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ABSTRACT
Dynamic tainting is an important part of modern software engineer-

ing research. State-of-the-art tools for debugging, bug detection

and program analysis make use of this technique. Nonetheless, the

research area based on dynamic tainting still has open questions,

among others the automatic generation of program inputs.

My proposed work concentrates on the use of dynamic tainting

for test case generation. The goal is the generation of complex

and valid test inputs from scratch. Therefore, I use byte level taint

information enhanced with additional static and dynamic program

analysis. This information is used in an evolutionary algorithm to

create new offsprings andmutations. Concretely, instead of crossing

and mutating the whole input randomly, taint information can

be used to define which parts of the input have to be mutated.

Furthermore, the taint information may also be used to define

evolutionary operators.

Eventually, the evolutionary algorithm is able to generate valid

inputs for a program. Such inputs can be used together with the

taint information for further program analysis, e.g. the generation

of input grammars.
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1 INTRODUCTION
Dynamic tainting is a dynamic program analysis method which

is used to track data in an executing program. Unique identifiers,
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Figure 1: Dynamic Tainting and Input GenerationWorkflow

called taints, are attached to values based on predefined rules or

manually. The propagation of those taints through the program can

then be used to compute data flows.

Tainting itself has numerous applications, among others: debug-

ging [4], finding and analyzing security threats [11], and generating

grammars [8]. Especially for the dynamic analysis of programs, in-

puts are needed.

Böhme et al. [2] have shown that random input generation is

in theory in most cases more efficient than sophisticated input

generation methods. Since many programs have highly structured

inputs, up to the point where they are governed by grammars,
random test generators likely produce inputs that are rejected in the

parsing phase. Therefore, random input generation is not sufficient

to test the actual program functionality. Thus, programmers still

need to create inputs manually or define a language model that can

be used by a fuzzer [6, 7]. Both are time and cost consuming.

Together with symbolic execution, tainting has become an impor-

tant part in the software engineering research [12]. In contrast to

dynamic tainting, symbolic execution techniques create constraints

for the input over execution paths without actually executing a

program. Such constraints can then be solved to create an input

that executes the path. State-of-the-art tools like Klee [3] try to

generate test inputs for arbitrary programs by using symbolic exe-

cution, which, as Godefroid et al. describe, is often not sufficient

for highly structured inputs (e.g. compiler and interpreter) [6].

I propose to use tainting information to automatically generate

complex and valid inputs for programs with highly structured in-

puts (Figure 1). To instantiate the approach, I create a tool called

LTaint, which uses LLVM bitcode to analyze an application and is

therefore capable of analyzing languages (likeC) that are compilable

to the LLVM intermediate representation which can be compiled

to machine code. LLVM is an infrastructure which enables, among
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others, code analysis, optimization and instrumentation on an in-

termediate representation. The taint information can be used to

guide an evolutionary algorithm for automatic test input generation.

For example, the taint information for a branch instruction shows

which parts of the program input influence the instruction and

therefore needs to be mutated to alter which branch is being taken.

Furthermore, taint and execution information of my approach can

be used to calculate the fitness function, e.g. by taking code and

input coverage
1
into account.

Dynamic tainting can be used together with the generated in-

puts to perform further program analysis, e.g. the generation of

context free grammars. Höschele et al. are currently building a

grammar generation tool, AutoGram [8], which automatically in-

fers a context free grammar based on the program structure with

the help of dynamic tainting. Their approach uses a program and a

set of valid sample inputs. The executing program gets analyzed

by a dynamic tainter for Java, called JFlow, which creates a list of

taint information events. This list contains a) Method entries and

exits, b) Array accesses and c) Field accesses with the taints of their

operands. AutoGram analyzes those events to infer a context free

grammar. Such a grammar can then be used by a grammar-based

fuzzer to fast generate valid and complex inputs.

A large amount of software is written in LLVM bitcode compil-

able code. Nonetheless, compared to Java, the bitcode delivers less

information, important details, like the size of an array may not

always be present. This information is needed to report taints of all

elements in an array if it is referenced by a pointer. Additional com-

putations need to be done to cope with the drawbacks induced by

the lower level of LLVM. I propose to use dynamic tainting together

with static and dynamic program analysis to create high level taint
information, e.g. the taints of all elements of an array. Furthermore,

implicit data flows are a problem while analyzing programs with

highly structured inputs. For example, a string to token conversion

often happens implicitly by comparing a string and assigning a

variable with a token based on the outcome of the comparison. This

leads to under-tainting (the token would not get the taints of the

string) and needs to be detected. I plan to automatically detect such

parts of the program, e.g. with pattern matching. This additionally

increases the precision of the tainting approach.

Eventually, the high level taints and implicit data flows can be

used together with automatically generated inputs to enhance or

even enable further program analysis, like grammar learning or to

enforce confidentiality and integrity. In the work of Tsankov et al.

[13], high level taints would be needed to report the taints of a char

array at a sink to extract if information from a non-confidential

source is leaked or to enforce integrity by reporting and anonymiz-

ing data that has to be sanitized.

My hypothesis is that dynamic tainting can be used to answer

the following research questions positively:

RQ1 Is it possible to extract enough information from a pro-

gram in LLVM bitcode format to generate high level taint
information events?

RQ2 Is it possible to detect relevant implicit data flows that

would result in under-tainting?

1
The amount and usage of input that was actually read by the program in comparison

to the input that was given.

RQ3 Can dynamic tainting be used together with an evolution-

ary algorithm to automatically generate valid and complex

inputs for programs with highly structured inputs?

2 BACKGROUND
Many tainting approaches exist that focus on specific tasks [12].

Nonetheless, to the best of my knowledge there exists no tainting

approach on the abstraction level of LLVM , which is able to report

high level taints. I propose to take program analysis into account

in order to report, among others, taints of full arrays, structure

names associated with taints or implicit data flows which would

cause under-tainting. Problems like implicit data flows are already

investigated by some approaches [9], but not in the context of

automatic input generation and not together with high level taints.
To the best of my knowledge, dynamic tainting is not used for

automatic input generation. Nonetheless, other approaches try to

generate inputs from scratch, like symbolic execution approaches.

They collect constraints over program paths with respect to the

input variables of the program. Those constraints are solved in

order to get input values that trigger those paths. One state-of-the-

art tool which uses symbolic execution is Klee [3]. Klee shows,

that symbolic execution can perform well on programs with small

input structure. Nonetheless, complex programs, which use highly

structured input, usually have complex path constraints. Such con-

straints are often hard to solve, in general constraint solving is

NP-complete. Therefore, input generation with symbolic execution

does not perform well on complex programs with many paths and

a highly structured input [6].

Evolutionary algorithms are also used for input generation. They

iteratively refine the set of inputs by using metrics obtained from

program analysis (like branch distance). For example, American

Fuzzy Lop [1], an “instrumentation guided genetic fuzzer” [1] ana-

lyzes the program under test while it is executing and adapts the

already used inputs by mutating them. If such a mutant discovers a

new program path, it is added to the set of inputs from which new

mutations can be generated.

First tests with afl on cJson [5] have shown, that afl needs

more information than just one json object as test input to gen-

erate meaningful and more sophisticated inputs. This problem is

already known
2
. Concretely, the generated inputs from afl still

only contained one json object with only small alternations, even

after days of running. I believe that dynamic tainting can be used

to enhance the selection of new inputs and the mutation of existing

ones such that an evolutionary approach is able to successfully

generate inputs for programs with highly structured input.

3 PROPOSED APPROACH
Figure 1 shows an overview of my proposed framework. It consists

of four main parts that are discussed in more detail in this section:

a) Instrumentation, b) Execution, c) Analysis and d) Input gener-
ation. After instrumenting the program, it can be executed with

inputs from the evolutionary input generation (which are initially

random). The execution is analyzed with dynamic tainting and

2
http://lcamtuf.coredump.cx/afl/README.txt,

http://lcamtuf.blogspot.de/2015/04/finding-bugs-in-sqlite-easy-way.html
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the taint information is used in the evolutionary input generation

phase to generate new inputs that might trigger new paths.

3.1 Instrumentation
Each LLVM instruction gets instrumented such that dynamic infor-

mation for the analysis can be written out in the execution phase as

a trace. The information for each instruction consists of: a) Name

of the surrounding method b) Opcode c) Names of all operands

d) Types of all operands e) Values of all operands (excluding the

assigned variable) and is needed to perform the taint propagation.

Furthermore, information about global variables, functions and

structures are collected statically in the instrumentation phase. The

information contains names, types and for structures also the size

in bytes. Additionally, information for the detection of implicit data

flows can be collected. This information is later used in the analysis

phase to achieve a more precise taint propagation.

3.2 Execution
In the execution phase sample inputs are used to run the program

under test and to generate the trace. Those inputs can be provided

by the evolutionary input generation. In this case, the initial inputs

are random and are iteratively refined by the evolutionary input

generation with the help of the computed taint information (Figure

1). The generated trace gets consumed by the analysis to perform

the taint propagation.

3.3 Analysis
The analysis takes as input the generated execution trace and per-

forms the actual taint propagation based on the propagation se-

mantics I define for LLVM bitcode, which follow the actual LLVM

instruction semantics. For example, for an addition, the sum of both

operands is assigned to a variable, thus, the taints of both operands

are assigned to the variable. Furthermore, my approach performs

additional computations to generate high level taint information,

e.g.: a) full bounds check for arrays to report taints for pointer and

b) mapping of addresses to structure elements. The output of the

analysis are the taints of the operands for each executed instruction.

To achieve a), the proposed approach has to collect information

about memory allocations. For each pointer the size of the allocated

memory has to be stored as well as the address it points to. If the

memory is later accessed, the size of the allocated memory is known

and the taints of the elements contained in the array are reported.

For b) a similar approach is used. If a structure is created, the

information where the structure is stored to gets connected with

the static information about the structure. At a structure access this

information can be used, together with the dynamic information

regarding the index of the element that is accessed, to report the

name of the used structure element for instance.

Additionally, I propose to implement a control flow analysis to

detect implicit data flowswhich would lead to under-tainting. Figure
2 gives an example. The first program argument is compared to a

static string and a token is assigned to a variable if the strings are

equal. Therefore, the assigned variable containing the token should

have the taints of the input string. Otherwise, the information that

the token assignment is based on the value of the first argument is

lost.

/ / i npu t : token1

enum t okens { TOKEN1 , TOKEN2 , TOKEN3 }

in t main ( in t argc , char ∗ argv [ ] ) {

char ∗ a = argv [ 1 ] ;

enum t okens t ;

i f ( s t rcmp ( a , " token1 " ) ) {

t = TOKEN1 ;

/ / t shou ld have t a i n t s o f the i npu t now

}

return 0 ;

}

Figure 2: The variable containing the token should still have
the taints of the originating string after conversion.

The code in Figure 2 could be part of a lexer, where strings

are often converted to tokens that are then used in the parsing

part of the application. To analyze the parsing precisely, the taints

must “survive” the implicit data flow. In my thesis I investigate how

such flows can be detected with focus on programs with highly

structured inputs. A good starting point is to apply patternmatching

on such parts of the code. In this case the pattern is simple: the

name of the token fits with the name of the string it is derived from.

3.4 Automatic Input Generation
A central contribution of my research is the automatic creation of

inputs. I propose to use the taint information of LTaint to guide

the input generator. As a starting point I plan to use an evolution-

ary algorithm, which in general consists of two components: a) a
generator for new inputs and b) a fitness function.

It is possible to use dynamic tainting for creating evolutionary

operators on the fly as opposed to static operators usually applied

by such algorithms. At the beginning, default mutation operators

are used, such as an adaption of bit-flipping [10] on strings (i.e.

character vectors). This approach randomly picks parts of an in-

dividual input and changes the values at the respective positions

arbitrarily.

With dynamic tainting this process can be more precisely con-

trolled.While executing the program, additional mutation operators

are generated and added to the list of available mutations. For exam-

ple, a json parser may require a file to start with a ‘{’. LTaintwould

report, that a branch instruction checks whether the first character

is a ‘{’, so one possible mutation is setting the first character of an

input to ‘{’. Even for less specific cases, LTaint is able to report

which parts of the input influence a specific branch instruction

by reporting the taints of the operands of the instruction. To alter

which branch is taken the mutation algorithm can use the muta-

tion operators only on this part of the input instead of mutating

randomly. To the best of my knowledge, the on-the-fly generation

of mutation operators based on program executions is not done by

any existing approach.

The fitness function is able to use tainting and execution infor-

mation produced by dynamic tainting to evaluate the quality of

any given input. Different heuristics can be used to achieve this.
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Possible heuristics are the number of executed (branch) instruc-

tions or the coverage on the input, i.e. the portion of input that was

actually read by the program. I expect that a lexer or parser stops

shortly after reading an unexpected character or token. Therefore,

the executed (branch) instructions and the coverage on the input

may correlate with the correctness of the input.

4 PLANNED EVALUATION
To evaluate the feasibility, effectiveness and efficiency of the ap-

proach I plan to perform experiments to answer my research ques-

tions.

RQs 1 and 2 concentrate on the effectiveness of the tainting. Thus,

the evaluation is done on handcrafted and real world subjects. For

both RQs I need to evaluate the number of true positives/negatives

and false positives/negatives as well as metrics like precision and

recall based on the ground truth of a micro-benchmark suite.

To the best of my knowledge no micro-benchmark suite
3
ex-

ists to test the effectiveness of dynamic tainting tools. Therefore

I create a handcrafted benchmark suite which shows that LTaint

is able to handle specific explicit and implicit tainting challenges.

Nonetheless, this benchmark is artificial and can therefore only

partially show the effectiveness of my approach.

For RQ 1 I need test subjects that reveal the missing high level
information of LLVM. For example, my approach is planned to

report the taints of all elements of a char array (i.e. string) for an

operand which is a pointer to a char array. Since array bounds are

not known in LLVM, the sizes of arrays have to be tracked.

For RQ 2 I need to create test subjects like the one in Figure 2.

They are planned to contain typical implicit data flow patterns that

are used in real world lexers and parsers. Also, I plan to implement

test subjects which contain “noise” in the implementation to show

that the implicit flow detection is sufficiently conservative. Such

noise are implicit data flows which lead to over-tainting, e.g. a loop
which reads a file line by line. A naive approach, which taints all

control flows, would taint all values in the loop with the taints

of the read line, which may lead to full tainting of all data and a

decrease in the tainting precision.

Additionally, I evaluate my approach on real world applications

with highly structured inputs to show that it is able to analyze large

applications. RQs 1 and 2 are also evaluated on those applications.

Since no ground truth exists for real world applications, I have to

compare the tainting with and without high level taints and implicit

data flows to confirm that the additional information is used and

reported by the tainting framework. Furthermore, I might be able

to manually verify reported taints to show the effectiveness on real

world applications.

RQ 3 concentrates on the creation of sample inputs. I plan to use

the same real world applications as for RQs 1 and 2 and evaluate the

efficiency and effectiveness of the input generation. The reference

tools are Klee and afl, the state-of-the-art tools for automatic input

generation. Also, Klee uses symbolic execution and afl genetic

algorithms, the main approaches for input generation from scratch.

All approaches are evaluated in terms of code coverage (e.g. line

and branch coverage), which indicates the efficiency of the methods.

3
A benchmark suite with small applications. Each application concentrates on a specific

tainting challenge.

5 EXPECTED CONTRIBUTION
The central contribution of my proposed work is the automatic

generation of test inputs for complex software with highly struc-

tured input by using dynamic taint information in an evolutionary

algorithm. The generated inputs can be used in software testing and

software analysis. Also, the proposed tainting approach is planned

to deliver more information than the state-of-the-art for software

which is solely available on the abstraction level of LLVM bitcode

to enable advanced code analysis, e.g. the generation of grammars.

The automatic creation of test cases which deeply test programs

is still an open question. For highly structured input and complex

programs the state-of-the-art is not able to provide sufficient test

cases. Thus, I plan to use taint information in an evolutionary

algorithm to direct the creation of new offsprings and mutations.

Furthermore, the additional high level taint information of my

approach can be used by tools which rely on dynamic tainting to en-

hance their analysis or even enable it on the level of LLVM bitcode.

One use case is the generation of grammars, e.g. with AutoGram.

Among others, AutoGram needs high level taint information, like

the taints of all array elements. In contrast to others, my approach is

able to report such taint information, e.g. by tracking array bounds

to report full array taints based on a single pointer if needed.
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