
document.body.appendChild(script);

Fig. 9. Example vulnerability involving a stored hostname

b) Pure HTML: On eleven domains, we identified
HTML fragments in the client-side storage that did not contain
any interwoven JavaScript, neither as script-tags nor inline
event handlers. These cases can be secured by client-side
sanitization that allows (harmless) HTML syntax but robustly
removes all JavaScript from the code. For instance, the well-
established DOMPurify [20] library offers such functionality.
Alternatively, structure-based approaches like BLUEPRINT can
be used to ensure that only benign markup is used [58].

c) HTML/JavaScript Mix: Five sites in our dataset
persisted HTML code that also contained inline JavaScript. In
such cases, none of the available defensive coding measures
can be applied, as it is not possible to determine which stored
JavaScript code originated from an attacker and which from
the developer. Hence, securing these sites requires removing
the insecure feature altogether.

D. Storage of Configuration Information

Finally, in 28 cases, we observed that hostnames were
stored on the client side and then used within the application to
reference further resources, as depicted in Figure 9. In general,
this pattern appears to be a case of client-side configuration
with respect to resource location, e.g, for the purpose of client-
side load balancing. To securely implement this functionality,
a whitelist check for the retrieved values can be introduced,
as the set of legal values is probably bounded. One prime
example of a feasible whitelist check is the case of Google’s
Firebase when using the Realtime Database Feature [16]. On
an abstract level, Firebase periodically requests resources from
a host which is stored in the Local Storage as depicted in
Figure 9. Investigating these cases, we observed that each
of the stored hosts was a subdomain of firebaseio.com, thus
allowing the library to simply check the second-level domain.

E. Applicability of General Defenses

The risks of a persisted malicious payload being executed
code on the client side have been acknowledged by standards
bodies. Specifically, the W3C has proposed the Clear-Site-Data
response header [64]. This mechanism allows site operators
to truncate all client-side storage and moreover shut down
all JavaScript contexts to ensure that an attacker-controlled
context is unable to re-poison the storage. However, making
use of this mechanism regularly inevitably destroys the purpose
of having client-side storage, be it code or configuration data
storage. A security-aware user can achieve the same effect by
completely removing the browser profile before starting the
browser or by making use of equivalent browser features. Other
research approaches focused on the integrity of cookies by
proposing Origin Cookies [4]. These would, given appropriate
deployment, prevent exploitation by the Network attacker on
all HTTPS origins due to separated cookie storage (analogous
to the Local Storage). Additionally, the Web Attacker would

need a reflected XSS on the exact origin, not just on the same
domain. Browser vendors, however, favor prefixed cookies [65]
as opposed to Origin Cookies [5]. These prefixed cookies make
sure that secure cookies can only be set from secure origins
(i.e., HTTPS origins) and only for a specific origin (i.e., the
cookie must have been set without the Domain attribute).
Although these are implemented in Chrome and Firefox6,
we only found that two of the 5,000 domains we analyzed
use these in the first place (and they did not interfere with
our attacks). Moreover, this naturally does not impair a Web
Attacker and does not help secure Local Storage.

There are promising approaches which revolve around a
finer-grained origin construct in the form of either Isolated
Origins [52] or Suborigins [62], which would allow developers
to further mitigate the risk of XSS exhibited by, e.g., some
legacy portion of their Web application. Another approach
to tackle the problem of Client-Side XSS is the concept of
Trusted Types [8]. Trusted Types require developers to mark
any data which contains code intended to be executed in a
sink as safe, which allows these sinks to discard any code not
marked as safe. This prevents an attacker from exploiting flows
which developers intended to carry only data. This concept,
however, is only in its early development stages as of now.

VII. DISCUSSION

Here, we discuss limitations of our analysis and give an
outlook on potential future work in this research space.

Drawbacks of Dynamic Analysis — As with any dynamic
analysis, our approach does not guarantee discovery of the
entire application functionality. Specifically, our crawlers do
not log in to any application, and have a fixed depth when
crawling. Hence, our analysis cannot cover all available pages,
and therefore, flows. Moreover, even if our crawlers were able
to visit every available URL, the analysis would not guarantee
code coverage, given that certain actions may only be triggered
by user action. Additionally, our taint tracking engine only
covers explicit flows. Hence, if an implicit conversion is
applied to the input data (e.g., base64 decoding), our engine is
not able to track the flow of data anymore, resulting in missed
exploitable flaws. Moreover, our analysis cannot account for
modifications in the flow of data, e.g., removal of quotes.
While a scenario may exist in which such a filtered flow is
exploitable, we leave the analysis of such flows to future work.

Exploitability in Current Browsers — While the exploitability
of flows originating from storage does not depend on the
browser, the susceptibility of a site to a reflected Client-Side
XSS varies between browsing engines. Specifically, Firefox
automatically encodes all parts of the URL when accessed
via the location object; Chrome did not do so until version
657. Since version 65, however, the auto-encoding has changed
such that the URL fragment is also encoded, meaning that
exploits which target an unfiltered and unmodified flow from
the fragment to a sink will not be exploitable anymore. To
validate the discovered reflected Client-Side XSS flaws, we
used an older version of Chromium, which does not encode
the fragment. Note, however, that Microsoft’s Edge also does

6https://www.chromestatus.com/feature/4952188392570880
7https://bugs.chromium.org/p/chromium/issues/detail?id=803103

11

https://www.chromestatus.com/feature/4952188392570880
https://bugs.chromium.org/p/chromium/issues/detail?id=803103

not encode the fragment, meaning all discovered flaws are (at
least) exploitable in Edge. Moreover, as of this writing, Mi-
crosoft has announced that Edge’s XSS filter will be removed
in upcoming versions, allowing for trivial exploitation [48].

Lower Bound for Web Attacker — Out of the 418 domains
with exploitable flows from persistence to sink, 65 could be
attacked by a Web Attacker, due to the presence of a reflected
Client-Side Cross-Site Scripting flaw. The analysis of these
reflected XSS cases suffers from the same limitations as our
overall analysis. Moreover, any type of Cross-Site Scripting on
a site is sufficient to persist the attacker’s malicious payload.
The most recent WhiteHat Security report indicates that in
their work, they discovered an XSS vulnerability in 33% of
all analyzed applications [66]. This indicates that the problem
is likely more severe than what our analysis highlighted. In
addition to XSS flaws caused by buggy application code,
browsers also often carry bugs which allow for universal
XSS [38], i.e., all sites visited in a certain browser may be
attackable. These attacks, along with self-XSS8, make the
threat of Persistent Client-Side XSS even more severe, which
is why we report the total number of vulnerable flows as well
as the end-to-end exploitable flaws.

Higher-Order Flows — In our work, we did not find any flow
originating from a URL to persistent storage, which could, in
turn, be leveraged to exploit a flow from storage to a sink.
However, considering the data shown in the last two rows of
Table I, we find that there are 98M data flows within cookies
and Local Storage, as well as over 2.7M flows between cookies
and Local Storage (in either direction). Similarly, in a separate
analysis, we found numerous flows between Local and Session
Storage. Since we did not consider Session Storage in our
analysis, these numbers are omitted from our results. However,
these intra- and inter-storage flows indicate that depending on
the application, there may be flows which traverse the different
persistence APIs. Hence, investigating such more involved
flows is a promising area for future work.

Domain Relaxation — To determine exploitability of an
origin, we checked whether an unfiltered flow from persistent
storage occurred on the same origin as a reflected XSS.
It must be noted, though, that JavaScript documents may
use a process dubbed Domain Relaxation. This involves two
documents, which share a common parent domain, setting their
document.domain property to the common parent [67].
Now, the documents operate under the same origin, i.e., can
access each other. Both sides have to explicitly opt into this.
However, this means that if a site that has a flow from Local
Storage to a sink relaxes its origin to, e.g., the second-level
domain (SLD), an XSS on any sub-domain of this SLD
is sufficient for an attack. The attacker can simply set the
document.domain property accordingly, allowing her to
access the Local Storage of the other document. We believe
that this warrants further investigation as part of future work.

Responsible Disclosure — Several vulnerabilities we discov-
ered were caused by third-party code. We notified those parties
which were responsible for at least three vulnerable domains.
As of this writing, the four largest providers have acknowl-
edged the issues and/or deployed fixes for the flawed code.

8https://www.facebook.com/help/246962205475854

Additionally, we tried to disclose the vulnerabilities to those
sites for which a centralized reporting system like Hackerone
can be used, as these promise an increased success rate over
attempting direct notification [15, 35, 56]. Unfortunately, our
reports were denied due to incorrectly being classified as self-
XSS or flagged as out of scope since our report mentioned
a potential Network Attacker, thus they never reached the
affected party.

VIII. RELATED WORK

Our work touches on different areas of Web Security.
We discuss four areas and how our work relates to them,
specifically works which investigated the lack of integrity in
client-side data storage, the detection of Cross-Site Scripting
flaws as well as their mitigation, and works investigating
dangerous patterns on the Web.

A. Lack of Integrity in Client-Side Storages

Although no works so far have developed a methodology
to investigate the prevalence of Persistent Client-Side XSS in
the wild, a number of papers have hinted at potential dangers
related to the lack of integrity for cookies and Local Storage.
The potential attack surface of trusting persisted code was
hinted at with the introduction of Local and Session Storage
to the Web by Hanna et al. [17], who investigate security
issues related to new Web APIs. In contrast to our work, the
authors only hinted at XSS as a side note, instead investigating
cases in which data under the control of an attacker might
alter applications’ states. As such, they manually analyzed 11
applications to find flaws related to APIs such as WebSQL,
using the same, well-established attacker models we apply.
However, our work focuses on finding verified, exploitable
vulnerabilities at a much larger scale.

In 2012, Lekies and Johns [31] applied simple heuristics
to survey the use of Local Storage, concluding that there are
cases in which HTML or JavaScript code is stored in Local
Storage. To mitigate the associated risks, the authors propose
a JavaScript-based solution which wraps Local Storage func-
tionality and checks the integrity of items before they are
returned from the storage API. Although the authors did not
evaluate the practicability of real-world attacks, the general
idea of the defense mechanism is applicable to a multitude of
our observed cases. Their integrity checks, however, require
changes to the applications codebase. In contrast, for situations
in which Service Workers can be used, the applications can
simply be moved into the Service Worker, allowing for easy
integration and therefore providing a better fit to ensure code
integrity on the client side.

In 2015, Zheng et al. [68] analyzed the general risks
associated with the lack of integrity of cookie data. Their
threat model also covers a Network and Web Attacker, which
allows them to find instances of session hijacking, history
stealing, and even XSS flaws. From their discussion of these
flaws, however, it remains unclear whether these were caused
by insecure server- or client-side code. In contrast to their
work, we use an end-to-end methodology to detect flows
from cookies (and Local Storage), and subsequently, use that
information to automatically generate payloads to verify the
exploitability of the observed flows.

12

https://www.facebook.com/help/246962205475854

B. Cross-Site Scripting Detection

At its inception, Cross-Site Scripting was thought to be a
pure server-side issue, which is why a large fraction of work
focused on the server-side portion of Web applications. Early
work conducted an analysis of server-side XSS using data
flow analysis [24], allowing the authors to find 15 previously
unknown vulnerabilities. Follow-up work from Balzarotti et al.
[2] investigated the sanitization process of user input, showing
that common sanitization techniques such as regular expres-
sions, blacklists, and string manipulation are often incorrectly
implemented, leaving the application vulnerable.

In 2005, Klein [26] unveiled what we now know as
Client-Side Cross-Site Scripting, which unlike its server-side
counterpart is exhibited purely in the victim’s browser. This
led to work by Saxena et al. [49], in which they used
taint-enhanced black box fuzzing in order to find injection
vulnerabilities in JavaScript code. In 2013, Lekies et al. [32]
presented the first automated, large-scale analysis of Client-
Side Cross-Site Scripting vulnerabilities. The authors built a
taint-aware Chromium, allowing them to discover and verify
the exploitability of 10% of the Alexa top 5,000 sites. Their
approach was recently picked up by Melicher et al. [36],
who improved the exploit generation process, allowing for
83% more exploits to be found when directly compared with
the techniques of Lekies et al. Our analysis follows the
selection of domains and crawling parameters (such as crawl
depth) of the former study, to allow a reasonable comparison
between the threats of persistent and reflected Client-Side
XSS. As discussed in Section IV, we extend their approach
to fix shortcomings related to context-aware break-out/break-in
sequences, and issues related to matching and replacing storage
items. Moreover, their work only focused on the detection
of reflected XSS, whereas we investigate persistent XSS.
Building on the findings of Lekies et al. [32], Stock et al. [55]
investigated the complexity of the uncovered vulnerable flows,
concluding that a large fraction of flows are actually rather
simple in nature. In more recent work, Stock et al. [57] also
showcased a study of the prevalence of reflected Client-Side
Cross-Site Scripting over the last 20 years, using the Internet
Archive. They showed that even 8 years before Klein’s first
mention of the new class of Cross-Site Scripting in his blog
post [26], Web sites were susceptible to reflected Client-Side
XSS. Our reflected XSS results confirm all these prior findings.

C. Cross-Site Scripting Mitigation

Based on our findings of real-world flaws, we presented
a number of secure alternatives for using persisted data.
Another approach to tackle the specifics of Client-Side XSS
is extending the taint tracking approach from Lekies et al.
[32] to the parser level. In doing so, Stock et al. [54] were
able to prevent tainted values from being interpreted as code,
thus stopping all previously verified cases of reflected Client-
Side XSS. Extending this to storage, however, would not work,
given the inability to distinguish attacker-injected payloads in
the storages, resulting either in false negatives or impaired
functionality. The general idea of this solution was since
refactored into Trusted Types [8], which prevent undesired
code flows into code executing sinks, but have yet to be
introduced into browsers.

In the more general area of XSS mitigations, Chrome has
a built-in reflected XSS filter [3]. Moreover, CSP promises
to mitigate the impact of XSS. This is, in its basic form,
enforced by only allowing resources to be included from
whitelisted hosts and preventing the use of inline scripting [60].
However, real-world adoption lags behind, given the grave
changes required for legacy applications. In 2013, Doupé et al.
[14] presented an automated tool which separates code and
data in ASP.net applications. In 2014, Weissbacher et al. [63]
showed that CSP is only adopted by a minuscule fraction of the
most important sites and that—even if a policy is present—it
actually does not prevent content injection attacks as intended,
even though an automated generation of such policies is possi-
ble [42]. This trend was also observed by Weichselbaum et al.
[61]. Analyzing 26,000 unique CSP policies, they were able
to show that around 95% of these were circumventable. Also,
they proposed the concept of strict-dynamic. Based on
similar findings from Calzavara et al. [6], Calzavara et al. [7]
proposed an extension to CSP which allows for dynamic policy
composition. Even in the presence of CSP, Lekies et al. [34]
showed that its protective capability can be circumvented with
script gadgets.

D. Dangerous Patterns on the Web

Our work follows a long line of papers investigating
different dangerous patterns on the Web. In 2011, Richards
et al. [45] conducted an analysis of the dangerous use cases
of JavaScript’s eval, concluding that a wide variety of uses
can be replaced with more secure alternatives, thus preventing
potential vulnerabilities altogether. Similarly to them, we were
able to investigate various cases in which developers were
unable to achieve their goal in a secure fashion, although a
secure solution exists. Nikiforakis et al. [41] investigated third-
party inclusions by analyzing the Alexa top 10,000 domains.
The authors were able to show the dangers of third-party
inclusions and also present several attacks targeting faulty
inclusions. Another dangerous practice which is tied to this
development is the inclusion of outdated libraries. Lauinger
et al. [30] conducted a large-scale analysis of the library
inclusion behavior of around 60,000 domains. The authors
were able to show that more than 37% of the investigated
domains make use of vulnerable libraries and that a single
HTML document may even include two different versions of
a given library; results aligning with Stock et al. [57].

Lekies et al. [33] analyzed the danger of Cross-Site Script
Inclusion vulnerabilities on 150 high-ranked domains, finding
40 vulnerable Web applications which allow an attacker to
exfiltrate sensitive data, e.g., access tokens. These could in turn
be used to conduct targeted XSS attacks. The privacy dangers
of HTTP were highlighted by Sivakorn et al. [51] through an
analysis of information leakage of cookies in the presence of
a passive Network Attacker, concluding that 15 of 26 top-
ranked domains were, in fact, leaking sensitive user data due
to the lack of deployed HSTS. Moreover, Mendoza et al. [37]
investigated differences between desktop and mobile versions
of Web applications, showing grave inconsistencies between
deployed security headers, giving attackers an increased attack
surface. In contrast to classical XSS injections, Arshad et al.
[1] presented the first large-scale analysis of Relative Path
Overwrite flaws, which allow an attacker to inject style direc-
tives into a Web application, enabling a scriptless attack [18].

13

IX. CONCLUSION

Cross-Site Scripting has been extensively researched in the
past, ranging from the reflected and persistent variants on the
server in the early days, followed by their reflected counterpart
on the client side in more recent work. In these works, the
persistent variant of Client-Side Cross-Site Scripting has been
noted, but has not been investigated to understand its actual
prevalence in the modern Web. We close this research gap by
delivering factual evidence that the neglected type of Persistent
Client-Side XSS is indeed an actionable threat to modern Web
applications, by providing the first systematic study of its
prevalence in the wild. With a fully automated pipeline using
taint-aware browsing engines and enhanced exploit generation
and validation schemes, we show that more than 8% of the
5,000 highest-ranked sites exhibit exploitable data flows from
client-side storage to code-executing sinks. If we consider
only those domains which make use of data from persistent
storage in their client-side code, the fraction of flawed domains
rises to 21%, highlighting that developers tacitly assume that
the integrity of the stored information is not compromised.
Moreover, we show that for two attacker models, i.e., Net-
work and Web Attackers, this problem can be exploited in
more than 70% of domains which use persisted data in an
insecure fashion. Our findings indicate four distinct scenarios
in which client-side storage is insecurely used, allowing us to
propose application-layer mitigations while at the same time
showcasing the lack of more general and at the same time
usable defense mechanisms. Thus, our results highlight that
contrary to popular belief, XSS is not yet a solved vulnerability
class, nor is it understood in its entirety, demonstrating the need
for appropriate countermeasures against all of its flavors.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their feedback. This work was partially supported by the
German Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) (FKZ: 16KIS0345) and has received
funding from the EU’s Horizon 2020 research and innovation
programme under grant agreement No 700178 (“SISSDEN”).
This research was supported by the Lower Saxonian Ministry
for Science and Culture as part of the research program
MOBILISE (Mobility in Engineering and Science).

REFERENCES

[1] S. Arshad, S. A. Mirheidari, T. Lauinger, B. Crispo,
E. Kirda, and W. Robertson, “Large-scale analysis of
style injection by relative path overwrite,” in WWW, 2018.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna, “Saner: Composing
static and dynamic analysis to validate sanitization in web
applications,” in IEEE S&P, 2008.

[3] D. Bates, A. Barth, and C. Jackson, “Regular expressions
considered harmful in client-side xss filters,” in WWW,
2010.

[4] A. Bortz, A. Barth, and A. Czeskis, “Origin cookies:
Session integrity for web applications,” W2SP, 2011.

[5] bsittler, “What about origin cookies?” 2016. [Online].
Available: https://github.com/WICG/cookie-store/issues/
6

[6] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content se-
curity problems?: Evaluating the effectiveness of content
security policy in the wild,” in CCS, 2016.

[7] ——, “CCSP: Controlled Relaxation of Content Security
Policies by Runtime Policy Composition,” in USENIX
Security, 2017.

[8] W. I. CG, “Trusted types for dom manipulation,”
2017. [Online]. Available: https://github.com/WICG/
trusted-types

[9] Chromium Team, “Hsts preload list submission,” 2018.
[Online]. Available: https://hstspreload.org/

[10] Cloudflare, “Website Optimization,” https:
//www.cloudflare.com/en/website-optimization/, 2018.

[11] Coinhive, “Coinhive – monero javascript mining,” 2018.
[Online]. Available: https://coinhive.com/

[12] J. Dahse and T. Holz, “Static detection of second-order
vulnerabilities in web applications,” in USENIX Security,
2014.

[13] S. Di Paola, “DominatorPro: Securing Next Generation
of Web Applications,” https://dominator.mindedsecurity.
com/, 2012.

[14] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna, “dedacota: toward preventing
server-side xss via automatic code and data separation,”
in CCS, 2013.

[15] M. Finifter, D. Akhawe, and D. Wagner, “An empirical
study of vulnerability rewards programs.” in USENIX
Security, 2013.

[16] Google, “Firebase Realtime Database,” https://firebase.
google.com/docs/database/, 2018.

[17] S. Hanna, R. Shin, D. Akhawe, A. Boehm, P. Saxena, and
D. Song, “The emperor’s new apis: On the (in) secure
usage of new client-side primitives,” in W2SP, 2010.

[18] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk, “Scriptless attacks: stealing the pie without
touching the sill,” in CCS, 2012.

[19] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius,
and E. Z. Yang, “mxss attacks: Attacking well-secured
web-applications by using innerhtml mutations,” in CCS,
2013.

[20] M. Heiderich, C. Späth, and J. Schwenk, “Dompurify:
Client-side protection against xss and markup injection,”
in ESORICS, 2017.

[21] I. Hickson, “Web storage (second edition),”
2016. [Online]. Available: https://www.w3.org/TR/2016/
REC-webstorage-20160419/

[22] J. Hodges, C. Jackson, and A. Barth, “RFC6797: Http
strict transport security (hsts),” November 2012.

[23] A. Janc, “Rootkits in your web application,” Talk at
28c3, 2011. [Online]. Available: https://media.ccc.de/v/
28c3-4811-en-rootkits in your web application

[24] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabili-
ties,” in IEEE S&P, 2006.

[25] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
“Automatic creation of sql injection and cross-site script-
ing attacks,” in ICSE, 2009.

[26] A. Klein, “DOM based cross site scripting or XSS of
the third kind,” Web Application Security Consortium,
Articles, 2005.

[27] M. Kranch and J. Bonneau, “Upgrading https in mid-air:
An empirical study of strict transport security and key

14

https://github.com/WICG/cookie-store/issues/6
https://github.com/WICG/cookie-store/issues/6
https://github.com/WICG/trusted-types
https://github.com/WICG/trusted-types
https://hstspreload.org/
https://www.cloudflare.com/en/website-optimization/
https://www.cloudflare.com/en/website-optimization/
https://coinhive.com/
https://dominator.mindedsecurity.com/
https://dominator.mindedsecurity.com/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://www.w3.org/TR/2016/REC-webstorage-20160419/
https://www.w3.org/TR/2016/REC-webstorage-20160419/
https://media.ccc.de/v/28c3-4811-en-rootkits_in_your_web_application
https://media.ccc.de/v/28c3-4811-en-rootkits_in_your_web_application

pinning,” in NDSS, 2015.
[28] D. Kristol and L. Montulli, “RFC2965: Http state man-

agement mechanism,” October 2000.
[29] C. Kruegel, E. Kirda, and S. McAllister, “Leveraging user

interactions for in-depth testing of web applications,” in
RAID, 2008.

[30] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson,
C. Wilson, and E. Kirda, “Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the
web,” in NDSS, 2017.

[31] S. Lekies and M. Johns, “Lightweight integrity protection
for web storage-driven content caching,” in Web 2.0
Security & Privacy (W2SP), 2012.

[32] S. Lekies, B. Stock, and M. Johns, “25 million flows
later: large-scale detection of DOM-based xss,” in CCS,
2013.

[33] S. Lekies, B. Stock, M. Wentzel, and M. Johns, “The
unexpected dangers of dynamic javascript,” in USENIX
Security, 2015.

[34] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and
M. Johns, “Code-reuse attacks for the web: Breaking
cross-site scripting mitigations via script gadgets,” in
CCS, 2017.

[35] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey,
D. McCoy, S. Savage, and V. Paxson, “You’ve got vulner-
ability: Exploring effective vulnerability notifications.” in
USENIX Security, 2016.

[36] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia,
“Riding out DOMsday: Toward detecting and preventing
DOM cross-site scripting,” in NDSS, 2018.

[37] A. Mendoza, P. Chinprutthiwong, and G. Gu, “Uncov-
ering http header inconsistencies and the impact on
desktop/mobile websites,” in WWW, 2018.

[38] V. Metnew, “uxss-db,” 2018. [Online]. Available:
https://github.com/Metnew/uxss-db

[39] M. D. Network, “HTTP cookies,” 2018. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/
HTTP/Cookies

[40] ——, “Object.defineproperty(),” 2018. [Online].
Available: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/Object/
defineProperty

[41] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “You
are what you include: large-scale evaluation of remote
javascript inclusions,” in CCS, 2012.

[42] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou,
“Cspautogen: Black-box enforcement of content security
policy upon real-world websites,” in CCS, 2016.

[43] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang,
A. Sadhu, and P. Saxena, “Auto-patching dom-based xss
at scale,” in FSE, 2015.

[44] L. Poinsignon, “Bgp leaks and cryptocurrencies,”
2018. [Online]. Available: https://blog.cloudflare.com/
bgp-leaks-and-crypto-currencies/

[45] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The
eval that men do,” in ECOOPS, 2011.

[46] I. Roberts, “Browser cookie limits,” 2018. [Online].
Available: http://browsercookielimits.squawky.net/

[47] A. Russell, J. Song, J. Archibald, and M. Kruisselbrink,
“Service Workers,” W3C Working Draft, 2 November
2017, https://www.w3.org/TR/service-workers-1/, 2017.

[48] D. Sarkar and B. LeBlanc, “Announcing windows
10 insider preview build,” 2018. [Online]. Avail-
able: https://blogs.windows.com/windowsexperience/
2018/07/25/announcing-windows-10-insider-preview

[49] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “Flax:
Systematic discovery of client-side validation vulnerabil-
ities in rich web applications.” in NDSS, 2010.

[50] D. Silver, S. Jana, D. Boneh, E. Y. Chen, and C. Jackson,
“Password managers: Attacks and defenses.” in USENIX
Security, 2014, pp. 449–464.

[51] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The
cracked cookie jar: Http cookie hijacking and the ex-
posure of private information,” in IEEE S&P, 2016.

[52] E. Stark, T. Vyas, D. Ross, M. West, and J. Weinberger,
“Isolated origins,” 2017. [Online]. Available: https:
//wicg.github.io/isolation/

[53] B. Stock and M. Johns, “Protecting users against xss-
based password manager abuse,” in siaCCS, 2014.

[54] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns,
“Precise client-side protection against DOM-based cross-
site scripting,” in USENIX Security, 2014.

[55] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns,
“From facepalm to brain bender: Exploring client-side
cross-site scripting,” in CCS, 2015.

[56] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes, “Hey, you have a problem: On the feasibility
of large-scale web vulnerability notification.” in USENIX
Security, 2016.

[57] B. Stock, M. Johns, M. Steffens, and M. Backes, “How
the web tangled itself: Uncovering the history of client-
side web (in) security,” in USENIX Security, 2017.

[58] M. Ter Louw and V. Venkatakrishnan, “Blueprint: Robust
prevention of cross-site scripting attacks for existing
browsers,” in IEEE S&P, 2009.

[59] J. Troup, “Ubuntu forums are back
up and a post mortem,” 2013. [On-
line]. Available: http://blog.canonical.com/2013/07/30/
ubuntu-forums-are-back-up-and-a-post-mortem/

[60] W3C, “Content Security Policy Level 3 ,” https://www.
w3.org/TR/CSP3/, 2016.

[61] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc,
“Csp is dead, long live csp! on the insecurity of whitelists
and the future of content security policy,” in CCS, 2016.

[62] J. Weinberger, D. Akhawe, and J. Eisinger,
“Suborigins,” 2017. [Online]. Available: https:
//w3c.github.io/webappsec-suborigins/

[63] M. Weissbacher, T. Lauinger, and W. Robertson, “Why
is csp failing? trends and challenges in csp adoption,” in
RAID, 2014.

[64] M. West, “Clear site data,” 2017. [Online]. Available:
https://www.w3.org/TR/clear-site-data/

[65] ——, “Cookie prefixes,” 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-httpbis-cookie-prefixes-00

[66] WhiteHat Security, “Application security statistics re-
port,” 2017. [Online]. Available: https://goo.gl/ULdVvC

[67] M. Zalewski, The tangled Web: A guide to securing
modern web applications. No Starch Press, 2012.

[68] X. Zheng, J. Jiang, J. Liang, H.-X. Duan, S. Chen,
T. Wan, and N. Weaver, “Cookies lack integrity: Real-
world implications.” in USENIX Security, 2015.

15

https://github.com/Metnew/uxss-db
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
http://browsercookielimits.squawky.net/
https://www.w3.org/TR/service-workers-1/
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview
https://wicg.github.io/isolation/
https://wicg.github.io/isolation/
http://blog.canonical.com/2013/07/30/ubuntu-forums-are-back-up-and-a-post-mortem/
http://blog.canonical.com/2013/07/30/ubuntu-forums-are-back-up-and-a-post-mortem/
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://w3c.github.io/webappsec-suborigins/
https://w3c.github.io/webappsec-suborigins/
https://www.w3.org/TR/clear-site-data/
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-prefixes-00
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-prefixes-00
https://goo.gl/ULdVvC

	Introduction
	Technical Background
	Persistent Storage on the Client
	Client-Side Cross-Site Scripting

	Persistent Client-Side XSS
	Vulnerable Use of Persisted Data
	Differences From Persistent Server-Side XSS
	Persisting Malicious Payloads
	Network Attacker
	Web Attacker

	Methodology
	Flow and Storage Collection
	Exploit Generation
	Context-Aware Break-Out/Break-In
	Improved Replacement Strategy
	Fuzzy Matching

	Determining Exploitability
	Network Attacker
	Web Adversary

	Results of Large-Scale Analysis
	Collected Data Flows
	Exploitable Flows from Persistent Storage
	Mapping Domains to Our Attacker Models
	Case Study: Stealing Credentials from Single Sign-On

	Resolving Problematic Patterns
	Storage of Unstructured Data
	Storage of Structured Data
	Storage of Code
	Storage of Configuration Information
	Applicability of General Defenses

	Discussion
	Related Work
	Lack of Integrity in Client-Side Storages
	Cross-Site Scripting Detection
	Cross-Site Scripting Mitigation
	Dangerous Patterns on the Web

	Conclusion

