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Abstract—Debugging is a search process to find, understand
and fix the root cause of software defects. Can debugging benefit
from probabilistic information? We hypothesize that debugging
activities can benefit from probabilistic information that capture
the statistical dependence of program features and the minor
variations of program behavior. This probabilistic information
helps to guide the search for the root cause of the bug and
provides detailed diagnostic information (such as failure-inducing
inputs and method calls leading to the fault). To realize our
hypothesis, we propose to improve debugging activities by guiding
bug diagnosis using both probabilistic reasoning and program
analysis. The main idea is to mine probabilistic information from
program executions, then apply these information to construct
probabilistic event structures (e.g. probabilistic call graphs)
that guides debugging activities such as fault localization and
comprehension. The resulting probabilistic model will guide bug
diagnosis towards the most likely paths to the root cause of bugs
and provide contextual diagnostic information.

I. RESEARCH PROBLEM

Most human activities in software engineering are essen-

tially search processes that inspect software artifacts, in order

to find specific program features and properties. These activi-

ties include tasks such as testing and debugging. In a typical

software development scenario, testing is the search process

that exposes the bug (wrong behavior), while debugging is the

process that diagnoses the root cause of the bug and searches

for fix candidates to correct the wrong behavior.

In the last three decades, researchers have developed nu-

merous techniques to support developers when debugging [1].

These techniques fall into two major classes: program analy-
sis and probabilistic reasoning techniques. Program analysis
techniques such as tainting [2] and slicing [3] are popular

debugging aids that employ either static or dynamic analysis

to support debugging activities. Meanwhile, probabilistic rea-
soning provides a means to capture and analyze uncertainties

in program behaviors. Probabilistic reasoning is currently

used in debugging for statistical fault localization, this is

the process of finding the defective statement in the source

code that caused the bug (e.g. Tarantula [4]). A common

characteristic of both approaches is that they are specification
mining approaches, meaning they derive a specification of the

program in terms of the relationship between program features

(e.g. executed program statements) and program failure.

However, developers hardly use existing debugging aids [5]:

Both statistical tools and program analysis tools are infre-

quently used in practice. In particular, our survey of 180

professional software practitioners showed that the majority of

developers rely on traces and interactive debuggers, but never

use slicing, algorithmic debugging, or statistical debugging [5].

Fig. 1. Probabilistic Call Graph derived from java.net.url processing
the inputs in Figure 2. Probabilities are enclosed in [...], Vertices are program
states and Edges are method calls. Thick vertices (i.e., {1,2,3,5,8}) are
mandatory program states.

http://user:password@www.google.com:80/command?
foo=bar&lorem=ipsum#fragment

http://usr:pswd@www.cnn.com/worldcup#result
ftp://bob:12345@ftp.example.com/oss/debian7.iso

Fig. 2. Sample URL inputs (adapted from [8])

We also observed that developers desire more sophisticated
bug diagnosis tools, they desire tools that can provide a high-

level diagnosis of the pertinent sequence of events leading to

the error (as cause-effect chains or a narrative).

Overall, we observed that developers seek advanced bug

diagnosis techniques beyond fault localization; they desire

both probabilistic (e.g. suspicousness rank) and contextual

information (e.g. sequence of method calls) [5]. A major

limitation of statistical debugging is that they lack the nec-

essary contextual information (e.g. method calls) needed to

understand program behavior. Meanwhile, program analysis

techniques do not account for uncertainties (e.g. inconsis-

tencies) in program behavior [6]. However, uncertainties are

relevant for bug diagnosis, because debugging is inherently

probabilistic [7]. For instance, a common source of uncertainty

when debugging is incomplete oracles; where developers are

equipped with partial information about program correctness.

The key insight of this proposal is that program analysis is

powerful in capturing contextual information, whereas prob-

abilistic reasoning can handle uncertainties. Hence, the main

idea is to apply probabilistic reasoning to guide the search
for faults when debugging, and employ program analysis to
provide contextual information required to understand the
program behavior. Specifically, we leverage the strengths of

both program analysis and probabilistic reasoning, by applying

probabilistic specification mining to diagnose software fail-

ures. We aim to construct probabilistic event structures (e.g.

probabilistic call graph in Figure 1) that assign probabilities
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to program events (such as method calls), in order to capture

uncertainties in program behavior. The goal of this work is

to develop new debugging aids that meet developers’ need

for more detailed diagnosis. Our proposed debugging aids

are expected to provide both program features (e.g. input

fragments) that are statistically dependent on a failure and the

program behavior (e.g. method calls) that lead to such failures.

To illustrate our hypothesis, consider the probabilistic

call graph (cf. Figure 1) mined from the execution of

java.net.url processing the URL inputs in Figure 2. In

this graph, the probabilistic information encodes the proba-
bilistic occurrence (frequency) of each method call and the ob-

served probabilistic order (sequences) of method calls. Hence,

if java.net.url successfully parsed all URL inputs except

for the first URL, then our approach would provide the features

that are statistically dependent on the failure (such as the input

fragment port=80), and the program behavior leading to the

fault (such as the program state transitions {2→4, 4→3} and

method call sequence {setPort()→setUserInfo()})
to the developer. This diagnostic information is derived from

the observation that these program features are statistically

different from the features observed for most inputs.

II. BACKGROUND

A. Debugging

In the last three decades, there have been over 400 research

papers proposing different debugging aids to support program-

mers in locating and fixing software faults [1]. Most of these

publications fall into the category of statistical debugging —

an approach that identifies faulty program elements by corre-

lating program executions with failures [4], [9], [10]. However,

most statistical fault localization tools do not satisfy the de-

bugging needs of developers. A recent study [11] examined the

crucial factors (e.g. trustworthiness, scalability and efficiency)

that determine practitioners’ adoption of a particular statistical

fault localization tool. The study revealed that the debugging

aids proposed in the last 5 years do not satisfy at least 75% of

developers’ requirements. Meanwhile, program analysis tools

for debugging are criticized for not ranking the statements

presented to the developer for inspection [6]. For instance,

program slices can become very large [12], which makes fault

localization inefficient when the fault is located relatively far

away from the bug symptoms.

In a recent human study [5], we found that contextual

information (such as control dependence) are important for

code comprehension when debugging. Besides, we observed

that one in five developers are interested in tools that help at

program understanding and that better program understanding

leads to more correct patches. In this study, we identified two

major limitations of existing debugging aids in practice:

• Neither statistical debugging nor program analysis based

debugging tools provides sufficient support for developers
when debugging;

• Developers need both suspiciousness (probabilistic) in-
formation and contextual information (e.g. program de-

pendence and software specification) when debugging.

Hence, we propose to synergistically combine probabilistic
reasoning and program analysis to develop debugging aids

that not only identify faulty program features, but also provide

contextual information (e.g. method calls leading to failure).

B. Specification Mining

Specification Mining [13] provides a means to abstract

the behaviors of the software through dynamic analysis of

program executions. Generally, specification mining involves

trace generation and specification construction. In the trace

generation phase, ordered traces of events that represent pos-

sible execution of the program are collected. Then, in the

specification construction phase, the set of event traces are

analyzed to obtain a single specification that models the traces.

Typically, mined specifications do not capture uncertainties
— the minor behavioral variations of the program — that is
required for activities such as debugging [6]. For instance,

this approach is employed to dynamically mine program

invariants from program traces [14]. While program invariants

can identify properties that hold and must be preserved for

observed traces, they do not capture uncertainties (e.g. in-

consistent behavior). Thus we propose to apply probabilis-
tic specification mining [13] to dynamically extract minor

behavioral variations, in order to capture the likelihood of

events occurring in program runs. For instance, the grammar

specification obtained from java.net.url processing the

URL inputs in Figure 2 would only characterize the grammar

of the protocol parameter as (’http’ | ’ftp’). Meanwhile,

a probabilistic specification could also provide the likelihood

of occurrence of the protocol in program runs — (’http’

{0.67} | ’ftp’ {0.33}) (cf. Figure 3): This is useful for

diagnosing wrong behaviors involving minor (least occurring)

input fragments like ’ftp’.

III. PROPOSED APPROACH

In this section, we first introduce our preliminary work on

hybrid fault diagnosis [15], then we present the application

of probabilistic grammar models in debugging. In both ap-

proaches, we propose to collect probabilistic information (such

as feature probabilities) from program runs in order to improve

the program specification obtained from dynamic analysis.

A. Hybrid Fault Diagnosis

In this work [15], we plan to evaluate the two major fault

localization approaches, namely statistical fault localization

and dynamic slicing. Both approaches are essentially specifica-

tion mining tools for debugging: Statistical debugging mines

a specification of the program using multiple runs, in order

to characterize the mapping between program features (e.g.

statements) and failures. Meanwhile, slicing provides a specifi-

cation of the program for a specific failing execution. However,

we observed that both techniques are limited in one way or

another: Statistical debugging lacks contextual information and

dynamic slicing does not capture uncertainties.

Thus we propose a hybrid technique which serves as a

probabilistic specification mining approach that harnesses the

power of both statistical correlation and dynamic analysis.
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URL ::= PROTOCOL {1.0} ’://’ AUTHORITY PATH {1.0} [’?’
QUERY {0.33}] [’#’ REF {0.67}]

AUTHORITY ::= [USERINFO {1.0} ’@’] HOST {1.0}
[’:’ PORT {0.33}]

PROTOCOL ::= ’http’ {0.67} | ’ftp’ {0.33}
USERINFO ::= /[a-z]+/ {1.0} ’:’ /[a-z0-9]+/ {1.0}
HOST ::= /[a-z.]+/ {1.0}
PORT ::= ’80’ {1.0}
PATH ::= /\/[a-z0-9.]*/ {1.0}
QUERY ::= ’foo=bar&lorem=ipsum’ {1.0}
REF ::= /[a-z]+/ {1.0}

Fig. 3. Probabilistic Grammar Model derived from java.net.URL
processing the inputs in Figure 2 using AUTOGRAM (adapted from [8]).
Probabilities are enclosed in {...}; Optional parts are enclosed in brackets
[...] ; regular expression shorthands are enclosed in /.../.

The hybrid approach proceeds in two phases. It first reports

the N most suspicious statements, obtained from the ordinal

ranking1 of a statistical fault localization technique. Then, if

the fault is not found, it reports the symptom’s dynamic back-

ward dependencies. This approach overcomes the weakness of

dynamic slicing by first giving probabilistic reasoning a chance

at determining the faulty statements. On the other hand, it

enables a developer to be more efficient by inspecting only a

few suspicious statements, then proceeding to more contextual

information obtained from program dependence analysis.

B. Probabilistic Grammar Models

Main Idea: In this work, we leverage the power of

program analysis and probabilistic reasoning to improve the

state-of-the-practice in debugging. Specifically, given a failing

execution, we aim to accomplish the following tasks: First, we

want to provide high-level contextual information (such as the

sequence of method calls) that were responsible for the failure

(cf. Section III-B1). Secondly, we want to highlight the input

fragments that were statistically dependent on the failure (cf.

Section III-B2). Lastly, we want to expose patches that mask

incorrect behaviors, especially when developers are equipped

with an incomplete test oracle (cf. Section III-B3).

Approach: Our approach works in three major steps (cf.

Figure 4). First, given the program and a set of inputs, a

grammar miner (e.g. AUTOGRAM [8]) produces a context
free grammar describing the input structure of the program.

Secondly, our probabilistic miner extracts the statistical infor-

mation of program features from the program executions to

produce feature probabilities of the observed runs. Then, our

probabilistic grammar constructor produces a probabilistic
grammar model [16], derived from both the feature probabili-

ties and the input grammar. The resulting probabilistic model

identifies the failure-inducing input fragment and method calls.

Example: Given the input URLs provided in Figure 2 and

a program that parses a Uniform Resource Locator (URL) such

as java.net.URL, the grammar miner (e.g. AUTOGRAM)

mines the program’s input specification by aggregating the

input fragments handled by the same function into lexical

and syntactical entities as shown in Figure 3 (except the

probabilities encoded in braces {..}). Then, the probabilistic

grammar constructor would include probabilistic information

(e.g. frequency of features) collected from the program runs

1In ordinal ranking, lines with the same score are ranked by line number

Fig. 4. Workflow of the Probabilistic Grammar Mining Approach

in the grammar model, this is encoded in braces ({...}) in

Figure 3 and square brackets ([...]) in Figure 1. In this example,

the probabilities reflect the likelihood of the program features

in a program run and can be easily applied to detect minor

behavioral variants common to program failure.

In the following, we illustrate the application of the resulting

probabilistic models (cf. Figure 1 and Figure 3) for the

automated guidance of the following debugging tasks:
1) Grammar-based Debugging: Non-probabilistic grammar

models can not be directly applied to find inconsistent behav-

iors, because they do not capture the minor variations in input

processing that lead to failures. Thus, in our work, we propose

to adapt input grammar for debugging purposes by augmenting

it with the strengths of probabilistic reasoning. We intend

to achieve this by using a grammar miner to identify input

fragments and program features that correlates with failure.

For instance, given the probabilistic model in Figure 3, if the

execution of the first URL input in Figure 2 leads to a failure

and we observed from our input grammar that all other URLs

without a query or port are correctly parsed; then, we can

easily provide sophisticated debugging information containing

the inconsistent call sequences in the program’s execution (i.e.

state transitions {2,4,3} and {5,6,7}) and the likelihood that

the setQuery() and the setPort() methods are variant

(uncommon) calls. This debugging information is derived from

the observation that these method calls statistically depend on

the failure. We expect this diagnostic information to improve

code comprehension and debugging effectiveness.
2) Input Analysis: We intend to use the probabilities

assigned to input fragments and their feature dependencies to

determine the parts of inputs that result in failure and how

to correct such inputs if they are (syntactically) wrong, or to

determine the program features that incorrectly handle the

input fragments of correct inputs. This is inspired by our

observation that developers perform input manipulation to

understand program behavior and to detect the root cause of

bugs [5]. For instance, in a run-time monitoring scenario with

a representative test suite, a URL manipulation attack such as:

http://guardian.co.uk/login.asp?userid=admn
%27%3b%20update%20logintable%20set%20passwd
should be flagged as suspicious, since we observed that the

query input fragment (i.e. url fragment after terminal ”?”) is

statistically unlikely in our grammar. Besides, input analysis

can be handled for external resources such as configuration

options, files and network sockets. This is particularly
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important because one in seven developers are interested in

determining the most general conditions that lead to program

failure when debugging [5]. In addition, we intend to develop

an input rectification approach that leverages our probabilistic

grammar models to determine wrong input fragments from

failed executions and recommend their corrections based on

the grammar of observed correct input fragments.

3) Patch Evaluation: In debugging, passing all test cases is

insufficient to ensure patch correctness, because some patches

mask incorrect behavior. In a recent human study [5], we

observed that one in three human-generated patches are incor-

rect but plausible (passes all tests). However, such plausible

patches exhibit inconsistent behavior that can be captured

by our probabilistic grammar model. Hence, we intend to

develop a probabilistic test oracle that quantifies the degree
of correctness of programs (e.g as a deviation from manda-

tory program states) and provides witnesses of inconsistent
behavior by capturing the uncertainties (e.g. inconsistent call

sequences) in the program behavior during testing. This oracle

would collect uncertainties in program runs and map them to

program features. For instance, consider a scenario in which

setPort() method (in Figure 1) was buggy: it failed for

the first URL input (in Figure 2) and a developer provides

a plausible but incorrect patch that fixes the symptom of

the bug. If the patch stems a new state transition ({2, 4, 5})
with call sequence (setPort(), setUserInfo()), then

our probabilistic oracle would provide the developer with

transition {2, 4, 5} as the witness of the inconsistent behavior,

and the absolute deviation from the mandatory program states

(= 1− 1
5 = 0.8) as the patch’s degree of correctness.

IV. EVALUATION

In our evaluation of the hybrid fault diagnosis approach [15],

we implemented dynamic slicing [3] and statistical debug-

ging [10] for both CoREBench [17] and the Siemens bench-

mark2: We found that the best results are obtained by our

hybrid approach. Besides, in a recent human study [5], we

have provided DBGBENCH; this is a benchmark that provides

fault locations, fault explanations, patches and time spent by

practitioners while debugging real bugs from CoREBench.

In the future, we intend to evaluate our proposed debugging

aids by comparing them to the state of the art debugging

tools [2], [3], [4], [6], [7], using benchmarks of both real

and artificial faults (e.g. DBGBENCH [5] and the Siemens

benchmark). Using DBGBENCH, we plan to evaluate the

effectiveness of our approach in providing useful contextual

information, by measuring its ability to find the pertinent

function calls and inputs mentioned in the aggregated human-

generated bug diagnosis. In addition, we plan to assess the

performance of our approach by measuring the time taken by

our tools to diagnose each error in DBGBENCH in comparison

to the time spent by participants and other debugging tools.

Finally, we intend to measure the ability of our probabilistic

test oracle to determine plausible but incorrect patches, using

developer provided (plausible) patches in DBGBENCH.

2http://www-static.cc.gatech.edu/aristotle/Tools/subjects

All information about our current and future debugging

research can be found at the following address:

https://www.st.cs.uni-saarland.de/debugging/

V. EXPECTED CONTRIBUTIONS

The expected contributions of this work include:

• a hybrid fault diagnosis technique that harnesses the

power of both statistical debugging and program slicing;

• The definition and construction of probabilistic grammar
models that capture the probabilistic input structure and

feature execution statistics of programs;

• A debugging framework to automatically mine proba-
bilistic grammar models for bug diagnosis and support

input (fragment) manipulation and rectification;

• A probabilistic test oracle that determines the degree of
correctness of patches during debugging.
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[15] E. O. Soremekun, M. Böhme, and A. Zeller, “Programmers should still
use slices when debugging,” 2016. [Online]. Available: https://www.st.
cs.uni-saarland.de/debugging/faultlocalization/technicalReport.pdf

[16] M. Collins, “Probabilistic context-free grammars (pcfgs),” Lecture Notes,
2013.

[17] M. Böhme and A. Roychoudhury, “CoREBench: studying complexity of
regression errors,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014, 2014, pp. 105–115.

442442442444440440440440440440


