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Abstract. We present techniques for attributing amplification DDoS
attacks to the booter services that launched the attack. Our k-Nearest
Neighbor (k -NN) classification algorithm is based on features that are
characteristic for a DDoS service, such as the set of reflectors used by that
service. This allows us to attribute DDoS attacks based on observations
from honeypot amplifiers, augmented with training data from ground
truth attack-to-services mappings we generated by subscribing to DDoS
services and attacking ourselves in a controlled environment. Our eval-
uation shows that we can attribute DNS and NTP attacks observed by
the honeypots with a precision of over 99% while still achieving recall
of over 69% in the most challenging real-time attribution scenario. Fur-
thermore, we develop a similarly precise technique that allows a victim
to attribute an attack based on a slightly different set of features that
can be extracted from a victim’s network traces. Executing our k -NN
classifier over all attacks observed by the honeypots shows that 25.53%
(49,297) of the DNS attacks can be attributed to 7 booter services and
13.34% (38,520) of the NTP attacks can be attributed to 15 booter ser-
vices. This demonstrates the potential benefits of DDoS attribution to
identify harmful DDoS services and victims of these services.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks have become commoditized by
DDoS-for-hire services, commonly called booters or stressers [7,19]. A large num-
ber of booter services advertise their services openly as an economical platform
for customers to launch DDoS attacks. At the same time DDoS attacks are in-
creasing in number and in magnitude. This proliferation of DDoS attacks has
caused many network and website operators to rank this type of attack as one of
the largest threats facing them [13]. This barrage of DDoS attacks has increased
the demand for Content Delivery Networks (CDNs) and Software Defined Net-
working defenses that can absorb and filter these attacks [5]. In turn, this has



prompted attackers to react by devising increasingly efficient methods of bypass-
ing or overwhelming defenses. The result is an escalating technological arms-race
between DDoS attackers and defenders that at times has congested segments of
the core Internet infrastructure as collateral damage [17].

Despite the proliferation of DDoS services and attacks, little progress has
been made on attributing the services that are launching these attacks on behalf
of their customers. Most ideas for attribution focus on IP traceback mecha-
nisms [16, 21–23, 30] to trace the source of spoofed IP packets, which require
ISPs to assist and so far have not been widely deployed. This has resulted in
most of these attacks being unattributed unless the attackers unveil themselves.
While it is important to create strong technological DDoS defenses, we argue
that there is also benefit in investigating other methods that enable attribu-
tion of DDoS attacks to the services responsible for launching these attacks.
For instance, some of these booter services—seven out of 23 services that we
studied—claim they are benign services by advertising as “stress-testing” ser-
vices intended to be used only by authorized administrators. For example, one
of these services included this statement on their website, “We provide a pro-
fessional and legal ip stresser service which is based on a massive 20 dedicated
server backend, ensuring that your server is tested to its limits.” Attribution can
remove this veil of legitimacy and assist efforts to undermine these services by
allowing victims and law enforcement to attribute which booter services were
responsible for an attack. Attribution also enables measuring the scale of these
services and prioritizing undermining the larger services that are causing more
harm. In order to assist ongoing investigations, we are continually sharing infor-
mation from our study on DDoS attacks and booter services with the European
Police Office (Europol), the United States Federal Bureau of Investigation (FBI)
and large ISPs or backbone providers.

In this work, we show that it is possible to build supervised learning tech-
niques that allow honeypot amplifier operators and victims to accurately at-
tribute attacks to the services that launched them. To begin, we identify three
key features that honeypot operators can record to construct a supervised k -
NN classifier that can attribute attacks. In order to validate our method, we
subscribed to 23 booter services and generated a ground truth data set of at-
tacks to booter service mappings5. Validation of our classifier using the ground
truth self-attack data set shows that it is highly precise at attributing DNS and
NTP attacks with a precision of over 99% at 69.35% recall in the worst case of
real-time attribution. When retrospectively attributing attacks, the recall even
increases to 86.25%. Executing our classifier over the set of all attacks observed
by the honeypots shows that 25.53% (49,297) of the DNS attacks can be at-
tributed to 7 booter services and 13.34% (38,520) of the NTP attacks can be
attributed to 15 booter services.

Finally, we show that a k -NN classifier can also be used by victims to attribute
DDoS attacks to the service that launched the attack. Our findings demonstrate

5 Our ethical framework for these measurements is based on previous studies that
have used this methodology [7, 20].



that many of the attacks we observed can be attributed to a small set of booter
services that are operating relatively openly. Our ability to attribute large num-
bers of attacks to a small set of booter services and sharing of this information
with Europol and the FBI to assist in active investigations demonstrates the
usefulness of our attribution methods.

In summary, we frame our contributions as follows:

– We present a k -NN-based classifier that attributes amplification DDoS at-
tacks observed by honeypots with a precision of over 99% while still achieving
recall of over 69% in the most challenging real-time attribution scenario.

– We present a similarly precise technique that allows a DDoS victim to at-
tribute attacks based on features extracted from a victim’s network traces.

– We attribute 25.53% (49,297) of the DNS attacks to 7 booter services and
13.34% (38,520) of the NTP attacks to 15 booter services.

2 Background

2.1 Threat Model

Amplification DDoS constitutes a powerful attack in which an adversary aims
to exhaust the bandwidth of a victim’s host or network by inducing a large
volume of traffic. Towards this, the attacker abuses multiple servers as so called
amplifiers. These servers offer UDP-based protocols prone to amplification, i.e.,
the server’s response is significantly larger than the corresponding request sent
to the server. At least 14 protocols suffer from this flaw [18], such as NTP
and DNS, leading to a multitude of servers that can be exploited as amplifiers.
Given the connection-less nature of UDP, an attacker can redirect the servers’
responses to the victim by simply spoofing the source IP address in requests.
Due to amplification ratios of a factor of 5 to 4500 [18], an attacker that sends
requests at a rate of some Mbit/s can still cause attack traffic at Gbit/s-scale.

Furthermore, we are concerned with a special type of attacker: booter services.
These offer platforms for DDoS-as-a-service, often under the disguise of “stress-
testing”, where customers can request various types of attacks for a small fee. The
booter will then launch these attacks using its infrastructure. Our threat model
thus contemplates four parties: Customers, who commission attacks; booters,
who conduct the actual attacks; amplifiers, who are exploited to amplify traffic;
and victims, who are the targets of such attacks.

The aim of this paper is to attribute attacks to booters, when observed from
either the victim’s or an amplifier’s perspective. This is non-trivial, as from the
victim’s perspective the attack seems to stem from the amplifiers. Similarly,
from an amplifier’s perspective, the requests seem to be legitimate requests by
the victim (due to the use of spoofed source IP addresses by the booter). While
ultimately one would like to identify the customer, only the booter, amplifiers,
and the victim are directly participating in an attack. Nonetheless, since the
booter has a business relation to the customer, pinpointing the booter behind
an attack constitutes an important step towards this goal.



2.2 Ethical Considerations

As part of our study we subscribed to 23 booters and conducted a controlled set
of self DDoS attacks. Furthermore, we also leveraged honeypots for amplification
attacks. We settled on this methodology for collecting a ground truth data set of
mappings between observed attacks and the services that launched these attacks
after finding that no data set available to us could be used to validate our DDoS
attribution techniques. Before we began performing these self DDoS attacks we
carefully attempted to minimize the harms and maximize the benefits associated
with our methodology based on observations from previous studies that launch
self-attacks in order to measure booter’s attacks [7, 20].

We received an exemption from our Institutional Review Board (IRB), since
our study did not include any personally identifiable information. In addition,
we consulted with our institution’s general counsel, who advised us not to en-
gage with any DDoS service that advertised using botnets and to cease active
engagement with any booter service that we realized was using botnets.

An analysis of TTL values observed by the honeypots indicated that it is
unlikely any of the booter services we subscribed to used botnets. Based on the
guidance of our institution’s general counsel, our victim server was connected
by a dedicated 1 Gbit/s network connection that was not shared with any other
servers. We also obtained consent from our ISP and their upstream peering points
before conducting any DDoS attack experiments. We also minimized the attack
durations, notified our ISP before launching any attack and had a protocol in
place to end an attack early if it caused a disruption at our ISP.

We purchased subscriptions from 23 booter services. When doing so, we se-
lected the cheapest option, which ranged from $6-$20 and averaged $12 per
month, to minimize the amount of money given to these services. In total, we
spent less than $400 and no individual booter service received more than $40 in
payments as part of the measurements in this paper6. All payments were made
using PayPal and we assumed that proper controls were put in place at PayPal
to mitigate the risk of money flowing to extremist groups. As part of our design
methodology, we minimized the amount of money paid and targeted a small set
of booters to obtain a valuable ground truth data set.

Our method created some harm to amplifiers and their upstream peering
points by consuming bandwidth resources. The largest amount of bandwidth
consumed was 984.5 kbit/s for NTP amplifiers and the least was 16.7 kbit/s for
DNS amplifiers, similar to those reported in a previous study [7].

Over the course of our experiments we did not receive any complaints from
the operators of these amplifiers. We limited our attacks to 30 seconds. Based on
analysis from a previous study that used a similar methodology [7], these short
duration attacks enable us to observe about 80% of the amplifiers used by a
given booter service and reduce the harm we cause to misconfigured amplifiers.

6 To put this into perspective: Previous studies of these booters have shown that
they have thousands of paid subscribers and generate revenues of over $10,000 per
month [7, 19].



Similarly, the use of DDoS honeypots might also incur harm on the Inter-
net. We used AmpPot, a honeypot proposed by Kraemer et al. [8]. To avoid
contributing to DDoS attacks, AmpPot limits the rate of requests and deploys
automatic IP blacklisting: The honeypots will stop responding for one hour to
any IP address sending more than 10 requests per minute. This limits the max-
imum amount of data sent to a DDoS victim to a few kilobytes. For a more
detailed ethical discussion on AmpPot we refer the reader to [8].

3 Amplification Attack Data Set

To investigate if and how amplification attacks can be attributed to their origi-
nating booter service, we established two data sets that help us to gain insights
into the overall amplification attacks, but also to find concrete attack instances
caused by individual booters. In Section 3.1, we describe how we leverage amplifi-
cation honeypots to gain insights into global amplification attacks. In Section 3.2,
we discuss how we use booters and launch controlled attacks against ourselves
to learn about attack techniques of certain attackers.

3.1 Honeypot Attacks

Although the general threat of amplification attacks has been known for years,
actual attack insights are only documented in anecdotal evidence, such as at-
tacks against Spamhaus or OVH at hundreds of Gbit/s attack volume. To col-
lect insights into the set of global amplification attacks, we leverage data col-
lected by AmpPot [8], a honeypot proposed by Krämer et al. AmpPot emulates
seven UDP-based protocols that have known amplification vectors and will thus
eventually be abused as part of real-world DDoS amplification attacks (QOTD,
CharGen, DNS, NTP, RIPv1, MSSQL, and SSDP). Krämer et al. observed that
attackers will eventually find such honeypots via Internet scans, and start abus-
ing them as potential reflectors shortly thereafter. AmpPot thus serves as an
eye on global amplification attacks, and due to the nature of the attack traffic,
can also observe who is being attacked and when.

In December 2014, eleven globally-distributed honeypots with single static
IP addresses were deployed, and have been operated continuously since then.
In November 2015, a twelfth honeypot was added, listening on 48 static IP
addresses. This honeypot employs a special feature named Selective Response,
where each source scanning for amplifiers will find a unique set of 24 IP ad-
dresses7 [10].

We set our analysis period to two months from December 9, 2015 to February
10, 2016. In this period, the honeypots observed 570,738 amplification attacks
(8,918 attacks per day on average). However, given that RIPv1, MSSQL, and
QOTD combined account for less than 5% of these, we decided to exclude those
protocols from our analyses.

7 The idea behind this is to imprint a unique fingerprint on each scanner. Letting each
scanner find 24 IP addresses maximizes the total number of fingerprints.



Table 1: Covered booter services
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3.2 Self-Attacks

The honeypots give us valuable insights into global attacks, but do not give us
indications where the attacks were coming from. Previous studies have identified
so-called booter services (“booters”) as being responsible for a large number
of amplification attacks [6, 7, 20]. In an attempt to learn attack characteristics
of these booters, we signed up at these services and then launched short-lived
amplification attacks against a target in our control.

To start launching self-attacks and correlating them with the traffic seen at
the honeypots, our first task was to identify booter services to cover in the study.
Absent a centralized location for finding booters, we located services via search
engines and advertisements on underground forums. We selected a total of 23
services offering amplification attacks based on NTP, DNS, CharGen and SSDP.
When selecting these booters, we tried to include services that we speculated
to be more stable and have more subscribers based on reviewing user feedback
on underground forums. To minimize the amount of money we paid to these
abusive services, we kept the number of covered booters relatively small.

Table 1 provides an overview of the booter services8 that we cover and the
amplification attack types they offer. NTP was the most popular attack pro-
tocol, followed by DNS. 16 of the 23 services clearly advertise malicious DDoS
attacks. In contrast, seven services hide their malicious intention behind “stress-
ing” services, a seemingly benign way to verify the resilience of a network against
DDoS attacks. However, not a single service performs any kind of attack target
validation. That is, service subscribers can specify any IP address (or domain)
that should be attacked, regardless of whether the target is under the control of
the client. This shows the clear malicious intention behind all 23 booter services.

Booter services maintain front-end sites that allow their customers to pur-
chase subscriptions and launch attacks using simple web forms. We created cus-
tom crawlers to automate the task of visiting the websites of covered booters
and launching attacks directed at our own target. Using this automation, daily
attacks were launched for each covered booter and attack type. A total of 13
booter services were covered within the first week of starting the self-attacks on
December 9, 2015 and by January 14, 2016 all 23 booters were covered.

8 To avoid unintentionally advertising booter services covered in this study, we replace
the name of booter services by the first three letters of their domain name. The last
letter is replaced by a number in the case of name collisions.



Table 2: Overview over self-attacks
attacks observed

Protocol booters launched at victim at honeypots >100 pkts.

CharGen 16 608 417 35 33
DNS 19 676 452 173 100
NTP 22 823 577 421 373
SSDP 16 560 351 1 0

Total 23 2667 1797 630 506

Labeling Self-Attacks As we instructed all booters to attack the same
target, we had to find a mechanism to separate between multiple consecutive
self-attacks to assign (booter) labels to the attack traffic. To this end, we initially
relied on the time that attacks were initiated. To account for clock skew, we left
10 minutes between consecutive attacks and used a grace period of ±3 minutes
for matching. On January 14, we started to use a distinct victim IP per booter
service as an improved matching criterion. Based on the same criterion, we then
also mapped the self-attacks to attacks observed at the honeypots.

Table 2 gives an overview over the self-attacks. We launched a total of 2667
CharGen, DNS, NTP and SSDP attacks using 23 booter services. Interestingly,
only around 2/3 of the attacks we initiated were observed at the victim. This
can be explained by our observation of maintenance issues that some booter
websites have. Sometimes booter websites provide the user interface for selecting
a particular attack type that is temporarily non-functional. To users it appears
that the attack has been successfully launched, but no actual attack traffic is
generated as a result of initiating such attacks.

The DDoS honeypots observed many NTP attacks (73.0%) and DNS at-
tacks (38.3%), but only a small fraction of the CharGen attacks (8.4%) and only
a single SSDP attack. Furthermore, while the honeypots observed some traffic
belonging to 630 attacks, in only 506 cases did we record more than 100 requests.
We inspected the reasons why the honeypots missed large portions of SSDP and
CharGen attacks. To this end, we investigated the attack traffic towards our
victim to learn the preferences of attacks in choosing reflectors. In both cases,
we found that the vast majority of the reflectors that were abused by multiple
booters send responses that are significantly larger than the ones configured in
AmpPot. This indicates that the honeypots’ SSDP and CharGen responses were
too small to be attractive for attackers, and adversaries preferred other reflectors
with better amplification. We leave further investigations on reflector selection
strategies open for future work and focus on DNS and NTP in the following.

Multi-Branding Booters During the sign-up phase, we noticed that some
booters were visually similar. Investigations have revealed that one miscreant
follows a multi-branding strategy, i.e., sells the same service via different booter
names that shared similar web front-ends. It became apparent that attacks from
RAW and WEB shared characteristics, and also their sign-up page of the web inter-
face was equivalent in appearance and HTML code. We further analyzed those



two booters by launching application layer (layer 7) attacks against our victim
server. Layer 7 attacks usually abuse public HTTP proxy servers to hide the
identity of back-end servers involved. However, some proxies reveal the identity
of the requesting clients in the X-Forwarded-For field of the HTTP header.
Based on this observation, we were able to verify that these two booters used
shared back-end infrastructure. We thus conclude that RAW and WEB are likely to
be operated by the same individuals and will regard them as equivalent.

4 Characteristic Attack Features

We will now introduce characteristic attack patterns that we can use to train our
classifier for attribution purposes. We first describe various characteristics that
we have observed to repeat across subsets of attacks at the honeypots. We then
describe how we leverage these observations as features to summarize attacks.

4.1 Attack Observations

While analyzing the attacks captured by the honeypots, we observed the follow-
ing three properties that repeated across subsets of the attacks.

Honeypot Sets: Although eleven honeypots were active since the end of
2014, few attacks (1.63%) abused all of them simultaneously. In fact, more than
60% of all DNS- and NTP-based attacks abused five honeypots or less. This
indicates that attackers either perform only partial scans of the Internet, or
choose a subset of the discovered amplifiers in subsequent attacks.

Interestingly, we observed that honeypot sets seem to be reused across multi-
ple attacks, i.e., even in attacks against different victims or on different days. To
further investigate this observation, we analyzed amplifiers seen in self-attacks
from a few example booter services over time, shown in Figure 1. The entries on
the heat maps show the ratio of abused amplifiers that were shared per booter
and attack protocol on two consecutive days each. With the exception of DNS,
there is a high level of overlap for attacks based on NTP, CharGen, and SSDP,
suggesting that booters reuse their set of amplifiers for a protocol for some time.
The low overlap for attacks based on DNS is likely caused by frequent rescans
to account for the relatively high IP churn rate of DNS amplifiers [11].

In addition, we verified that two simultaneous attacks towards the same vic-
tim on different protocols showed little overlap in the sets of honeypots abused.
This could indicate that the set of amplifiers might be specific to the protocol,
which intuitively can be explained by the small overlap of systems that suffer
from amplification vulnerabilities for multiple protocols.

Victim Ports Entropy: While one UDP port determines the amplification
protocol (e.g., DNS, NTP, etc.), the other determines the victim port on which
the victim will receive the reflected responses. Since an attacker has virtually no
restrictions on setting the victim port, we expected to observe the two obvious
choices: Choosing one victim port per attack, or choosing an individual victim
port for every request. Surprisingly, in addition to that, we also observed attacks



Fig. 1: Overlap of amplifier sets between consecutive dates.

where requests shared a small number of victim ports. One explanation could be
that attackers use multiple threads for attacking, and that they choose a different
victim port per thread. In addition, we verified that a significant number of booter
services actually ask their clients to choose the victim port, giving a reason why
the number of source ports is frequently restricted to one.

Time-to-Live Values: The Time-to-Live (TTL) value in the IP packet
indicates how many hops a packet has traversed from the attack source to the
honeypot. As already observed by Krämer et al. [8], for one particular attack,
a honeypot will usually only see one (or very few) TTL value(s). We can thus
conclude that most attacks likely stem from a single source, which motivates
further investigations in finding this particular source sending spoofed traffic.
Additionally, the vast majority of requests have a TTL > 230. This suggests that
attackers use a fixed initial TTL of 255 in their generated packets, as otherwise
we would see a wider distribution.

4.2 Distance Function

In order to leverage these observations in a classifier, we next introduce a distance
function based on the above features. Given two attack instances A and B, such
a function is used to determine how dissimilar the two instances are. For an
attack A, we will denote the set of honeypots used by HPA, the set of victim
ports observed by VPortA, and the set of TTLs received at honeypot hp by
TTLhp,A.

To compare honeypot sets, we leverage the well-known Jaccard distance:

dhp(A,B) = 1− |HPA ∩HPB |
|HPA ∪ IPB |

To compare the set of victim ports, we take the normalized difference:

dvp(A,B) =

∣∣|VPortA| − |VPortB |
∣∣

max (|VPortA|, |VPortB |)



Finally, to compare TTLs, we compute the overlap of their histograms9

dhist(S, T ) = 1−

∑
x

min(S(x), T (x))∑
x

max(S(x), T (x))

and then average this overlap over all honeypots involved in both attacks:

dttl(A,B) =

∑
hp∈HPA∩HPB

dhist (TTLhp,A,TTLhp,B)

|HPA ∩HPB |

From these three sub-functions we compute a weighted average as the overall
distance function. We set the weights to whp = 5, wvp = 1, and wttl = |HPA ∩
HPB |/2. Note that our methodology is independent from the weights and the
analyst can choose any weights according to her needs. We assigned a smaller
weight to the victim port feature, as it relies on inputs with little entropy given
just three cases: a single victim port, a few victim ports, or many victim ports.
For the TTL feature, we assign a higher weight if the two attacks have more
honeypots in common, as we assume that coinciding TTLs for multiple honeypots
have a much higher significance than those for only a single honeypot.

5 Honeypot Attack Attribution

We now leverage the aforementioned features to identify which booter has caused
which attacks observed at a honeypot. The core idea is to use supervised ma-
chine learning techniques to attribute an attack observed at a honeypot to a
particular booter service. We will first use our ground truth data set to show
the performance and resilience of our classifier in various situations. Afterwards,
we will apply the classifier to the entire data set of attacks collected by the
honeypots.

5.1 Description

Finding the true origin of an amplification attack is a non-trivial problem,
because—from the reflector’s perspective—all packets carry spoofed headers.
Using our attack distance metric, we showed that attacks from the same booter
service exhibit similar characteristics and this observation turns the problem of
finding the origin of an attack into a classification problem. The collected self-
attack data set can be used for training and validating a classifier. Since the
number of attacks observed strongly varies between booters, we decided to use
the k-Nearest Neighbor (k-NN) algorithm due to its resilience to such imbal-
ances. In k-NN, to determine the label of an instance, the set of its k nearest

9 To account for fluctuation in TTLs due to route changes, we apply smoothing to
the histograms using a binomial kernel of width 6, which corresponds to a standard
deviation of σ ≈ 1.22.



neighbors is computed. Next, every neighbor casts a vote for its own label, and
finally the instance is given the label of the majority of its neighbors.

Additional care has to be taken, as our training data set is not exhaustive
and may miss data for some booters. That is, not all attacks can be attributed
to a booter that we know. Therefore, we use a cutoff threshold t to introduce
a label for an unknown classification result. When classifying an item i, we only
consider the k nearest neighbors that can be found in the neighborhood of radius
t centred around item i. If no item from the training data set lies within this
neighborhood, the item i is assigned the label unknown. To find a well-suited and
conservative threshold, we analyzed our ground truth data set using our distance
function and hierarchical clustering. From those clusters, we then computed the
average distance between attacks within a cluster and took the 95th percentile
over all. This results in t = 0.338 for DNS and t = 0.236 for NTP.

Furthermore, as shown in Section 4.1, booters rescan to find new lists of
amplifiers on a regular basis. To reflect this during classification, we only con-
sider elements from the training data set no more than 7 days apart, which
approximately corresponds to the maximum rescan frequency we observed for
booters.

When using k-NN, the choice of k is highly critical for the performance of
the classifier. One common approach is to learn the value of k from the training
data set using n-fold cross-validation (CV). In n-fold CV, the training data set
is partitioned into n equally sized sets. Then, the classifier is trained on n − 1
of these sets, and the final set is used for validation. This process is repeated n
times, until every set has been used as the validation set once. For finding k we
thus perform 10-fold CV for all k ∈ {1, 3, 5} as part of the training phase of the
classifier. We restrict k to odd values to avoid ties in the voting phase. We only
consider k ≤ 5, because about 2/3 of the clusters contain less than five attacks.

To assess the performance of our classifier, we first define the false positive
rate (FPR), precision and recall metrics, as well as macro-averaging. Intuitively,
the FPR for a label li (in our case, a particular booter) is the fraction of elements
that were incorrectly assigned the label li while their true label was not li. In
a similar vein, precision is the ratio with which the classifier was correct when
assigning label li, while recall is the ratio with which the classifier is able to
re-identify elements with true label li. Let tpi be the number of items correctly
classified to have label li (true positives), let tni be the number of items correctly
classified to not have label li (true negatives), let fpi be the number of items
incorrectly classified to have label li (false positives), and let fni be the number
of items incorrectly classified to not have label li (false negatives). Then the FPR
is defined as fpri = fpi/(fpi + tni), precision as pi = tpi/(tpi + fpi), and recall as
ri = tpi/(tpi + fni). To compute overall performance measures from these per-
class metrics, we employ macro-averaging, i.e., first computing fpr, p, and r per
class and averaging the respective results afterwards, as this will avoid bias due
to imbalance in our ground truth data. Thus booters for which we were able to
collect more datapoints do not influence the results more strongly. However, since



Table 3: Honeypot-Driven Experimental Results
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we strongly prefer mislabeling an attack as unknown over incorrectly attributing
it to a wrong booter, we only weigh the unknown label with 1

8 .

5.2 Validation

To validate our classifier, we defined three experiments on our labeled self-attack
data set: First, we conducted 10-fold CV to assess how well our classifier can
correctly attribute attacks (E1). Second, to estimate how well our classifier deals
with attacks from booters not contained in the training data set, we used leave-
one-out CV on the booter level (E2). This means that the attacks from all but
one booter constitute the training set, and all attacks from the omitted booter
are used for validation, checking if these attacks are correctly labeled as unknown.
Third, we were also interested in the performance of classifying attacks in real-
time (E3), i.e., training only on labeled observations prior to the attack.

Table 3 shows the results for both DNS and NTP. For each experiment we
give the percentage of attacks correctly attributed to its booter, the percentage
of attacker the classifier labeled as unknown, as well as the percentage of attacks
that were misclassified, along with their putative label. Additionally, the first
row states the number of attacks contained in our data set10. Note that in the
second experiment (E2) every column regards a classifier trained on the entire
data set except the corresponding booter; hence the classifier is correct when
assigning the unknown label in this case.

10 This effectively provides the entire confusion matrix for each experiment.



In the 10-fold CV (E1) our DNS classifier correctly attributed 78% or more of
the attacks for each booter. Exceptions are the cases of EXI and VDO, for which
our data set only contains a single attack, which naturally cannot be attributed
correctly due to lack of training data. All the remaining attacks were labeled
as unknown. In fact, the DNS classifier never attributed an attack to a wrong
booter in all three experiments. This is especially remarkable in the leave-one-
out scenario (E2), when the classifier was not trained on data for one of the
booters. That is, even in this case our classifier did not lead to false accusations,
showing the resilience of the classifier against attacks stemming from booters
not contained in the training set. Of course, this resilience comes at the cost of
higher false negative rates in the other experiments (E1 & E3), as we prefer the
classifier to label an attack as unknown over attributing it to the wrong booter.
This could possibly be alleviated by obtaining more training data per booter.
The last experiment (E3) simulates the performance of the classifier in a real-
time scenario, i.e., when classifying an attack only based on training data that
was obtained prior to the attack. In contrast to this, the first experiment (E1)
measured the performance when classifying attacks after the fact. Since booters
regularly rescan for amplifiers and update their set of amplifiers accordingly, our
classifier will achieve a performance worse than in the first experiment (E1).
However, even in the real-time attribution setting, we could still attribute at
least 67% of all attacks without any incorrect attributions. The loss compared
to E1 can be explained by the fact that the first attack of a booter can never be
correctly classified due to lack of prior training data.

In the case of NTP, we achieved an overall attribution rate of 78% or more in
the 10-fold CV (E1) for most booters, with the exception of those which occur
only once in the data set. Remarkably, the cases of EXI and SYN show that the
classifier also performs reasonably well even for small amounts of training data.
The NTP classifier generates misclassifications. However, this only stems from
a few attacks by NET and CRI, which exhibit precisely the same characteristics.
While we suspect that NET and CRI share the same infrastructure, we were not
able to verify this assumption by leveraging layer 7 attacks (as done previously
for RAW and WEB). The same two attacks are also the cause for the only mis-
classifications in the leave-one-out scenario (E2), as about a quarter of attacks
from CRI were attributed to NET, when the classifier was not trained on data
from CRI. In the real-time scenario (E3), the NTP classifier attributed over 76%
of the attacks in most cases, even outperforming the DNS classifier. Since NTP
experiences less amplifier churn, booters can use the same amplifier set for a
longer period of time, i.e., an attack is more likely to use a set of amplifiers for
which the classifier already observed a training sample. A notable exception here
is BO1, for which only 57% of the attacks could be attributed, despite the large
number of attacks contained in the data set. This indicates that BO1 performs
rescans more frequently than other booters.

Averaging over booters for which the data set contains more than one attack,
our classifier achieves a macro-averaged precision of 100.00% and recall of 86.25%
in E1 for DNS, and 99.74% and respectively 91.01% for NTP. In the case of



real-time attribution (E3), the precision stays similarly high (100.00% for DNS,
99.69% for NTP), while the recall drops to 69.35% and respectively 76.73%.

5.3 Attribution

After validating the classification mechanism, we now turn to applying it to our
entire data set of attacks observed at the honeypots (excluding the self-attacks).
Due to their low entropy, we excluded attacks that were only observed by a
single honeypot. This left 266,324 NTP-based and 161,925 DNS-based attacks.
For both we trained our classifier on all self-attacks collected from December 9
to February 10.

Our NTP classifier attributed 38,520 attacks (14.46%) to one of the booters
it was previously trained on and our DNS classifier attributed almost a third of
all attacks (49,297, 30.44%) to a booter. Note that not all attacks observed at
the honeypots have to be caused by booters; they can also be caused by malev-
olent parties that do not offer their attack capabilities on an online platform.
Furthermore, since we only trained our classifier on a limited set of booters, our
classifier cannot possibly achieve a classification rate of 100%. Still, attributing
a considerable amount of attacks to the booters of our training set indicates that
the booters we considered are used very actively.

6 Victim-Driven Attack Attribution

Based on the success of the classifier that allows honeypot operators to attribute
DDoS attacks, we now aim to build a similar classification method that will
enable victims to attribute attacks based on features that can be extracted from
victims’ network traces. The core idea is to isolate a set of features that are
directly observable by the victim and that can precisely attribute attacks to a
particular booter service using a similar k -NN-classifier algorithm.

6.1 Description

Motivated by the fact that each booter abuses characteristic sets of amplifiers,
we use the set of amplifiers as seen in the victim’s attack traces as a feature for
training our victim-driven classifier. However, the TTL value of the attack source
used in the honeypot operator attribution technique is not directly observable by
a victim, so we cannot use this feature in our victim based attribution method.
The loss of the TTL value feature is mostly compensated for by the victim being
able to see a larger set of amplifiers used by the booter service.

As we will show, this single feature is sufficient to build a classifier that
can accurately attribute NTP, SSDP, and CharGen attacks from the victim’s
perspective. The one exception is that the set of open DNS resolvers used by
individual booter services are less stable over time, likely due to churn. As a
result, relying on the set of amplifiers as the sole feature for classifying DNS
attacks will not provide the same classification performance as for the other



three attack types. Therefore, we must identify additional entropy to improve
the accuracy of our victim-based DNS attack classification technique. Based on
our analysis of DNS attack traces captured at our victim server, we noticed that
each booter service tends to send spoofed ANY requests for a very small number
of mostly non-overlapping domain names. We thus complement the feature of
amplifier sets with an additional feature over the set of domain names resolved
in DNS attacks. That is, for DNS, the Jaccard index is computed both for the set
of amplifiers and for the set of resolved domains, and the similarity score is the
mean of the two computed Jaccard indices. For all other protocols (NTP, SSDP,
and CharGen), we use the Jaccard index computed over the set of amplifiers.

In the victim-driven data set, all attacks are labeled with the booter service
and we do not have any unknown attacks. However, we will evaluate the situation
of unattributed attacks by performing the same E2 leave-one-out CV experiment
as in Section 5.2. Given this, we select a cutoff threshold t to introduce a label for
an unknown classification result that is used in the same way as in Section 5.2.
We choose a conservative threshold of t = 0.55 for CharGen, t = 0.60 for DNS,
t = 0.55 for NTP, and t = 0.45 for SSDP. In order to select the threshold value,
the score of correct classifications and incorrect classifications were manually
checked and a reasonably conservative value was selected for each attack type.
Only attack instances in the training set for which the similarity score is no less
than t were considered as potential neighbors. If no neighbor could be found for
a test instance, it was classified as unknown.

6.2 Validation

To validate the results of our victim-driven classifier, we perform the same exper-
iments as in Section 5.2. Table 4 shows the result of our victim-driven classifier
experiments for DNS and NTP11.

In E1, our DNS classifier achieved high attribution rates of 80% or more,
except for BO2, EXI, EXO, and VDO, where a large fraction was also marked as
unknown. However, in five cases the classifier also mistook attacks from one
booter as coming from another. The higher number of false positives for DNS is
attributable to the less stable set of DNS amplifiers abused by booters. These re-
sults are worse than those for the honeypot-driven classifier, possibly due to the
fact that unlike organic sets of amplifiers, the honeypots do not churn over time.
Misclassifications are even more prevalent in our E2 experiment, where in some
cases the classifier confused over half of the attacks. While the number of mis-
classifications could be reduced by lowering the cutoff threshold, this would also
cause a higher rate of unknown results in the other two experiments. Finally, in
E3 the classifier shows similar performance compared to E1, with a slight degra-
dation. However, this is expected, since if a booter service has just rescanned we
will have no training samples that match the current set of amplifiers.

For NTP the victim-driven classifier generally performs better than for DNS.
In the 10-fold CV (E1), the classifier correctly attributed 71% or more of the

11 Results for CharGen and SSDP can be found in Section A.1.



Table 4: Victim-Driven Experimental Results
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attacks for every booter, in many cases even more than 85%. As before, BO2
marks an exception due to the small number of attacks that were recorded for this
booter. As already observed in the honeypot-based classifier, attacks from NET

and CRI showed similar behavior. A third booter, EXO, that was only observed in
the victim-based data set exhibits similar traits as well. While we were not able to
verify that these booters are just different front ends of a multibranding booter,
they account for almost all of the misattributions not only for NTP but also for
CharGen. In E2 the classifier achieves a perfect result for most booters, with the
exception of the previously mentioned group and two confusions between ST4

and SYN. Again, the results of our real-time classification experiment (E3) are as
expected, with attribution rates of over 69% in all cases, except for EXI, whose
recall drops from 71% to only 43%, due to the small number of attacks observed
from this booter.

Overall, the victim-driven classifier achieves a macro-averaged precision of
91.65% and recall of 79.03% for DNS, while for NTP it performs better with
94.58% and respectively 91.07%.

7 Discussion

We now discuss potential ways to evade our attribution implementation and
describe general limitations of our approach that we have not discussed so far.



7.1 Evasion

While our attribution methods have proven to work well as of now, they may
be susceptible to evasion attempts by miscreants. A mimicry attacker could try
to be attributed as someone else by following our methodology, i.e., learning the
attack profile of another booter and copying its behavior. For example, she could
use the same set of reflectors as the other booter for her own attacks. However,
this involves a significant increase in terms of effort in comparison to Internet-
wide scans. In addition, our TTL-based features are much harder to copy, as
they encode the location of the booter service and are subject to changes for
other booter locations. While such mimicry attacks are possible [2], given the
complexity and overhead, we do not believe that attackers trying to trigger a
false attribution constitute an actual risk in practice. For similar arguments,
attackers that share lists of reflectors with each other would partially poison our
analysis, but again TTL-based attribution may be safe against this. Our use of
the set of domain names resolved as a feature for our victim-driven DNS classifier
can be evaded by booter services selecting a larger pool of domain names that
result in large replies and cycling through this pool.

An evasive attacker could try to evade our classification mechanisms. Attack-
ers have full control over the traffic they generate, and thus could add noise. For
example, one could randomize the set of reflectors used in the attacks, or spoof
the initial TTL value within a range of possible values. It is unclear if a classifier
could still keep up with such evasion attempts, but it may be possible to add
additional features to enrich the classification, such as other characteristics (e.g.,
IP packet IDs, DNS transaction IDs), as those have shown characteristic pat-
terns even if they were randomized [8]. In addition, honeypots that selectively
respond to scan requests may survive such randomization [10]. Even if attackers
randomize the set of reflectors, any subset will still be a subset of a unique map-
ping to a scanner. Lastly, randomizing the traffic does also incur a performance
overhead to attackers, as they cannot reuse pre-generated packets.

Finally, attackers could try to map out the honey amplifiers using probing
messages [3] if the honeypot amplifier data was made public for the DDoS service
to use as an oracle. To avoid this evasion technique, access to the honeypot
amplifier data is restricted to vetted entities, such as researchers and LEAs.

7.2 Limitations

Our in-the-wild experiments faced some limitations, as discussed in the following:
Honeypot Coverage: Regardless of our attempts to maximize the coverage

of the honeypots, they missed significant fractions of the self-attacks, especially
for SSDP and CharGen. This can be addressed by framing larger emulated re-
sponses to make the honeypots more attractive to attackers. The coverage for
two of the main protocols, DNS and NTP, was significant, though, covering
about 57% of the self-attacks. We therefore argue that our results are represen-
tative at least for these two protocols. In addition, there is no limitation of our
methodology that would restrict its applicability to the two well-tested protocols.



Multi-Source Attribution: We assumed that attacks are caused by single
sources (booters). If botnets launched amplification attacks, our features (e.g.,
TTL) would be unstable. To give an upper bound of attacks launched by botnets,
we searched for attacks with several TTL values, as this—among other reasons—
might be caused by distributed traffic sources. Less than 9.5% of attacks at the
honeypots show more than 2 TTL values at a honeypot.

Other Attacks: Other types of DDoS attacks, such as SYN flooding or
HTTP-based attacks, do not use reflectors and are thus not traceable with our
proposed methods. Note that amplification attacks constitute the most common
bandwidth exhaustion attack. This is also demonstrated by the fact that all
booters advertise amplification attacks, while support for other attack types
(e.g., HTTP-based attacks) is far less popular. To put things into perspective:
we observed more than 8,900 amplification attacks per day.

8 Related Work

The general risk of amplification attacks was first illustrated in Paxon’s seminal
paper on reflection attacks [15] and then by Rossow’s recent overview of am-
plification vulnerabilities in 14 UDP-based network protocols [18]. A wealth of
further work analyzed amplification attacks, such as attempts to monitor and re-
duce the number of reflectors [1,4,11], analyses on detailed amplification vectors
in specific protocols [4,12,24–26], studies on the impact of DDoS attacks [29], and
proposals to detect and defend against amplification DDoS attacks [5, 9, 18,28].

Orthogonal to these studies, we investigated ways to perform attribution
for amplification DDoS attacks. While concepts for closing the root cause of
amplification attacks (IP spoofing) are well-known [14], little success has been
made in identifying the spoofing sources. Our work thus constitutes an important
element for law enforcement to identify and act upon information of booter
services that are responsible for the majority of attacks. We follow a similar goal
to IP traceback mechanisms [16,21–23,30], i.e., to find the source of “bad” (such
as spoofed) traffic. While we also aim to reveal the source of the bad traffic, we
focus on attack services rather than locating the networks that cause the traffic.
In addition, the working principles behind the methods are inherently different.
Most IP traceback methods are deterministic and can be guaranteed to find the
correct source of traffic. However, at the same time, they impose requirements
that are often not met in practice, such as that providers have to mark IP
packets or collaborate to find traffic paths. In contrast, our proposed mechanism
advances the field in that we do not require such a collaborative effort. In fact,
despite being known for decades, automated traceback mechanisms have not
been deployed by many providers. To tackle this problem, our approach merely
requires a set of honeypots that anybody can set up, enabling a single party
to perform attribution. On the other hand, our approach is limited to mapping
amplification attacks to booter services, whereas traceback mechanisms could
trace back any type of DoS traffic—down to the network that caused it.



Closely related to our work is AmpPot, as proposed by Krämer et al. [8]. This
honeypot technology has enabled us to monitor thousands of DDoS attacks per
day. We combine such data with observations of attack traffic emitted by booters,
introducing the new concept of attributing amplification attacks to booters.

Our work was motivated by various research papers that shed light onto
booter services using forensic analyses. Karami and McCoy were the first to mon-
itor such booter services, studying the adversarial DDoS-As-a-Service concept [6]
and observing that booters are a source for amplification attacks. Similarly, San-
tanna et al. analyze leaked databases and payment methods of 15 booters [19].
Related to our idea to fingerprint booters, Santanna et al. performed self-attacks
of 14 booter services and also observed that the set of reflectors chosen by boot-
ers may have overlap across attacks [20]. We build upon this observation, find
further correlations for attacks of booter services, and propose to use theses for
attack attribution. Karami et al. [7] provide a detailed view on the subscribers
and victims of three booters. They provide early attempts to map the infras-
tructures of booters, but do not perform any kind of attribution between attacks
and booters or infrastructures.

Wang et al. [27] have studied the dynamics of attack sources of DDoS botnets,
showing distinct patterns per botnet. While the authors provide first results that
might enable them to predict future attack sources, they do not further investi-
gate this matter. Our work is different in motivation and techniques in multiple
respects. First, booters follow a completely different methodology than DDoS
botnets, which rarely use IP spoofing. Second, we can leverage the observation
that attackers scan for “attack sources” (amplifiers). Third, we perform attack
attribution rather than prediction.

Recently, Krupp et al. [10] showed how to uncover the scan infrastructures
behind amplification DDoS attacks, which in some cases could also be identified
to be the attacking infrastructure. Although their work might seem similar to
ours at first, there are key differences both in the goal and the methodology:
While they use probabilistic reasoning to identify the scanners that provide the
necessary reconnaissance for attacks, we use machine learning techniques to link
attacks to the originating booters. Moreover, both approaches serve different
demands: while their work aids in adding pressure on providers to cease illegal
activities, our paper helps to generate forensic evidence that a particular booter
has caused a specific attack, which can prove useful in prosecution.

9 Conclusion

Our work presented the first deep exploration of techniques for attributing am-
plification DDoS attacks to booter services. We present two precise attribution
techniques based on carefully chosen features as part of a k -NN classifier. In
order to evaluate the effectiveness of our techniques, we subscribed to a small
set of booter services and launched self-attacks to collect a ground truth set
of attack-to-booter-service mappings. We discuss the ethical framework used to
collect this data set, which is similar to that of a previous study [7].



Our honeypot-driven technique attributes DNS and NTP attacks with a very
high precision of over 99% while still achieving recall of over 69.35% in the most
challenging real-time attribution scenario. Further analysis has revealed that
25.53% (49,297) of the observed DNS attacks can be attributed to just 7 booter
services and 13.34% (38,520) of the NTP attacks can be attributed to 15 booter
services. We have shared these findings with law enforcement agencies to help
them prioritize legal actions against the wealth of booter services.

Our second technique extracts features out of a victim’s network’s traces and
attributes attacks from the victim’s perspective, which opens the possibility to
offer a centralized DDoS attribution service. Using this technique, victims can
learn the source of the attacks they face and could even compare two attacks to
determine if they have been launched by the same actor (booter).
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A Appendix

A.1 Additional Experimental Results

Table 5 shows our experimental results for victim-driven attribution for CharGen
(precision 92.86%, recall 89.24%) and SSDP (precision 92.15%, recall 81.41%).

References

1. The Spoofer Project. http://spoofer.cmand.org.
2. M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, and B. Stock. On

the Feasibility of TTL-based Filtering for DRDoS Mitigation. In Proceedings of the
19th International Symposium on Research in Attacks, Intrusions and Defenses,
2016.

3. J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet Sensors with Probe
Response Attacks. In Proceedings of the 14th Conference on USENIX Security
Symposium, 2005.

4. J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and M. Karir.
Taming the 800 Pound Gorilla: The Rise and Decline of NTP DDoS Attacks. In
Proceedings of the Internet Measurement Conference 2014. ACM, 2014.

5. Y. Gilad, M. Goberman, A. Herzberg, and M. Sudkovitch. CDN-on-Demand: An
Affordable DDoS Defense via Untrusted Clouds. In Proceedings of NDSS 2016,
2016.

http://spoofer.cmand.org


Table 5: Victim-Driven Experimental Results for CharGen and SSDP

(a) CharGen

A
U
R

B
A
N

B
O
1

B
O
2

B
O
3

D
O
W

E
X
O

K
S
T

N
E
T

R
A
W

S
E
R

S
T
1

S
T
4

S
Y
N

samples 26 3 41 2 27 27 60 21 18 78 42 20 26 26
E
1

correct 96 0 93 100 100 100 97 76 89 99 100 100 100 100
unknown 4 100 7 0 0 0 3 24 11 1 0 0 0 0
wrong

E
2 unknown 100 100 100 100 100 63 48 100 39 100 76 100 100 100

wrong SER 37 NET 52 EXO 61 DOW 24

E
3

correct 88 33 80 50 96 85 93 57 78 96 86 90 92 88
unknown 12 67 20 50 4 11 7 43 22 4 14 10 8 12
wrong SER 4

(b) SSDP

A
U
R

B
A
N

B
O
1

B
O
2

B
O
3

D
O
W

E
X
O

K
S
T

N
E
T

S
T
1

S
T
2

S
T
A

V
D
O

samples 20 17 40 2 27 28 60 21 28 17 17 25 49

E
1

correct 95 76 95 0 100 96 98 95 100 18 88 96 100
unknown 0 24 5 100 0 4 2 5 0 82 12 4 0
wrong VDO 5

E
2 unknown 95 100 100 100 100 100 100 100 100 100 100 100 90

wrong VDO 5 AUR 10

E
3

correct 80 59 85 0 96 86 95 81 86 12 71 88 98
unknown 20 41 15 100 4 14 5 19 14 88 29 12 0
wrong AUR 2

6. M. Karami and D. McCoy. Understanding the emerging threat of ddos-as-a-service.
In LEET, 2013.

7. M. Karami, Y. Park, and D. McCoy. Stress Testing the Booters: Understanding
and Undermining the Business of DDoS Services. In World Wide Web Conference
(WWW). ACM, 2016.
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