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Abstract. We present MemScrimper, a novel methodology to com-
press memory dumps of malware sandboxes. MemScrimper is built on
the observation that sandboxes always start at the same system state
(i.e., a sandbox snapshot) to analyze malware. Therefore, memory dumps
taken after malware execution inside the same sandbox are substantially
similar to each other, which we can use to only store the differences in-
troduced by the malware itself. Technically, we compare the pages of
those memory dumps against the pages of a reference memory dump
taken from the same sandbox and then deduplicate identical or similar
pages accordingly. MemScrimper increases data compression ratios by
up to 3894.74% compared to standard compression utilities such as 7zip,
and reduces compression and decompression times by up to 72.48% and
41.44%, respectively. Furthermore, MemScrimper’s internal storage al-
lows to perform analyses (e.g., signature matching) on compressed mem-
ory dumps more efficient than on uncompressed dumps. MemScrimper
thus significantly increases the retention time of memory dumps and
makes longitudinal analysis more viable, while also improving efficiency.

1 Introduction

As of 2018, the number of new and potentially malicious files has risen to over
250,000 per day [2]. Naturally, defenders strive to analyze as many of these files
as possible. Malware sandboxes play a key role in this process and represent
the prevalent mechanism to study the behavior of unknown programs. To cope
with the daily flood of unknown files, malware sandboxes can utilize hardware
virtualization (e.g., Intel VT) to speed up parallel processing. While significant
progress has been made in scaling malware analysis [13, 9, 14, 6, 5], mechanisms
how to efficiently store the results of malware analysis has received little atten-
tion so far. Obviously, without detailed planning and well-tuned mechanisms,
long-term storage of analysis results hardly scales. This is particularly challeng-
ing for unstructured and space-consuming outputs such as memory snapshots
(“images” or “dumps”) taken during or after malware analysis. Although storing
memory images seems unfeasible at first, a persistent storage is appealing. First,
a long-term storage of memory dumps enables for a large variety of promising
forensic analyses, such as on the evolution of malware over time (e.g., lineage),
extracting malware configuration files (e.g., to see targets of banking trojans), or



group similar malware files by clustering them on unpacked malware code [10].
Second, a long-term storage of memory artifacts aids to grasp the concept drift
in malware, e.g., to reevaluate the accuracy of code signatures (e.g., YARA) over
a long-term data set. Yet, as compelling as it sounds, naïvely storing memory
dumps for each malware analysis run does not scale. Given that the storage foot-
print of regular memory dumps equals to the virtual memory given to a sandbox,
merely analyzing 10,000 malware samples requires already about 5 TiB of disk
space (assuming 512 MiB per dump) to persistently store malware dumps.

To tackle this problem, we propose time- and space-efficient storage method-
ologies for dumps stemming from malware sandboxes. We first study the straw
man solution to the problem and assess how regular file compression algorithms
perform. While existing compression utilities reduce storage demands by an or-
der of magnitude, they (i) have a relatively poor computation performance, and
(ii) do not achieve compression ratios that would allow for persistent data stor-
age. We thus propose novel methodologies that (i) better utilize the structure
of memory dumps (i.e., memory pages), and (ii) leverage the fact that we are
actually only interested in changes caused by the malware under analysis.

Our main idea is borrowed from genome data processing in biology, which
faces similar scaling problems for persistently storing genomes. While a human’s
genome consists of about 3 billion pairs, only very few (around 0.1%) of these
pairs are actually different per human. Thus, by just storing these mutations,
one can significantly reduce the space footprint of a genome. Transposing this
idea to malware, we observed that malware changes the memory only slightly
compared to a system before infection. Our general idea is thus to store only
these differences compared to a base snapshot that is taken before analyzing a
particular file. That is, given that sandboxes usually use snapshots to restore to a
clean state after analyzing a file [22], we first save a so called reference memory
dump from this state. This reference dump is identical for all files analyzed
with a given sandbox and thus needs to be persisted only once. Then, after
having analyzed a malware in the sandbox, we compare the memory dump of the
malware-infected system with the reference dump and only store the differences
between the two. Furthermore, we can leverage page-wise memory deduplication,
as deployed in operating systems or incremental checkpoints of hypervisors [20,
16, 17], to reduce the dump size. As a final optimization, we search for pages
that have only slightly been altered compared to the reference dump, and if so,
we store only the changes instead of the entire page.

We implement MemScrimper, a prototype for this methodology. Our re-
sults show that MemScrimper outperforms standard compression utilities such
as 7zip in our sandbox context. MemScrimper improves the data compres-
sion ratio by up to 3894.74%, while reducing compression and decompression
times by up to 72.48% and 41.44%, respectively. Storing a 2 GiB memory dump
with MemScrimper requires roughly 5 MiB (< 0.3%) on average. Finally, we
measure if forensic analysis can be carried out on such compressed dumps by
matching YARA [1] rules on them. This demonstrates how we can speed up



the forensic analysis with our methodology due to the smaller file size of the
compressed memory dumps.

2 Methodology

We first motivate our idea and give technical preliminaries which are required
to grasp the concepts of our approach. We then describe the two main compres-
sion ideas, namely intra-deduplication and inter-deduplication, which are imple-
mented by MemScrimper (Section 3) and which will be evaluated in Section 4.

2.1 Motivation and High-Level Idea

Our proposed methodology is designed to be used in large-scale malware analysis
systems. In such a setting, the following high-level workflow is usually deployed:

1. Set up an analysis environment. This involves installing an operating
system and configuring it to run the malware. The latter includes disabling
security mechanisms such as firewalls or built-in anti-virus solutions to in-
crease the likelihood that the malware will expose its malicious behavior.

2. Create a snapshot. To ensure that malware exposes its malicious behavior
and to ease the analysis, the malware should be executed in an untampered
environment. This allows to eliminate side effects where one malware might
hinder another malware from executing and also reduces noise in the behav-
ioral data. To guarantee such a clean state, snapshots can revert the state of
the system to the one immediately after the setup process (step 1). Snapshots
are common in both virtualization-based and bare-metal sandboxes [12].

3. Analyze the malware. The first two steps will be executed once per anal-
ysis machine. After that, the malware is executed for a predefined amount
of time after which the analysis data (including the memory dump) is col-
lected, and finally, the system is restored to its original snapshot state. This
procedure is repeated for every malware sample that will be executed.

The core design principle of MemScrimper is based on two intuitive assump-
tions. First, the snapshot guarantees that the memory will be bit-by-bit identical
every time the execution of a malware sample starts. Second, it is unlikely that a
malware will modify huge parts of the memory of the analysis machine. This fol-
lows the intuition that malware usually has a small memory footprint to operate
stealthily and to ensure that it runs on a variety of systems including systems
where memory is scarce. These two observations imply that the memory dumps
resulting from executions of different malware samples on the same analysis en-
vironment will share a significant amount of their memory contents. By simply
storing memory dumps in plain, the space is not efficiently used, as the same
memory content is stored over and over again. This is also true if the memory
dump is deflated with standard compression utilities such as gzip or 7zip, since
the same memory content is redundantly compressed. With MemScrimper we
fill this gap.
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Fig. 1. The number of occurrences of the 30 most common pages of a 512 MiB memory
dump taken from a Windows XP analysis machine.

2.2 Terminology

The central objects that MemScrimper works on are memory dumps. A memory
dump is a bit-by-bit copy of the physical memory of a system taken at some point
in time. Modern operating systems and hardware use the concept of virtual
memory, which gives each running process the impression of having a large
contiguous space of memory. This virtual memory space is then mapped to the
physical memory space, which does not have to be contiguous. The granularity of
this mapping is determined by the page size. The page size is an important piece
of structural information that dictates the way we process memory dumps. We
will focus on the x86 platform, which has a page size of 4,096 bytes. Formally,
we consider a memory dump D as an ordered sequence of pages, i.e., D =
[P1, . . . , Pn] where Pi ∈ D is the ith page of D — we will also call i a page
number. A page is an ordered sequence of bytes, i.e. Pi = [bi,1, . . . , bi,ps] where
bi,j ∈ [0, 255] and ps is the page size.

2.3 Intradeduplication

As a first mean of compressing a memory dump, we leverage two observations.
First, sandboxes usually have a small memory footprint, since they do not have
a lot of software executing on them. Hence, the majority of the physical memory
is unused, which usually means that the vast majority of the pages contain only
0-bytes. Second, some of the pages inside the memory dump besides the 0-byte
pages are likely to appear multiple times. This is because of technical issues like
the usage of different library versions or memory-mapped files.

To illustrate this, Figure 1 shows the number of occurrences of the 30 most-
common pages of a 512 MiB memory dump of a Windows XP analysis system
we created. The most common page is the page which contains only 0-bytes and
occurs 91,698 times. While this is expected, also other, non-zero pages occur



Page Number Distinct Total
Same 23,695 118,685
Different 365 8,500∑

23,991/27,776 127,185/131,072

Table 1. A breakdown of the inter-deduplicatable pages of a Carbanak dump with
respect to whether or not those pages have the same page number in both R and D.

several times. For example, the second most common page also contains mostly
0-bytes with a few exceptions and occurs 3,173 times. In total, the 512 MiB
memory dump consists of 131,072 pages (131,072 · 4 KiB = 512 MiB) out of
which 942 distinct pages occur more than once and the number of occurrences
sum up to 97,663. This means that 97,663 out of 131,072 pages (74.51%) can be
represented by storing only 942 (0.72%) pages plus some metadata overhead.

We call this way of compressing a memory dump intra-deduplication, as it
deduplicates pages within a given memory dump. While intra-deduplication
seems promising, we will see that this compression idea is inferior to the one
we will describe next—given that common compression methods work simi-
larly. However, it is very efficient and gives a basic understanding of the modus
operandi of MemScrimper. In particular, it shows how we can leverage the
structure of memory dumps, i.e., the concept of pages, to achieve a compression
with simple means. We just need to read the memory dump page-wise, keep
track of pages that occur more than once, and finally, write a data structure
which leverages this deduplication idea (cf. Section 3.2 for more details).

2.4 Interdeduplication

We now describe inter-deduplication, which is a second, more evolved compres-
sion method implemented in MemScrimper. The idea of inter-deduplication is
to compare a memory dump D that we want to compress with the help of a
reference dump R of the analysis machine. That is, we parse the sequence of
pages [P1, . . . , Pn] of D and check for each Pi if it is present in the reference
dump R, i.e., we check if Pi ∈ R is true. If this is the case, it means that we do
not have to store Pi. Instead, we only need to store referential information that
links the deduplicated page from D to the correct page number of R.

To illustrate the effectiveness of this idea, Table 1 shows how many pages of
a memory dump resulting from an execution of a Carbanak APT malware can
be deduplicated when compared against the reference dump. In total, 23,991
distinct pages occur more than once and the number of occurrences sum up to
127,185. This means that 127,185 out of 131,072 pages (97.03%) can be repre-
sented by storing only referential information. In fact, as we will see later in the
implementation details in Section 3.3, we only need to store referential informa-
tion if the deduplicated page has a different page number in D than it has in
R. The vast majority of deduplicatable pages (118,685/127,185 ≈ 93.32%) share
the page number between R and D, which means that we do not need to store a



single byte to represent those pages. We will only need to store referential infor-
mation for the 8,500/127,185 (6.68%) pages which have a different page number
in R than they do have in D.

Combining Interdeduplication with Intradeduplication: In our ex-
ample, inter-deduplication leaves 3,887 (2.97%) that cannot be deduplicated as
they do not appear in R. To further reduce the amount of information required
to represent those pages one could apply the intra-deduplication technique be-
tween those 3,887 pages. In this example, 101 (2.60%) of the distinct pages occur
more than once and the number of total occurrences sums up to 202. This means
that intra-deduplication might only add a slight improvement, and as we will
show in Section 4, might even reduce the compression ratio if we add standard
compression utilities on top.

Differential Interdeduplication: So far we have deduplicated identical
pages. We now search for similar pages, and if possible, only store differential
information to a similar page. Such a differential view is particularly helpful if
pages are only slightly modified when the malware executed. While a strict page
comparison would interpret such slight changes as failure to deduplicate, a dif-
ferential deduplication likely requires less space than saving the entire updated
page. Thus, for each page Pi, we check if we can find a similar page P ′j ∈ R
and only store the diff δ(Pi, P ′j) = [b′j,k | 1 ≤ k ≤ ps, Pi 3 bi,k 6= b′j,k ∈ P ′j ], i.e.,
the byte-wise difference of both pages. The diff function δ captures the type of
modifications we expect, i.e., patches which just replace a few bytes as opposed
to more complex modifications which completely move data inside a page. Ad-
ditionally, we expect the closest candidate to reside at the same page number in
the reference dump. Hence, we let j = i, which also makes the candidate selec-
tion less costly. Since we need some metadata for storing a diff, i.e., the offsets
of the bytes which will need to be patched, we only store a diff if the number of
bytes plus the metadata overhead is smaller than the page size.

In our running Cabernak example, 3,811 out of 3,887 pages (98.04%) yield
a diff (including overhead) which is smaller than the page size. On average,
the size of the diff without overhead, i.e. |δ(Pi, P ′i )|, is 891.39 bytes (median
317, std 1,099.4). The sum of all δ(Pi, P ′i ) is 3,397,094 bytes, which is 3,811 ·
4,096 − 3,397,094 = 12,212,762 ≈ 11.65 MiB less than what would be needed
to store those pages without our diffing idea (ignoring metadata overhead). To
foreshadow a bit, however, the overhead of storing diffs is not negligible and
would account for 527.21 KiB in this example.

After performing all of these steps, only a negligible fraction of pages, i.e.,
76/131,072 (0.06%), need to be stored without any of the previous optimizations
being applied to them. The remaining 130,996/131,072 pages (99.94%) could
either be deduplicated page-wise, or a similar page was found in R such that
storing the diff is less costly than storing the entire new page.



3 Implementation

We will now describe the implementation details of MemScrimper. We im-
plemented a reference prototype in Python, which includes the design of a file
format for memory dumps compressed with MemScrimper.

3.1 File Format Overview

The compressed memory dump files of MemScrimper consist of two compo-
nents, the header and the body. The header contains metadata which is shared
among the different compression methods, while the body contains method-
specific metadata as well as the actual compressed memory dump. We first define
the header, which contains the following information:

Magic Number A zero-terminated string (str) (currently “MBCR”), which aids
file identification.

Method The name of the method (str) that the memory dump has been com-
pressed with (e.g., “intradedup” for intra-deduplication)

Major Version Number A two-byte integer describing the version of Mem-
Scrimper, which can, e.g., be used to track changes to the header format.

Minor Version Number A two-byte integer version number that can be used
to track changes to the compression method implementation.

Page Size The page size (in bytes, usually 4096) that has been assumed for the
compression represented with a four-byte integer (4B).

Uncompressed Size The size of the uncompressed dump in bytes represented
with an eight-byte integer (8B).

3.2 Intradeduplication

Intra-deduplication finds pages which are shared within the same memory dump.
Technically, we read the memory dump page-wise and keep track of duplicate
appearances. To reduce the memory footprint of pages that already appeared
previously in the memory dump, we can store hashes instead of the entire page
contents. The file format that we use for intra-deduplication memory dumps is
depicted in Figure 2. The integer n stores the number of distinct pages used as
reference during deduplication and corresponds to the number of page contents
that appear in more than one page in the given dump. For each such page, we
can deduplicate all other identical pages. After the number n, we write all these
n reference pages next to each other in the file (ps is the page size in bytes).

Once we have stored all reference pages, we now also have to encode how
these pages were referred to in the original memory dump. That is, we need to
denote at which offset(s) each reference page was stored such that we can (during
decompression) reconstruct the original file. A naïve solution would be storing a
list of original page numbers for each reference page. Yet such lists waste space
if we face large contiguous ranges where the same page occurs repeatedly, as for
example in the case of 0-pages. To account for this, for each reference page, we



Header

n
4B

1. Page
psB

... n. Page
psB

1. Interval List
var

... n. Interval List
var

Unique Pages

gzip
bzip2
7zip

Fig. 2. File format of a memory dump, which was compressed with intra-deduplication.

t
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d
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r − l
{0,1,2,4}B

Fig. 3. Encoding of an interval [l,r].

store a list of page number intervals. A list of page number intervals is an ordered
sequence of intervals I = [l,r], in which each interval represents the page numbers
at which a deduplication page occurs. Figure 3 depicts how we encode an interval.
First, we store the termination bit t, which indicates whether this interval is the
last item of the contiguous interval list. This enables the decompressor to detect
the end of an interval list without the need to store the length of the interval.
After that we store a two bit number d, which describes the number of bytes that
is required to store the size of the interval (the four possible states are mapped
to an interval length size of 0, 1, 2 or 4 bytes). To encode the actual interval, we
store the left side of the interval l, i.e., the page number at which the interval
starts. Finally, we encode the size of the interval in number of pages (minus 1),
i.e., r− l. We omit the size encoding if the interval is just one page (determined
by d), such that we can store single-page intervals in just four bytes.

To parse an interval list, the decompressor would proceed as follows: First, t,
d and l are read. Then, the size of the interval can be deduced depending on the
value of d. If d = 0, the interval is [l, l] and the r − l field is omitted. For d = 1,
the r − l field is a single byte long and can indicate a page range of maximum
256 pages. For the maximum d = 3, the r − l field is four bytes long and can
indicate a size of up to 232 pages. With this information, the decompressor can
reconstruct the interval [l, r]. If t = 0, this process is repeated until the final
entry that has t = 1 and thus terminates the list of page intervals.

The notion of intervals serves as a zero-overhead alternative to plainly storing
page numbers. If a deduplicated page occurs only twice at non-consecutive page
numbers, for example, we would represent this with two interval lists which would
be 4-bytes each, which is the same number of bytes that we would require if we
simply stored the page numbers directly. Since we use 29 bits to denote the left
side of the interval l, the maximum number of pages that MemScrimper can
handle with this method is 229−1, which roughly corresponds to 2 TiB memory
dumps if we consider a page size of 4 KiB. Any changes to size constraints made
in the file format can be reflected by the minor version field of the header.

After the interval lists, the unique pages, i.e., the pages which cannot be
deduplicated, are written next to each other in the same order as they appear



Header

Reference
str

n
4B

PageNr List
var

1. Interval List
var

... n. Interval List
var

Interval List
var

1. New Page
psB

... l. New Page
psB

gzip
bzip2
7zip

Fig. 4. File format of memory dump, which was compressed with inter-deduplication.

in the memory dump. We do not need to store any referential information for
those pages. To reconstruct the memory dump, the decompressor would first
parse all the pages and intervals. The page numbers which are not contained in
those intervals are then chronologically mapped to those unique pages.

Finally, to further compress the inter-deduplicated memory dump, we can
optionally add standard compression utilities like gzip, bzip2 or 7zip on top of
this method. This is achieved by simply compressing the body of the file with
those utilities, while the header is left untouched to give the decompressor the
necessary metadata for reconstructing the memory dump.

3.3 Interdeduplication

To compress a memory dump D with inter-deduplication, we need to compare
the pages of D against the pages of a reference memory dump R. To achieve this,
we first parse the pages of R and then iterate over all pages in D and check if a
page occurs in R. If so, we can inter-deduplicate this page. If the page number
of such a page is identical in R and D, we do not need to store any information
about the page. Only if the page numbers differ, we need to store the respective
page number in the compressed memory dump.

The file format of the inter-deduplication method is depicted in Figure 4.
We first store the path of R so that the decompressor knows against which
memory dump the compressed memory dump was compared. Similar to the
intra-deduplication implementation, we again store the number of distinct ref-
erence pages n that are used as basis for (inter-)deduplication. Again, similarly,
we store n page number interval lists which denote for each of the n reference
pages where it occurs in D. The missing bit of information, i.e., where the dedu-
plication page occurs in R (its page number), is stored in a page number list
that maps the n interval lists to n offsets in R.

For space-efficiency reasons, the page number list is a sequence of n variable-
sized integers. The first page number is absolute and all subsequent page numbers
are relative to the page number given by the previous entry. If such a relative
page number (or the first absolute page number) fits into 7 bits, the page number
is encoded as a single-byte integer and the most significant bit is set to 1. This
gives the decompressor the information that the page number can be recovered
by only reading a single byte. Otherwise, the most significant bit is 0 and the
page number is encoded with 4 bytes.



Finally, we need to store the new pages, i.e., pages which are not covered
by inter-deduplication. We thus store a page number interval list that encodes
the page numbers of all new pages, followed by the sequence of new pages. The
number of page numbers encoded by the interval list is the same as the number
of new pages, i.e., l in Figure 4, which tells the decompressor where to put each
new page. If a page number is not covered by this interval list or the page number
list of the deduplicated pages, then this page is identical to the page in R at the
same page number. This is also why we need to store referential information for
the new pages, which we did not need to do for intra-deduplication.

Combined Inter- and Intradeduplication The new pages in the basic inter-
deduplication format are not deduplicated within themselves. That is, if a new
page occurs multiple times, we still store that page redundantly multiple times.
This can be fixed by applying intra-deduplication to those pages, similar as de-
scribed before by storing an interval list for each of the l new pages. This idea
is depicted in Figure 5, where we also need to store the integer l to tell the
decompressor how many new pages exist, which was previously given implicitly
by the single interval list for the new pages. However, we noticed in our experi-
ments that intra-deduplication applied to the new pages adds little to no benefit,
since the new pages usually do not occur multiple times. In fact, if we use stan-
dard utilities to compress the body, this combined inter- and intra-deduplication
might result in worse compression ratios due to locality issues.

Header

Reference
str

n
4B

PageNr List
var

1. Interval List
var

... n. Interval List
var

l
4B

1. Interval List
var

... l. Interval List
var

1. New Page
psB

...

l. New Page
psB

gzip
bzip2
7zip

Fig. 5. File format of a memory dump, which was compressed with inter-deduplication
and intra-deduplication applied to the new pages.

Differential Interdeduplication A more effective optimization is to look for
similar pages inR and D and store only their differences. To do this, we compare
each page Pi of D with the corresponding page P ′i ofR, which resides at the same
page number i. We then compare each byte bi,j ∈ Pi with the corresponding byte
b′i,j ∈ P ′i at the same offset and remember the byte if it is different. This yields
the difference δ(Pi, P ′i ) = [bi,k | 1 ≤ k ≤ ps, Pi 3 bi,k 6= b′i,k ∈ P ′i ].

To encode the difference such that we can use it later to restore the actual
page Pi, we also need to store the offsets of the patched bytes. A simple solu-
tion for this problem would be to store pairs of offsets and bytes. While this
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Reference
str

n
4B

PageNr List
var

1. Interval List
var

... n. Interval List
var

d
4B

1. Diff
var

... d. Diff
var

PageNr List
var

Interval List
var

1. New Page
psB

... l. New Page
psB

gzip
bzip2
7zip

Fig. 6. File format of a compressed memory dump with inter-deduplication and diffing.

l1 − 1 o1 ln − 1 onn
2B 2B or 3B

p1
l1B

...
2B or 3B

pn
lnB

Fig. 7. Encoding of a diff d = [(o1, l1, p1), . . . , (on, ln, pn)]

would work, it would incur a significant overhead, as we would have overhead
for each byte. Instead, we reshape the difference of a page to look as follows:
D = [(o1, l1, p1), . . . , (on, ln, pn)], i.e., a a sequence of triples (o, l, p) that each
represents a patch. A patch is a sequence of bytes p of length l which needs to
be applied at offset o to restore the original page content at a particular offset
in the page. It is straight forward to compute D from δ by simply looking for
long streaks, i.e., bytes bi,k, which appear consecutively. Additionally, the offsets
oi are relative to the offset given by the previous entry plus the length of the
previous entry, i.e., oi−1 + li−1, with the exception of o1, which is absolute.

Figure 7 shows the diff encoding. An integer n stores the number of patches
of the diff. This is followed by n patches, i.e., (o, l, p) triples. The offset o and
the length l are packed into a single two-byte integer if they both fit into 7 bits
each, otherwise they are packed into a 3-byte integer and the most significant
bit of this integer is set to 1. To ensure that the length and the offset always fit
in 3 bytes, we guarantee that no streak is longer than 2048 bytes and partition
longer streaks. Since we store l − 1, as shown in Figure 7, we ensure that the
decompressor can recover the correct value of l since l − 1 fits in 11 bits and
therefore the most significant bit of the three-byte integer does not overlap.

Figure 6 shows how this diffing idea is incorporated into the file format. The
file format is similar to the previous one with the only addition being that the
interval list of deduplicated page numbers is followed by a list of d diffs. Again,
we add a page number list to encode the position of the d pages that can be
recovered by applying those diffs. The page number list and the diffs are ordered
so that the nth diff corresponds to the nth page number of the page number list.
To recover the original pages, the decompressor reads the page numbers from
the page number list, read the corresponding pages from the reference dump
and apply the corresponding diffs. Similar to before, intra-deduplication can
optionally be applied to the new pages, which is depicted in Figure 8.
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n
4B

PageNr List
var

1. Interval List
var

... n. Interval List
var

d
4B

1. Diff
var

... d. Diff
var

PageNr List
var

l
4B

1. Interval List
var

...

l. Interval List
var

1. New Page
psB

... l. New Page
psB

gzip
bzip2
7zip

Fig. 8. File format of a compressed memory dump with inter-deduplication, diffing
and intra-deduplication applied to the new pages.

4 Evaluation

In the following, we will now evaluate MemScrimper with respect to several
aspects. First, we will evaluate the data compression ratio, i.e., the ratio between
compressed size and uncompressed size of a memory dump and we will compare
this ratio against the ratios of the standard compression utilities gzip, bzip2
and 7zip. For each of these utilities, we add a compression method to Mem-
Scrimper where the body contains the memory dump after compressing it with
the respective utility. For each utility we used the strongest compression flags,
e.g., mx=9 for 7zip or -9 for gzip. Second, we will evaluate the compression
time, i.e., how long it takes to compress and decompress a memory dump with
MemScrimper.

As discussed in Section 3, there are several different methods that we will
need to compare. First, there are the three standard compression methods gzip,
bzip2 and 7zip. Then, we have the intra-deduplication method, for which we
have an additional method if we add the above mentioned standard compression
utilities, which gives us 4 additional methods. We will refer to this method and
its variations with Intrax where x ∈ {gz, bz, 7z, –}, to denote the compression
method that was used on top1. In the case of the inter-deduplication method,
we have 4 different variations. The one which applies no intra-deduplication on
the new pages, the one which does and for both of them an additional variation
which applies diffing. On each of those four variations, we can again apply the
above standard compression utilities as before, which results in 16 additional
methods. We will refer to this method and its variations with Interxy where
x ∈ {gz, bz, 7z, –} and y ⊆ {	, δ}, i.e., 	 denotes intra-deduplication applied to
the new pages and δ indicates that diffing was used2. In total, this gives us 23
methods, which we will need to consider.

1 For the sake of brevity, we denote the absence of an additional compression layer
with Intra instead of Intra–.

2 For the sake of brevity, we write Interx instead of Interx∅.



Windows XP (512 MiB)

Method gzip bzip2 7zip
– 9.54 10.71 16.15
Intra 10.20 11.15 16.55
Inter 121.72 134.37 206.18
Inter	 117.41 121.04 195.12
Interδ 427.53 459.90 645.15
Inter	,δ 446.60 469.65 644.75

Windows 7 (2 GiB)

Method gzip bzip2 7zip
– 9.34 9.51 14.54
Intra 9.73 9.74 15.27
Inter 140.08 147.93 232.61
Inter	 132.15 128.19 216.55
Interδ 351.73 361.11 505.82
Inter	,δ 358.91 363.49 503.14

Table 2. The average data compression ratio of the different methods (larger is better,
best ratio is highlighted) grouped by the analysis machine the memory dump was taken
from (Windows XP and Windows 7).

4.1 Experimental Setup

For evaluation we collected a data set of 236 labelled samples from 20 malware
families in total (Foreign, Tedroo, Fareit, Ghost, Kelihos, Kuluoz, Nitol, NJRat,
Nymaim, Virut, ZeusP2P, Kronos, Pushdo, Carbanak, LuminosityLink, SpyEye,
Dridex, ISRStealer, Palevo, Tinba). We executed each sample for 2 minutes in a
virtual machine (VM) starting from a snapshot using the VirtualBox hypervisor.
Additionally, we ran an idle execution on the VM for 2 minutes as well to collect
the reference dump R. Using manual forensic analysis, we carefully verified that
each sample became active and that it indeed belongs to the labelled family. By
doing so, we ensure that MemScrimper will operate on actually infected mem-
ory dumps. If malware for example shows evasive behavior and will not start on
the virtual machine, MemScrimper would operate on a memory dump where
the malware has left little to no memory footprint, which would in turn skew
our results as the resulting memory dump would be more similar to the refer-
ence memory dump R. By verifying the family and the activity of the sample,
we therefore simulate a worst case behavior where MemScrimper operates on
memory dumps with a real malware footprint.

We performed this whole process for a Windows XP and a Window 7 VM
where 512 MiB of memory was assigned to the former and 2 GiB of memory was
assigned to the latter. We did so as we want to evaluate how MemScrimper
scales for larger memory dumps.

4.2 Data Compression Ratio

The data compression ratio is defined as u
c where u is the size of the uncom-

pressed memory dump in bytes and c is the size of the compressed memory
dump in bytes. To compute the compression ratio, we ran all methods of Mem-
Scrimper on all collected memory dumps and compared the sizes. The average
compression ratio of each method is depicted in Table 2. A first (rather unsur-
prising) observation is that 7z is superior to both gz and bz2, which is also why
we will only consider 7z for the remaining data compression ratio evaluation.
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Fig. 9. A violin plot depicting the distribution of the actual file sizes of memory dumps
compressed with MemScrimper (lower is better).

Another observation is that while Intrax yields a better compression ratio than
the individual compression methods alone, the improvement is not significant.
The standalone 7z method yields a compression ratio of 16.15 on the Windows
XP memory dumps and 14.54 on the Windows 7 memory dumps, while Intra7z

achieves a ratio of 16.55 (2.42% improvement) and 15.27 (5.02% improvement)
respectively. The Interδ method on the other hand yields compression ratios as
high as 645.15 (3894.74% improvement) in the case of Windows XP and 505.82
(3378.82% improvement) if we use 7z as the inner compression. Another obser-
vation is the fact that the usage of diffing (δ) greatly improves the compression
ratio. In the case of Inter7z and Inter7zδ , it increases the compression ratio from
206.18 to 645.15 (212.91% improvement) in the Windows XP case and from
232.61 to 505.82 (117.45% improvement) in the Windows 7 case. The usage of
intra-deduplication within the new pages (	) adds little to no improvement and
even more interesting, it might also decrease the compression ratio, which we can
see if we compare Inter7zδ against Inter7z	,δ for example or Inter7z against Inter7z	 .
We suspect that the reason for this is that by intra-deduplicating the new pages,
we remove locality information, which can be used by the 7z utility to achieve
a better compression.

The violin plot in Figure 9 depicts the distribution of the file sizes of the
compressed memory dumps. We focus here only on 7z and the relevant inter-
deduplication variations as the previous discussion has shown that these are
the most relevant candidates. The plot also contains the file sizes for the Interx
variations, i.e., without any inner compression applied – something we have
omitted in Table 2. An interesting observation here is that these variants are
already better than 7z alone on average. For example, in the Windows 7 case,
7z yields an average size of 141.12 MiB (median 139.72, std 6.65) whereas the
Inter	,δ method yields an average size of 21.26 MiB (median 12.58, std 24.10).
However, as shown in the violin plot, the methods without any inner compression
applied to them suffer from outliers, which results in a high standard deviation.
This standard deviation can be greatly reduced by applying 7z as the inner
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Windows XP (512 MiB)

Method – gzip bzip2 7zip
– – 23.99 22.08 35.68
Intra 1.80 20.43 13.82 32.37
Inter 2.54 6.87 4.67 6.06
Inter	 2.45 6.57 4.03 6.16
Interδ 8.34 8.78 9.11 9.82
Inter	,δ 8.16 8.66 9.15 9.86

Windows 7 (2 GiB)

Method – gzip bzip2 7zip
– – 84.66 86.04 53.02
Intra 7.40 73.21 54.26 75.63
Inter 10.73 22.51 17.73 20.94
Inter	 10.97 21.92 15.71 21.91
Interδ 24.11 27.15 26.15 27.82
Inter	,δ 24.14 26.98 26.38 27.90

D
ec
om

p
re
ss
io
n Method – gzip bzip2 7zip

– – 2.35 6.19 2.69
Intra 0.52 1.41 4.90 2.60
Inter 1.12 1.27 1.82 1.46
Inter	 1.04 1.18 1.71 1.44
Interδ 1.90 2.94 4.22 2.19
Inter	,δ 1.90 2.87 4.16 2.17

Method – gzip bzip2 7zip
– – 8.99 24.66 10.86
Intra 1.63 5.23 19.87 10.41
Inter 4.74 5.18 6.68 5.07
Inter	 4.36 4.86 6.28 5.14
Interδ 5.94 8.03 10.71 6.36
Inter	,δ 5.92 8.00 10.63 6.37

Table 3. Average compression and decompression times of the different methods in
seconds (lower is better, best is highlighted).

compression, which takes care of compressable data that we missed with our
methodology. To put this into perspective consider the Interδ method, which
has a standard deviation of 25.34 which can be reduced to 6.27 by applying 7z

as the inner compression, which gives the Inter7zδ method. The best performing
method in both cases, i.e. Inter7zδ , yields an average size of 2.81 MiB (median
0.94, std 4.26) in the case of Windows XP and an average size of 5.57 MiB
(median 3.63, std 6.27) in the case of Windows 7, which is a large improvement
over 7z alone (WinXP: 32.21 avg, 30.49 med, 4.61 std, Win7: 141.12 avg, 139.72
med, 6.66 std).

4.3 Compression and Decompression Time

To further assess the performance of MemScrimper, we measured how long
it takes to compress and to decompress a memory dump. To this end, Table 3
depicts the average compression and decompression time of the different meth-
ods in seconds. To collect this data, we randomly sampled 4 memory dumps per
family (i.e., a pair of a Windows XP and a Windows 7 memory dump for 2 sam-
ples per family), and ran all methods on the resulting memory dumps. We had
to sample, as a precise compression and decompression time analysis required
us to run the methods sequentially. Parallel processing would introduce variance
of our results due to concurrent disk reads/writes, caching issues and scheduling
and load problems. Since running all methods on all memory dumps sequen-
tially would take too long, we decided to follow this sampling approach, which
still gives us a reasonable number of 20 · 4 = 80 memory dumps per method.

Table 3 shows that the fastest compression method by far is Intra with av-
erage compression times of 1.8 seconds for Windows XP and 7.4 seconds for
Windows 7. This is followed by Inter with compression times of 2.54 seconds for



Windows XP and 10.73 seconds for Windows 7. Although Intra and Inter are
conceptually quite similar in that they only look for deduplicatable pages, Inter
is slightly slower, since it has to process two memory dumps, i.e., the one we
want to compress D and the reference memory dump R. In a real world deploy-
ment of MemScrimper one could pre-process the reference memory dump R
once and put the result (i.e., a hashmap of the pages) in memory to eliminate
overhead. Due to the bad data compression ratio, Intra also gets significantly
slower as soon as we add inner compression to the method, which becomes evi-
dent if we compare Intra with Intra7z where we observe a slowdown of 922.03%
in the Windows 7 case—the costly inner compression has to work on large data,
which is inevitably slow. Conversely, if we consider Interδ, i.e., the method with
the best data compression ratio, we can see that the overhead of adding inner
compression is less significant with the largest being the difference to Inter7zδ
with 3.71 seconds (15.39%) in the case of Windows 7. Another observation is
that intra-deduplicating the new pages adds little to no overhead, since the dif-
ference between Inter and Inter	 and between Interδ Inter	,δ can be considered
negligible. The usage of diffing on the other hand incurs a significant overhead of
up to 124.70% if we compare Inter against Interδ in the case of Windows 7. This
can be explained by the fact that diffing adds more complexity to the compres-
sion, as it has to compare each page that cannot be directly deduplicated with
the corresponding page in the reference memory dump R. As we have seen in
the compression ratio analysis, this turns out to be very effective, which means
that many diffs have to be created and serialized – all of which contributes to
additional complexity.

If we compare the numbers of Windows XP to the numbers of Windows 7, we
can see that the methods scale linearly with the size of the memory dump, which
confirms our expectations given the way we have implemented those methods (cf.
Section 3). All of the Interxy methods perform better than any of the standalone
compression methods in both compression and decompression. In particular,
Inter7zδ , i.e., the method with the best data compression ratio, has an average
compression and decompression time of 9.82/2.19 seconds (Windows XP) and
27.82/6.36 seconds (Windows 7) as opposed to 7zip alone, which yields aver-
age compression and decompression times of 35.68/2.69 seconds (Windows XP,
72.48%/18.59% improvement) and 53.02/10.86 (Windows 7, 47.53%/41.44% im-
provement). This also shows that decompression is much faster than compres-
sion, which also stems from the fact that we have written the decompressed
memory dumps to memory in our decompression runs as opposed to writing
them to disk. We did so, because we envision a workflow where a memory dump
is compressed once for storage and then decompressed multiple times over time
for historical analysis, e.g., consider a case where a sandbox operator retrieves
new signatures and wants to apply them on archived memory dumps. In our
evaluation, the Interxy methods also benefited from the fact that we put the
reference memory dump R for both Windows XP and Windows 7 in memory
rather than on disk, which we believe is a realistic option for sandbox vendors
(cf. Section 5.1 for a detailed discussion on this matter).



Finally, note that while the standalone compression tools gzip, bzip2 and
7zip are all written in C or C++ and are heavily optimized, our prototype of
MemScrimper is written in Python and can therefore not achieve the same
level of optimization. It is therefore likely that an optimized implementation in
a non-interpreted language would further amplify the performance benefit.

4.4 Soundness and Efficiency of Analyses on Compressed Dumps

In the previous evaluation step, we have measured how long it takes to decom-
press an entire memory dump. In fact, however, for several analyses such as
signature matching it is not actually required to work on the entire dump, but
just on the memory parts that were changed by the malware. To demonstrate
this, we collected a total of 17 YARA [1] signatures for 17 out of 20 malware
families of our data set using Malpedia [18] and various other online resources.
We then matched all those YARA signatures against the previously sampled
80 memory dumps and verified that 24/80 memory dumps matched the correct
signature for the given family. Since our methodology only stores memory pages
in plain if they cannot be deduplicated or stored differentially, it is reasonable
to assume that only these pages contain the relevant memory footprint of the
given malware. To verify this, we matched all the YARA signatures against the
memory dumps of the Intra and Interx methods without inner compression. We
discovered that the compressed memory dumps matched all YARA rules per-
fectly, i.e., the matching yielded the same results as the completely uncompressed
ones.

Performance-wise, the matching was also faster than on uncompressed mem-
ory dumps. While the uncompressed ones took 6.6 seconds on average to match
all signatures, Intra yielded an average matching time of 1.57 seconds, Inter took
0.14 seconds followed by Inter	 (0.14 seconds). The best results were yielded by
the Interδ method with 0.064 seconds and the Interδ,	 method with 0.067 sec-
onds on average. These results nicely reflect the data compression ratio, i.e., the
better the compression, the smaller the file size, the faster the matching. Even
if we consider the overhead of removing the inner compression, the matching is
still faster than on raw uncompressed memory dumps. Consider, for example,
the Inter7zδ method in the Windows 7 case (i.e., the worst case) where 7zip adds
compression time overhead of 27.82−24.11 = 3.71 seconds (cf. Table 3) in which
case the matching is still 6.6− (0.064 + 3.71) = 2.826 seconds (43.36%) faster.

5 Discussion

In this secion we briefly discuss some aspects of MemScrimper regarding its
limitations, use cases, deployment and future work.

5.1 Use Case & Limitations

MemScrimper is not a general purpose compression tool and is primarily meant
to compress memory dumps of snapshot-based sandboxes. The underlying as-



sumption of the inter-deduplication methods is that dumps share a common
“predecessor” which contains a substantial amount of similar data, i.e., the refer-
ence memory dump R. In other settings, intra-deduplication is still applicable,
which does however not yield the same compression ratio as inter-deduplication.

Furthermore, we assume that the malware execution starts from a well-
defined snapshot. This snapshot was taken with great care to ensure that the
system was in a stable idling state to limit the forensic noise that subsequent
malware executions would create. This means that we verified no background
process was executing and disabled services that had a large memory or perfor-
mance footprint, as this would hinder differential analysis and would ultimately
increase the size of the resulting memory dumps. We did not evaluate how Mem-
Scrimper would perform in a setting where the snapshot was not taken at such
a stable point, e.g., when the snapshot would be created during the boot process.

One could question whether it is practical that MemScrimper keeps the ref-
erence dump in memory to speed up inter-deduplication. If the number of analy-
sis environment and their memory footprint grows, sandbox operators might not
have sufficient memory to store all dumps. However, note that (i) the number of
environments and their assigned memory is usually small, (ii) intra-deduplication
of the reference dump can be applied, and (iii) hashing the pages (except for
diffing methods) significantly reduces the footprint. Therefore, maintaining ref-
erence dumps on the heap should always be feasible. Even if not, disk caches
could partially mitigate this problem and maintain the substantial performance
improvement compared to standard compression utilities.

5.2 Deployment

Adding MemScrimper to existing infrastructures should not pose a major chal-
lenge. At its core, MemScrimper can be considered a black box which receives
a memory dump as input and yields a compressed memory dump as output,
which can easily be integrated into an existing pipeline. The only manual effort
which needs to be done is to take a reference memory dump per analysis ma-
chine and per snapshot and optionally putting this reference memory dump in
memory to speed up the inter-deduplication process. Additionally, fine-tuning
the snapshot as described above to ensure an optimal data compression ratio
might be required. However, this is a one-time effort per analysis machine and
per snapshot, after which MemScrimper operates completely automatic. To
foster a wide-spread deployment of MemScrimper in sandbox environments,
we publish the source code of our reference implementation3.

5.3 Future Work

We have left open a few extensions open for future work. First, in our current
inter-deduplication implementation, we compare against a single referene dump.
However, it might be beneficial to also compare against other memory dumps
3 Available at https://github.com/mbrengel/memscrimper



in general, as similar malware instances will likely create similar (or identical)
memory changes. Adding this to MemScrimper is simple and promising to gain
more space, yet it might incur a performance penalty.

Second, the presented methodology is lossless and does not discard any infor-
mation from memory dumps. Depending on the actual use case, such as signature
matching, it might be sensible to disregard small changes to memory pages (e.g.,
changes of pointers or small data items) in a lossy compression method. Lossy
compression has the potential to even further reduce memory footprint, would
however not allow the analyst to entirely restore the original memory dump.

6 Related Work

To the best of our knowledge, we are the first to leverage the similarity of malware
sandbox memory dumps for compression. While the concept of data deduplica-
tion is well-known and extensively studied [3, 8, 21, 11], we do not know of any
prior work which applied similar methodologies in the context of sandbox mal-
ware analysis. The closest work we found in this area is given by Park et al. [15],
who discuss fast and space-efficient virtual machine checkpointing. The authors
propose a deduplication mechanism for shared pages between the memory of a
virtual machine and its page cache on disk, which is different from our approach
and also not as effective.

We have introduced several new deduplication aspects, including (i) a file
format for compressed memory dumps, (ii) the possibility to compare mem-
ory dumps against reference snapshots, and (iii) differential deduplication. In
the malware context, the closest works to ours study the differential behavior
(e.g., system activity) of malware on multiple sandboxes to discover evasive mal-
ware [12, 4]. While the objective of these works is not to compress data, and both
do not consider memory dumps, they also extract an essential footprint of the
malware by considering the differences in behavioral profiles—similar to how we
only store the differences introduced by the malware in the forensic sense.

Despite the lack of otherwise related work in this area, we argue that our
results are highly relevant. Apart from the primary use case of our work—saving
memory dumps time- and space-efficiently—it also allows for other interesting
insights. By only storing the forensic differences introduced by a malware, we
enable a more targeted and more efficient analysis, which can only focus on
those differences. Forensic analysis techniques such as digital forensic text string
searching as proposed by Beebe et al. [7], or data structure content reverse engi-
neering such as proposed by Saltaformaggio et al. [19], can significantly benefit
from our approach. For example, after inter-deduplication, these techniques only
have to consider the new pages, i.e., the ones which could not be (differentially)
deduplicated—similar to how we matched YARA signatures more efficiently.



7 Conclusion

MemScrimperis a novel methodology for compressing malware sandbox mem-
ory dumps by exploiting their snapshot mechanism and the resulting similarity
of the memory dumps. MemScrimper achieves data compression ratios which
are one order of magnitude better than the ones yielded by standalone compres-
sion utilities such as 7zip, while at the same time significantly improving their
performance. We believe that MemScrimper is a promising addition to existing
malware sandbox analysis infrastructures as it is easy to deploy and enables a
longer storage time and a more viable longitudinal analysis of memory dumps.
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