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Abstract—Analyzing information flow is central in assessing
the security of applications. However, static and dynamic analyses
of information flow are easily challenged by non-available or
obscure code. We present a lightweight mutation-based analysis
that systematically mutates dynamic values returned by sensitive
sources to assess whether the mutation changes the values passed
to sensitive sinks. If so, we found a flow between source and sink.
In contrast to existing techniques, mutation-based flow analysis
does not attempt to identify the specific path of the flow and is
thus resilient to obfuscation.

In its evaluation, our MUTAFLOW prototype for Android pro-
grams showed that mutation-based flow analysis is a lightweight
yet effective complement to existing tools. Compared to the
popular FLOWDROID static analysis tool, MUTAFLOW requires
less than 10% of source code lines but has similar accuracy;
on 20 tested real-world apps, it is able to detect 75 flows that
FLOWDROID misses.

I. INTRODUCTION

When assessing the security of applications, information
flows play an essential role: Which information sources does
the application access, and to which sinks does it send
these to? Consequently, static analysis tools that detect such
information flows see a substantial interest both in practice
as in research; for the Android operating system, tools like
FLOWDROID [1] or ICCTA [2] represent the state of the art.

Static flow detection tools are effective but they suffer from
the principal limitations of static analysis, notably that all code
must be available for analysis. This problem is illustrated in
the example app in Figure 1. The application first accesses
sensitive information (A), namely the user’s phone number
via getLine1Number(). This information is then sent via
SMS to some third party (B). The flow between A and B can
be easily detected by static analysis, and is properly reported
by FLOWDROID and ICCTA.

However, obfuscated flows cannot be detected so easily. The
example app contains a native method, a piece of code that
runs directly on the processor and whose source is written in
C or C++—in contrast to the Dalvik byte code derived from
the Java source. The devId() method (D) simply takes a
string and returns it. After the sensitive id passes through
devId(), x is set and passes into (C); however, FLOWDROID
and ICCTA will miss the flow from A to C because it passes
through native code, which these tools cannot analyze.

In principle, one could extend static analysis to also consider
machine code; and a simple identity function like devId()
would be easy to recognize. At the machine instruction level,

public class HelloJni extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_hello_jni);
TextView tv =

(TextView)findViewById(R.id.hello_textview);
SmsManager sms = SmsManager.getDefault();
String id = mgr.getLine1Number(); // A
sms.sendTextMsg("0153", id); // B
// ...
String x = devID(id);
tv.setText(x);
// ...
sms.sendTextMsg("0153", x); // C

}

public native String devID(String id); // D

static {
System.loadLibrary("hello-jni");

}
}

Fig. 1. The HelloJNI Android app uses the Java Native Interface
(JNI) to obfuscate a flow. The flow from getLine1Number() (A) to
sms.sendTextMsg() (B) can be detected statically as well as dynamically.
However, the flow from A to C can only be found by MUTAFLOW, because
id flows through the native method devID() (D).

though, it is even easier to obfuscate flows, since there is virtu-
ally no limit to what the function can do; and any prediction is
ultimately thwarted by the halting problem. A static analyser
can then either be optimistic, and assume nothing bad will
happen (as with runtime functions), or be pessimistic, and
assume anything may happen. Neither resolution is completely
satisfactory.

In contrast to static analysis, dynamic analysis allows to an-
alyze concrete executions rather than abstract code. Dynamic
tainting [3], for instance, tracks data throughout the execution,
and would just as well detect a flow from A to B. Finding the
flow from A to C via D, though, would require to track data
through the hardware or a hardware interpreter, which is no
simple feat. Developers wishing to conceal what devID() is
doing can also resort to implicit information flow [4] turning
data flow dependencies into control flow dependencies, and
again requiring static analysis to identify the alternative control
flows. Since existing dynamic and static tools need to analyze
the concrete path along which the information travels, they
cannot detect deliberately hidden flows, such as from A to C.

In this paper, we investigate a lightweight mutation-based
alternative to detect information flows. Rather than statically
analyzing application code or dynamically tracking data flow,
we use an experimental approach: We systematically mutate
the information sources of a program to assess whether
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the mutation impacts its information sinks. Specifically, our
MUTAFLOW prototype

1) takes an Android app as well as a set of test cases (given
or generated)

2) instruments sensitive data sources and sinks in the app
to mutate input values at sources and track output values
at sinks

3) executes tests on unmutated and mutated app versions
4) records the values passed to sensitive sinks, reporting a

flow if the value changes due to a mutated sink value.
In our example (Figure 1), MUTAFLOW runs the app twice,
the first time unmodified, and the second time injecting a
different input value for getLine1Number() (A). It then
detects that this change causes a change in the calls to
sms.sendTextMsg() (B) as well as sms.sendText-
Msg() (C). The previous problem that id flows through a
native method (D) has no consequences for MUTAFLOW; it
only cares about how changes in sources affect sinks, without
having to track the path. All changes made by MUTAFLOW
simulate changes in the external input data; the actual program
functionality is never altered.

The advantage of MUTAFLOW over static analysis ap-
proaches is that it hardly overapproximates: It is sound in
the sense that if it detects a flow, this flow is most likely
real. However, as any dynamic approach, it is also incomplete,
as there may always be executions which exercise flows not
previously detected. Hence, MUTAFLOW could be seen as a
complement to static analysis approaches, focusing on problem
areas such as non-analyzable code. However, mutation-based
flow analysis can also be seen as an alternative analysis,
should static analysis not be available or possible. This is
because as we show in this paper the accuracy of MUTAFLOW
in detecting flows is similar, if not superior, to static analysis
tools such as FLOWDROID or ICCTA. This poses mutation-
based flow analysis as a new and promising alternative in our
portfolio of program analysis techniques.

In summary, this paper makes the following contributions:
1) We introduce mutation-based flow analysis, a lightweight

program analysis technique to detect information flows.
2) We introduce MUTAFLOW as a prototype implementation

for analyzing Android apps (Section II). MUTAFLOW is
less than 10% of the size of FLOWDROID.

3) In its evaluation against FLOWDROID (Section III), we
find that MUTAFLOW shows comparable performance
as FLOWDROID in terms of precision and recall, and
is able to detect several flows that FLOWDROID misses
(Section IV).

After discussing related work (Section V), we close with
conclusion and consequences (Section VI). To facilitate repli-
cation, MUTAFLOW and all data from the experiments are
available as open source.

II. APPROACH AND IMPLEMENTATION

Mutation-based flow analysis attempts to detect information
flow between a source a and a sink b. Both fundamentals as

well as implementation are illustrated using the example in
Figure 1.

A. Prerequisites

We start with a program p and an execution e; the execution
can either be given (e.g., from a given test case) or generated
(e.g., from a test generator).

MUTAFLOW starts with an application package (APK) that
contains the app binary as well as all resources to execute it. As
tests, MUTAFLOW can use supplied tests as well as leverage
the Monkey testing tool [5] to generate executions. A larger
number of executions with high coverage of functionality
increases the chances of detecting flows.

In our example (Figure 1), the method onCreate() is invoked
automatically as the app starts—which is actually a plausible
attack vector for a malware, in order to collect as much
information from as many users as possible.

B. Logging

Given a source a and a sink b, within the execution e, we
log the concrete values of a and b, denoted as a0 and b0.

MUTAFLOW instruments the APK as follows. The instru-
menter gets the APK the user wants to analyze and converts it
from the compiled code to Jimple code with Soot [6]. Jimple
code is a meta-representation of Java code and is used by Soot,
a framework with which one can also iterate over the code and
inject method calls. In a second step a log-caller and mutation
class file we created is compiled with Soot to Jimple code and
injected into the decompiled APK. Now we can iterate over
the source code line by line and inject methods from this class
to write values to the log or mutate source values.

The Soot framework converts the APK into classes, the
containing methods and for each method a chain of statements.
Now we can iterate over those chains of statements and inject
method calls for logging and mutating at each source and sink.
These sources and sinks were originally defined by SuSi [7], a
tool that detects lines of code where private information flows
in or out of the application. We use the pre-computed lists of
sources and sinks from SuSi1.

In our example (Figure 1), the method TelephonyMana-
ger.getLine1Number() is listed by SuSi as a sensitive
source; hence, MUTAFLOW can inject the code

Log.write_to_log("Telephony.getLine1Number()");
Log.write_to_log(id);

right after the assignment to id (A). Likewise, MUTAFLOW
can identify the existing logging as sensitive information sinks,
and insert the code

Log.write_to_log("sms.sendTextMsg()");
Log.write_to_log(id);

1MUTAFLOW currently handles only Java primitive types and String, thus
some sources and sinks in the SuSi set originally used by FLOWDROID are
not considered by MUTAFLOW. Specifically, we excluded 73 sources and 63
sinks from the SuSi set which do not return basic types, or are not privacy-
invasive, i.e. these sources do not read private information or these sinks
cannot be used by malware to send private information from the device. We
also added 3 sources that we deem privacy-invasive.
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public class HelloJni extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_hello_jni);
TextView tv =

(TextView)findViewById(R.id.hello_textview);
String id = mgr.getLine1Number(); // A
id = Mutator.mutate_string(id);
Log.write_to_log("Telephony.getLine1Number()");
Log.write_to_log(id);
// ...
Log.write_to_log("sms.sendTextMsg()");
Log.write_to_log(id);
sms.sendTextMsg("0153", id); // B
// ...
String x = devId(id);
tv.setText(x);
// ...
Log.write_to_log("sms.sendTextMsg()");
Log.write_to_log(x);
sms.sendTextMsg("0153", x); // C

}

public native String devID(String id); // D

static {
System.loadLibrary("hello-jni");

}
}

Fig. 2. The HelloJNI program in Figure 1, instrumented by MUTAFLOW.

and

Log.write_to_log("sms.sendTextMsg()");
Log.write_to_log(x);

before locations B and C, respectively.

C. Mutation

We now generate alternative executions by mutating the
source value. This is done by interposing mutation code into
the assignment of a to a0 such that a0 is changed to a′0.

MUTAFLOW uses instrumentation not only for logging
values, but also for mutating source values. To this end, it
injects mutation code after each information source, which
mutates the external input value returned. In most SuSi meth-
ods2, sensitive information is either passed as a string or a
number. Hence, MUTAFLOW provides a Mutator class that
allows to mutate all Java base types including strings (mu-
tate_strings()) and numbers (e.g. mutate_int()).
The string mutator replaces the middle character in the string
by another one; the number mutator replaces the numeric value
with a random one. However, MUTAFLOW does not prevent
violating input pre-conditions. For instance, our Mutator
class may produce a random source value that violates an
input-validation condition, such violation could lead to false
positives or reveal exceptional flows to error handling methods.

In our example (Figure 1), MUTAFLOW would inject the
mutation code

id = Mutator.mutate_string(id);

after A and before the (also) injected logging. The fully
instrumented program is shown in Figure 2.

2SuSi methods are privacy-relevant API calls found by SuSi.

D. Detecting Flows

During the subsequent logging of sinks, we check each sink b
for whether its value has changed from b0 to b′0. If so, we have
shown that there is a flow from a to b.

MUTAFLOW creates multiple versions of the APK, one p
with mutation disabled (providing reference values for b0),
and, for each sensitive source a, one pa with mutation enabled
for this source (providing potential values b′0). It then runs the
mutated variants pa and checks for differences between the
b0 reference values and the b′0 values found in the mutated
apps p′. If a value b′0 for some pa differs from the reference
value b0, then the mutation in a has caused a value change in
b; in other words, there was information flow from a to b.
MUTAFLOW then reports this flow, including the concrete
values (witnesses) a0, a′0, b0 and b′0.

E. Soundness

In the absence of non-determinism, mutation-based flow
analysis is conceptually sound: It shows that a change in a
can cause a change in b, as a precedes b and changing a also
changes b—a counterfactual causality [8] that also proves the
existence of information flow from a to b. This is in contrast
to static analysis or dynamic tainting, where most relation-
ships are possible flows rather than causal relationships: In
b = zero() * a, where zero() always returns 0, both
techniques would detect a possible flow, whereas our approach
would fail to find a flow that changes a, a true negative.

Note that in our setting, causality (and thus soundness)
requires perfect reproducibility: Only if we can ensure that
no other input value has changed can we be sure that it
was a that caused the change to b. In practice, such perfect
reproducibility is hard to achieve due to non-determinism
in executions (timing, thread schedules, load, randomness).
MUTAFLOW reduces non-determinism by two means. First,
MUTAFLOW runs the original app p at least twice. If the values
b0 in the sink b vary across executions, then b is excluded.
Second, if MUTAFLOW runs an app variant pa, the source a
is not triggered, but we still observe a difference between b′0
and b0 for b, then b is excluded.

F. Completeness

Mutation-based flow analysis is incomplete in the sense that
if it fails to detect a flow, this does not mean the absence of
flows. In the code

if (hash(input) == 0xdeadbeef)
output = sensitiveData();

for instance, generating an input that fulfills the condi-
tion is computationally hard; hence, it is unlikely that MU-
TAFLOW will ever report the flow from sensitiveData()
to output.

An analysis that is both sound and complete for real-world
apps, reporting all possible flows without false positives, is
prevented by the halting problem. In the above example, a
static or symbolic analysis can also not know whether the
condition can be fulfilled, hence possibly issuing a false alarm.
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The halting problem as well as general issues of scale are the
reasons why static analysis tools like FLOWDROID or ICCTA
cannot claim completeness either.

In practice, ways to address the limitations of incomplete-
ness include:
Have a suite of test cases. In our experiments on real-world

apps (Section III-C), we had a student assistant record
comprehensive interactions with the apps, which we
could replay at will. Such an interaction, which need not
take more than 5–10 minutes per app, may already be part
of the investigation process3 . Also, the effort is easily
offset by the modest false positive rate in MUTAFLOW;
note that the manual investigation of reported flows can
easily take 1–2 hours per app.

Integrate with static analysis. Our mutation-based analysis
can easily be complemented with static analysis, such that
both sets of reported flows are joined, as we do in the
evaluation (Section IV). Further integration might guide
test generation (and thus MUTAFLOW) towards locations
in the code that static analysis has determined to access
and propagate sensitive information.

Use run-time sandboxing. If one has a good source of tests,
one could easily apply run-time checks to disable behav-
ior not seen during testing. During production, the BOX-
MATE sandboxing approach [10], for instance, would
prohibit access to all sensitive sources not accessed during
testing (e.g. sensitiveData(), above) and thus dis-
able its originating flows. A combination of MUTAFLOW
and sandboxing could make MUTAFLOW complete by
construction, but may also limit desirable functionality.

G. Implementation Complexity

From the previous description, it should be obvious that
MUTAFLOW is a much simpler approach than a full-fledged
static analysis for Android, let alone full-fledged symbolic
reasoning and checking4. To put things into perspective, the
full FLOWDROID framework (soot-infoflow-android-develop
and soot-infoflow-develop) currently sports ∼36,000 LOC, not
counting an additional ∼200,000 LOC for the required Soot,
Heros, and Jasmin frameworks.5 In contrast, MUTAFLOW
sports only ∼2,500 lines of Java code, which only is ∼7%
of FLOWDROID.

III. EVALUATION DESIGN

To evaluate the effectiveness of MUTAFLOW, we compared
our tool with FLOWDROID 1.5, a static taint analysis tool
for detecting information flows in Android apps. For our

3This process is similar to Apple’s manual app review [9]. This review
process can be recorded for the application and the recorded review can then
be used as input for the MUTAFLOW evaluation.

4There are many opportunities to optimize MUTAFLOW. For instance,
MUTAFLOW currently monitors the covered sources and sinks for each
run, but does not use this information while running the mutated versions.
MUTAFLOW also completely rebuilds the application for each mutation.

5Java source code only, omitting test code; determined using
cloc $(find -f heros-develop/src -f jasmin-develop/src -f
soot-develop/src -f soot-infoflow-android-develop/src -f
soot-infoflow-develop | grep ’.*.java$’); retrieved 2017-05-07.

evaluation, we used 131 Android apps in three benchmarks—
two micro-benchmarks with small apps designed to evaluate
information flow detection tools, and one macro-benchmark
with real-world apps from the Google play store.

Our evaluation addresses three research questions:
RQ1 Effectiveness for micro-benchmarks. Compared to the

state-of-the-art, how does MUTAFLOW perform in terms
of precision, recall, and F-measure for the micro-
benchmarks?

RQ2 Effectiveness for macro-benchmark. Compared to the
state-of-the-art, how does MUTAFLOW perform in terms
of precision, recall, and F-measure for real world apps
from the Google Play market place? Recall that we
established the ground truth for real world apps by cross
validation rather than by exhaustive means.

RQ3 Performance and Scalability. What is the runtime per-
formance of MUTAFLOW in comparison to the state-of-
the-art for both benchmarks?

A. Baseline

FLOWDROID is a highly influential static analysis tool for
Android apps, gathering more than 500 citations since its
initial release in 2014. Version 1.5 was released in October
2016 and represents the state-of-the-art in information flow
detection for Android apps6. Like MUTAFLOW, FLOWDROID
works directly at the bytecode level and does not require access
to the app source code.

B. Micro-Benchmarks
TABLE I

MICRO-BENCHMARKS: DROIDBENCH AND DROIDRA

Category #Apps #Flows Avg. Size

D
roidB

ench
2.0

Aliasing 1 0 75 LoC
Android-specific 9 8 45 LoC
Arrays and Lists 6 2 41 LoC

Callbacks 14 18 82 LoC
Emulator Detection 3 6 65 LoC

Field and Object Sensitivity 7 2 63 LoC
General Java 20 17 43 LoC

Implicit Flows 1 1 83 LoC
Inter-App Communication 2 8 79 LoC

Inter-Component Communication 14 14 54 LoC
Lifecycle 16 16 54 LoC

Reflection 4 4 81 LoC
Threading 5 5 40 LoC

DroidRA Reflection 9 9 62 LoC
111 110 47 LoC

As micro-benchmarks, we chose DroidBench and
DroidRA. DroidBench 2.0 [11] is a collection of 120 small
Android apps with several categories of information flows
that are obfuscated in one way or another. Version 2.0 of
DroidBench significantly extends the micro-benchmark that
was originally published with FLOWDROID [1]. DroidRA [12]
provides more information flows in the reflection categories.
Information flows via Java Reflection are particularly hard to
discover because functions are not called directly but in a

6TaintDroid[3] is also a highly influential dynamic analysis tool for Android
apps, however it is no longer supported, since it was designed for an outdated
Android OS version 4.3, thus it does not work on the Android OS version of
our real world apps - Android Marshmallow 6.0.1.
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convoluted manner using Java-specific internals, such as class
loaders. The average size of an app in the micro-benchmark
is 47 Lines of Code (LoC). From DroidBench, we excluded
18 test subjects. Nine apps would crash when executed, due
to bugs or missing permissions. For the other nine apps, the
respective sources and sinks were excluded because they are
not in the SuSi set we used (i.e. they do not use basic types).
So, in total we analyze 111 apps in the micro-benchmark. For
the remaining test subjects, the categories, and the number of
information flows are listed in Table I.

Ground truth. The actual information flows from a specific
source to a specific sink are determined manually by investi-
gating the small programs. This establishes the ground truth.
As true positive, we consider a reported flow that actually
exists. As false positive, we consider a reported flow that does
not actually exist. As true negative, we consider an unreported
flow that does also not actually exist. As false negative, we
consider an unreported flow that does actually exist.

Executions. To generate executions for DroidBench, we
leverage Google’s UI Exerciser Monkey [5]. Monkey takes an
Android app and generates a random sequence of user events
such as clicks, touches, or gestures, as well as a number of
system-level events. In our experiments, we fix the length of
a sequence at 10,000 user events and run one test sequence
for each variant of an app. Since Monkey is essentially a
random test generation tool, we repeat each experiment 10
times with different random seeds to gain statistical power.
However, within one experiment, we use the same test se-
quence for all (mutated) variants of the app. For DroidBench,
Monkey demonstrates that MUTAFLOW does not depend on
pre-existing test cases. However, for more complicated usage
scenario (e.g. log-in scenario) sophisticated input-generators
would be required to reveal flows.

TABLE II
MACRO-BENCHMARK: APPS FROM THE GOOGLE PLAY STORE

Name Jimple LoC Size in Bytes
Mysugr 590 kLoC 12.8 MB

Ab Workouts 572 kLoC 6.3 MB
Adidas miCoach 599 kLoC 41.7 MB
Fitness at Home 400 kLoC 18.8 MB

7 Minute Workout 515 kLoC 6.9 MB
Fast Calorie Counter 340 kLoC 2.4 MB

Water Drink Reminder 595 kLoC 9.9 MB
Abs Workout 7 Minutes 344 kLoC 4.7 MB

BMI and Weight Tracker 324 kLoC 4.1 MB
Fabulous – Motivate Me! 715 kLoC 20.3 MB
Test Diabetes Sugar-Joke 367 kLoC 6.9 MB

Kegel Trainer – Exercises 448 kLoC 6.8 MB
Fitness Recipe of the Day 351 kLoC 2.0 MB
Lifesum: Healthy lifestyle 678 kLoC 31.5 MB

Calorie, Carb & Fat Counter 409 kLoC 10.9 MB
30 Day Butt Challenge FREE 569 kLoC 4.6 MB
Blood Pressure Log (bpresso) 282 kLoC 3.2 MB

30 Day Fit Challenges Workout 119 kLoC 7.1 MB
Calorie Counter—FDDB Extender 674 kLoC 7.3 MB
Runkeeper—GPS Track Run Walk 618 kLoC 39.3 MB

Sum 9,509 kLoC 247.5 MB

C. Macro-Benchmark
As macro-benchmark, we chose 20 random apps from the

Google Play store—by first randomly selecting a category:

1) Decompile app with JADX
2) Open the code in Android Studio (so we can use features like finding

the usage of methods)
3) Find the source and the sink reported from the log (the logs provide

information about containing class and method)
4) For each source:

a) If the value flows into the return of a method, the method usages
have to be checked

b) If the value flows into a call parameter, the called method has to
be checked

c) If the value flows into a field, the read usages of the field have to
be checked

5) For each sink:
a) If the value comes from the methods parameter, the usage of the

method has to be checked
b) If the value comes from a field, the write usages of the field have

to be checked
6) A flow is found if a feasible path between source and sink is found

(e.g. there must not be any checks that prevent the path to be taken)
7) For MUTAFLOW, the log can also be consulted:

a) If a value occurs only once in the mutated execution but the API
method is still called in all execution, the flow is also categorized
as true positive

b) If the mutated value is found in plain text in the sink, the flow is
categorized as true positive

Fig. 3. Policy for manual classification

“Health & Fitness” and then randomly selecting 20 apps from
this category. Table II provide more details about these real
world apps; in the absence of source code, “LoC” refers to
the length of the decompiled Jimple code.

Ground truth. Unlike for the micro-benchmark, for the real-
world apps we cannot obtain the absolute ground truth but we
can cross-validate. If there are only 100 sources and 100 sinks,
we would need to manually check 20× 100× 100 = 200,000
potential flows to identify the complete set of true information
flows for all apps. This is clearly impractical. However, on a
best effort basis we manually checked all reported information
flows in order to distinguish true from false positives. To
mitigate experimenter bias, we follow a strict coding protocol
involving the independent classification by two researchers R1
and R2:7

1) R1 and R2 agree on a policy how to classify the reported
flows into true and false positives.

2) R1 classifies all flows and refines the coding policy.
3) R1 and R2 discuss the refined policy.
4) R2 (independently) classifies all flows.
5) R1 and R2 check the rate of agreement.
6) If the rate is too low, they discuss policy and recode.
7) Otherwise, they proceed to resolve any contentions.

The final policy used is listed in Figure 3.
To retrieve the source code from the Android apps, we used

the Dex to Java decompiler JADX [17]. We consider as false
negatives all flows that are true positives for one technique
but not reported by the other. For instance, if FLOWDROID
reported an information flow from source A to sink B, we
first manually checked whether there really does exist an

7Coding is a methodology from grounded theory that is used in sociology
and psychology to evaluate qualitative properties [13]. In the context of
software engineering [14], [15], this methodology is also referred to as open
card sort [16].
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information flow from A to B and then checked whether
MUTAFLOW also reports the same information flow. If it did
not, the flow was marked as false negative for MUTAFLOW.
The manual validation was done by inspecting the source code
of each app. If the path of a reported flow was not feasible, for
instance due to constants, dynamic types, or other influences,
then the flow was categorized as false positive.

Executions. Almost all health apps require sign-up, log-in or
otherwise entering specific data, which cannot be synthesized
by the Monkey test generator. We therefore had a user generate
test sequences. Specifically, we hired a student assistant whose
task was to click through the app with the intention to explore
most of its features, while his interaction would be recorded.
The student would sign-up and log-in as needed and enter the
data that was required to proceed to the next user dialog. The
recorded test sequences can be replayed deterministically at
will. For each app, there is one sequence with a length of up
to 30 user interactions.

D. Physical Setup and Infrastructure

Being a static analysis, FLOWDROID can execute on an
arbitrary machine that has access to the app byte code; in
contrast, MUTAFLOW executes the app on an Android device,
emulated or real:
• We execute FLOWDROID on one of our compute servers

with 144 cores and 700 GB of RAM.8

• For MUTAFLOW running the micro-benchmarks, we use
the Android emulator on a PC,9 emulating a Nexus 5
running Android Marshmallow 6.0. We only ran one
single emulator on the machine, as we found parallel
emulators interfering with each other.

• For MUTAFLOW running the macro-benchmarks, we use
a single Android device with six cores and 2GB of
RAM,10 controlled by a server via the Android Debug
Bridge (ADB). We use a real device instead of an
emulator for two reasons. First, real world apps often
cannot be installed on an emulator, as it lacks features
such as the Google play store; second, real devices report
realistic values for all sources and sinks.

As a 144-core compute server is way more powerful than an
Android device, let alone an emulated one, the increase in
computing power might seem generous towards FLOWDROID;
however, it corresponds to a realistic setting where a user
might have a lot of computing power but access to only one
Android device during the execution of MUTAFLOW.

IV. EVALUATION RESULTS

A. Effectiveness for Micro-Benchmarks

We start with RQ1: How effective are MUTAFLOW and
FLOWDROID on our set of micro-benchmarks?

8Specifically, a 4 × Intel(R) Xeon(R) CPU E7-8867 v4 @ 2.40GHz with
144 virtual cores (Intel Hyperthreading), running Debian 3.16 Linux.

9Specifically, an Intel i7 4770S with 8 virtual cores with 32 GB RAM
running Ubuntu 14.04 LTS.

10Specifically, a a Nexus 5X that has a 64-bit Adreno 418 GPU and a
Qualcomm Snapdragon 808 Processor @ 1.8GHz with 6 cores and 2GB of
main memory, running Android Marshmallow 6.0.1.

1) Accuracy: Table III shows the results for FLOWDROID,
whereas Table IV shows the results for MUTAFLOW. (Note
that the MUTAFLOW results are averaged over 10 runs.)

TABLE III
ACCURACY OF FLOWDROID ON MICRO-BENCHMARKS

Classified as
Input Flow No Flow Total Precision = 86%
Flow TP = 64 FN = 46 110 Recall = 58%

No Flow FP = 10 TN = 12 22 Accuracy = 58%
Total 74 58 132 F-Measure = 70%

TABLE IV
ACCURACY OF MUTAFLOW ON MICRO-BENCHMARKS

Classified as
Input Flow No Flow Total Precision = 98%
Flow TP = 74.3 FN = 35.7 110 Recall = 68%

No Flow FP = 1.5 TN = 19.8 21.3 Accuracy = 72%
Total 75.8 55.5 131.3 F-Measure = 80%

We see that on average, MUTAFLOW reports only 1.5 false
positives11, whereas FLOWDROID reports 10 false positives
(6 times as many) .

With a precision of 98%, almost all flows reported by
MUTAFLOW are actual flows.

Interestingly, the recall of MUTAFLOW is higher, too;
MUTAFLOW detects 68% of all flows, whereas FLOWDROID
detects 58%. The higher accuracy of MUTAFLOW over FLOW-
DROID is also indicated by the measures of accuracy and F-
measure.

MUTAFLOW exhibits a better precision, recall, and accu-
racy than the state-of-the-art, FLOWDROID.

So, why is the precision of MUTAFLOW “only” 98% if,
in principle, it should be 100%? The reason again is the non-
determinism, as discussed in Section II-E. Some tests are flaky
in the sense that executing the same test case twice might give
different results. This flakyness stems from the randomness
that is inherent to the Android environment. For instance, when
a time stamp is appended to a message, it might seem as if
the monitored sink that receives the message is impacted by
a mutated source while it is not.

2) Complementarity: The aim of MUTAFLOW is not to be
an alternative to FLOWDROID, but rather complement it—and
this makes perfect sense, as each technique can find flows the
other does not. As shown in Figure 4, without MUTAFLOW,
FLOWDROID would find only 58% of the existing flows. Using
both techniques, 90% of all existing flows would be detected.
Averaged over ten runs, MUTAFLOW finds 35.5 actual flows
that FLOWDROID does not find, while FLOWDROID reports
25.2 flows that MUTAFLOW does not find.

3) Strengths of FLOWDROID over MUTAFLOW: What are
the strengths and weaknesses of each technique? Figure 6 sum-
marizes the detection rates for the individual categories. We
see that MUTAFLOW detects fewer flows than FLOWDROID
in the categories

11For 5 applications, MUTAFLOW had at least one false positive.
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FlowDroid — 25.2 38.8 35.5 — MUTAFLOW

10.5 (remaining undetected)

Fig. 4. Venn Diagram showing the intersection of found flows (true positives)
for FlowDroid and MUTAFLOW on the micro-benchmark.

1 @Override
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState); // [...]
4

5 // Acquire a reference
6 // to the system Location Manager
7 locationManager = (LocationManager)
8 getSystemService(Context.LOCATION_SERVICE);
9

10 // Register the listener with the Location
11 // Manager to receive location updates
12 locationManager.requestLocationUpdates(
13 LocationManager.GPS_PROVIDER, 5000, 10,
14 locationListener);
15 }

Fig. 5. The AnonymousClass1 benchmark uses callbacks to send out location
changes. FLOWDROID detects the associated flow, but MUTAFLOW misses it
because the emulator takes too long to report the changed location.

• callbacks,
• emulator detection, and
• inter-app communication.

We explain the reduced effectiveness by the fact that MU-
TAFLOW requires test cases that actually trigger the flow. For
instance, to detect the flows in the callbacks-category, Monkey
would need to click a specific sequence of buttons in a specific
order. The probability that our random testing tool makes
the right sequence of clicks decreases exponentially with the
length of the required sequence. To detect the inter-application
flows, Monkey would need to open one app, trigger the source,
close the app, open the other app, and trigger the sink. With
Monkey as automated test generation tool, MUTAFLOW can
detect only one of six inter-application flows.

Again, we illustrate the strength of one tool over the other
using an example. In the DroidBench app AnonymousClass1,
Figure 5 shows the essential function, registering a callback
handler for changed locations. In the MUTAFLOW setting, the
emulator does change the location of the device during testing,
but the emulator takes too long to report the change to the app;
hence, the callback is never called, and MUTAFLOW cannot
detect the dynamic flow.

4) Strengths of MUTAFLOW over FLOWDROID: Let us
now go back to Figure 6. We see that MUTAFLOW detects
more flows than FLOWDROID for
• implicit flows,
• inter-component communication, and
• the reflection category.

We explain the improved performance with FLOWDROID’s
difficulty to analyze indirect flows along convoluted paths.
Unlike FLOWDROID, MUTAFLOW is ignorant of the specific
path along which an important information travels. If there is
a test case that exercises both the source and the sink, then
it is quite likely that MUTAFLOW detects the flow. Hence,

Android−specific
Arrays and Lists

Callbacks
Emulator Detection

General Java
Implicit Flows

Inter−App Comm.
Inter−Comp. Comm.

Lifecycle
Object Sensitivity

Reflection
Threading

0% 25% 50% 75% 100%
Detected Flows

Tool FlowDroid MutaFlow

Fig. 6. Histogram showing the number of detected flows as percentage of the
total number of flows per category for both, MUTAFLOW and FlowDroid.

16 private String obfuscateIMEI(String imei){
17 String result = "";
18

19 for(char c : imei.toCharArray()){
20 switch(c){
21 case ’0’ : result += ’a’; break;
22 case ’1’ : result += ’b’; break;
23 case ’2’ : result += ’c’; break;
24 case ’3’ : result += ’d’; break;
25 case ’4’ : result += ’e’; break;
26 case ’5’ : result += ’f’; break;
27 case ’6’ : result += ’g’; break;
28 case ’7’ : result += ’h’; break;
29 case ’8’ : result += ’i’; break;
30 case ’9’ : result += ’j’; break;
31 default: // [...]
32 }
33 }
34 return result;
35 }

Fig. 7. The ImplicitFlow1 benchmark obfuscates a sensitive device identifier.
The implicit flow is missed by FLOWDROID, but detected by MUTAFLOW.

MUTAFLOW performs well for implicit flows, i.e., where the
data is modified or obfuscated along the path, for inter-
component communication, i.e., where intents or activities are
used to communicate between different components of the
same app, and for reflection, where Java-specific calls to the
reflection framework are used to construct and send messages.

As a typical example of a data flow ignored by FLOW-
DROID, but detected by MUTAFLOW, consider the Droid-
Bench app ImplicitFlow1. Figure 7 shows the essential func-
tion, obfuscating a sensitive device identifier. Since there is
no explicit flow, i.e., a direct assignment of any data in
imei to result, FLOWDROID misses the flow. (Note that
dynamic tainting approaches such as TaintDroid [3] would also
miss such implicit flows for the same reason.) MUTAFLOW,
however, easily detects the flow since any change to imei also
results in a change in result; this change then propagates
to the sensitive sink, where MUTAFLOW can detect it.

B. Effectiveness for Real World Apps

Let us now turn to real-world applications and address RQ2:
How effective are MUTAFLOW and FLOWDROID on our
set of macro-benchmarks? In the remainder of this section
we discuss our results listed in Table V.
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TABLE V
ANALYSIS RESULTS ON THE MACRO-BENCHMARK

Analysis time (seconds) Number of flows
FLOWDROID MUTAFLOW FLOWDROID MUTAFLOW

Name analysis instr exec sum TP FP unknown sum TP FP unknown
Mysugr crash E 355 13,724 0 0 0 0 23 23 0 0

Ab Workouts 90 519 9,739 9 1 6 2 3.5 2 1.5 0
Adidas miCoach 1,628 259 6,608 11 9 1 1 4 4 0 0
Fitness at Home 43 265 3,479 8 2 0 6 0 0 0 0

7 Minute Workout crash E 328 4,368 0 0 0 0 2.25 1 1.25 0
Fast Calorie Counter 19 135 2,106 0 0 0 0 0 0 0 0

Water Drink Reminder timeout E 643 16,095 0 0 0 0 13.25 13.25 0 0
Abs Workout 7 Minutes crash E 165 3,280 0 0 0 0 1 1 0 0

BMI and Weight Tracker out of mem E 141 2,202 0 0 0 0 0 0 0 0
Fabulous – Motivate Me! timeout E 475 6,124 0 0 0 0 1 1 0 0
Test Diabetes Sugar-Joke 40 194 1,698 1 1 0 0 0 0 0 0

Kegel Trainer – Exercises 21 214 2,293 0 0 0 0 0 0 0 0
Fitness Recipe of the Day 13 153 837 0 0 0 0 0 0 0 0
Lifesum: Healthy lifestyle crash E 867 15,422 0 0 0 0 0 0 0 0

Calorie, Carb & Fat Counter 32 286 6,856 2 2 0 0 4.5 4.5 0 0
30 Day Butt Challenge FREE 286 393 4,138 60 0 0 60 0 0 0 0
Blood Pressure Log (bpresso) 16 208 3,695 11 4 7 0 2 2 0 0

30 Day Fit Challenges Workout 26 49 845 0 0 0 0 0 0 0 0
Calorie Counter—FDDB Extender crash E 585 11,961 0 0 0 0 0 0 0 0

Runkeeper—GPS Track Run Walk 12 crash E 1623 timeout E 0 0 0 0 27 25 2 0
Sum 2,217 7,866 149,856 102 19 14 69 81.5 76.75 4.75 0

Average (w/o E in MUTAFLOW) 202 329 6,077
Average (w/o E in FLOWDROID) 202 243 3,845

Running FLOWDROID and MUTAFLOW on the macro-
benchmark not only took considerable time; we also en-
countered a large number of crashes and timeouts.13 When
FLOWDROID crashes, it does not report any flows; hence, the
respective set of flows found is empty.

Following our process for establishing ground truth manu-
ally Section III-C, it took us between one and two hours per
app and person to validate the reported flows by FLOWDROID
or MUTAFLOW; for MUTAFLOW, validation was easier as we
had an execution with concrete values to examine.

For a significant number of flows reported by FLOWDROID,
we could not determine whether they were true positives or
false positives, due to their complexity. Sixty uncategorizable
flows (87%) where reported by FLOWDROID for the 30 Day
Butt Challenge FREE app. These flows went through a very
large hashmap that is used throughout the app. If a single
tainted value flows into a hashmap, FLOWDROID marks the
complete hashmap as tainted, spreading the taints throughout
the program. We believe that most flows are false positives
but conservatively mark them as uncategorizable.

The Runkeeper app is special in that it drove tools and
humans to their limits. FLOWDROID crashed on it and MU-
TAFLOW was not done after 10 hours of testing. For MU-
TAFLOW, we would make use of the flows found until the
timeout. In Runkeeper, MUTAFLOW detected 12 flows that
originated from a sensitive source, ended in a SQL database,
and later impact a sensitive sink; here, we assumed that the

12Unlike the other apps in our macro-benchmark, Runkeeper was executed
only once, due to changes in the back-end login authentication of the app.
After our first execution, we discovered that our human-generated test cases
for this version of Runkeeper could no longer be executed, because we could
no longer login into this version of the app.

13All bugs encountered in FLOWDROID have been reported.

flows went through the database. All numbers are reported in
Table V.

1) Accuracy: Table VI summarizes the results for FLOW-
DROID, whereas Table VII summarizes the results for MU-
TAFLOW. (Note that MUTAFLOW results are averaged over
four runs, in order to account for the inherent non-determinism
in the Android environment.)

TABLE VI
ACCURACY OF FLOWDROID ON MACRO-BENCHMARK

Classified as
Input Flow No Flow Total Precision = 58%
Flow TP = 19 FN = 74.75 93.75 Recall = 20%

No Flow FP = 14 TN = 4.75 18.75 Accuracy = 21%
Total 33 79.5 112.5 F-Measure = 30%

69 flows could not get categorized (60 flows arise from 1 app)

TABLE VII
ACCURACY OF MUTAFLOW ON MACRO-BENCHMARK

Classified as
Input Flow No Flow Total Precision = 94%
Flow TP = 76.75 FN = 17 93.75 Recall = 82%

No Flow FP = 4.75 TN = 14 18.75 Accuracy = 81%
Total 81.5 31 112.5 F-Measure = 88%

The results are in line with those already seen for the micro-
benchmark (Section IV-A): Most notably, MUTAFLOW sports
a precision of 94%, whereas with FLOWDROID, only 58%
of flows reported are true positives. Given the effort it takes
to manually identify a flow as true or false positive, a high
precision is definitely an important goal.

On our set of real-world apps, 94% of all flows reported
by MUTAFLOW are actual flows.

Considering the total set S of true positives (reported by ei-
ther tool and manually classified as actual flow), MUTAFLOW
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reports 82% of these, whereas FLOWDROID reports only 20%;
here, the low recall of FLOWDROID is easily explained by
completing the analysis only for 11 out of the 20 apps.
However, one can see that the high precision of MUTAFLOW
is not offset by a low recall, as indicated by the high overall
F-measure. In our macro-benchmark, MUTAFLOW does not
report any flow for 10 apps, because of the following reasons:
the use of a small set of SuSi sources and sinks, inability to
trigger certain sources (e.g. due to lack of sophisticated test
cases), and non-determinism at certain sinks.

2) Complementarity: As already indicated by the false
negative numbers, again each tool misses flows that would
be reported by the other one. Figure 8 shows the found flows
for each of the tools; and again, we see how both approaches
complement each other in their respective strengths.

FLOWDROID — 17 2 74.75 — MUTAFLOW

Fig. 8. Venn Diagram showing the intersection of found flows (true positives)
for FlowDroid and MUTAFLOW on the macro-benchmark.

C. Performance and Scalability

Let us now close the evaluation with RQ3: What is the
performance of MUTAFLOW, and how does it compare
to FLOWDROID? As already discussed in Section III-D, the
machines we use for MUTAFLOW (a single Android device,
real or emulated) and FLOWDROID (a 144-core compute
server) are very different, so we may well compare peanuts
and pumpkins here. Still, as compute servers are still way
more common than large farms of Android devices, such a
setting may well represent the typically available distribution
of computing power.

1) Performance on the Micro-Benchmark: On our micro-
benchmark, FLOWDROID takes an average time of 4.9s per ap-
plication. In contrast, MUTAFLOW takes 9.9s per application.
The longer time of MUTAFLOW is attributed to the overhead
it takes to instrument, install, and execute an application, as
well as the performance penalty of the emulator; FLOWDROID
need only analyze the (very short) byte code of each app.

On our micro-benchmark, both FLOWDROID and MU-
TAFLOW are very fast, with an average time of 4.9s and
9.9s per app, respectively.

2) Performance on the Macro-Benchmark: On our macro-
benchmark, performance is a more interesting story. Table V
lists the time taken by FLOWDROID (first column) vs. the time
taken by MUTAFLOW, whose time is split into instrumentation
(second column) and actual test execution (third column).
Looking at the times, let us only consider the 11 apps
where FLOWDROID could determine the flows. For these
apps, FLOWDROID is very fast, with an average running time
of 202 seconds, or 3.5 minutes; MUTAFLOW is about 20×
slower, taking on average 243 seconds (4 minutes) for creating

the mutated app versions; and ∼1 hour (3,845 seconds) per
app for running the tests on the individual mutants. Over
all 20 apps (including the 10 hour timeout for Runkeeper),
MUTAFLOW takes an average of 7,493 seconds, or ∼2 hours.

On our set of real-world apps, the MUTAFLOW analysis
takes 1–2 hours of analysis per app and device.

However, keep in mind that FLOWDROID is running on
a 144-core compute server, whereas MUTAFLOW runs on a
single Android device. Both mutant creation and test execution
are embarrassingly parallel problems, and easily distributed
across multiple devices. A rack of 20 Android devices would
reduce the average MUTAFLOW testing time down to 3 min-
utes, and thus easily catch up with FLOWDROID—and still
be a much smaller investment than a compute server. Again,
for the practical analysis of information flows, we would
recommend to have both compute servers for static analysis
as well as testing devices for checking concrete flows and
mutations.

Mutation-based flow analysis is embarrassingly parallel.

D. Threats to Validity

Like any empirical investigation, our evaluation is subject
to threats to validity. The first concern is external validity,
and notably generality. First, the efficiency of mutation-based
flow analysis and static analysis, respectively, is dependent
on a large set of factors, including analyzability of the code,
the effort it takes to identify sources and sinks, the ability to
automatically test the code, the effort it takes to create a test,
the time it takes to run a test, the value of true positives, and the
cost of false positives. Hence, our results do not generalize to
arbitrary programs, and the choice of which method(s) to use
will always be left to the user. The aim of this work is simply
to point out mutation-based flow analysis as a relatively simple
alternative that enriches the portfolio of program analysis.

Regarding internal validity, our investigation of the flows
may be subject to researcher bias, that is, we may consciously
or unconsciously favor the results of our own tool over
the FLOWDROID alternative. For the macro-benchmark, we
counter this threat by following a strict coding policy, as
detailed in Section III-C; for the micro-benchmark, this threat
is countered by having the benchmark as well as its ground
truth all being constructed by the FLOWDROID team, who,
if at all, would have a bias towards demonstrating the power
of their tool. Both tools are provided with the same set of
sensitive sources and sinks. All our data and assessments are
available for replication and scrutiny (Section VI).

V. RELATED WORK

Work related to mutation-based flow analysis falls into three
categories.

Static analysis. Static information flow analysis attempts to
detect (sensitive) information flows from static code
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analysis. FLOWDROID [1] is the most influential repre-
sentative in the Android area, and the gold standard for
detecting flows; notable extensions include ICCTA [2] to
analyze inter-process communication and DroidRA [12]
to handle reflection. The recent DFlow [18] system is a
flow detection alternative that focuses on scalability and
precision. In contrast to all these static code analyses,
MUTAFLOW is a dynamic experimental approach, and
thus can detect flows that static code analysis cannot,
as discussed in Section II-E (Soundness), and vice versa
(Section II-F; Completeness). This is also the subject of
our evaluation (Section III and Section IV).

Dynamic analysis. Dynamic information flow analysis tracks
data as it is being processed through an execution.
The most influential representative in the Android area
is TaintDroid [3]. Its dynamic tainting tags sensitive
input data with a label (“taint”), which is passed along
to further variables in each computation that involves
a tainted variable; if tainted data reaches a sensitive
sink, the tool reports a flow. As dynamic flow anal-
ysis can considerably slow down program execution,
researchers also have searched for correlations between
inputs and outputs [19]. In contrast to these approaches,
MUTAFLOW is an experimental approach which shows
true counterfactual causality and thus soundness by
construction (Section II-E).

Experimental analysis. Experimental program analysis tech-
niques [20] introduce a change in the program execution
and determine its impact. MUTAFLOW, as its name
suggests, is inspired by mutation analysis, where arti-
ficial defects are introduced into the code to determine
whether they will be caught by a test; it is most related
to the JAVALANCHE approach [21], which determines
the impact of the change in the remaining execution.
Given a specific statement, SENSA [22] modifies the
statements during test execution in order to determine
and quanitify the impact of this statement on the original
execution. The ORBS approach [23] selectively removes
program statements to determine a reduced program
that observationally behaves the same as the original
program w.r.t. to a slicing criterion. However, all of these
techniques substantially change the original execution by
altering the program rather than the input coming from
an information source, which is arguably minimally
invasive. Moreover, none of these approaches is geared
towards detecting the existence of flows at analysis time,
as mutation-based flow analysis is.

VI. CONCLUSION

To detect information flows, it can already suffice to mutate
an input from a sensitive source and to see whether, while
keeping everything else unchanged, this change impacts some
value passed to some sensitive sink. Mutation-based flow
analysis may seem annoyingly simple, but it is very effective:
It can reveal flows that static analysis cannot detect; and where
a static analysis tool is not available, not possible, or crashes,

it may even serve as a simple alternative. Mutation-based
flow analysis thus complements and augments state-of-the-art
analysis tools.

In contrast to static analysis, mutation-based flow analysis
requires an execution and thus input data—either generated or
manually crafted. This requirement is offset by having to spend
little to no effort on false positives: By construction, mutation-
based flow analysis achieves near-perfect precision, meaning
that close to 100% of reported flows are actual ones. In the
long run, we see static analysis and mutation-based analysis
tools work hand in hand, such that they further strengthen their
respective findings.

Besides general improvements such as performance or sta-
bility, our future work will focus on the interplay between
static analysis and mutation-based analysis:

Focused test generation. Rather than using a pure random
testing tool such as Monkey, one could guide a directed
test generator [24] towards code where static analysis
already has determined the existence of potential flows.
Static analysis could also tell a test generator which
values to provide for which source, and which code to
execute in order to reach a particular sink.

Mutations at function level. The impact of mutations at sen-
sitive sources can also be tracked at other locations in
the program code, not only sensitive sinks. In Figure 1,
this can help to establish the information flow within the
devId() function; in Figure 7, this shows that there
is information flow through the obfuscateIMEI()
function. Such information at the function level not only
gives more detail about the actual information flow, it
also provides important function summaries for static
analysis: If FLOWDROID knows from MUTAFLOW that
obfuscateIMEI() has information flow from input
to its return value, FLOWDROID need no longer miss
the overall flow.

Intertwined analyses. The future of program analysis lies in
the integration of several techniques: Static analysis, dy-
namic analysis, test generation, experimental approaches
as well as symbolic approaches all must work hand
in hand to mitigate their respective weaknesses, and
turn their integration into strength. Only with a broad
knowledge and an open mind can we defeat today’s and
tomorrow’s challenges of program analysis.

MUTAFLOW and all experimental data referred to in this
paper are available as open source; see our package at

https://github.com/anosubmission/mutaflow-data
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