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Abstract. Synthesis of program parts is very useful for concurrent systems. How-
ever, most synthesis approaches do not support common design tasks, like modi-
fying a single process without having to re-synthesize or verify the whole system.
Assume-guarantee synthesis (AGS) provides robustness against modifications of
system parts, but thus far has been limited to the perfect information setting.
This means that local variables cannot be hidden from other processes, which
renders synthesis results cumbersome or even impossible to realize. We resolve
this shortcoming by defining AGS in a partial information setting. We analyze
the complexity and decidability in different settings, showing that the problem
has a high worst-case complexity and is undecidable in many interesting cases.
Based on these observations, we present a pragmatic algorithm based on bounded
synthesis, and demonstrate its practical applicability on several examples.

1 Introduction

Concurrent programs are notoriously hard to get right, due to unexpected behavior
emerging from the interaction of different processes. At the same time, concurrency
aspects such as mutual exclusion or deadlock freedom are easy to express declara-
tively. This makes concurrent programs an ideal subject for automatic synthesis. Due
to the prohibitive complexity of synthesis tasks [40,41,21], the automated construc-
tion of entire programs from high-level specifications such as LTL is often unrealistic.
More practical approaches are based on partially implemented programs that should
be completed or refined automatically [21,20,46], or program repair, where suitable re-
placements need to be synthesized for faulty program parts [30]. This paper focuses on
such applications, where parts of the system are already given.

When several processes need to be synthesized or refined simultaneously, a funda-
mental question arises: What are the assumptions about the behavior of other processes
on which a particular process should rely? The classical synthesis approaches assume
either completely adversarial or cooperative behavior, which leads to problems in both
cases: adversarial components may result in unrealizability of the system, while coop-
erative components may may rely on a specific form of cooperation, and therefore are
not robust against even small changes in a single process. Assume-Guarantee Synthe-
sis (AGS) [12] uses a more reasonable assumption: processes are adversarial, but will
not violate their own specification to obstruct others. Therefore, a system constructed
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by AGS will still satisfy its overall specification if we replace or refine one of the pro-
cesses, as long as the new process satisfies its local specification. Furthermore, AGS
leads to the desired solutions in cases where the classical notions (of cooperative or
completely adversarial processes) do not, for example in the synthesis of mutual exclu-
sion protocols [12] or fair-exchange protocols for digital contract signing [16].

A drawback of existing algorithms for AGS [12,16] is that they only work in a per-
fect information setting. This means that each component can access and use the values
of all variables of the other processes. This is a major restriction, as most concurrent im-
plementations rely on variables that are local to one process, and should not be changed
or observed by the other process. While classical notions of synthesis have been con-
sidered in such partial information settings before [34,21], we provide the first solution
for AGS with partial information.

In this work, we extend the AGS approach for simultaneous synthesis of multiple
processes with partial information restrictions, and analyze complexity and decidability
of AGS for several different cases. Furthermore, we provide the first implementation
of AGS, integrated into a programming model that combines the synthesis of concur-
rent reactive programs with ideas from program sketching. Our framework allows for a
combined imperative-declarative programming style, with fine-grained, user-provided
restrictions on the exchange of information between processes. Our prototype imple-
mentation also supports optimization of the synthesized program with respect to user-
defined preferences, for example a small number of shared variables. We demonstrate
the value of our approach on a number of small programs and protocols.

Complexity and Decidability of AGS. We use reductions of assume-guarantee syn-
thesis problems to problems about games with three players to obtain a number of
new complexity results. We distinguish the general case, where synthesized programs
may contain additional variables, from the memoryless case, where no variables may be
added. We provide new complexity results for these two cases in both the perfect and the
partial information setting, and for specifications in different fragments of linear-time
temporal logic (LTL). We show undecidability for general AGS under partial informa-
tion for all fragments we consider, in particular for basic safety properties. Table 1 gives
an overview of the complexity of AGS.

Algorithms for AGS. In light of the high complexity of many AGS problems, we pro-
pose a pragmatic approach, based on program sketching and synthesis with bounded
resources. Inspired by the bounded synthesis approach [22], we reduce undecidable
AGS problems under partial information to a sequence of decidable AGS problems
with bounded memory.

To this end, we formalize how to do bounded synthesis based on a program sketch.
Our synthesis algorithm uses a translation of the specification into universal co-Büchi
tree automata (cf. [22]), and an encoding of the existence of a correct instantiation of the
sketch into a satisfiability modulo theories (SMT) problem. We show that the approach
can be extended to the AGS setting by generating a number of separate SMT problems,
and searching for a solution of their conjunction.

Implementation and Evaluation. We have implemented our algorithm and provide an
evaluation on a number of examples, including Peterson’s mutual exclusion protocol, a
P2P filesharing protocol, a double buffering protocol, and synthesis of atomic sections

2



Listing 1: Sketch of Peterson’s mutual exclusion protocol. F=false, T=true.
0 t u r n := F ; f l a g 1 := F ; f l a g 2 := F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 t u r n :=T ;
5 whi le ( ?1,1 ) {} / / w a i t
6 c r 1 :=T ;
7 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
8 whi le ( ?1,2 ) {} / / l o c a l work
9 w a i t 1 := F ;

10 } whi le ( T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 t u r n := F ;
25 whi le ( ?2,1 ) {} / / w a i t
26 c r 2 :=T ; / / r e a d :=?2,3
27 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
28 whi le ( ?2,2 ) {} / / l o c a l work
29 w a i t 2 := F ;
30 } whi le ( T )

in a concurrent device driver. We give sketches of these protocols that leave open some
decisions that are essential for correctness, and show that our AGS algorithms finds
suitable solutions. Our tool also supports the optimization of the synthesized imple-
mentation with respect to different metrics like the number of memory updates or the
size of atomic sections. Using this feature, we synthesize implementations that are both
correct and optimal in a certain sense. Furthermore, we demonstrate how the robustness
of AGS solution allows us to refine parts of the synthesized program without starting
synthesis from scratch.

2 Motivating Example

We illustrate our approach using the running example of [12], a version of Peterson’s
mutual exclusion protocol. More details can be found in Section 7.1.
Sketch. We use the term sketch for concurrent reactive programs with non-deterministic
choices. Listing 1 shows a sketch for Peterson’s protocol with processes P1 and P2.
Variable flagi indicates that Pi wants to enter the critical section, and cri that Pi
is in the critical section. The first while-loop waits for permission to enter the crit-
ical section, the second loop models some local computation. Question marks denote
non-deterministic choices, and we want to synthesize expressions that replace question
marks such that P1 and P2 never visit the critical section simultaneously.
Specification. The desired properties of both processes are (1) that whenever a pro-
cess wants to enter the critical section, it will eventually enter it (starvation freedom),
and (2) that the two processes are never in the critical section simultaneously (mu-
tual exclusion). In Linear Temporal Logic (LTL)1, this corresponds to the specification
ϕi = G(¬cr1 ∨ ¬cr2) ∧ G(flagi→ Fcri), for i ∈ {1, 2}.
Failure of classical approaches. There are essentially two options for applying stan-
dard synthesis techniques. First, we may assume that both processes are cooperative,
and synthesize all ?i,j simultaneously. However, the resulting implementation of P2
may only work for the computed implementation of P1, i.e., changing P1 may break
P2. For instance, the solution ?1,1 = turn & flag2, ?2,1 = !turn and ?i,2 = F sat-
isfies the specification, but changing ?1,2 in P1 to T will make P2 starve. Note that this

1 In case the reader is not familiar with LTL: G is a temporal operator meaning “in all time
steps”; likewise F means “at some point in the future”.
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is not just a hypothetical case; we got exactly this solution in our experiments (Sec-
tion 7.1). . As a second option, we may assume that the processes are adversarial, i.e.,
P2 must work for any P1 and vice versa. However, under this assumption, the problem
is unrealizable [12].

Success of Assume-Guarantee Synthesis (AGS) [12]. AGS fixes this dilemma by re-
quiring that P2 must work for any realization of P1 that satisfies its local specification
(and vice versa). An AGS solution for Listing 1 is ?1,1 = turn & flag2, ?2,1 =
!turn & flag2 and ?i,2 = F.

Added advantage of AGS. If one process in an AGS solution is changed or extended,
but still satisfies its original specification, then the other process is guaranteed to do so
as well. We illustrate this feature by extending P2 with a new variable named read.
It is updated in a yet unknown way (expressed by ?2,3) whenever P2 enters the critical
section in line 26 of Listing 1. Assume we want to implement ?2,3 such that read is
true and false infinitely often. We take the solution from the previous paragraph and
synthesize ?2,3 such that P2 satisfies ϕ2 ∧ (GF¬read)∧ (GFread), where ϕ2 is the
original specification of P2. The fact that the modified process still satisfies ϕ2 implies
that P1 will still satisfy its original specification. We also notice that modular refinement
saves overall synthesis time: our tool takes 19+55 = 74 seconds to synthesize an AGS
solution and refine it in a second step to get the expected solution with ?2,3 = ¬read;
direct synthesis of the refined specification for both processes requires 263 seconds.

Drawbacks of the existing [12] AGS framework. While AGS provides important
improvements over classical approaches, it may still produce solutions like ?1,1 =
turn ∧ ¬wait2 and ?2,1 = ¬turn ∧ ¬wait1. However, wait2 is intended to
be a local variable of P2, and thus invisible for P1. Solutions may also utilize modeling
artifacts such as program counters, because AGS has no way to restrict the information
visible to other processes. As a workaround, [12] allows the user to define candidate im-
plementations for each ?, and let the synthesis algorithm select one of the candidates.
However, this way, a significant part of the problem needs to be solved by the user.

AGS with partial information. Our approach resolves this shortcoming by allowing
the declaration of local variables. The user can write f1,1(turn,flag2) instead of
?1,1 to express that the solution may only depend on turn and flag2. Including
more variables of P1 does not make sense for this example, because their value is fixed
at the call site. When setting ?2,1 = f1,2(turn,flag1) (and ?i,2 = fi,2()), we get the
solution proposed by Peterson: ?1,1 = turn ∧ flag2 and ?2,1 = ¬turn ∧ flag1
(and ?i,2 = F). This is the only AGS solution with these dependency constraints.

AGS with additional memory and optimization. Our approach can also introduce
additional memory in form of new variables. As with existing variables, the user can
specify which question mark may depend on the memory variables, and also which
variables may be used to update the memory. For our example, this feature can be used
to synthesize the entire synchronization from scratch, without using turn, flag1,
and flag2. Suppose we remove turn, allow some memory m instead, and impose
the following restrictions: ?1,1= f1,1(flag2,m), ?2,1= f2,1(flag1,m), ?i,2 is an
uncontrollable input (to avoid overly simplistic solutions), and m can only be updated
depending on the program counter and the old memory content. Our approach also
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Listing 2: Result for Listing 1: turn is replaced by memory m in a clever way.
0 f l a g 1 := F ; f l a g 2 := F ; m:=F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 whi le ( !m ) {} / / w a i t
5 c r 1 :=T ;
6 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
7 whi le ( i n p u t 1 ( ) ) / / work
8 m:=F ;
9 w a i t 1 := F ; m:=F;

10 } whi le ( T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 whi le ( m ) {} / / w a i t
25 c r 2 :=T ;
26 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
27 whi le ( i n p u t 2 ( ) ) / / work
28 m:=T;
29 w a i t 2 := F ; m:=T;
30 } whi le ( T )

supports cost functions over the result, and optimizes solutions iteratively. For our ex-
ample, the user can assign costs for each memory update in order to obtain a simple
solution with few memory updates. In this setup, our approach produces the solution
presented in Listing 2. It is surprisingly simple: It requires only one bit of memory m,
ignores both flags (although we did not force it to), and updates m only twice2. Our
proof-of-concept implementation took only 74 seconds to find this solution.

3 Definitions

In this section we first define processes, refinement, schedulers, and specifications. Then
we consider different versions of the co-synthesis problem, depending on informedness
(partial or perfect), cooperation (cooperative, competitive, assume-guarantee), and re-
sources (bounded or unbounded) of the players.
Variables, valuations, traces. Let X be a finite set of binary variables. A valuation
on X is a function v : X → B that assigns to each variable x ∈ X a value v(x) ∈
B. We write BX for the set of valuations on X , and u ◦ v for the concatenation of
valuations u ∈ BX and v ∈ BX′

to a valuation in BX∪X′
. A trace on X is an infinite

sequence (v0, v1, . . .) of valuations on X . Given a valuation v ∈ BX and a subset
X ′ ⊆ X of the variables, define v�X′ as the restriction of v to X ′. Similarly, for a trace
π = (v0, v1, . . .) on X , write π�X′ = (v0�X′ , v1�X′ , . . .) for the restriction of π to the
variables X ′. The restriction operator extends naturally to sets of valuations and traces.
Processes and refinement. We consider non-deterministic processes, where the non-
determinism is modeled by variables that are not under the control of the process. We
call these variables input, but they may also be internal variables with non-deterministic
updates. For i ∈ {1, 2}, a process Pi = (Xi, Oi, Yi, τi) consists of finite sets

– Xi of modifiable state variables,
– Oi ⊆ X3−i of observable (but not modifiable) state variables,
– Yi of input variables,

and a transition function τi : BXi ×BOi ×BYi → BXi . The transition function maps a
current valuation of state and input variables to the next valuation for the state variables.

2 The memory m is updated whenever an input is read in line 7 or 27; we copied the update into
both branches to increase readability.
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We write X = X1 ∪ X2 for the set of state variables of both processes, and similarly
Y = Y1 ∪ Y2 for the input variables. Note that some variables may be shared by both
processes. Variables that are not shared between processes will be called local variables.

We obtain a refinement of a process by resolving some of the non-determinism
introduced by input variables, and possibly extending the sets of local state variables.
Formally, let Ci ⊆ Yi be a set of controllable variables, let Y ′i = Yi \ Ci, and let
X ′i ⊇ Xi be an extended (finite) set of state variables, with X ′1 ∩ X ′2 = X1 ∩ X2.
Then a refinement of process Pi = (Xi, Oi, Yi, τi) with respect to Ci is a process
P ′i = (X ′i, Oi, Y

′
i , τ
′
i) with a transition function τ ′i : BX′

i × BOi × BY ′
i → BX′

i such
that for all x ∈ BX′

i , o ∈ BOi , y ∈ BY ′
i there exists c ∈ BCi with

τ ′i(x, o, y)�Xi
= τi(x�Xi

, o, y ◦ c).

We write P ′i � Pi to denote that P ′i is a refinement of Pi.
Important modeling aspects. Local variables are used to model partial information:
all decisions of a process need to be independent of the variables that are local to the
other process. Furthermore, variables in X ′i \Xi are used to model additional memory
that a process can use to store observed information. We say a refinement is memoryless
if X ′i = Xi, and it is b-bounded if |X ′i \Xi | ≤ b.
Schedulers, executions. A scheduler for processes P1 and P2 chooses at each computa-
tion step whether P1 or P2 can take a step to update its variables. Let X1,X2 be the sets
of all variables (state, memory, input) of P1 and P2, respectively, and let X = X1 ∪X2.
Let furthermore V = BX be the set of global valuations. Then, the scheduler is a func-
tion sched : V ∗ → {1, 2} that maps a finite sequence of global valuations to a process
index i ∈ {1, 2}. Scheduler sched is fair if for all traces (v0, v1, . . .) ∈ V ω it assigns
infinitely many turns to both P1 and P2, i.e., there are infinitely many j ≥ 0 such that
sched(v0, . . . , vj) = 1, and infinitely many k ≥ 0 such that sched(v0, . . . , vk) = 2.

Given two processes P1, P2, a scheduler sched, and a start valuation v0, the set of
possible executions of the parallel composition P1 ‖ P2 ‖ sched is

JP1 ‖ P2 ‖ sched, v0K =

(v0, v1, . . .) ∈ V ω
∣∣∣∣∣∣
∀j ≥ 0. sched(v0, v1, . . . , vj) = i
and vj+1�(X\Xi) = vj�(X\Xi)

and vj+1�Xi\Yi
∈ τi(vj�Xi

)

 .

That is, at every turn the scheduler decides which of the processes makes a transition,
and the state and memory variables are updated according to the transition function of
that process. Note that during turns of process Pi, the values of local variables of the
other process (in X \ Xi) remain unchanged.
Safety, GR(1), LTL. A specification Φ is a set of traces on X ∪ Y . We consider ω-
regular specifications, in particular the following fragments of LTL:3

– safety properties are of the form GB, where B is a Boolean formula over variables
in X ∪ Y , defining a subset of valuations that are safe.

– GR(1) properties are of the form
(∧

i GFLie
)
→
(∧

j GFLjs

)
, where the Lie and

Ljs are Boolean formulas over X ∪ Y .
3 For a definition of syntax and semantics of LTL, see e.g. [18].
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– LTL properties are given as arbitrary LTL formulas over X ∪ Y . They are a subset
of the ω-regular properties.

Co-Synthesis. In all co-synthesis problems, the input to the problem is given as: two
processes P1, P2 with Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables
with Ci ⊆ Yi, two specifications Φ1, Φ2, and a start valuation v0 ∈ BX∪Y , where
Y = Y1 ∪ Y2.

Cooperative co-synthesis. The cooperative co-synthesis problem is defined as follows:
do there exist two processes P ′1 � P1 and P ′2 � P2, and a valuation v′0 with v′0�X∪Y =
v0, such that for all fair schedulers sched we have

JP ′1 ‖ P ′2 ‖ sched, v′0K�X∪Y ⊆ Φ1 ∧ Φ2?

Competitive co-synthesis. The competitive co-synthesis problem is defined as follows:
do there exist two processes P ′1 � P1 and P ′2 � P2, and a valuation v′0 with v′0�X∪Y =
v0, such that for all fair schedulers sched we have

(i) JP ′1 ‖ P2 ‖ sched, v′0K�X∪Y ⊆ Φ1, and
(ii) JP1 ‖ P ′2 ‖ sched, v′0K�X∪Y ⊆ Φ2?

Assume-guarantee synthesis. The assume-guarantee synthesis (AGS) problem is defined
as follows: do there exist two processes P ′1 � P1 and P ′2 � P2, and a valuation v′0 with
v′0�X∪Y = v0, such that for all fair schedulers sched we have

(i) JP ′1 ‖ P2 ‖ sched, v′0K�X∪Y ⊆ Φ2 → Φ1,
(ii) JP1 ‖ P ′2 ‖ sched, v′0K�X∪Y ⊆ Φ1 → Φ2, and

(iii) JP ′1 ‖ P ′2 ‖ sched, v′0K�X∪Y ⊆ Φ1 ∧ Φ2?

We refer the reader to [12] for more intuition and a detailed discussion of AGS.

Informedness and boundedness. A synthesis problem is under perfect information if
Xi ∪ Oi = X for i ∈ {1, 2}, and Y1 = Y2. That is, both processes have knowledge
about all variables in the system. Otherwise, it is under partial information. A syn-
thesis problem is memoryless (or b-bounded) if we additionally require that P ′1, P

′
2 are

memoryless (or b-bounded) refinements of P1, P2.

Optimization criteria. Let P be the set of all processes. A cost function is a function
cost : P × P → N that assigns a cost to a tuple of processes. In our approach, we will
use cost functions to optimize synthesis results.

Note on robustness against modifications. Suppose P ′1, P
′
2 are the result of AGS on a

given input, including specifications Φ1, Φ2. The properties of AGS allow us to replace
one of the processes, say P2: if the replacement of P ′2 satisfies Φ2, then the overall
system will still be correct. If we furthermore ensure that conditions ii) and iii) of AGS
are satisfied, then the resulting solution is again an AGS solution, i.e., we can go on and
refine another process.

Co-synthesis of more than 2 processes. The definitions above naturally extend to pro-
grams with more than 2 concurrent processes, cp. [16] for AGS with 3 processes.

7



4 Complexity and Decidability of AGS

We analyze the complexity of AGS, based on a reduction to graph-based games.

4.1 Game Graphs for Co-Synthesis

All synthesis problems defined thus far can be reduced to problems about games played
on graphs with three players.

Game graphs.A 3-player game graph G = ((S,E), (S1, S2, S3)) consists of a directed
graph (S,E) with a finite set S of states and a set E ⊆ S × S of edges, and a partition
(S1, S2, S3) of the state space S into three sets. The states in Si are player-i states, for
i ∈ {1, 2, 3}. For a state s ∈ S, we write E(s) = {t ∈ S|(s, t) ∈ E} for the set of
successor states of s. We assume that every state has at least one outgoing edge; i.e.,
E(s) is nonempty for all states s ∈ S.

Beginning from a start state, the three players move a token along the edges of
the game graph. If the token is on a player-i state s ∈ Si, then player i moves the
token along one of the edges going out of s. The result is an infinite path in the game
graph; we refer to such infinite paths as plays. Formally, a play is an infinite sequence
(s0, s1, s2, . . .) of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for the set
of plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays. For-
mally, a strategy σi for player i is a function σi : S∗ · Si → S that, given a finite
sequence of states (representing the history of the play so far) which ends in a player-i
state, chooses the next state. The strategy must choose an available successor state; i.e.,
for all w ∈ S∗ and s ∈ Si, if σi(w · s) = t, then t ∈ E(s). We write Σi for the set of
strategies for player i.

Strategies in general require memory to remember some facts about the history of a
play. An equivalent definition of strategies is as follows: Let M be a set called memory.
A strategy σ = (f, µ) consists of (1) a next-state function f : S ×M → S that, given
the memory and the current state, determines the successor state, and (2) a memory-
update function µ : S ×M →M that, given the memory and the current state, updates
the memory.

The strategy σ = (f, µ) is finite-memory if the memory M is finite. It is b-bounded
if 2b ≥ |M |, and memoryless ifM is a singleton set (i.e., b = 0). Memoryless strategies
do not depend on the history of a play, but only on the current state. A memoryless
strategy for player i can be specified as a function fi : Si → S such that fi(s) ∈ E(s)
for all s ∈ Si. Given a start state s0 ∈ S and three strategies σi ∈ Σi, one for each
of the three players i ∈ {1, 2, 3}, there is a unique play, denoted ω(s0, σ1, σ2, σ3) =
(s0, s1, s2, . . .), such that for all k ≥ 0, if sk ∈ Si, then σi(s0, s1, . . . , sk) = sk+1; this
play is the outcome of the game starting at s0 given the three strategies σ1, σ2, and σ3.

In a partial information setting, players may not be able to make decisions based on
the full state of the game, but only with respect to the observed state. Formally, let O
be a set of observations. A partial information strategy with respect to an observation
function o : S → O is a strategy σ with σ(s0, s1, . . . , sk) = σ(s′0, s

′
1, . . . , s

′
k) whenever

o(si) = o(s′i) for all i.
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Winning. An objective Ψ ⊆ Ω is a set of plays; i.e., Ψ ⊆ Ω. The following notation is
derived from ATL [1]. For an objective Ψ , the set of winning states for player 1 in the
game graph G is ⟪1⟫G(Ψ) = {s ∈ S | ∃ σ1 ∈ Σ1. ∀ σ2 ∈ Σ2. ∀
σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}; a witness strategy σ1 for player 1 for the existential
quantifier is referred to as a winning strategy. The winning sets ⟪2⟫G(Ψ) and ⟪3⟫G(Ψ)
for players 2 and 3 are defined analogously. The set of winning states for the team
consisting of player 1 and player 2, playing against player 3, is ⟪1, 2⟫G(Ψ) = {s ∈ S |
∃ σ1 ∈ Σ1. ∃ σ2 ∈ Σ2. ∀ σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Ψ}. The winning sets ⟪I⟫G(Ψ)
for other teams I ⊆ {1, 2, 3} are defined similarly.

Games based on processes and specifications. Given two processes P1, P2 with Pi =
(Xi, Oi, Yi, τi) and respective sets of controllable variables Ci ⊆ Yi, we define the 3-
player game graph G = ((S,E), (S1, S2, S3)) as follows: let S = V × {1, 2, 3}; let
Si = V ×{i} for i ∈ {1, 2, 3}; and letE contain (1) all edges of the form ((v, 3), (u, i))
for i ∈ {1, 2}, v ∈ V and u�X∪C = v�X∪C , and (2) all edges of the form ((v, i), (u, 3))
for i ∈ {1, 2} and u�Xi ∈ τi(v�Xi , v�Oi , v�Yi) and u�X\(Xi∪Ci) = v�X\(Xi∪Ci). In
other words, player 1 represents process P1, player 2 represents process P2, and player
3 represents the environment, including the scheduler. Given a play of the form ω =
((v0, 3), (v

′
0, i0), (v1, 3), (v

′
1, i1), (v2, 3), . . .), where ij ∈ {1, 2} for all j ≥ 0, we write

[ω]1,2 for the sequence of valuations (v′0, v
′
1, v
′
2, . . .) in ω (ignoring the intermediate

valuations at player-3 states).4

A given specification Φ ⊆ V ω defines the objective [[Φ]] = {ω ∈ Ω|[ω]1,2 ∈ Φ}. In
this way, the specificationsΦ1 andΦ2 for the processes P1 and P2 provide the objectives
Ψ1 = [[Φ1]] and Ψ2 = [[Φ2]] for players 1 and 2, respectively. The objective for player
3 (the environment) is the fairness objective Ψ3 = fair that both S1 and S2 are visited
infinitely often; i.e., fair contains all plays (s0, s1, s2, . . .) ∈ Ω such that sj ∈ S1 for
infinitely many j ≥ 0, and sk ∈ S2 for infinitely many k ≥ 0.

Game solutions to co-synthesis problems [12]. Based on a game graph as defined
above, the cooperative co-synthesis problem for P1, P2, C1, C2, a start valuation v0 and
specifications Φ1, Φ2 is equivalent to finding a winning strategy for the team of players
1 and 2 from start valuation v0, and the objective Ψ = [[fair → Φ1 ∧ Φ2]]. The corre-
sponding competitive co-synthesis problem is equivalent to finding separate strategies
for players i ∈ {1, 2} for this game graph from start valuation v0, and the respective
objective Ψi = [[fair→ Φi]].

For the AGS problem for P1, P2, C1, C2, a start valuation v0 and specifications
Φ1, Φ2, consider the following:

1. let Ui = ⟪i⟫G(fair → Ψi) be the winning states for process i, based on a fair
scheduler,

2. let Fi = ⟪i, 3⟫G�Ui
(fair∧Ψi∧¬Ψ3−i) be the set of states where the team of players

i and 3 can win the game and force the other player to lose the game, and
3. let W = ⟪1, 2⟫G�S\(F1∪F2)

(fair → (Ψ1 ∧ Ψ2)) be the set of states where both
players 1 and 2 can win the game, but not force the other to lose it, based on a fair
scheduler.

4 Note that vj differs from v′j only in the valuation of input variables, and v′j differs from vj+1

only in the valuation of variables in Xij ∪ Cij , controlled by process ij .
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Then the AGS problem is equivalent to finding strategies σ1, σ2 for players 1 and 2,
respectively, such that:

1. player i wins the game with objective (fair ∧ Ψ3−i) → Ψi from all states in Ui:
∀σ′3−i. ∀σ3. ∀s ∈ Ui. ω(s, σi, σ′3−i, σ3) ∈ ((fair ∧ Ψ3−i)→ Ψi),

2. the team of players 1 and 2 wins the game with objective fair → (Ψ1 ∧ Ψ2) from
states W \ (U1 ∪ U2), and

3. v0 ∈W .

Formally, solving the AGS problem reduces to solving games with secure equilib-
ria [12].

4.2 Complexity Results

Table 1 gives an overview of the complexity of AGS. The complexity results are with
respect to the size of the input, where the input consists of the game graph given explic-
itly, and the specification formula (i.e., the size of the input is the size of the explicit
game graph and the length of the formula).

Memoryless General
Perfect Partial Perfect Partial

Safety P NP-C P Undec
GR(1) NP-C NP-C P Undec
LTL PSPACE-C PSPACE-C 2EXP-C Undec

Table 1: Complexity of Assume-Guarantee Synthesis

Note that the complexity classes for memoryless AGS are the same as for AGS with
bounded memory — the case of bounded memory reduces to the memoryless case, by
considering a game that is larger by a constant factor: the given bound.

Also note that if we consider the results in the order given by the columns of the
table, they form a non-monotonic pattern: (1) For safety objectives the complexity in-
creases and then decreases (from PTIME to NP-complete to PTIME again); (2) for
GR(1) objectives it remains NP-complete and finally decreases to PTIME; and (3) for
LTL it remains PSPACE-complete and then increases to 2 EXPTIME-complete.

We will explain these results in the following.

Memoryless AGS, Perfect Information. The following Theorem justifies the results
in the first column of Table 1.

Theorem 1. The complexity of memoryless AGS under perfect information is

i) polynomial for safety properties,
ii) NP-complete for GR(1) properties, and

iii) PSPACE-complete for LTL properties.
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Proof. We present the proof of the three items below.
Item i: It was shown in [12] that AGS solutions can be obtained from the solu-

tions of games with secure equilibria. It follows from the results of [13] that for games
with safety objectives, the solution for secure equilibria reduces to solving games with
safety and reachability objectives for which memoryless strategies suffice (i.e., mem-
oryless strategies are as powerful as arbitrary strategies for safety objectives). It also
follows from [13] that for safety objectives, games with secure equilibria can be solved
in polynomial time.

Item ii: It follows from the results of [24] that even in a graph (not a game) the
question whether there exists a memoryless strategy to visit two distinct states infinitely
often is NP-hard (a reduction from directed subgraph homeomorphism). Since visiting
two distinct states infinitely often is a conjunction of two Büchi objectives, which is a
special case of GR(1) objectives, the lower bound follows. For the NP upper bound, the
witness memoryless strategy can be guessed, and once a memoryless strategy is fixed,
we have a graph, and the polynomial-time verification procedure is the polynomial-time
algorithm for model checking graphs with GR(1) objectives [39].

Item iii: In the special case of a game graph where every player-1 state has exactly
one outgoing edge, the memoryless AGS problem is an LTL model checking prob-
lem, and thus the lower bound of LTL model checking [18] implies PSPACE-hardness.
For the upper bound, we guess a memoryless strategy (as in Item ii), and the verifi-
cation problem is an LTL model checking question. Since LTL model checking is in
PSPACE [18] and NPSPACE=PSPACE (by Savitch’s theorem) [44,37], we obtain the
desired result.

Memoryless AGS, Partial Information. The following Theorem justifies the results
in the second column of Table 1.

Theorem 2. The complexity of memoryless AGS under partial information is

i) NP-complete for safety properties,
ii) NP-complete for GR(1) properties, and

iii) PSPACE-complete for LTL properties.

Proof. We present the proof of the three items below.
Item i: The lower bound result was established in [15]. For the upper bound, again

the witness is a memoryless strategy. Given the fixed strategy, we have a graph problem
with safety and reachability objectives that can be solved in polynomial time (for the
polynomial-time verification).

Item ii: The lower bound follows from Theorem 1, Item ii; and the upper bound is
similar as well.

Item iii: Similar to Theorem 1, Item iii.

General AGS, Perfect Information. The following Theorem justifies the results in the
third column of Table 1.

Theorem 3. The complexity of general AGS under perfect information is

11



i) polynomial for safety properties,
ii) polynomial for GR(1) properties, and

iii) 2EXP-complete for LTL properties.

Proof. We present the proof of the three items below.
Item i: For AGS under perfect information and safety objectives, the memoryless

and the general problem coincide (as mentioned in Theorem 1, Item i). The result fol-
lows from Theorem 1, Item i.

Item ii: It follows from the results of [12,13] that solving AGS for perfect-information
games requires solving games with implication conditions. Since games with impli-
cation of GR(1) objectives can be solved in polynomial time [25], the desired result
follows.

Item iii: The lower bound follows from standard LTL synthesis [40]. For the up-
per bound, AGS for perfect-information games requires solving implication games, and
games with implication of LTL objectives can be solved in 2EXPTIME [40]. The de-
sired result follows.

General AGS, Partial Information. The following Theorem justifies the results in the
fourth column of Table 1.

Theorem 4. General AGS under partial information is undecidable for safety proper-
ties.

Proof. It was shown in [38] that three-player partial-observation games are undecid-
able, and it was also shown that the undecidability result holds for safety objectives as
well [14].

5 Algorithms for AGS

Given the undecidability of AGS in general, and its high complexity for most other
cases, we propose a pragmatic approach that divides the general synthesis problem into
a sequence of synthesis problems with a bounded amount of memory, and encodes the
resulting problems into SMT formulas. Our encoding is inspired by the Bounded Syn-
thesis approach [22], but supports synthesis from non-deterministic program sketches,
as well as AGS problems. By iteratively deciding whether there exists an implemen-
tation for an increasing bound on the number of memory variables, we obtain a semi-
decision procedure for AGS with partial information.

We first define the procedure for cooperative co-synthesis problems, and then show
how to extend it to AGS problems.

5.1 SMT-based Co-Synthesis from Program Sketches

Consider a cooperative co-synthesis problem with inputs P1 and P2, defines as Pi =
(Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, a specification
Φ1 ∧ Φ2, and a start valuation v0 ∈ BX∪Y , where Y = Y1 ∪ Y2.
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In the following, we describe a set of SMT constraints such that a model represents
refinements P ′1 � P1, P

′
2 � P2 such that for all fair schedulers sched, we have JP ′1 ‖

P ′2 ‖ sched, v0K ⊆ Φ1 ∧ Φ2. Assume we are given a bound b ∈ N, and let Z1, Z2 be
disjoint sets of additional memory variables with |Zi | = b for i ∈ {1, 2}.

Constraints on given transition functions. In the expected way, the transition func-
tions τ1 and τ2 are declared as functions τi : BXi × BOi × BYi → BXi , and directly
encoded into SMT constraints by stating τi(x, o, y) = x′ for every x ∈ BXi , o ∈
BOi , y ∈ BYi , according to the given transition functions τ1, τ2.

Constraints for interleaving semantics, fair scheduling. To obtain an encoding for
interleaving semantics, we add a scheduling variable s to both sets of inputs Y1 and
Y2, and require that (i) τ1(x, o, y) = x whenever y(s) = false, and (ii) τ2(x, o, y) =
x whenever y(s) = true. Fairness of the scheduler can then be encoded as the LTL
formula GF s ∧ GF¬s, abbreviated fair in the following.

Constraints on resulting strategy. Let X ′i = Xi ∪ Zi be the extended state set, and
Y ′i = Yi \ Ci the reduced set of input variables of process P ′i . Then the resulting
strategy of P ′i is represented by functions µi : BX

′
i × BOi × BY ′

i → BZi to update the
memory variables, and fi : BX

′
i × BOi × BY ′

i → BCi to resolve the non-determinism
for controllable variables. Functions fi and µi for i ∈ {1, 2} are constrained indirectly
using constraints on an auxiliary annotation function that will ensure that the resulting
strategy satisfies the specification Φ = (fair → Φ1 ∧ Φ2). To obtain these constraints,
first transform Φ into a universal co-Büchi automaton UΦ = (Q, q0, ∆, F ), where

– Q is a set of states and q0 ∈ Q is the initial state,
– ∆ ⊆ Q×Q is a set of transitions, labeled with valuations v ∈ BX1∪X2∪Y1∪Y2 , and
– F ⊆ Q is a set of rejecting states.

The automaton is such that it rejects a trace if it violates Φ, i.e., if rejecting states are vis-
ited infinitely often. Accordingly, it accepts a concurrent program (P1 ‖ P2 ‖ sched, v0)
if no trace in JP1 ‖ P2 ‖ sched, v0K violates Φ. See [22] for more background.

Let X ′ = X ′1 ∪X ′2. We constrain functions fi and µi with respect to an additional
annotation function λ : Q×BX′ → N∪{⊥}. In the following, let τ ′i(x◦z, o, y) denote
the combined update function for the original state variables and additional memory
variables, explicitly written as

τi(x ◦ z, o, y ◦ fi(x, z, o, y)) ◦ µi(x ◦ z, o, y).

Similar to the original bounded synthesis encoding [22], we require that

λ(q0, v0�X′) ∈ N.

If (1) (q, (x1, x2)) is a composed state with λ(q, (x1, x2)) ∈ N, (2) y1 ∈ BY1 , y2 ∈ BY1

are inputs and q′ ∈ Q is a state of the automaton such that there is a transition (q, q′) ∈
∆ that is labeled with (y1, y2), and (3) q′ is a non- rejecting state of UΦ, then we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) ≥ λ(q, (x1, x2)),
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where values of o1, o2 are determined by values of x2 and x1, respectively (and the
subset of states of one process which is observable by the other process).
Finally, if conditions (1) and (2) above hold, and q′ is rejecting in UΦ, we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) > λ(q, (x1, x2)).

Intuitively, these constraints ensure that in no execution starting from (q0, v0), the au-
tomaton will visit rejecting states infinitely often. Finkbeiner and Schewe [22] have
shown that these constraints are satisfiable if and only if there exist implementations
of P1, P2 with state variables X1, X2 that satisfy Φ. With our additional constraints on
the original τ1, τ2 and the integration of the fi and µi as new uninterpreted functions,
they are satisfiable if there exist b-bounded refinements of P1, P2 (based onC1, C2) that
satisfy Φ. An SMT solver can then be used to find interpretations of the fi and µi, as
well as the auxiliary annotation functions that witness correctness of the refinement.

Correctness. The proposed algorithm for bounded synthesis from program sketches is
correct and will eventually find a solution if it exists:

Proposition 1. Any model of the SMT constraints will represent a refinement of the
program sketches such that their composition satisfies the specification.

Proof. From our definitions of refinement and of the transition functions τ ′i , it is obvi-
ous that a model will represent a refinement of the given program sketches.

Furthermore, by correctness of the annotation approach from bounded synthesis [22],
any transition function that satisfies the constraints will satisfy the specification (and the
combination of τ ′i is in particular a transition function).

Proposition 2. There exists a model of the SMT constraints if there exist b-bounded
refinements P ′1 � P1, P

′
2 � P2 that satisfy the specification.

Proof. Suppose such P ′1, P
′
2 exist. By the definition of refinement, we have that for all

x ∈ BX′
i , o ∈ BOi , y ∈ BY ′

i there exists c ∈ BCi with

τ ′i(x, o, y)�Xi
= τi(x�Xi

, o, y ◦ c).

The control valuations c for different valuations x, o, y of the other variables give us
a model of the function fi that computes the controllable variables. In a similar way, the
computation of memory valuations for different valuations of the other variables gives
us a model of the function µi.

Optimization of solutions. Let cost : P × P → N be a user-defined const function.
We can synthesize an implementation P ′1, P

′
2 ∈ P with maximal cost b by adding the

constraint cost(P ′1, P
′
2) ≤ b (and a definition of the cost function), and we can optimize

the solution by searching for implementations with incrementally smaller cost. For in-
stance, a cost function could count the number of memory updates in order to optimize
solutions for simplicity.
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5.2 SMT-based AGS

Based on the encoding from Section 5.1, this section presents an extension that solves
the AGS problem. Recall that the inputs to AGS are two program sketches P1, P2 with
Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, two
specifications Φ1, Φ2, and a start valuation v0 ∈ BX∪Y , where Y = Y1 ∪ Y2. The goal
is to obtain refinements P ′1 � P1 and P ′2 � P2 such that:

(i) JP ′1 ‖ P2 ‖ sched, v0K ⊆ (fair ∧ Φ2 → Φ1)
(ii) JP1 ‖ P ′2 ‖ sched, v0K ⊆ (fair ∧ Φ1 → Φ2)

(iii) JP ′1 ‖ P ′2 ‖ sched, v0K ⊆ (fair→ Φ1 ∧ Φ2).

Using the approach presented above, we can encode each of the three items into a sep-
arate set of SMT constraints, using the same function symbols and variable identifiers
in all three problems. In more detail, this means that we

1. encode (i), where we ask for a model of f1 and µ1 such that P ′1 with τ ′1 and P2 with
the given τ2 satisfy the first property,

2. encode (ii), where we ask for a model of f2 and µ2 such that P1 with the given τ1
and P ′2 with τ ′2 satisfy the second property, and

3. encode (iii), where we ask for models of fi and µi for i ∈ {1, 2} such that P ′1 and
P ′2 with τ ′1 and τ ′2 satisfy the third property.

Then, a solution for the conjunction of all of these constraints must be such that the
resulting refinements of P1 and P2 satisfy all three properties simultaneously, and are
thus a solution to the AGS problem. Moreover, a solution to the SMT problem exists if
and only if there exists a solution to the AGS problem.

5.3 Extensions

While not covered by the definition of AGS in Section 3, we can easily extend our
algorithm to the following cases:

1. If we allow the sets Z1, Z2 to be non-disjoint, then the synthesis algorithm can
refine processes also by adding shared variables.

2. Also, our algorithms can easily be adapted to AGS with more than 2 processes, as
defined in [16].

6 Implementation

We have implemented our AGS approach with partial information as an extension to
BoSY, the bounded synthesis backend of parameterized synthesis tool PARTY [31]. It
uses LTL3BA [2] to transform specifications into automata, and Z3 [19] as SMT solver.
Our extension is available for download5.

5 http://www.student.tugraz.at/robert.koenighofer/tacas15_AG.zip
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Input. Our tool takes three input files: a program sketch and one specification file
for each process. The sketch is defined directly in SMT-LIBv2 [3] format, the specifi-
cations are given in LTL, using the Acacia [6] syntax.

The sketch defines data types for the state space BX , the uncontrollable input space
BY ′

, the controllable input space BC , and (optional) memory BZ , along with the initial
valuation v0 of all variables.6 For each Boolean signal s that appears in the specification,
the sketch defines a labeling function s : BX × BY → B, which is by default just the
value of a state or input variable. For signals of the specification that are not directly
available as state- or input variables, the labeling function needs to be explicitly defined.

In our experiments, we mostly use bitvectors of appropriate length to define state
space, inputs, and memory. However, our tool also supports the definition of user-
defined data types such as tuples of enumeration types, which may be more convenient
for other applications. Our tool uses a special integer constant M to refer to the number
of memory variables per process, and increases M until a solution is found. All mem-
ory variables are global by default. Partial information is modeled by restricting the set
of variables on which the functions that control the strategy or update the memory can
depend. This fine-grained definition of partial information increases the flexibility of
our tool.

By default, the sketch defines the (global) transition function τ as the parallel com-
position of the transition functions τ1 and τ2 of the processes, but sometimes defin-
ing the combined transition function directly is easier. Finally, the sketch declares the
functions that should be synthesized: two control functions fi, and two memory up-
date functions µi. The user can specify each of these functions compositionally, with
multiple sub-functions that control disjoint subsets of Ci or Zi, respectively. For each
sub-function, observable variables can be defined individually, allowing for a very fine-
grained use of partial information.

Optimization of solutions. In order to facilitate the optimization of solutions, the
user can assert that some arbitrarily computed cost has to be lower than some special
constant Opt in the sketch file. Our tool will find the minimal value of Opt, within a
user-defined interval, such that the problem is still realizable. At the moment, this search
is implemented in a straightforward way: Opt is decreased (increased) by 1 as long the
problem is realizable. More sophisticated search strategies like binary search, learning
from failed attempts, or using incremental solving are possible but not yet implemented.
With a solver for MAX-SMT problems, this search could also be entrusted to the solver.

Other applications. Our tool can also complete sketches with cooperative co-syn-
thesis (see Section 3). Furthermore, we can use our tool as a model checker for solutions
by completely defining the functions fi and µi in the sketch instead of just declaring
them.

The fact that our tool takes as input an SMT-LIBv2 formulation of the synthesis
problem makes it very flexible: By defining the transition relation appropriately, it can
also be used for synthesis of entire systems from scratch, or synthesis of atomic sec-
tions in concurrent programs. Furthermore, additional requirements on the solution can
be defined easily with additional SMT constraints. The obvious downside is limited us-

6 Wlog., we assume that memory variables are initialized to a default value, e.g. false for
Boolean variables.
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Listing 3: Synthesis result for the sketch in Listing 1 without AGS.
0 t u r n := F ; f l a g 1 := F ; f l a g 2 := F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 t u r n :=T ;
5 whi le ( turn & flag2 ) {} / / w a i t
6 c r 1 :=T ;
7 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
8 whi le ( F ) {} / / l o c a l work
9 w a i t 1 := F ;

10 } whi le ( T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 t u r n := F ;
25 whi le ( !turn ) {} / / b e t t e r : & f l a g 1
26 c r 2 :=T ;
27 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
28 whi le ( F ) {} / / l o c a l work
29 w a i t 2 := F ;
30 } whi le ( T )

ability, since defining the program semantics in SMT-LIBv2 format is not always easy.
In future work, we want to implement a front-end to define simple sketching problems
in a subset of C in order to increase the usability.

7 Experiments

All experiments in this section were performed on an ordinary notebook (Intel i5-
3320M CPU@2.6 GHz, 8 GB RAM, 64-bit Linux), using one CPU core and a memory
limit of 1 GB, which was never reached.

7.1 Peterson’s Mutual Exclusion Protocol

This example has already been used as motivation in Section 2. In this section, we give
additional insights, experiments and performance measures.

In our model of this program, we use a bitvector of size 7 to represent states: Each
process has a program counter of 3 bits (assignments written in the same line in List-
ing 1 are executed simultaneously), and one bit is used to model the variable turn.
The current value of all other variables can be computed from the respective program
counter value. Hence, they are modeled with state labels.

AGS without partial information. When using AGS without any restrictions on
variable dependencies, our tool takes 26 seconds to find a solution. However, it is too
complicated to be shown here, let alone understand it. The question marks are imple-
mented as what appears to be arbitrary functions over all variables, including program
counter bits from the other process. This solution is overly complicated and thus clearly
undesirable. This motivates our partial information extension to AGS.

Cooperative co-synthesis. In our next experiment, we therefore restrict the observ-
able information for resolving the question marks by setting ?1,1= f1,1(turn,flag2),
?2,1= f2,1(turn,flag1), and ?i,2= fi,2(). Furthermore, we disable AGS (i.e., use
cooperative co-synthesis) and do not allow extra memory. Our tool takes 7 seconds to
find the solution shown in Listing 3. The problem with this solution is that P2 relies
on the concrete realization of P1. If we would later modify the condition in line 8 (i.e.,
?1,2) to true, then P2 would starve while waiting for P1 to set turn.

AGS with partial information. AGS prevents such dependencies on the concrete
realization of other processes, thereby making the solution robust against a posteriori
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Listing 4: Synthesis result for the sketch in Listing 1 with AGS and memory, but without
optimization for simplicity.

0 f l a g 1 := F ; f l a g 2 := F ; m:=F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ; m:=F;
4 whi le ( f l a g 2 & !m ) {}
5 c r 1 :=T ;
6 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
7 whi le ( F ) / / w a i t
8 m:=F;
9 w a i t 1 := F ; m:=F;

10 } whi le ( T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ; m := !m;
24 whi le ( m ) {} / / w a i t t o e n t e r
25 c r 2 :=T ;
26 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ; m:=F;
27 whi le ( F ) / / w a i t
28 m:= F ;
29 w a i t 2 := F ; m:=F;
30 } whi le ( T )

changes of single processes. Indeed, when running our tool with AGS, we get !turn
& flag1 in line 25, which resolves the problem. The execution time increases from 7
to 19 seconds, which is acceptable.

Introducing memory. So far, we assumed that the synchronization variables are
already present. However, by introducing additional memory variables, our synthesis
approach can also invent them. In our next experiment, we remove turn, allow some
memorym to be updated based on the program counter (of the currently scheduled pro-
cess) and the old memory, and set ?1,1= f1,1(m,flag2), and ?2,1= f2,1(m,flag1).
We get the solution depicted in Listing 4 within 19 seconds. The synthesis tool re-
invents turn, but the solution is complicated. We had to construct a graph summa-
rizing all runs to certify that the specification holds. This motivates our optimization
feature, which can be used to obtain simple solutions.

Optimization. Next, we therefore add to the SMT formulation of the synthesis
problem constraints that count the updates of m in an integer variable c, and also add
the constraint c < Opt. Now, we let the synthesis tool find a minimum value for Opt
such that the problem is still realizable. Doing this, the tool will find an overly simplistic
solution: it sets the waiting condition ?i,2 to true, which means that the synchronization
needs to work only once. When we consider the waiting condition to be an input, we
get the solution shown in Listing 2, which has already been discussed in Section 2.

Refinement. In Section 2, we already discussed the refinement of the basic AGS
solution with an additional variable read. Next, we refine the version with memory
(Listing 2) in the same way. By setting ?2,3= f2,3(read), our tool finds the expected
solution f2,3(read) = ¬read of toggling read whenever the critical section is en-
tered within 58 seconds. Again, the modular refinement saved synthesis time. Instead
of 74 + 58 = 132 seconds for synthesizing an AGS solution and refining it later, direct
synthesis of the refined specification for both processes simultaneously requires 266
seconds.

7.2 Peer-To-Peer Filesharing

Sketch. This example has been taken from [23] with slight modifications. Two
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Listing 5: Sketch of a filesharing protocol.
0 u1 :=T ; d1 := F ; u2 := F ; d2 := F ;
1 do{ / / p r o c e s s P1
2 u1 := ?1,1
3 d1 := u2 & ?1,2
4 } whi le ( T )

21 do{ / / p r o c e s s P2
22 u2 := ?2,1
23 d2 := u1 & ?2,2
24 } whi le ( T )

processes P1 and P2 use a peer-to-peer
protocol to share files. In each step, pro-
cess Pi can decide whether it wants to
upload (by setting the variable ui) or
download (by setting di). A process
can only download if the other one up-
loads. This is formalized by the sketch in Listing 5.

Specification. Process P1 is specified by (GFd1) ∧ (GF(u1 ∧ scheduled(P1)))
and P2 is specified by (GFd2) ∧ (GF(u2 ∧ scheduled(P2))). The first conjunct of
each specification expresses the goal of downloading infinitely often. The second gives
the other process the chance to do the same.

Results. We set ?1,j= f1,j(d2,u2) and ?2,j= f2,j(d1,u1), i.e., P1 makes its

Listing 6: Solution without AGS.
0 u1 :=T ; d1 := F ; u2 := F ; d2 := F ;
1 do{ / / p r o c e s s P1
2 u1 := (d2==u2) ;
3 d1 := u2 & !d2
4 } whi le ( T )

21 do{ / / p r o c e s s P2
22 u2 := (u1==d1)
23 d2 := u1 & !d1
24 } whi le ( T )

upload/download decisions based on
the status of P2 and vice versa. With-
out AGS, we could7 get the solution in
Listing 6. Figure 1 summarizes all ex-
ecutions that are possible in this im-
plementation. Edges are labeled with
scheduling decisions, and states are labeled by the values of u1, d1, u2, and d2 in
this order. Given that the scheduler is fair, all depicted states will be visited infinitely

Fig. 1: Run-graph summarizing all executions of Listing 6.

often, so the specification of both processes is fulfilled. However, the correctness of
this solution depends on the fact that no process ever uploads and downloads simulta-
neously. If one process does, the other one gets stuck in a state where it uploads but
never downloads. As a concrete example, consider an alternative implementation of P2
with ?2,j= true. That is, P2 always uploads and downloads at the same time. The entire
system will get stuck in state TFTT, so the change in P2 makes P1 starve, although
the specification of P2 is still satisfied. Using our approach of AGS, we can be sure
that specification-preserving changes to one process cannot affect the correctness of the
other. Our tool computes an AGS solution within one second for this example.

7 Without AGS, our tool could have produced this solution, but it actually produces a different
one. The produced solution does not satisfy the AGS requirements either, but in a way that is
more difficult to explain.
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Listing 7: Sketch of a double buffering application.
0 f i l l :=T ; r e n d e r := F ;
1 i : = 0 ; w a i t 1 := F ;
2 do { / / p r o c e s s P1
3 whi le ( i < N) {
4 buf [ f i l l ] [ i ] := r e a d ( ) ;
5 i := i + 1 ;
6 }
7 f i l l : = ! f i l l ; w a i t 1 :=T ;
8 whi le ( ?1 ) / / So l . : fill == render
9 { } / / busy w a i t

10 i : = 0 ; w a i t 1 := F ;
11 } whi le ( T )

21 j : = 0 ; w a i t 2 := F ;
22 do { / / p r o c e s s P2
23 whi le ( j < N) {
24 w r i t e ( buf [ r e n d e r ] [ j ] )
25 j := j + 1 ;
26 }
27 r e n d e r : = ! r e n d e r ; w a i t 2 :=T ;
28 whi le ( ?2 ) / / So l . : fill != render | !wait1
29 { } / / busy w a i t
30 j : = 0 ; w a i t 2 := F ;
31 } whi le ( T )

7.3 Double-Buffering

Sketch. The example in Listing 7 is taken from [49] with slight adaptions. It mod-
els a variant of the producer-consumer problem. There are two buffers, buf[0] and
buf[1]. While process P1 writes to buf[0], P2 reads from buf[1]. Then, the
buffers are swapped. Such double-buffering is used in computer graphics and device
drivers. We want to synthesize a rendezvous so that the two processes can never access
the same buffer location simultaneously. Hence, our (initial) specification for both pro-
cesses is G(¬P1w ∨ ¬P2r ∨ fill 6= render ∨ i 6= j), where P1w indicates that P1
is in line 4, and P2r indicates that P2 is in line 24.

Results. Our synthesis tool satisfies this specification with ?i= true, so we add the
progress properties GF(P1w) and GF(P2r) to get more meaningful solutions. With
?i= fi(fill, render), the tool reports unrealizability (without memory). The so-
lution of waiting while fill=render does not work because P2 could be stuck in
line 28 without being scheduled until P1 flips fill again, which produces a dead-
lock. But intuitively, there should exist a solution utilizing the equality fill=render.
Next, we therefore set ?1= f1(fill=render, wait2) and ?2= f2(fill=render,
wait1). This allows processes to observe whether the other one is waiting. ForN = 1,
we get the solution printed in comments in Listing 7. Essentially, the two processes take
turns: by having opposite waiting conditions (fill=render vs. fill 6=render)
one waits while the other works. The additional disjunct !wait1 in P2 is only useful
in the first iteration: if P2 finishes first, it waits although fill6=render.

Performance. Table 2 lists the synthesis times for resolving the sketch of

Table 2: Synthesis times [sec] for Listing 7.
N 1 2 3 4 5 6 7 8 15
AGS 1 5 5 54 51 49 47 1097 877
non-AGS 1 4 4 38 35 32 31 636 447

Listing 7 with increasing N . We use
bitvectors for encoding the counters i
and j, and observe that the computation
time mostly depends on the bit-width.
This explains the jumps whenever N
reaches the next power of two. Coop-
erative co-synthesis is only slightly faster than AGS on this example.
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7.4 Synthesis of Atomic Sections in a Driver

Program. This example is taken from [9] (called ex5 there), and is a simplified ver-
sion of a bug in the i2c driver of the Linux kernel8. The code is shown in Listing 8.

Listing 8: Bug in i2c driver (simplified).
0 Open : = 0 ; On:= F ;
1 do{ / / p r o c e s s P1
2 i f ( Open < MAX){
3 i f ( Open == 0)
4 On := T ;
5 Open ++;
6 }
7 } whi le ( T )

21 do{ / / p r o c e s s P2
22 i f ( Open > 0){
23 Open−−;
24 i f ( Open == 0)
25 On := F ;
26 }
27 } whi le ( T )

Process P1 opens sessions and P2
closes them. The variable Open counts
the currently opened sessions. If there
are open sessions, On is set to true,
otherwise to false. Due to a race con-
dition, it can happen that Open 6= 0,
but On = false.9 We will now use our
engine to synthesize atomic sections so
that this problem cannot occur.

Modeling. We search for two functions f1 and f2 that map the program counter value
of the respective process to true or false. If a program counter value is mapped to true,
then this means that the process cannot be interrupted at this point in the program,
but immediately continues to execute the next instruction. That is, the two adjacent
instructions are executed atomically. (Each line is considered an instruction.) In the
SMT input file to our synthesis tool, this is modeled by making process P1 do nothing
if it is scheduled but f2(pc2) is true, and vice versa. This way, we do not have to change
the scheduler to take atomic sections into account, but rather ignore “wrong” scheduling
decisions in our transition relation, which has the same effect under a fair scheduler.

Specification. Using Φ = G((Open = 0) ∨ On) as the sole specification for both
processes is not ideal: one process could make the other starve by building an atomic
loop (e.g, by making all statements atomic). This enforces the specification, but is not
desirable. Hence, we specify process P1 by Φ ∧ G(F(scheduled(P2) ∧ ¬f1(pc1))) and
P2 by Φ ∧ G(F(scheduled(P1) ∧ ¬f2(pc2))). This way, both processes allow the other
one to move infinitely often.

Results. For performance reasons, we prefer solutions with a low number of atomic
sections. Hence, we assign costs to active atomic sections, and let our tool minimize
the total costs. As a result, we get an atomic section between line 4 and 5, and another
one between line 24 and 25. This renders all updates of the variable On atomic with the
relevant accesses of Open, and thus fixes the race condition. Both AGS and cooperative
co-synthesis produce the same solution for this example within 54 and 35 seconds.

8 Related Work

Reactive synthesis. Automatic synthesis of reactive programs from formal specifica-
tions, as defined by Church [17], is usually reduced either to games on finite graphs [8],
or to the emptiness problem of automata over infinite trees [42]. Pnueli and Rosner [40]
proposed synthesis from LTL specifications, and showed its 2EXPTIME complexity

8 See http://kernel.opensuse.org/cgit/kernel/commit/?id=
7a7d6d9c5fcd4b674da38e814cfc0724c67731b2

9 by executing the lines 2, 3, 4, 5, 22, 23, 24, 2, 3, 4, 5, 25 in a row.
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based on a doubly exponential translation of the specification into a tree automaton. We
use extensions of the game-based approach (see below) to obtain new complexity re-
sults for AGS, while our implementation uses an encoding based on tree automata [22]
that avoids one exponential blowup compared to the standard approaches [33].

We consider the synthesis of concurrent or distributed reactive systems with partial
information, which has been shown to be undecidable in general [41], even for sim-
ple safety fragments of temporal logics [45]. Several approaches for distributed syn-
thesis have been proposed, either by restricting the specifications to be local to each
process [34], by restricting the communication graph to pipelines and similar struc-
tures [21], or by falling back to semi-decision procedures that will eventually find an
implementation if one exists, but in general cannot detect unrealizability of a specifica-
tion [22]. Our synthesis approach is based on the latter, and extends it with synthesis
from program sketches [46], as well as the assume-guarantee paradigm [12].

Graph games. Graph games provide a mathematical foundation to study the reactive
synthesis problem [17,8,27]. For the traditional perfect-information setting, the com-
plexity of solving games has been deeply studied; e.g., for reachability and safety ob-
jectives the problem is PTIME-complete [28,4]; for GR(1) the problem can be solved in
polynomial time [39]; and for LTL the problem is 2EXPTIME-complete [40]. For two
player partial-information games with reachability objectives, EXPTIME-completeness
was established in [43], and symbolic algorithms and strategy construction procedures
were studied in [11,5]. However, in the setting of multi-player partial-observation games,
the problem is undecidable even for three players [38] and for safety objectives as
well [14]. While most of the previous work considers only the general problem and
its complexity, the complexity distinction we study for memoryless strategies, and the
practical SMT-based approach to solve these games has not been studied before.

Various equilibria notions in games. In the setting of two-player games for reactive
synthesis, the goals of the two players are complementary (i.e., games are zero-sum).
For multi-player games there are various notions of equilibria studied for graph games,
such as Nash equilibria [36] for graph games that inspired notions of rational syn-
thesis [23]; refinements of Nash equilibria such as secure equilibria [13] that inspired
assume-guarantee synthesis (AGS) [12], and doomsday equilibria [10]. An alternative
to Nash equilibria and its refinements are approaches based on iterated admissibility [7].
Among the various equilibria and synthesis notions, the most relevant one for reactive
synthesis is AGS, which is applicable for synthesis of mutual-exclusion protocols [12]
as well as for security protocols [16]. The previous work on AGS is severely restricted
by perfect information, whereas we consider the problem under the more general frame-
work of partial-information (the need of which was already advocated in applications
in [29]).

Synthesis of program fragments, sketching. For functional programs, where the spec-
ification is a relation between a single pair of inputs and outputs that can be represented
as a first-order logic formula, early works [50,26,35] were based on extensions of first-
order theorem provers with induction and proof analysis. Recent methods leverage the
power of decision procedures to obtain completeness even when reasoning about infi-
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nite data types [32], as well as techniques that limit the control structure of the synthe-
sized program by bounding the resources of the program [48].

A special form of the latter approach is program sketching [47,46], where the control
structure of the program is given, and values for a fixed number of unknown variables
are determined by search techniques. Our approach is inspired by program sketching,
in that we use sketches to limit the control structure of synthesized programs. We go be-
yond standard program sketching in that our programs are reactive, and in general can
use an unbounded amount of memory in addition to the program variables in the sketch.
Moreover, the search for suitable valuations of variables in sketching is usually imple-
mented as a counterexample-guided inductive synthesis (CEGIS) loop, whereas we use
an automata-based approach that encodes the existence of a solution into a single SMT
problem. In synthesis of reactive systems, synthesis from partial designs allows to start
with a distributed system where some components are already implemented [21,22],
and an approach similar to CEGIS has been proposed as lazy synthesis [20].

9 Conclusion

Assume-Guarantee Synthesis (AGS) is particularly suitable for concurrent reactive sys-
tems, because none of the synthesized processes relies on the concrete realization of
the others. This feature makes a synthesized solution robust against changes in single
processes. A major limitation of previous work on AGS was that it assumed perfect
information about all processes, which implies that synthesized implementations may
use local variables of other processes. In this paper, we resolved this shortcoming by
(1) defining AGS in a partial information setting, (2) proving new complexity results
for various sub-classes of the problem, (3) presenting a pragmatic synthesis algorithm
based on the existing notion of bounded synthesis to solve the problem, (4) providing
the first implementation of AGS, which also supports the optimization of solutions with
respect to user-defined cost functions, and (5) demonstrating its usefulness by resolv-
ing sketches of several concurrent protocols. We believe our contributions can form an
important step towards a mixed imperative/declarative programming paradigm for con-
current programs, where the user writes sequential code and the concurrency aspects
are taken care of automatically.

In the future, we plan to work on issues such as scalability and usability of our
prototype, explore applications for security protocols as mentioned in [29], and research
restricted cases where the AGS problem with partial information is decidable.
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