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Abstract

Cryptocurrencies like Bitcoin not only provide a decen-
tralized currency, but also provide a programmatic way
to process transactions. Ethereum, the second largest
cryptocurrency next to Bitcoin, is the first to provide
a Turing-complete language to specify transaction pro-
cessing, thereby enabling so-called smart contracts. This
provides an opportune setting for attackers, as security
vulnerabilities are tightly intertwined with financial gain.
In this paper, we consider the problem of automatic vul-
nerability identification and exploit generation for smart
contracts. We develop a generic definition of vulnera-
ble contracts and use this to build TEETHER, a tool that
allows creating an exploit for a contract given only its bi-
nary bytecode. We perform a large-scale analysis of all
38,757 unique Ethereum contracts, 815 out of which our
tool finds working exploits for—completely automated.

1 Introduction

Cryptocurrencies are widely regarded as one of the
most disruptive technologies of the last years. Their
central value proposition is providing a decentralized
currency—not backed by banks, but built on concepts
of cryptography and distributed computing. This is
achieved by using a blockchain, a publicly verifiable
append-only data structure in which all transactions are
recorded. This data structure is maintained by a peer-
to-peer network. All nodes of this network follow a
consensus protocol that governs the processing of trans-
actions and keeps the blockchain in a consistent state.
Furthermore, the consensus protocol guarantees that the
blockchain cannot be modified by an attacker, unless
they control a significant fraction of computation power
in the entire network.

In 2009, the first cryptocurrency, Bitcoin [22], was
launched. Since then, it has seen an unprecedented hype
and has grown to a market capitalization of over 150 bil-

lion USD [1]. Although Bitcoin remains the predominant
cryptocurrency, it also inspired many derivative systems.
One of the most popular of these is Ethereum, the second
largest cryptocurrency by overall market value as of mid
2018 [1].

Ethereum heavily extends the way consensus proto-
cols handle transactions: While Bitcoin allows to specify
simple checks that are to be performed when processing
a transaction, Ethereum allows these rules to be specified
in a Turing-complete language. This makes Ethereum
the number one platform for so-called smart contracts.

A smart contract can be seen quite literally as a con-
tract that has been formalized in code. As such, smart
contracts can for example be used to implement fundrais-
ing schemes that automatically refund contributions un-
less a certain amount is raised in a given time, or shared
wallets that require transactions to be approved of by
multiple owners before execution. In Ethereum, smart
contracts are defined in a high-level, JavaScript-like lan-
guage called Solidity [2] and is then compiled into a
bytecode representation suitable for consumption by the
Ethereum Virtual Machine (EVM). Parties can interact
with this contract through transactions in Ethereum. The
consensus protocol guarantees correct contract execution
in the EVM.

Of course, increased complexity comes at the cost of
increased risk—Ethereum’s Turing-complete Solidity is
more error-prone than the simple checks that can be spec-
ified in Bitcoin. To make matters worse, once deployed,
smart contracts are immutable and cannot be patched or
updated. This causes an unparalleled coupling of soft-
ware vulnerabilities and financial loss. In fact, since the
inception of Ethereum in 2015, several cases of smart
contract vulnerabilities have been observed [3, 4], caus-
ing a loss of tens of millions USD. As Ethereum is be-
coming more and more popular and valuable, the impact
of smart contract vulnerabilities will only increase.

In this work, we tackle the problem of automatic vul-
nerability discovery and, more precisely, automatic ex-
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ploit generation. Our attacker model assumes a regular
Ethereum user without special capabilities whose goal
it is to steal Ether from a given contract. Towards this,
we first give a generic definition of contract vulnerabili-
ties. Our definition is based on the observation that value
transfer from one account (a contract) to another can only
occur under few and well-defined conditions. In particu-
lar, we identify four critical, low-level EVM instructions
that are necessarily involved in a value transfer: One used
to create regular transactions (CALL), one for contract ter-
mination (SELFDESTRUCT), and two that can allow for
code injection (CALLCODE, DELEGATECALL).

We propose a methodology to find vulnerable execu-
tion traces in a contract and employ symbolic execution
to automatically create an exploit. Our approach is as fol-
lows: We search for certain critical paths in a contract’s
control flow graph. Specifically, we identify paths that
lead to a critical instruction, where the instruction’s ar-
guments can be controlled by an attacker. Once a path is
found, we leverage symbolic execution to turn this path
into a set of constraints. Using constraint solving we
can then infer the transactions an attacker has to perform
to trigger the vulnerability. The special execution envi-
ronment of smart contracts make this a non-trivial task.
Most notably we show how to handle hash values sym-
bolically, which are used extensively in smart contracts.

To demonstrate the utility of our methodology, we fi-
nally perform a large-scale analysis of 38,757 unique
contracts extracted from the blockchain. TEETHER finds
exploits for 815 (2.10%) of those—completely auto-
mated, without the need for human intervention or man-
ual validation, and not requiring source code of contracts.
Due to code sharing this puts the funds of at least 1,731
accounts at risk. Furthermore, a case-study indicates,
that many of the underlying vulnerabilities are caused
by the design choices of Solidity and misunderstandings
about the EVM’s execution model.

We summarize our core contributions as follows:

1. We provide a generic definition of vulnerable con-
tracts, based on low-level EVM instructions (Sec-
tion 3).

2. We develop a tool TEETHER that provides end-to-
end exploit generation from a contract’s bytecode
only. To this end, we tackle several EVM-specific
challenges, such as novel methodologies to handle
hash values symbolically (Section 4).

3. We provide a large-scale vulnerability analysis
of 38,757 unique contracts extracted from the
Ethereum blockchain (Section 5).

2 Background

Ethereum is the second largest consensus-based transac-
tion system next to Bitcoin, with a current market capi-
talization of over 110 billion USD [1]. Ethereum is of-
ten described as a second-generation blockchain, due to
its support of so-called smart contracts—accounts con-
trolled only by code which can handle transactions fully
autonomously. In this section, we give a description of
smart contracts, the Ethereum virtual machine, as well as
the Ethereum execution model.

2.1 Transaction System

At the very core, Ethereum provides a public ledger for a
new cryptocurrency called Ether. It provides a mapping
between accounts—identified by a 160-bit address—and
their balance. This ledger is backed by a network of mu-
tually distrusting nodes, so-called miners. Users can sub-
mit transactions to the network in order to transfer Ether
to other users or to invoke smart contracts. Miners will
then process these transactions and, using a consensus
protocol, agree on the outcome thereof. A processing fee
is paid to the miner for each transaction to prevent re-
source exhaustion attacks on the network as well as to in-
centivize miners to process as many transactions as pos-
sible. All processed transactions are kept in a blockchain,
a public hash-based append-only log, which allows any-
one to verify the current state of the system.

2.2 Smart Contracts

A smart contract is a special type of Ethereum account
that is associated with a piece of code. Like regular ac-
counts, smart contracts can hold a balance of Ether. Ad-
ditionally, smart contracts also have a (private) storage—
a key-value store with 256-bit keys and 256-bit values.
This storage is only “private” in the sense that it cannot
be read or modified by other contracts, only by the con-
tract itself. Furthermore, the storage is not secret. In fact
is only cryptographically secured against external mod-
ifications. As all transactions are recorded in the public
blockchain, the contents of a contract’s private storage
can be easily reconstructed by analyzing all transactions.

2.2.1 The Ethereum Virtual Machine (EVM)

The code of a smart contract is executed in a spe-
cial purpose virtual machine, the Ethereum Virtual Ma-
chine (EVM). The EVM is a stack-based virtual ma-
chine with a wordsize of 256 bit. Besides arithmetic and
control-flow instructions, the EVM also offers special
instructions to access fields of the current transaction,



modify the contract’s private storage, query the current
blockchain state, and even create further transactions1.

The EVM only provides integer arithmetic and cannot
handle floating point values. To be able to denote val-
ues smaller than 1 Ether, balance is expressed in Wei, the
smallest subdenomination of Ether. 1 Ether = 1018 Wei.

In addition to the 256 bit word stack and the persistent
storage the EVM also provides a byte-addressable mem-
ory, which serves as an input and output buffer to various
instructions. For example, the SHA3 instruction, which
computes a Keccak-256 hash over a variable length data,
reads its input from memory, where both the memory lo-
cation and length of the input are provided via two stack
arguments. Content of this memory is not persisted be-
tween contract executions, and the memory will always
be set to all zero at the beginning of contract execution.

2.2.2 Solidity

Smart contracts are usually written in Solidity [2], a high-
level language similar to JavaScript, and then compiled
to EVM bytecode. For ease of readability, we will use
Solidity in examples, however, our analysis is based on
EVM bytecode only and completely Solidity-agnostic.

Smart contracts can be created by anyone by sending a
special transaction to the zero address. After creation, the
code of a contract is immutable, which means that smart
contracts cannot be updated or patched. While some at-
tempts have been made to create “updatable” contracts
that only act as a front-end and delegate actual execution
to another, updatable contract address, in most cases cre-
ating a new contract with updated code and transferring
funds is the only option—given that funds can still be
reclaimed from the old contract2.

An example smart contract is given in Figure 1. This
smart contract models a wallet, which allows to deposit
and withdraw money (deposit, withdraw) as well as
to transfer ownership of the wallet (changeOwner). In
Solidity, a function with the same name as the contract is
considered a constructor (Wallet). The constructor code
is only executed once during contract creation and is not
part of the contract code afterwards.

Furthermore, Solidity has the concept of modifiers.
Modifiers are special functions with a placeholder ( ) that
allow to “wrap” other functions. Modifiers are often used
to implement sanity or security checks. For instance, the
example contract defines a modifier onlyOwner, which
checks if the sender of the current transaction is equal to
the stored owner of the wallet. Only if the check suc-

1The original Ethereum paper [25] distinguishes between transac-
tions, which are signed by regular accounts, and messages, which are
not. For simplicity we will refer to both as transactions in this paper.

2https://np.reddit.com/r/ethereum/comments/3l6b6b/
fuck i just send all my ether to a new contract/

1 contract Wallet{
2 address owner;
3
4 // constructor

5 function Wallet(){
6 owner = msg.sender;
7 }
8
9 modifier onlyOwner{

10 require(msg.sender == owner);
11 ;
12 }
13
14 function changeOwner(address newOwner)
15 onlyOwner {
16 owner = newOwner;
17 }
18
19 function deposit()
20 payable {
21 }
22
23 function withdraw(uint amount)
24 onlyOwner {
25 owner.transfer(amount);
26 }
27 }

Figure 1: A contract that models a wallet.

ceeds the actual function is executed. This is used to en-
sure that only the owner of the wallet can perform with-
draw money or transfer ownership.

2.2.3 Transactions

In Ethereum, all interactions between accounts happens
through transactions. The most important fields of a
transaction are to, sender, value, data, and gas.
sender and to are the sender and receiver of a trans-
action respectively. In a normal transaction between two
regular accounts, value denotes the amount to be trans-
ferred while data can be used as a payment reference. A
simple function call on a smart contract on the other hand
is a transaction with a value of 0 and data the input
data to the contract. By convention, Solidity uses the first
four bytes of data as a function identifier, followed by
the function arguments. The function identifier is com-
puted as the first four bytes of the Keccak-256 hash of the
function’s signature. E.g., to call the withdraw function,
data would consist of the bytes 2e1a7d4d, followed by
the amount to be withdrawn in Wei as a 256-bit word.
Functions marked as payable, as for example deposit
in Figure 1 can also be invoked through transactions with
a non-zero value. In this case, the transferred value is

https://np.reddit.com/r/ethereum/comments/3l6b6b/fuck_i_just_send_all_my_ether_to_a_new_contract/
https://np.reddit.com/r/ethereum/comments/3l6b6b/fuck_i_just_send_all_my_ether_to_a_new_contract/


added to the contract’s balance.
The concept of “functions” and “modifiers” only ex-

ists at the level of Solidity, not at the bytecode-level of
the EVM. At EVM level, a smart contract is just a single
string of bytecode, and execution always starts at the first
instruction. This is why compiled contracts usually start
with a sequence of branches, each comparing the first
four bytes of data to the contract’s function signatures.

A transaction also specifies the transaction fee a
miner gets for processing the transaction. To this end,
Ethereum uses the concept of “gas”: Every instruction
that is executed by a miner in order to process the trans-
action consumes a certain amount of gas. Gas consump-
tion depends on the instruction type to model the actual
work performed by the miner. For example, a simple
addition consumes 3 units of gas, whereas access to the
contract’s storage consumes 20000. The transaction field
gas therefore specifies the maximum amount of gas that
may be consumed in processing the transaction. When
this limit is exceeded, processing of the transaction is
aborted. However, the processing fee is still deducted.

2.3 Notation
Keeping our terminology close to the formal specifica-
tion of Ethereum [25], we use the following notation: We
use µ to denote an EVM machine state with memory µm
and stack µs. Furthermore, we use I to refer to a trans-
action’s execution environment, in particular, we use Id
as the data field of the transaction and Iv as its value.
Finally, S refers to a contract’s storage.

2.4 Attacker Model
For the attacks considered in this paper we do not require
special capabilities from the attacker. An attacker needs
only be able to (i) obtain a contract’s bytecode (in order
to generate an exploit) and (ii) to submit transactions to
the Ethereum network (to execute the exploit). The fact
that both of these are trivial to accomplish serves to stress
the severity of the attacks found by our tool TEETHER.

2.5 Ethical Considerations
On the one hand, we believe that raising awareness of
critical vulnerabilities in smart contracts is fundamen-
tally important to maintain the trust of their manifold
users. Our methodology thus represents a step forward
and allows users to check their contracts for critical flaws
that may lead to financial loss. On the other hand, de-
scribing a detailed methodology, and in particular, re-
leasing a tool to automatically find and exploit flaws in
contracts may ask for abuse. Yet we argue this is the
right way of going forward, as “security by obscurity”

has proven ineffective since long. Furthermore, espe-
cially the fully automated creation of exploits allows to
easily validate whether the found vulnerabilities are ac-
tually real—an important step to show the effectiveness
and accuracy of any bug finding mechanism.

A fundamental downside of largely anonymous
blockchain networks like Ethereum, however, is that we
cannot reach out to owners of vulnerable contracts. This
is in stark contrast to responsible disclosure processes in
open-source software projects that have dedicated points
of contact. For Ethereum accounts and contracts, such
contacts do not exist. We discussed several approaches to
tackle this problem, including but not limited to (i) public
disclosure of all vulnerable accounts such that they can
remedy the problem (yet revealing exactly to the public
which contracts are vulnerable); (ii) temporarily trans-
fer (“steal”) money from vulnerable contracts into secure
contracts until the owner has fixed the problem (yet ren-
dering the old contract unavailable, causing money loss
due to transaction fees, and being illegal). In the end, we
deemed none of these options optimal, and decided to
refrain from mentioning particular vulnerable contracts
in public. If contract owners are in doubt and can prove
their ownership to us, we will responsibly disclose the
generated exploit to them. We aim to release TEETHER
180 days after publication of this paper, to give contract
owners sufficient time fixing their contracts until others
can easily reproduce our work by re-executing our tool.

3 Smart Contract Vulnerabilities

Smart contracts usually enforce certain control over who
is allowed to interact with them. A particularly impor-
tant guarantee is that contracts only allow “authorized”
Ethereum accounts to receive coins that are stored in the
contract. In this context, a contract is vulnerable, if it al-
lows an attacker to transfer Ether from the contract to an
attacker-controlled address. From such vulnerable con-
tracts, an attacker can steal all (or at least parts of) the
Ether stored in them, which can result in a total loss of
value for the contract owner.

We now describe how one can identify such vulnera-
bilities in Ethereum contracts. Our idea is to statically
analyze a contract’s code to reveal critical code parts that
might be abused to steal Ether stored in a contract. To
this end, we describe how the aforementioned vulnera-
bilities map to EVM instructions.

3.1 Critical Instructions
We identify four critical EVM instructions, one of which
must necessarily be executed in order to extract Ether
from a contract. These four instructions fall into two cat-
egories: Two instructions cause a direct transfer, and two



instructions allow arbitrary Ethereum bytecode to be ex-
ecuted within a contract’s context.

3.1.1 Direct value transfer

Two of the EVM instructions described in Ethereum’s
formal specification [25] allow the transfer of value to
a given address: CALL and SELFDESTRUCT.3 The CALL

instruction performs a regular transaction, with the fol-
lowing stack arguments:

1. gas – the amount of gas this transaction may con-
sume

2. to – the beneficiary of the transaction

3. value – the number of Wei (i.e., 10−18 Ether) that
will be transferred by this call

4.-7. in offset, in size, out offset, out size –
memory location and length of call data respectively
returned data.

Thus, if an attacker can control the second stack argu-
ment (to) when a CALL instruction is executed with a
non-zero third stack argument, they can cause the con-
tract to transfer value to an address under their control.

The SELFDESTRUCT instruction is used to terminate a
contract. This will cause the contract to be deleted, al-
lowing no further calls to this contract. SELFDESTRUCT
takes a single argument – an address where all remaining
funds of this contract will be transferred to. If an at-
tacker can cause execution of a SELFDESTRUCT instruc-
tion while controlling the topmost stack element, he can
obtain all the contract’s funds as well as cause a perma-
nent Denial-of-Service of this contract.

3.1.2 Code injection

While CALL and SELFDESTRUCT are the only two in-
structions that allow an attacker to directly transfer funds
from a contract to a given address, this does not imply
that contracts lacking these two instructions are not vul-
nerable. In order to facilitate libraries and code-reuse,
the EVM provides the CALLCODE and DELEGATECALL in-
structions, which allow the execution of third party code
in the context of the current contract. CALLCODE closely
resembles CALL, with the only exception that it does not
perform a transaction to to, but rather to the current con-
tract itself as if it had the code of to. I.e. the bene-
ficiary of the new transaction remains the same, but it
will be processed using to’s code. DELEGATECALL does

3Additionally, the CREATE instruction allows to create a new con-
tract and transfer value to it. However, this would require an attacker to
have control over the resulting contract to receive the coins. Therefore,
we will not consider CREATE for the remainder of this work.

1 PUSH20 <attacker−controlled address>
2 SELFDESTRUCT

Figure 2: EVM “shellcode”

the same, but persists the original values of sender and
value, i.e., instead of creating a new internal transaction,
it modifies the current transaction and “delegates” han-
dling to another contract’s code. Consequently, value is
omitted from the arguments of DELEGATECALL.

If an attacker controls the second stack element (to)
of either CALLCODE or DELEGATECALL, they can “inject”
arbitrary code into a contract. By deploying the snippet
from Figure 2 to a new contract, and subsequently is-
suing a CALLCODE or DELEGATECALL in the vulnerable
contract to this new contract, the original contract can be
destructed and all funds transferred to the attacker.

3.1.3 Vulnerable State

Summarizing, this systematic analysis of the Ethereum
instructions allows us to precisely define when a contract
is in a vulnerable state:

Definition 1 (Critical Path). A critical path is a potential
execution trace that either

1. leads to the execution of a CALL instruction with a
non-zero third stack element where the second stack
argument can be externally controlled,

2. leads to the execution of a SELFDESTRUCT instruc-
tion where the first stack argument can be externally
controlled, or

3. leads to the execution of either a CALLCODE or
DELEGATECALL instruction where the second stack
argument can be externally controlled.

Definition 2 (Vulnerable State). A contract is in a vul-
nerable state, if a transaction can lead to the execution of
a critical path.

We will call a transaction that exploits a contract in
vulnerable state by one of the critical instructions as a
critical transaction.

3.2 Storage
While it is obvious that a contract in vulnerable state is
vulnerable according to our intuition that attackers can
steal Ether, the converse it not necessarily true. Con-
sider, for example, the contract given in Figure 3. As
long as vulnerable is set to false, this contract is not
in a vulnerable state, as the transfer-statement—and



1 contract Stateful{
2 bool vulnerable = false;
3 function makeVulnerable(){
4 vulnerable = true;
5 }
6 function exploit(address attacker){
7 require(vulnerable);
8 attacker.transfer(this.balance);
9 }

10 }

Figure 3: Stateful contract

its corresponding CALL instruction—cannot be reached
due to the preceding require. Only after a call to
makeVulnerable the vulnerable variable is set and a
vulnerable state is reached. Yet, intuitively, this contract
is vulnerable. We thus have to extend our definition to
also include a notion of state that captures modifications
made to a contract’s storage.

The only instruction that allows to modify storage is
SSTORE. A transaction that performs a storage modifica-
tion therefore always executes a SSTORE instruction. We
can therefore define state-changing transactions.

Definition 3 (State Changing Path). A state changing
path is a potential execution trace that contains at least
one SSTORE instruction.

Definition 4 (State Changing Transaction). A transac-
tion is state changing if its execution trace is a state
changing path.

Combining this with Definition 2 allows us to give the
following definition

Definition 5 (Vulnerable). A contract is vulnerable if
there exists a (possibly empty) sequence of state chang-
ing transactions that lead to a vulnerable state.

From this it immediately follows that a successful ex-
ploit always consists of a sequence of state changing
transactions followed by a critical transaction.

4 Automatic Exploitation

In this section we present TEETHER, our tool for auto-
matic exploit generation for smart contracts.

4.1 Overview
Figure 4 shows the overall architecture of TEETHER. In
a first step, the CFG-recovery module disassembles the
EVM bytecode and reconstructs a control flow graph
(CFG). Next, this CFG is scanned for critical instructions

CFG recovery

EVM bytecode

critical instructions

path generation

constraint generation

exploit generation

exploit

Figure 4: Architecture of TEETHER

0:
   0: 34 CALLVALUE 
   1: 60 PUSH1 0d
   3: 57 JUMPI 

4:
   4: 60 PUSH1 0b
   6: 60 PUSH1 00
   8: 60 PUSH1 17
   a: 56 JUMP 

0

d:
   d: 5b JUMPDEST 
   e: 60 PUSH1 15
  10: 60 PUSH1 ff
  12: 60 PUSH1 17
  14: 56 JUMP 

0

17:
  17: 5b JUMPDEST 
  18: 50 POP 
  19: 56 JUMP 

4

b:
   b: 5b JUMPDEST 
   c: 00 STOP 

d

15:
  15: 5b JUMPDEST 
  16: 00 STOP 

4 d

Figure 5: An example CFG with dependent edges

and for state changing instructions. The path generation
module explores paths from the root of the CFG lead-
ing to these instructions, from which the constraint gen-
eration module creates a set of path constraints through
symbolic execution. Finally, the exploit generation mod-
ule solves the combined constraints of critical paths and
state changing paths to produce an exploit.

4.2 CFG Recovery
Reconstructing a control flow graph from EVM byte-
code is a non-trivial task. This is due to the fact that the
EVM only provides control flow instructions with indi-
rect jumps. Both the conditional JUMPI and the uncondi-
tional JUMP read the jump target from the top-most stack
element. While the jump target can be trivially inferred



in some cases, such as PUSH2 <addr>; JUMP, it be-
comes less obvious in other cases. For example, consider
the JUMP instruction at address 19 in Figure 5. Here, the
JUMP instruction is used similar to x86’s ret instruction,
to resume execution at a “return address” that the caller
pushed on the stack before the function call.

To address this, TEETHER uses backward slicing to
iteratively reconstruct the CFG. Initially, the CFG con-
tains only trivial edges, i.e., those matching the above
pattern as well as fall-through cases for JUMPI. All other
JUMP and JUMPI instructions are marked as unresolved.
Next, an unresolved JUMP or JUMPI is selected and the
set of (path-sensitive) backward slices of its jump target
is computed. If a full backward slice can be found, it
is executed to compute the jump target, the newly found
edge is added to the CFG, and the corresponding jump
instruction marked as resolved. Since introduction of a
new edge can lead to possibly new backward slices of
jumps within the newly connected subtree, all JUMP and
JUMPI instructions in this subtree are again marked as
unresolved. This process is repeated until no new edges
are found and all jump instructions marked as resolved.

In the example in Figure 5, two backward slices
can be found for the JUMP instruction at address 19,
(PUSH1 0b) and (PUSH1 15), which allows to introduce
two out-edges for basic block 17, 17→ b and 17→ 15.

4.2.1 Dependent edges

Another problem that arises from indirect jumps is the
problem that a path in the CFG does not necessarily cor-
respond to a valid execution trace. E.g. the path 0→ 4
→ 17 → 15, while seemingly plausible from the CFG,
can never occur in an actual execution, as the edge 17→
15 can only be taken if 17 was entered from d.

To reduce the number of invalid paths considered in
further analyses, TEETHER uses an approach we call de-
pendent edges. For this, edges are annotated with a basic
block-level summary of their backward slices. In a for-
wards exploration, a path may be extended by an edge
iff one of its annotations is fully contained in the path.
Referring to Figure 5, the path 0 → 4 → 17 may only
be extended via 17 → b. Likewise, in a backwards ex-
ploration these annotations form a set of path require-
ments, restricting the exploration to subpaths that can
still reach all required basic blocks. For example, a back-
wards analysis starting from 15 → 17 has collected the
requirement set {b} and may not take the back-edge 17
→ 4 as b is not an ancestor of 4.

4.3 Path Generation

The resulting CFG is then scanned for CALL, CALLCODE,
DELEGATECALL, and SELFDESTRUCT instructions. For

each found instruction, the set of backward slices of
its critical argument is computed. As we require that
this argument is potentially attacker controlled, slices
are then filtered for those containing instructions whose
results can be directly (ORIGIN, CALLER, CALLVALUE,
CALLDATALOAD, CALLDATASIZE, CALLDATACOPY) or in-
directly (SLOAD, MLOAD) controlled by an attacker.

Each of the remaining slices defines an instruction
subsequence of a critical path. To find critical paths,
TEETHER explores paths using A* [15], where the cost
of a path is defined as the number of branches this path
traverses in the CFG. As every branch in the CFG cor-
responds to an additional path constraint, this allows
TEETHER to explore less-constrained paths first. This
captures the intuition that a path with fewer constraints
is easier to satisfy. To focus on critical paths only, after
every step we check whether all remaining instructions
of at least one critical slice can still be reached from the
current path. If no critical slice can be reached in full,
further exploration of the path is discarded.

State changing paths are found in a similar fashion by
searching for SSTORE instructions. As a state change can
be useful for an attacker even without controlling the ad-
dress or value written (e.g., Figure 3), no backward slices
need to be computed in this case. Thus, the A* search
only has to check whether a SSTORE instruction can be
reached on the current path.

4.4 Constraint Generation

The constraint generation module runs in lockstep with
the path generation. Once a path is found, the path con-
straint generation module tries to execute the path sym-
bolically in order to collect a set of path constraints.
To this end, TEETHER uses a symbolic execution en-
gine based on Z3 [13]. Fixed-size elements, such as
the call value or the caller’s address are modelled us-
ing fixed-size bitvector expressions, variable-length ele-
ments, such as the call data, the memory, and the storage
are modeled using Z3’s array expressions.

Whenever a conditional branch (JUMPI) is encoun-
tered whose condition µs[1] is a symbolic expression,
both the jump target and the fall through target are com-
pared to the next address defined by the given path,
and a new constraint of the form µs[1] 6= 0 respectively
µs[1] = 0 is added accordingly.

4.4.1 Infeasible Paths

Not all paths generated by the path generation module
necessarily correspond to feasible execution traces. Con-
sider for example the code given in Figure 6. Here the
path generation module will eventually output the path
1 → 2 → 4 → 5 → 6. However, when executing this



1 int x = 0;
2 if(msg.value > 0){
3 x = 1;
4 }
5 if(x!=0){
6 msg.sender.transfer(this.balance);
7 }

Figure 6: Infeasible Paths Example

path, the value of x at line 5 will always be a concrete
value and, since the path skipped the assignment in line
3, will have value 0. Thus the branch to line 6 will not be
taken going directly to line 7 instead, leading to a mis-
match between the program counter (7) and the next step
of the intended path (6). Therefore, we consider a path
infeasible, as soon as the program counter deviates from
the desired path. To prevent expensive symbolic execu-
tion of further paths that would also be infeasible due
to the same conditions, we extract a minimal infeasible
subpath. As such deviations can only occur following
a JUMP or JUMPI instruction, we consider the backward
slices of the last executed instruction. These slices con-
tain all instructions contributing to the jump target and in
case of JUMPI also to the branch condition. The minimal
infeasible subpath is then the subpath of the execution
trace starting from the first instruction that is contained
in any of the slices. In case a value loaded from memory
or storage is contained in the path, the entire execution
trace is taken as the minimal infeasible subpath, to keep
the analysis sound. This minimal infeasible subpath is
then passed back to the path generation module, which
will stop exploring paths containing this subpath.

4.4.2 Hash Computation

While symbolic translation of most EVM instructions is
relatively straight-forward, special care has to be taken
to symbolically model the EVM’s SHA3 instruction. The
SHA3 instruction takes a memory region as input (speci-
fied through two arguments, address and size) and com-
putes the Keccak-256 hash over the memory contents
stored therein. This instruction is, for example, used
by the Solidity compiler for the mapping data structure,
which provides a key-value store. Accessing a value
stored in a mapping is commonly implemented by com-
puting the Keccak-256 hash of the key and using the
resulting value as an index into the contract’s storage.
Since such mappings are a common data structure in
Ethereum contracts, TEETHER needs to be able to reason
about such storage accesses, which requires a symbolic
modeling of the SHA3 instruction.

To this end, whenever we want to symbolically exe-

cute a SHA3 instruction, we introduce a new symbolic
256-bit variable to model the result of the Keccak-256
computation. At the same time we record the relation
between this new variables and the input data given to
the SHA3 instruction. We will later show in Section 4.5.1
how this mapping can be used to solve path constraints
which include hash-dependent constraints.

4.4.3 Symbolic-Length Memory Access

Another issue of symbolic execution is that some EVM
instructions can copy to/from variable-length elements.
For example, the SHA3 instruction can compute hashes
over variable length data. Similarly, the CALLDATACOPY

instruction, which copies bytes from the given call data
into memory, operates on variable-length data. This
makes symbolic execution non-trivial, as the length is
not a concrete value but a symbolic expression instead.
TEETHER uses two approaches to address these issues.

First, whenever data of symbolic length is copied to
memory, e.g., when using CALLDATACOPY, we use Z3’s
If expression to model conditional assignments. For ex-
ample, a common pattern seen in smart contracts is copy-
ing the entire input data into memory. TEETHER will
execute this using assignments of the form

µ
′
m[a+ i]← If(i < l, Id [b+ i],µm[a+ i])

where a = µs[0], b = µs[1], and l = µs[2]. To keep the
number of generated expressions reasonable, we perform
assignments only up to a pre-configured upper limit for i
(256 in our experiments).

Second, if data of symbolic length is read from mem-
ory, we will return a new symbolic read object. Similarly
to mapping of Keccak-256 results to their respective in-
put data, we also keep a mapping from symbolic read ob-
jects to their address, their length, and the memory-state
when the read occurs. This allows us to later resolve the
value of a symbolic read object.

4.4.4 Constraint Results

The final output of the constraint generation module for
a given path p is a tuple Rp = (µ,S, I,C,H,M), where

µ is the symbolic machine state after execution

S is the symbolic storage of the contract after execu-
tion

I is the symbolic environment in which path p is exe-
cuted

C is a set of constraints that must be fulfilled to exe-
cute path p



H is a mapping of Keccak-256 result variables to their
respective input data

M is a mapping of symbolic read objects to their ad-
dress, length, and memory state

We assume that both µ and S also capture the entire his-
tory of the respective states after every instruction.

As discussed, sometimes it will be necessary to per-
form a sequence of multiple state changing transactions
followed by an exploiting transaction. For this we define
the combined constraint result given by a path sequence
~v = p0, . . . , pn as R~v. Let µ0 and S0 denote the initial
state of a path, then R~v = (~µ,~S,~I,C,H,M), where

~µ = µ
p0 , . . . ,µ pn

~S = Sp0 , . . . ,Spn

~I = Ip0 , . . . , Ipn

C =
n⋃

i=0

Cpi ∪
n−1⋃
i=0

{Spi+1
0 = Spi}∪{Sp0

0 = Ŝ}

H =
n⋃

i=0

H pi

M =
n⋃

i=0

Mpi

Note the introduction of additional constraints
Spi+1

0 = Spi and Sp0
0 = Ŝ, which encode that the

state changes performed by path pi, are still present at
the beginning of path pi+1. Storage at the beginning of
the first path p0 is equal to the last state Ŝ stored in the
blockchain. We will use the notation µ∗ and S∗ to refer
to the symbolic machine state and storage just before
execution of the critical instruction in the final path.

In order to only create meaningful path combinations,
we only prepend a state changing path p to a path se-
quence ~v, if any of the paths in ~v may read from stor-
age entries modified by p. To this end, TEETHER also
records every storage accesses that is performed during
symbolic execution of a path. A path sequence ~v may
read from the storage modifications made by a path p
iff there exists a write to address e in p and a read from
address f in~v such that either

1. Both e and f are concrete values and e = f

2. At least one of e and f is a symbolic expression, and
neither depend on a Keccak-256 result

3. Both e and f are symbolic expression dependent on
Keccak-256 results he and h f respectively, both are
structurally identical, i.e., have an identical AST,
and the hash results could potentially be equal,
i.e., their input data has at least the same length,
‖H p[he]‖ =

∥∥H~v[h f ]
∥∥.

TEETHER tries to create an exploit based on a single
path first, before trying larger path sequences. For our
experiments, we explored path sequences up to length
three, consisting of at most two state-changing paths and
one final critical path.

4.5 Exploit Generation

The final stage of TEETHER is the exploit generation
module, which checks the combined path constraints
generated in the previous step for satisfiability with re-
spect to Keccak-256 results and symbolic read objects.
If a path sequence with satisfiable combined path con-
straints is found, this module will output a list of transac-
tions that lead to exploitation of the smart contract. Oth-
erwise, the next path sequence is requested and tested.

Before checking satisfiability of a combined result, we
first encode the attacker’s goals using additional con-
straints. The first goal is to transfer funds or code exe-
cution to an attacker-controlled address a. We achieve
this by adding a constraint µ∗s [1] = a (CALL, CALLCODE,
DELEGATECALL) or µ∗s [0] = a (SELFDESTRUCT). The sec-
ond goal of the attacker is to make profit. While this is
not an issue in the cases of CALLCODE, DELEGATECALL,
and SELFDESTRUCT, as here all funds of the smart con-
tract can be transferred to the attacker, additional checks
are needed in case of a CALL-based exploit. This is espe-
cially true since some of the necessary transactions might
require transferring Ether to the contract first. We thus
require that the value transmitted in the final CALL in-
struction is greater than the sum of all values sent to the
contract. As value is specified by the third stack argu-
ment to CALL, formally this gives

µ
∗
s [2]>

n

∑
i=0

Ipi
v

4.5.1 Satisfying Assignment

Having assembled the combined path constraints of a
path sequence, including their state inter-dependencies
and the attacker’s goals, the next step is to find a sat-
isfying assignment, which will give us concrete values
to build the transactions required for successful exploita-
tion. We leverage the constraint solver Z3. Yet we cannot
simply pass our set of collected constraints as is, as the
constraint solver is unaware of the special semantics of
Keccak-256 results and symbolic-read objects.

To overcome this problem we apply the iterative ap-
proach shown in Figure 7. The algorithm keeps a set Q of
unresolved variables, which is initially set to all elements
of H and M. As long as this queue is non-empty, we com-
pute the subset D of constraints that is not dependent on
any of the variables in Q and use a constraint solver to



Q← H ∪M
A← /0
while ‖Q‖> 0 do

D←{c ∈C|Vars(c)∩Q = /0}
A← Sat(D)
for all x ∈ Q do

if x ∈ H then
e← H[x]
if e∩Q = /0 then

ve← A(e)
vx← Keccak-256(ve)
C←C∪{e = ve,x = vx}
Q← Q\{x}

end if
else if x ∈M then

a, l,µm←M[x]
if (Vars(a)∪Vars(l))∩Q = /0 then

va← A(a)
vl ← A(l)
vx← A(µm[va : va + vl ])
C←C∪{a = va, l = vl ,x = vx}
Q← Q\{x}

end if
end if

end for
end while
return Sat(C)

Figure 7: Iterative Constraint Solving Algorithm

find a satisfying variable assignment A for D. Next, the
algorithm attempts to resolve unresolved variables from
Q. A variable can be resolved, if it does not depend on
other unresolved variables. To resolve a Keccak-256 re-
sult, we first evaluate the hash’s input data expression
(according to H) in the assignment A. This gives us a
concrete value for the input data, over which we can then
compute a Keccak-256 hash. To “fix” this relation be-
tween Keccak-256 result variable and input data, we add
two new constraints that bind the input-data to its cur-
rent valuation and the Keccak-256 result variable to the
computed hash value. A symbolic-memory read object
is resolved similarly by computing concrete value for the
start address and length. Once a variable has been re-
solved, it is removed from Q. This process is repeated
until all variables are resolved.

The key insight here is that, since the mappings H and
M define dependencies between the elements of H and M
and the variables involved in their corresponding expres-
sions, they also implicitly define a topological ordering
on H and M. Furthermore, as these mappings can never
define a cycle, this ordering is well-defined.

Consider, for example, the Solidity statement

sha3(sha3(msg.sender)) which takes the address of
the message sender and hashes it twice. This will lead
to two entries in H, h0 and h1 with H[h0] = Is and
H[h1] = h0, which gives the dependency chain h1 → h0
→ Is. This means we first have to fix the value of Is to
compute h0, which will then allow us to compute h1.

4.5.2 Exploiting Transactions

If a satisfying assignment A can be found, TEETHER
will then output a list of transactions t0, . . . , tn an attacker
would have to perform in order to exploit the contract.
Transaction value and data content for each transaction ti
are given by

valuei = A(Iv)

datai = A(Id)

4.6 Implementation
TEETHER is implemented in 4,300 lines of Python, using
Z3 [13] as constraint solver. We will release TEETHER
as open source 180 days after paper publication.

5 Evaluation

To demonstrate the utility of TEETHER, we downloaded
a snapshot of the Ethereum blockchain and scanned it
for contracts. Using a snapshot from Nov 30 2017, we
found a total of 784,344 contracts. Interestingly, many
contracts share the same bytecode, with the most popu-
lar code being shared by 247,654 contracts. On the other
hand, 32,401 contracts were only deployed on a single
address. Removing duplicates left us with a total num-
ber of 38,757 unique contracts. We executed TEETHER
on all these 38,757 contracts. To avoid the situation that
our code analysis gets stuck too long in a single con-
tract, we allowed up to 30 minutes for CFG reconstruc-
tion plus 30 minutes for finding each a CALL, CALLCODE,
DELEGATECALL, and SELFDESTRUCT-based exploit. We
furthermore assumed a contract’s storage was empty at
the beginning, such that we can treat duplicate contracts
the same. All experiments were performed on a virtu-
alized Intel Xeon E5-2660 system with 16 threads and
192 GB of memory, however, we never observed a mem-
ory usage of more than 32 GB.

5.1 Results
For 33,195 (85.65%) contracts, the analysis finished
within the given time limit. Out of these, TEETHER
was able to generate an exploit for 815 (2.10%), which
we will analyze in detail below. To put this into per-
spective, about two thirds of all contracts, 24,331 or



CALL CALLCODE DELEGATECALL SELFDESTRUCT Contracts
exploit 547 2 8 298 815

independent 413 2 8 241 630
dependent 134 0 0 57 189

critical path 7,039 6 60 2,357 8,049
no critical path 25,689 37,826 37,748 34,533 24,331
Sum 33,275 37,834 37,816 37,188 33,195

Table 1: Detailed exploit generation results

62.78%, do not even expose a single critical path. In
other words, these contracts either do not contain any
CALL, CALLCODE, DELEGATECALL, or SELFDESTRUCT in-
structions, or do so only with non-attacker controllable
arguments. Further 8,049 (20.77%) contracts did have a
critical path, but we were not able to exploit it. While
some of these can be false negatives due to TEETHER’s
limitations, like the restricting the transaction sequences
to maximum three, or limitations of the underlying con-
straint solver, we believe the majority of these cases are
actually true negatives, as our definition of critical paths
is broad. We will discuss this issue in detail in Section 6.

Table 1 shows a breakdown of analysis results per
vulnerability type. While many contracts were found
vulnerable to CALL- or SELFDESTRUCT-based exploits,
only a small number of CALLCODE- and DELEGATECALL-
based exploits were found. However, also the number of
contracts having a critical CALLCODE or DELEGATECALL
path is significantly lower compared with CALL or
SELFDESTRUCT. Interestingly, some contracts exposed
multiple vulnerabilities so that TEETHER generated a to-
tal of 855 exploits targeting 815 different contracts.

The 855 exploits can be grouped into two classes:
As the target contract can send further transactions to
other, third-party contracts during execution, the out-
come of an exploit might be dependent upon the results
returned by these transactions. We will call such ex-
ploits dependent. In contrast, in an independent exploit,
the execution of the target contract does not depend on
further transactions to non-attacker-controlled addresses.
134 (24.50%) of the 547 CALL-based exploits and 57
(19.13%) of the 298 SELFDESTRUCT-based exploits are
dependent, leaving 413 respectively 241 independent ex-
ploits. As TEETHER can only create path constraints for
a single contract, we will only consider independent ex-
ploits in the following.

As said before, many contract addresses share the
same contract code. Therefore, while the 664 indepen-
dent exploits only target 630 different contracts, in total,
1,731 contract accounts are affected.

5.2 Validation

To verify that the exploits generated by TEETHER do
in fact work as intended, for ethical and jurisdictional
reasons we refrain from testing them on the actual
blockchain. While there are no technical limitations to
buying Ether and performing the attacks on the main net-
work of Ethereum, we chose to evaluate the generated
exploits on private test networks only. We thus modeled
an attack on the actual blockchain as close as possible.

Since every contract account has its own storage that
can influence the execution, we validate every exploit
against every affected account individually, leading to a
total of 1,769 (exploit,account) combinations. To this
end, we create a fresh test Ethereum network (i.e., a sepa-
rate blockchain) containing three accounts: The contract
under test, a regular account to model the attacker, and a
third contract whose code will be used in CALLCODE and
DELEGATECALL exploits. The attacker’s account and the
contract account are given an initial balance of 100 and
10 Ether, respectively. Additionally, we also ensure that
the contract’s storage content in our test network agrees
with the one from our snapshot of the actual Ethereum
blockchain. The network is then run using the unmodi-
fied official Ethereum Go client [5], whose scripting in-
terface will also be used to submit the exploit transac-
tions.

To reduce computation time by allowing tests on sev-
eral non-unique contracts at once, we computed the ex-
ploit assuming that the contract’s storage was set to zero.
The first step in evaluation is thus to repeat TEETHER’s
constraint and exploit generation stages by supplying the
contract’s actual storage content. Unfortunately, creat-
ing an updated exploit fails for 84 (5.71%) of the CALL-
based and 28 (9.69%) of the SELFDESTRUCT-based ex-
ploits, which means that the generated exploit was a
false positive. Note that while the analysis performed by
TEETHER is sound in general, this assumption is the only
thing breaking soundness in our evaluation. We further
discuss this issue in Section 6

If generation of the updated exploit succeeded, we
submit its transaction to our test network. To prevent
transaction reordering, we wait until the miner processed
each transaction before submitting the next. After the



CALL CALLCODE DELEGATECALL SELFDESTRUCT Total
successful exploit 1,301 1 7 255 1,564 (88.41%)
failed exploit 85 1 1 6 93 (5.26%)
failed update 84 0 0 28 112 (6.33%)
Sum 1,470 2 8 289 1,769 (100.00%)

Table 2: Validation results

last transaction has been processed, we check the final
balance of the attacker’s account. As the attacker’s goal
is to extract Ether from the target account we call the ex-
ploit successful if the final balance is greater than the 100
Ether that we preallocated to it. In order to minimize in-
terference due to processing fees we set the gas price in
our test network to 0, i.e., no processing fee is deducted.

The results for all tested 1,769 exploits are given in Ta-
ble 2. Overall, a large fraction (88.41%) of the generated
exploits works as expected: Once all exploit transactions
have been processed, the attacker has successfully stolen
Ether and increased their own balance.

Overall, 205 exploits (11.59%) failed for mainly two
reasons. As mentioned earlier, 112 (6.33%) of all ex-
ploits failed in the update stage due to the mismatch in
storage between the initial exploit generation and the ex-
ploit re-computation on the actual storage contents. To
better understand why the exploit did not succeed in
the remaining 93 cases, we further analyzed the con-
straints they induce. About half of these can be attributed
to differences between our test network and the actual
blockchain. For example, some of these exploits result
in constraints based on the current block number or the
balance of another account. As we base our test network
on a custom genesis block, the current block number will
be low when executing the contract, whereas the actual
Ethereum blockchain has been constantly growing since
2015 and currently contains over 5,000,000 blocks. Sim-
ilarly, as our test network only contains three accounts,
retrieving another account’s balance will always return 0,
as these accounts do not exist in our network.

5.3 Case Studies
In an effort to shed some light onto the cause of these vul-
nerabilities, we manually reviewed all vulnerable con-
tracts for which users had uploaded Solidity source code
to etherscan.io. However, as this was the case for only
44 (3%) contracts, these findings do not provide a com-
prehensive list of contract vulnerabilities, but rather serve
as a case-study. Finally, to protect contracts that are still
“live”, we only provide a description of the vulnerabili-
ties we found, but do not publish addresses of vulnerable
contracts.

Vulnerabilities we found in these contracts can be clas-
sified into four categories:

1. Erroneous visibility: Per default, Solidity functions
are publicly accessible, unless marked with the key-
word internal. This can lead to unintended expo-
sure of contract functionalities. For example, one of
the 44 contracts implements a betting functionality
with a dedicated function to handle a draw. How-
ever, this function is not marked as internal and
can be called directly to transfer funds to arbitrary
addresses.

2. Erroneous constructor: In Solidity, a function with
the same name as the contract itself serves as the
contract’s constructor. In contrast to regular func-
tions, the constructor does not become part of the
contract’s compiled code and is only executed once
during contract creation. However, as Solidity does
not provide a special keyword to mark the con-
structor, functions that were meant to be construc-
tors can become regular functions due to ignoring
case-sensitivity, spelling mistakes, or oversight dur-
ing refactoring operations such as renaming. The
analyzed contracts contain examples of both, sim-
ple mistakes (e.g. Figure 8) and cases where the
contract was presumably renamed without renam-
ing the constructor (e.g. contract MyContract v1

with constructor MyContract).

3. Semantic confusion: Another class of vulnerable
contracts stem from different misunderstandings of
Ethereum’s execution model. For example, these
contracts seemingly confuse the contract’s total bal-
ance (this.balance) with the value held by the
current transaction (msg.value). Other cases ne-
glect the fact that a contract’s storage is publicly
readable and thus should not be used to store se-
crets.

4. Logic flaws: The final class of vulnerabilities we
observed is caused by logic flaws. For example,
the excerpt given in Figure 9 is a flawed imple-
mentation of the classical onlyOwner modifier, but
has an inverted condition. Contrary to the intended
behaviour, this allows all marked functions to be
called by anyone but the owner.

Interestingly, the first three of these categories can be
almost exclusively attributed to Solidity. While vulnera-

etherscan.io


1 contract Owned {
2 address public owner;
3 function owned() {
4 owner = msg.sender;
5 }
6 modifier onlyOwner {
7 if (msg.sender != owner) throw;
8 ;
9 }

10 //...

11 }

Figure 8: Erroneous constructor

1 modifier onlyOwner() {
2 require(msg.sender != owner);
3 ;
4 }

Figure 9: Flawed onlyOwner modifier

bilities due to logic flaws are also common in other do-
mains, others could be prevented through modifications
of Solidity. For example, making functions internal
by default would eliminate the first category. Likewise,
the second category could be eliminated by introducing
a dedicated keyword for constructors.

6 Discussion

While the evaluation results are promising and our tool
has identified several hundreds of vulnerable contracts,
there are cases in which our current implementation fails
to create working exploits. In this section we discuss
some of the underlying assumptions and limitations, both
of TEETHER and of the evaluation we performed.

6.1 Critical Path Definition
One potential limitation of TEETHER is the broad defini-
tion of a critical path, specifically of potentially attacker-
controlled instructions. Our definition states that a crit-
ical path is a path that contains a slice of a critical in-
struction which contains at least one potentially attacker-
controlled instruction (cf. Definition 1). The inclusion of
SLOAD and MLOAD into the potentially attacker-controlled
instructions makes this criterion apply to many paths,
even though the corresponding storage or memory lo-
cations may never be writable by an attacker. This, in
turn, may cause irrelevant paths to be considered in the
path generation. While this does not pose a conceptual
problem, it can cause a significant increase in compu-
tation time and thus lead to a larger number of time-

outs. This problem could be alleviated by performing
additional checks to match SLOAD and MLOAD to previ-
ous writes to create a more precise definition of critical
paths, thereby limiting the number of paths considered.

6.2 Inter-Contract Exploits

Furthermore, our current implementation of TEETHER
focuses on intra-contract exploits. In fact, however, a
contract may call other contracts, and by supporting this
inter-contract communication one could find additional
exploits. For example, the bug in Parity’s multi-signature
wallet [6] that allowed an attacker to take over multiple
wallets, splits core functionality between two contracts.
Whereas one contract acts as the actual Wallet, the other
is the support library. Only by combining these two con-
tracts TEETHER could find an exploit of this documented
vulnerability. In fact, with all relevant code in a single
contract, our tool can indeed find the vulnerability and
create a working exploit (see Appendix A).

6.3 Evaluation

As described in Section 5, our evaluation initializes the
contract’s storage to an empty state when we start search-
ing for exploits. This allows us to combine the analysis
of contracts that share the same code, reducing the num-
ber of tool runs from 784,344 to only 38,757 and has re-
duced the overall runtime by roughly factor 20. However,
this comes at the cost of imprecise results. As we already
have observed in 112 cases, an exploit that would work
against a contract with empty storage might not work
against the same contract with filled storage. Conversely,
our current evaluation might also miss exploits that only
work if the storage contains certain entries. However,
this is not a fundamental limitation of TEETHER and can
be solved by retrieving the actual storage state from the
real Ethereum blockchain, and reapplying it to our local
testbed. While it would require to treat all collapsed non-
unique contracts separately, as each address has its own
storage state, the results obtained would be sound.

7 Related Work

In this section we discuss related work in the areas of
smart contract analysis and automatic exploitation, and
how they relate to the work presented here.

7.1 Smart Contract Analysis

Analysis of smart contracts has been an area of active
research for the past few years. In a similar vein to the
work present herein, Luu et al. [20] presented OYENTE,



a tool to detect certain vulnerabilities like transaction-
ordering dependence or reentrancy. However, their work
is substantially different from ours in two ways: Firstly,
OYENTE only considers a very specific set of vulnera-
bilities, many of which can also only be exploited by a
malicious miner or a by colluding with a miner collud-
ing. In contrast, we give a general vulnerability defini-
tion that can be exploited by a much weaker attacker—in
fact, anyone with an Ethereum account. Secondly, the
goal of OYENTE is only to detect a vulnerability. This
means that the report generated by OYENTE have to be
painstakingly verified on a case-by-case basis. Our tool,
on the other hand, is designed to automatically provide
an exploit once a vulnerability is found. Validation is
then often as easy as executing the exploit transactions
and checking the final balance.

Atzei et al. [7] provide a survey on attacks against
Ethereum smart contracts, giving a taxonomy and dis-
cussing attacks and flaws that have been observed in the
wild. While not all attacks they consider provide a mone-
tary benefit to the attacker, some of the attacks presented
therein are a special case of the vulnerabilities consid-
ered by TEETHER. For example, the multiplayer games
attack described in their paper can also be identified and
be exploited by our tool—fully automated.

In an effort to support further vulnerability analyses,
Matt Suiche has proposed a decompiler [24]. Also, Zhou
et al. [26] developed Erays, a tool for reverse engineering
smart contracts able to produce high-level pseudocode
from compiled EVM code. Yet in contrast to our work,
both of these rely on manual contract inspection (al-
though at a higher code abstraction).

Aside from security vulnerabilities, Delmolino et
al. [19] describe several pitfalls that can lead to logic
flaws in smart contracts. In a similar vein, several works
consider the problem of designing good contracts, e.g.
Mavridou et al. [21] or Chen et al. [12].

Fröwis and Böhme [14] performed an analysis on
trust-dependencies between contracts, revealing that
contracts oftentimes rely on further external contracts.
This also implies that a vulnerable contract may put
other, dependent contracts at risk.

Complementary to vulnerability detection there have
also been advances towards verification of smart con-
tracts. The work by Bhargavan et al. [9] presents EVM*
and Solidity* that provide a direct translation of a sub-
set of EVM bytecode and Solidity into F* respectively,
which can then be used for further verification.

ZEUS, recently presented by Kalra et al. [18], provides
a framework to check smart contracts written in Solid-
ity against a user-defined policy. Both contract source
code and policy are compiled together into an LLVM-
based intermediate representation, which is then further
analysed statically, leveraging existing LLVM-IR-based

verification tools. Based on this, they analyze 1,524
Ethereum contracts for policy violations against a list of
known bugs (including the ones considered by OYENTE).
Additionally, they also use ZEUS to check a subset of
contracts against contract-specific fairness properties.

Like OYENTE, ZEUS also requires access to a con-
tract’s source code, whereas our tool works given only
compiled EVM bytecode. Furthermore, in contrast to our
tool, ZEUS requires user-interaction to define a policy,
which is often contract specific. Finally, a policy viola-
tion found by ZEUS does not imply practical exploitabil-
ity of the contract in question, whereas our tool outputs
exploits that can be easily validated.

Finally, Breidenbach et al. [10] proposed using bug
bounties to incentivize security analyses of smart con-
tracts. Specifically, they designed a framework that en-
codes the process of identifying exploits and paying re-
wards into a smart contract itself, thereby guaranteeing
fairness between the bounty payer and the bug finder.

7.2 Automatic Exploitation

Another area that is related to our work is the research
field of automatic exploitation. Many tools have been
proposed that can create specific classes of exploits under
certain conditions. Notable examples are: Q, presented
by Schwartz et al. [23], can transform a x86 software
exploit into another exploit that still works under harder
constraints (e.g., Address Space Layout Randomization
and WˆX). AEG by Avgerinos et al. [8] and MAYHEM
by Cha et al. [11] both provide means to create a control
flow hijacking exploit using buffer overflows or format
string attacks from source code and compiled binaries,
respectively. Huang et al. [17] extends the considered
attack surface by including the operating system and li-
braries a compiled binary uses at runtime, and work by
Hu et al. [16] considers non-control-flow hijacking ex-
ploits by modelling data-oriented exploits.

While all of these share the general idea of symbolic
execution, constraint generation, and resolution to gen-
erate an exploit—as does the work presented herein—
there are major differences. The most obvious difference
is that the execution environment of the EVM does not
provide an equivalent to buffer overflows or format string
exploits. As such, the considered exploits are substan-
tially different. Furthermore, all works mentioned rely
on preconditioning, i.e., providing a starting point to the
path exploration, most often in the form of a crashing in-
put. In contrast to this, our work can create an exploit
only based in the compiled contract’s code without fur-
ther input. Finally, there are also challenges specific to
the EVM that do not apply to previous work, primarily
handling and resolution of hash-values, which are an in-
tegral part of many smart contracts.



8 Conclusion

We have presented a generic definition of vulnerable con-
tracts and a methodology for automatic exploit gener-
ation based on this definition. In a large-scale analy-
sis encompassing 38,757 contracts from the Ethereum
blockchain, TEETHER identified 815 as vulnerable. Fur-
thermore, TEETHER successfully generated 1,564 work-
ing exploits against Ethereum accounts that use these
contracts. This illustrates that smart contract security
should be taken seriously, especially as these exploits
are fully anonymous and trivial to conduct—they only
require an Ethereum account. Exploit generation, as we
have shown, can be fully automated.

Over the last years, Ethereum has seen a rapid and
steady increase in value. Should this trend continue into
the future, smart contract exploitation will only become
more lucrative, and in turn, seeking protection will be-
come even more important. Our methodology and espe-
cially concrete tools such as TEETHER can help in find-
ing, understanding, and preventing exploits before they
cause losses. Finally, our systematic analysis of the real
Ethereum blockchain has revealed that the problem of
highly-critical vulnerabilities in smart contracts is way
larger than anecdotal evidence might suggest.
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1 contract MultiOwned{
2 uint public m numOwners;
3 uint public m required;
4 uint[256] m owners;
5 mapping(uint => uint) m ownerIndex;
6 mapping(bytes32 => PendingState) m pending;
7 bytes32[] m pendingIndex;
8 struct PendingState { uint yetNeeded; uint ownersDone; uint index; }
9 modifier onlymanyowners(bytes32 operation) {

10 if (confirmAndCheck( operation)) ;
11 }
12 function confirmAndCheck(bytes32 operation) internal returns (bool) {
13 uint ownerIndex = m ownerIndex[uint(msg.sender)];
14 if (ownerIndex == 0) return;
15 var pending = m pending[ operation];
16 if (pending.yetNeeded == 0) {
17 pending.yetNeeded = m required;
18 pending.ownersDone = 0;
19 pending.index = m pendingIndex.length++;
20 m pendingIndex[pending.index] = operation;
21 }
22 uint ownerIndexBit = 2∗∗ownerIndex;
23 if (pending.ownersDone & ownerIndexBit == 0) {
24 if (pending.yetNeeded <= 1) {
25 delete m pendingIndex[m pending[ operation].index];
26 delete m pending[ operation];
27 return true;
28 }else{
29 pending.yetNeeded−−;
30 pending.ownersDone |= ownerIndexBit;
31 }
32 }
33 }
34 function initMultiowned(address[] owners, uint required) {
35 m numOwners = owners.length + 1;
36 m owners[1] = uint(msg.sender);
37 m ownerIndex[uint(msg.sender)] = 1;
38 for (uint i = 0; i < owners.length; ++i)
39 {
40 m owners[2 + i] = uint( owners[i]);
41 m ownerIndex[uint( owners[i])] = 2 + i;
42 }
43 m required = required;
44 }
45 function pay(address to, uint amount) onlymanyowners(sha3(msg.data)){
46 to.transfer(amount);
47 }
48 }

Figure 10: Minimal example of the Parity-Wallet Bug



A Parity-Wallet Bug

Figure 10 shows a minimal working example of the
Parity-Wallet Bug in a single contract. Lines 1-44 are
taken verbatim from the original Parity wallet4.

We ran TEETHER on this contract with the goal to
produce an exploit transferring 1 Ether from the con-
tract (address 0x400...000) to the attacker (address
0x012...567). TEETHER produces the following ex-
ploit in 26.74 seconds:

-------------------------------------------------

Transaction 1

-------------------------------------------------

from: 0x0123456789abcdef0123456789abcdef01234567

to: 0x4000000000000000000000000000000000000000

data: c57c 5f60 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000

value: 0

-------------------------------------------------

Transaction 2

-------------------------------------------------

from: 0x0123456789abcdef0123456789abcdef01234567

to: 0x4000000000000000000000000000000000000000

data: c407 6876 0000 0000 0000 0000 0000 0000

0123 4567 89ab cdef 0123 4567 89ab cdef

0123 4567 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0de0 b6b3

a764 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

value: 0

The first transaction of this exploit calls function
initMultiowned (c57c5f60) with all-zeros as ar-
guments, i.e., an empty owners-array and 0 as
required. This function will re-initialize the con-

tract’s owner information, setting m numOwners to 1 and
adding msg.sender, the attacker, to m owners[] as the
sole owner.

The second transaction then calls pay (c4076876),
with the attacker’s address (0x012...567) as to and
1018 = 0xde0b6b3a7640000 (1 Ether in Wei) as amount.
As the attacker has been set as the sole owner by the
previous transaction, the function confirmAndCheck

called by the onlymanyowners modifier will return
true, allowing the function to proceed and leading to
the transfer of 1 Ether to the attacker.

4https://github.com/paritytech/parity/blob/
4d08e7b0aec46443bf26547b17d10cb302672835/js/src/

contracts/snippets/enhanced-wallet.sol#L284

https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L284
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L284
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L284
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