
Decidability in Parameterized Verification∗

Roderick Bloem1 Swen Jacobs2 Ayrat Khalimov1 Igor Konnov3

Sasha Rubin4 Helmut Veith3 Josef Widder3
1 TU Graz

2 Universität des Saarlandes
3 TU Wien

4 Università degli Studi di Napoli “Federico II”

Abstract

Parameterized model checking is an active research field. The system models that it
considers, as well as the proof methods it uses for obtaining decidability results, are quite
similar to those considered in distributed computing. We hope that our recent book [11]
helps distributed computing experts in understanding and entering parameterized model
checking research. In this short note we want to give a taste of this area.

1 Introduction

Designing concurrent or distributed systems, and proving their correctness, is both difficult
and error-prone. There are, roughly speaking, two streams of research that address these
tasks. On the one hand, principles of distributed computing are studied in order to develop
mathematical proof methods that allow to establish complexity results in distributed com-
puting (lower and upper bounds) [34, 8]. On the other hand, one develops computer aided
verification methods, such as model checking [14]. Mathematical proofs typically consider
parameterized systems, where, e.g., the parameter n determines the number of replicas in
a distributed system, and one determines the correctness of a distributed algorithm for all
values of n. The classic, and largely outdated, definition of model checking is that it con-
siders fixed size and finite state systems only. That is, one fixes e.g. n = 4 and checks the
small system for presence of bugs. However, nowadays most research in model checking con-
siders parameterization in one way or another, e.g., parameterized number of processes, or
parameterized domain of variables. Consequently, there is a vast literature in this domain.

Our recent book [11] focuses on automatic verification of systems where the number of
processes is parameterized, while the local state space of the processes is finite. More pre-
cisely, we consider decidability of parameterized model checking of concurrent systems. The
literature in this field considers different computational models and we thus survey results
for the most studied models: token passing systems, systems where processes coordinate by

∗Because of his tragic death, Helmut Veith did not participate in finishing this note. His curiosity and
energy ignited our joint long-term effort in parameterized verification.

This work was supported by the Austrian National Research Network RiSE (S11403, S11405, S11406) and
project PRAVDA (P27722) of the Austrian Science Fund (FWF), by the Vienna Science and Technology
Fund (WWTF) through grants APALACHE (ICT15-103) and PROSEED, by the German Research Founda-
tion (DFG) through SFB/TR 14 AVACS and project ASDPS (JA 2357/2-1), and by the Istituto Nazionale
di Alta Matematica through INdAM-COFUND-2012, FP7-PEOPLE-2012-COFUND (Proj. ID 600198).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249326174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pairwise rendezvous or one-to-many synchronization (broadcast), guarded protocols, and
finally ad-hoc networks.

In this note, we briefly discuss the features of these computational models and some
conclusions we have drawn from surveying the literature. For formal definitions as well
as a detailed survey of the results and their proofs we refer to the book. We start with
discussing the computational model used in the book in Section 2 and some often-used proof
techniques in Section 3, and then describe the different system models that are covered in
the book, and summarize their decidability results in Sections 4 to 7.

2 Models and Specifications

Finding out whether parameterized model checking is decidable for one’s favorite compu-
tational model boils down to checking whether it is captured by the semantics of one of
the published computational models. However, computational models are scattered over
the literature and use different terminology, and results are based on slightly different as-
sumptions. Hence, it is cumbersome to check whether existing results apply to our favorite
models. Our motivation was to provide a one-stop-source for results that eases this task.
This required us to provide a definition for concurrent systems that incorporates many of
the foundational computational models in the parameterized model checking literature. The
models we discuss in Sections 4 to 7 specialize specific features of this general model.

In our framework, a concurrent system, or system instance, P
G

is composed of a vector
of process templates P = (P 1, . . . , P d), and a graph G, on which copies of the templates are
arranged. We consider discrete time, and at each time step either one process acts alone,
or some process v initiates an action and some set of processes that are connected to v
in G simultaneously synchronize with v. Thus, we consider that processes coordinate in-
stantaneously using synchronization primitives (e.g., rendezvous), and do not consider, e.g.,
non-blocking communication by message buffers. Most importantly, the process templates
we consider have a fixed and finite local state space.

Synchronization primitives can then be defined by restricting the number of processes
that can simultaneously synchronize with the initiating process. We do so by a so-called syn-
chronization constraint that specifies how many processes should synchronize. For instance,
pairwise rendezvous is captured by having the singleton {1} as synchronization constraint,
which means that every synchronous transition must be taken by the initiating process and
exactly one other process.

Then, a parameterized system is a sequence of system instances formed from a fixed
vector of process templates and a sequence of graphs G. Typical sequences of graphs are
rings of size n, cliques of size n, or stars of size n, where n is the parameter. The nth instance

of a parameterized system is the system instance P
G(n)

. Parameterized specifications make
statements about parameterized systems by quantifying over process indices (i.e., vertices
of G(n)), e.g., “every process v of G(n) eventually satisfies predicate p”. To formalize this,
we recall the definitions of several indexed temporal logics in the book. The parameterized

model checking problem (PMCP) is to decide whether for all n ∈ N the instance P
G(n)

satisfies the specification.

2

3 Proof Techniques

3.1 Undecidability

In this area, undecidability is typically proven by reduction from the non-halting problem
of two-counter machines, which is known to be undecidable. In the proof, one then shows
how to simulate up to n steps of a two-counter machine in a system composed of n + 1
finite-state processes: There is a controller process that simulates the internal state of the
two-counter machine. The remaining n processes collectively encode the counter values in a
way that allows for storing values up to n, which is the maximal value that can be written
in n steps. The proofs differ in how the controller uses the synchronization primitives to
issue commands to increment/decrement counters and test counters for zero.

The prototypical such proof in a token ring is by Emerson and Namjoshi [27] and
describes a distributed algorithm that performs this task. This improved the first undecid-
ability results for systems consisting of identical processes arranged in a uni-directional ring
with a single multi-valued token by Suzuki [41] who reduces non-halting of Turing machines
to parameterized model checking. Undecidability of parameterized model checking then
follows from undecidability of the non-halting problem.

3.2 Decidability

One way to prove decidability of parameterized verification for a certain class of concur-
rent systems is to show that this class can be represented as a well-structured transition
system [29]. For such systems Abdulla et al. [2] provided a comprehensive theory.

A quite intuitive approach to parameterized model checking is to check the system for
small values of n and assume that if there is a bug in a system with a large number of
components, then the bug already appears in the small system. This approach can be
formalized as a cutoff or decomposition statement [27, 15] that reduces the parameterized
model checking problem to a finite collection of classic model checking problems. For specific
classes of systems one can show that such cutoffs or decompositions indeed exist, from which
decidability of parameterized model checking for such systems follows. To prove that c is
a cutoff for a class of systems and specifications in an indexed temporal logic, it suffices to
show that a system with exactly c components relates to a system with arbitrarily many
components. The details of the specific relation (e.g., simulation or bisimulation) depend
on the class of systems and the temporal logic under consideration.

4 Token-passing Systems

In a token-passing system (TPS), processes communicate by passing a token in the network.
The token may or may not carry a value that can be updated by the process that holds it.
In case of a valueless token, the only purpose of the token is to distinguish the process that
currently holds it from all the other processes, which allows one for example to implement
systems with mutual exclusion properties.

A well-known example system that can be modeled as a TPS with valueless token is
Milner’s scheduler [36]. The scheduler is composed of an arbitrary number of components,
each of which is responsible for activating some (unspecified) task and receives confirmation
when its task has been executed. Scheduling should ensure that the tasks are activated in
a round-robin scheme, and that every task has terminated before being activated again. As
noted by Emerson and Namjoshi [27], this can naturally be modeled in a token ring. That

3

1

2

3

4

cw
ccw

cw
ccw

cw
ccw

cw
ccw

(a) A bi-directional ring with 4 nodes. Edges are la-
beled with directions cw (clockwise) or ccw (counter-
clockwise). Processes can send the token in a direc-
tion by using actions sndcw or sndccw, respectively.

•start
∅

start
∅

•
{A} ∅

{C}

•
∅

•
{C}

rcv
sndcw

rc
v

rc
v

(b) Process template for Milner’s scheduler. States
with token are depicted with a dot inside. State la-
bels are depicted above states. Label A stands for
activation of the task, C for completion of the task.

Figure 1: Milner’s scheduler in a token ring.

is, processes are arranged in a ring, and one process starts with the token. A process that
has the token will activate its task, and then send the token to the next process. After
starting the task, it will wait for both the return of the token and a confirmation that the
task has terminated. Only after both of these events, the process will activate its task
again. Thus, communication by a single valueless token is sufficient to guarantee the global
properties required by the Milner scheduler. The graph and process template for Milner’s
scheduler in a token ring are depicted in Figure 1.

For other classes of systems, the parameterized verification literature usually considers
a single fixed graph structure, like cliques for systems with broadcast communication or
guarded protocols. In contrast, TPSs have been analyzed on a variety of graphs that can be
much more complex. In particular, this includes graphs where connections may be labeled
with directions, and processes can choose into which direction they want to send the token.
Finally, another orthogonal extension of the model considers systems with multiple tokens.

Results. Most of the decidability results in the literature are for TPSs with a single
valueless token [27, 15, 5], and where token passing satisfies some notion of fairness. How-
ever, even in systems with such a restricted communication primitive, parameterized model
checking is undecidable if we consider arbitrarily complex graphs and specifications in a
branching-time logic. Undecidability proofs show that such systems can simulate two-
counter machines, and deciding the PMCP would decide the non-halting problem of these
machines [15, 5]. To obtain decidability results, the literature considers restrictions on the
graph structure, as well as on the number of index and path quantifiers in the specification.

For rings, Emerson and Namjoshi [27] have identified concrete cutoffs between 2 and 5,
depending on the specification, but independent of the process template. Cutoffs for rings
and some other classes of graphs can be found by manually constructing a bi-directional
simulation as mentioned in Section 3.2 [27, 5]. In TPSs with possibly complex graphs,
this simulation needs to take into account whether processes mentioned in the specification
are direct neighbors or not, and consider all possible cases of neighborship relations if the
specification quantifies over multiple processes. For certain classes of graphs that can be
constructively specified, cutoffs can also be computed automatically [6].

If tokens can carry values, decidability is lost even in uni-directional rings [41]. Similarly,
if processes can distinguish directions in the graph, we get undecidability in bi-directional
rings [5]. To recover decidability, additional restrictions on graphs, processes, or specifica-
tions are necessary.

4

1

2

2 2

(a) A clique graph with three
clients and one server.

start

0S

1S

enter!!τ

(b) A server process.

start

0C

1C

τ

enter??τ

(c) A client process.

Figure 2: A Client/Server system.

5 Broadcast and Asynchronous/Pairwise-Rendezvous

The broadcast communication primitive is an abstraction of, e.g., ethernet-like broad-
cast, GSM’s cell-broadcast, communication in Prasad’s Calculus of Broadcasting Processes
(CBP) [39], or the notifyAll method in Concurrent Java [18]. To use the broadcast commu-
nication primitive, an initiator process sends a message and every process that is able to
receive the message (if any) immediately and simultaneously does so. Figure 2 illustrates a
client-server system with three clients. If the server broadcasts the message enter by firing
the transition from state 0S to 1S , then, simultaneously, every client that is in state 0C
transitions to 1C .

Two other related primitives are asynchronous-rendezvous in which exactly one process
that is able to receive the message does so (if any), and pairwise-rendezvous which is like
asynchronous-rendezvous except that sending is blocked if there is no process that is able to
receive. Asynchronous-rendezvous is an abstraction of, e.g., the notify method in Concurrent
Java [18], and pairwise-rendezvous is like synchronized communication in Milner’s Calculus
of Communicating Systems (CCS) and Hoare’s Communicating Sequential Processes (CSP).

Broadcast can express many others primitives including asynchronous- and pairwise-
rendezvous, token-passing (Section 4) and disjunctive guards (Section 6) [7].

Results. We assume the communication graph is a clique (other graphs are assumed in
Sections 4 and 7). Parameterized model checking of broadcast systems is undecidable for
liveness properties (e.g., some state from a given set is seen infinitely often), and decidable
for safety properties (e.g., no state from a given set is ever visited). The proof of unde-
cidability uses the basic encoding of two counter machines outlined above. The interesting
part of the simulation is testing a counter for zero, and uses a trick in which the controller
broadcasts a guess of whether the counter is zero or not, thus potentially introducing errors
to the simulation, which can be compensated for, however. Decidability of safety properties
follows from the fact that broadcast systems are well-structured transition systems [2]. The
case of asynchronous-rendezvous is similar.

On the other hand, for pairwise-rendezvous, both liveness and safety specifications are
decidable. The proof of this fact shows that such systems can be expressed as Petri Nets or
Vector Addition Systems [28]. The main idea is to use a counter-representation that cap-
tures, for each configuration, the number of processes in a each state. Thus configurations
are represented as vectors of natural numbers, and a rendezvous between two processes
corresponds to adding a fixed vector to a configuration.

All the results above are for linear-temporal specifications. Branching-temporal specifi-
cations are undecidable already for pairwise rendezvous [6].

5

neutralw neutralr

tryr

lockr

tryw

lockw

φ2φ1

Figure 3: A readers/writer protocol.

6 Guarded Protocols

The key feature of guarded protocols is that every process can query the local states of the
other processes in an anonymous way. For instance, a process j evaluates the disjunctive
guard [∃ other i] Ai∨Bi to true, whenever a global state contains a process i (other than j)
that is either in local state A, or B. Likewise, a process j evaluates the conjunctive guard
[∀ other i] Ai ∨Bi to true, whenever all processes different from j are either in A, or in B.
While the seminal paper by Emerson and Namjoshi [26] introduced guarded protocols for
synchronous systems, the follow-up papers by Emerson and Kahlon [23, 24, 25] considered
asynchronous guarded protocols.

Guarded protocols have been used to model cache-coherence protocols. A more classical
example is a multiple readers and single writer protocol shown in Figure 3. The readers
start in the state neutralr, and the writers start in the state neutralw. A writer’s transition
from the trying state tryw to the locking state lockw is guarded with the guard φ1 ≡
[∀ other j] neutralrj ∨ neutralwj ∨ tryrj ∨ trywj , which forbids this writer to make a transition,
if some readers or writers are in the locking state. A reader makes a transition from the
trying state tryr to the locking state lockr, only if all writers are in the neutral state, that
is, the guard φ2 is [∀ other j] neutralrj ∨ neutralwj ∨ tryrj ∨ lockrj .

Results. Unfortunately, parameterized model checking of boolean guarded protocols —
that is, protocols that use both disjunctive and conjunctive guards — is undecidable [26].
As usual, undecidability is shown by simulating two-counter machines. Thus, the research
has been focused on verification of systems that have only one kind of guards [23, 24, 25].

As shown by Emerson and Kahlon [23], each system composed of n processes having Q
local states and using only disjunctive guards has a cutoff of size |Q|+ 2. Hence, to check
a temporal property for all system sizes, it is sufficient to check the property for systems of
size up to |Q|+ 2. A cutoff of size 2|Q|+ 1 was also found [23] for systems with conjunctive
guards having the following restrictions: every process can remain indefinitely long in the
initial state, and no guard evaluates to false due to a process staying in the initial state.

Further, Emerson and Kahlon showed that systems with disjunctive guards can be
simulated by systems with rendezvous communication [25]. Hence, one achieves decidability
of PMCP for the systems that use both disjunctive guards and rendezvous communication.

In most cases, extending guarded protocols with broadcast leads to undecidability [25].
The only known decidability result is for regular action-based properties [25], that is, the
properties that can be described with a finite automaton recognizing words over the alphabet
of action labels.

Finally, Emerson and Kahlon developed special techniques for the restricted versions of
guarded protocols that model cache coherence protocols [24].

6

start
l0

err

start
s0

l1

l2

l3

s1

s2

s3

ack??
req??

req!!

ack??

ok!!

ack??

ack??

req??

req??
ack??
ok?? ack!!

ok??

l3

err

s3

err

err

errerr

s0

s3

err

l3

err l1

Figure 4: On the left: Request-Acknowledgment-OK protocol for ad hoc networks [19]:
initial states are {s0, l0}, a!! means “broadcast message a”, and a?? means “receive message
a” (for a ∈ {req, ack, ok}). On the right: example state after running the protocol.

7 Ad Hoc Networks

In ad hoc networks, processes communicate using “local” broadcasts: such messages are
visible only to processes in the communication range of the sender. Ad hoc networks can
be captured by broadcast systems (Section 5) if we model the communication ranges using
the system graph: two nodes are connected only if in the ad hoc network the two processes
can hear each other.

Figure 4 illustrates a Request-Acknowledgment-OK protocol to be run by processes of
an ad hoc network, and a possible state after executing the protocol. The intention of the
protocol is to “create” pairs of connected processes in states l3 and s3 that are isolated from
others by processes in state err.

In contrast to other systems considered in our survey, the literature on ad hoc networks
[19, 20, 21, 1] does not study the PMCP for a general class of specifications, but rather
three specific problems called COVER, REPEAT, and TARGET. COVER asks, given a
process description and a process control state, whether the control state can be reached
in a network of some size. Similarly, REPEAT asks if the state can be reached infinitely
often, and TARGET asks if all processes can simultaneously reach the state. The first two
problems can be expressed as a PMCP using the prenex indexed temporal logic, but the
last one requires a non-prenex fragment.

The literature also differentiates the results for different classes of graphs. We survey
results for five classes of undirected graphs, inspired by those found in practice, including
cliques, wheels, stars, processes arranged in clusters, and unrestricted graphs. We also
survey results [1] for directed graphs. Such graphs can model discrepancies in the send and
receive transmission ranges of processes.

Finally, the literature distinguishes ad hoc networks with and without failures. The
failure model is: any broadcast message can be lost non-deterministically for some of the
recipients. A related model is that of mobile networks, in which the network graph can non-
deterministically change during the execution. Delzanno et al.[21] showed that the models
of lossy and mobile networks are equivalent, so we focus on the former only.

7

Results. Roughly, COVER for ad hoc networks without failures is undecidable on graphs
that can have simple paths of unbounded length, except cliques (e.g., wheel-like graphs) [19].
The undecidability proof uses the ability of the network to simulate a given two-counter
machine, as follows. First, the network runs a special protocol that shuts down all processes
except one leader connected to two lists of processes. Then, the leader simulates the control
of the two-counter machine using the two lists to store the values of the counters. In this
construction, to be able to store the unbounded values of the counters, the two lists should
be of the unbounded length (unbounded in the parameterized system).

COVER is decidable on graphs in which all simple paths have a bounded length [19,
20]. The decidability proofs go via the machinery of well-structured transitions systems.
Intuitively, the proofs use the insight that behaviours of an infinite family of networks have
a finite basis, and it can be found using a saturation algorithm. Note that REPEAT and
TARGET are undecidable on all graph classes we survey, if considered on ad hoc networks
without failures [19].

All three problems become decidable for the case of lossy ad hoc networks [21]. The
hostile failure model makes it impossible to simulate a two-counter machine, and the de-
cidability proofs go via reduction to Petri nets (a certain kind of well-structured transition
systems).

8 Conclusions

We believe that parameterized model checking and distributed computing could mutually
benefit from studying parameterized verification in the context of state-of-the-art com-
putation models for distributed algorithms. To initiate a dialog between the concerned
communities, in this short note we wanted to give the distributed computing community a
taste of the questions studied in parameterized model checking. More details can be found
in our recent book [11].

While our initial goal in writing the book was to give a comprehensive survey on parame-
terized model checking, we quickly learned that the field is too lively for that. Consequently,
we limited ourselves to decidability issues in concurrent systems of identical finite state pro-
cesses. Indeed, our survey is just one in the area of parameterized model checking. Most
recently, Delzanno [17] surveyed broadcast protocols. Before that Zuck and Pnueli [43]
surveyed abstraction techniques. Regular model checking was surveyed by Abdulla [4],
well-structured transition systems were surveyed by Finkel and Schnoebelen [29], and de-
cidability in Petri nets was surveyed by Esparza [28].

Several parameterized model checking techniques have been implemented in tools such
as BOOM [10], ByMC [12], T(O)RMC [33], TLV [38] and Jtlv [37], Undip [3], MCMT [30],
CheAPS [32], MCMAS-P [35], and Cubicle [16]. Furthermore, there is a number of tools
that implement more general forms of infinite-state model checking, in particular with
support for integer-valued variables. With a suitable encoding, these tools can be used for
parameterized model checking. Examples of such tools are ALV [42], BRAIN [40], FAST [9],
MONA [22], and nuXmv [13]. Finally, the tool Party [31] uses decidability results surveyed
in our book.

Acknowledgments. We are grateful to Paul Attie, Giorgio Delzanno, Sayan Mitra, and
Kedar Namjoshi for carefully reading a draft of our book, and providing detailed and con-
structive comments.

8

References

[1] P. A. Abdulla, M. F. Atig, and O. Rezine. Verification of directed acyclic ad hoc
networks. In FORTE, volume 7892 of LNCS, pages 193–208. Springer, 2013.

[2] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems
for infinite-state systems. In LICS, pages 313 –321, 1996.

[3] P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated parameterized verification
of infinite-state processes with global conditions. Formal Methods in System Design,
34(2):126–156, 2009.

[4] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In CONCUR, volume 3170 of LNCS, pages 35–48. Springer, 2004.

[5] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of
token-passing systems. In VMCAI, volume 8318 of LNCS, pages 262–281, Jan. 2014.

[6] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking
of rendezvous systems. In CONCUR, volume 8704, pages 109–124. Springer, 2014.

[7] B. Aminof, S. Rubin, and F. Zuleger. On the expressive power of communication prim-
itives in parameterised systems. In M. Davis, A. Voronkov, A. McIver, and A. Fehnker,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 2015.

[8] H. Attiya and J. Welch. Distributed Computing. John Wiley & Sons, 2nd edition, 2004.

[9] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: acceleration from theory to
practice. STTT, 10(5):401–424, 2008.

[10] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter abstraction for
concurrent software. In CAV, volume 5643 of LNCS, pages 64–78. Springer, 2009.

[11] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. De-
cidability of Parameterized Verification. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool Publishers, 2015.

[12] ByMC. ByMC: Byzantine model checker, 2013. URL: http://forsyte.tuwien.ac.
at/software/bymc/. Accessed: April, 2016.

[13] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuXmv symbolic model checker. In CAV, volume 8559
of LNCS, pages 334–342, 2014.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[15] E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition.
In CONCUR 2004, volume 3170, pages 276–291, 2004.

[16] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zäıdi. Cubicle: A parallel smt-
based model checker for parameterized systems - tool paper. In CAV, volume 7358 of
LNCS, pages 718–724. Springer, 2012.

9

http://forsyte.tuwien.ac.at/software/bymc/
http://forsyte.tuwien.ac.at/software/bymc/

[17] G. Delzanno. A unified view of parameterized verification of abstract models of broad-
cast communication. International Journal on Software Tools for Technology Transfer,
pages 1–19, 2016.

[18] G. Delzanno, J. Raskin, and L. Van Begin. Towards the automated verification of
multithreaded Java programs. In TACAS, volume 2280 of LNCS, pages 173–187, 2002.

[19] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc
networks. In CONCUR, volume 6269 of LNCS, pages 313–327, 2010.

[20] G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the param-
eterized verification of ad hoc networks. In FOSSACS, volume 6604 of LNCS, pages
441–455. Springer, 2011.

[21] G. Delzanno, A. Sangnier, and G. Zavattaro. Verification of ad hoc networks with
node and communication failures. In FORTE, volume 7273 of LNCS, pages 235–250.
Springer, 2012.

[22] J. Elgaard, N. Klarlund, and A. Møller. MONA 1.x: new techniques for WS1S and
WS2S. In CAV, volume 1427 of LNCS, pages 516–520. Springer, 1998.

[23] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In
CADE, volume 1831 of LNCS, pages 236–254. Springer Berlin Heidelberg, 2000.

[24] E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache
coherence protocols. In CHARME, volume 2860 of LNCS, pages 247–262. Springer,
2003.

[25] E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, pages
361–370. IEEE, 2003.

[26] E. A. Emerson and K. S. Namjoshi. Automatic verification of parameterized syn-
chronous systems. In CAV, volume 1102 of LNCS, pages 87–98. Springer, 1996.

[27] E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput.
Sci., 14(4):527–550, 2003.

[28] J. Esparza. Decidability and complexity of petri net problems - an introduction. In In
Lectures on Petri Nets I: Basic Models, pages 374–428. Springer-Verlag, 1998.

[29] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256(1–2):63–92, 2001.

[30] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Logical Methods in Computer Science,
6(4), 2010.

[31] A. Khalimov, S. Jacobs, and R. Bloem. PARTY parameterized synthesis of token rings.
In CAV, volume 8044 of LNCS, pages 928–933. Springer, 2013.

[32] I. V. Konnov and V. A. Zakharov. An invariant-based approach to the verification of
asynchronous parameterized networks. J. Symb. Comput., 45(11):1144–1162, 2010.

[33] A. Legay. T(O)RMC: A tool for (omega)-regular model checking. In CAV, volume
5123 of LNCS, pages 548–551. Springer, 2008.

10

[34] N. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, Inc., San Francisco,
USA, 1996.

[35] MCMAS-P. VAS – Verification of autonomous systems, 2016. URL: http://vas.doc.
ic.ac.uk/software/extensions/. Accessed: April 2016.

[36] R. Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

[37] A. Pnueli, Y. Sa’ar, and L. D. Zuck. Jtlv: A framework for developing verification
algorithms. In CAV, volume 6174 of LNCS, pages 171–174. Springer, 2010.

[38] A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic verifi-
cation. In CAV, volume 1102 of LNCS, pages 184–195. Springer, 1996.

[39] K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program., 25(2-
3):285–327, 1995.

[40] T. Rybina and A. Voronkov. BRAIN : Backward reachability analysis with integers.
In AMAST, volume 2422 of LNCS, pages 489–494. Springer, 2002.

[41] I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett.,
28(4):213–214, July 1988.

[42] T. Yavuz-Kahveci and T. Bultan. Action language verifier: an infinite-state model
checker for reactive software specifications. Formal Methods in System Design,
35(3):325–367, 2009.

[43] L. D. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures, 30(3-4):139–169, 2004.

11

http://vas.doc.ic.ac.uk/software/extensions/
http://vas.doc.ic.ac.uk/software/extensions/

	Introduction
	Models and Specifications
	Proof Techniques
	Undecidability
	Decidability

	Token-passing Systems
	Broadcast and Asynchronous/Pairwise-Rendezvous
	Guarded Protocols
	Ad Hoc Networks
	Conclusions

