
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Qapla: Policy compliance for
database-backed systems

Aastha Mehta and Eslam Elnikety, Max Planck Institute for Software Systems (MPI-SWS);
Katura Harvey, University of Maryland, College Park and Max Planck Institute

for Software Systems (MPI-SWS); Deepak Garg and Peter Druschel, Max Planck
Institute for Software Systems (MPI-SWS)

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mehta

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Qapla: Policy compliance for database-backed systems

Aastha Mehta1, Eslam Elnikety1, Katura Harvey1,2, Deepak Garg1, and Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2University of Maryland, College Park

Abstract

Many database-backed systems store confidential data
that is accessed on behalf of users with different priv-
ileges. Policies governing access are often fine-grained,
being specific to users, time, accessed columns and rows,
values in the database (e.g., user roles), and operators
used in queries (e.g., aggregators, group by, and join).
Today, applications are often relied upon to issue policy
compliant queries or filter the results of non-compliant
queries, which is vulnerable to application errors. Qapla
provides an alternate approach to policy enforcement that
neither depends on application correctness, nor on spe-
cialized database support. In Qapla, policies are specific
to rows and columns and may additionally refer to the
querier’s identity and time, are specified in SQL, and
stored in the database itself. We prototype Qapla in a
database adapter, and evaluate it by enforcing applicable
policies in the HotCRP conference management system
and a system for managing academic job applications.

1 Introduction
Confidential information stored in systems backed by re-
lational databases is often subject to complex access poli-
cies. In a personnel management system, for instance,
ordinary employees may query their own personal infor-
mation but not that of others. Members of a workers’
council may be able to query the columns containing
employee names and ages separately, but not together,
to prevent them from linking employees to their ages.
Similarly, members of the payroll department may not
be able to query the health history of individual employ-
ees, but they may be able to query aggregates over the
health histories of all employees.

Today, such fine-grained policies are enforced by
adding policy compliance checks to application code
wherever the database is queried. This approach
is cumbersome, error-prone, and inappropriate: Poli-
cies are usually derived from the privacy requirements
of the broader legal/enterprise context and are code-

independent, yet every code path in every application
leading to a query must be instrumented by a program-
mer to perform a check. It is easy to miss such checks.
Moreover, when the policy changes, application devel-
opers must update these checks everywhere.

Alternatively, policy compliance can rely on fine-
grained access-control support in the underlying
database management system (DBMS). Unfortunately,
the extent of the support and the language used to
express the policies varies across DBMSs. For instance,
a cell-level policy can be specified in Oracle using its
VPD technology [11], whereas the same policy will
require a combination of views (for column access
control) and row-level policies in PostgreSQL [7].

Furthermore, DBMS support for policies is limited to
standard row-, column- and cell-level access control but,
in practice, policies are often more complex. For in-
stance, a policy may prohibit the linking or joining of
two or more columns, while allowing those columns to
be read independently. Similarly, a policy may allow cer-
tain principals to query for aggregates (sometimes based
on user-defined functions), while prohibiting them from
reading individual values. To the best of our knowl-
edge, such complex policies can be implemented in ex-
isting DBMSs only through extensive use of application-
specific views. However, views can neither support link
policies nor are they transparent to applications. When
using policy-specific views, all queries, even if they are
compliant, must be modified whenever policies change.

Goals. Based on these observations, our goal is to pro-
vide a policy compliance system for database-backed ap-
plications that satisfies the following requirements. (i) It
must be able to express a rich class of policies including
standard fine-grained row-, column- and cell-level poli-
cies and also complex policies that limit data linking or
allow aggregation. (ii) The policy specification must be
associated with the database schema and independent of
applications, and it must be simple and intuitive for pol-

USENIX Association 26th USENIX Security Symposium 1463

icy administrators to adopt. (iii) The system should not
depend on specific support from the DBMS and it should
be transparent to applications that issue policy-compliant
queries.

We emphasize that our primary goal is to protect the
confidentiality of data in the face of application bugs.
The threat is not from active attacks, although our design
defends against some kinds of application compromise.

Our design, Qapla, is a policy-compliance middle-
ware for database-backed systems, which satisfies all the
aforementioned goals with moderate overheads on appli-
cation performance. In Qapla, policies are specified in a
SQL-like language, as a function of the database schema,
and stored in the database (in separate tables). SQL is a
natural choice for Qapla’s policy language since its syn-
tax is widely understood. Furthermore, the use of SQL
syntax leads to a simple enforcement mechanism that we
describe below.

For policy enforcement, Qapla integrates a refer-
ence monitor with a generic database adapter, which
intercepts all application queries, looks up applicable
policies, and rewrites queries to ensure compliance.
The SQL-like syntax of Qapla policies simplifies query
rewriting. Moreover, the enforcement is transparent to
application queries that are already policy compliant, so
the application has to be changed only where its queries
are not policy compliant.

Qapla requires no changes to and no specific support
from the DBMS (although we describe how database-
specific support like materialized views can be used
to optimize Qapla’s performance). Furthermore, since
the Qapla reference monitor is integrated in a generic
database adapter and does not depend on DBMS-specific
access control support, it is portable across DBMSs.
Qapla removes the often large and rapidly evolving ap-
plications from the codebase trusted for compliance,
simplifies new applications by obviating the need for per-
vasive filtering code, and avoids compliance bugs due to
incorrect or missing application checks.

Qapla’s approach of stating policies in a high-level,
declarative, and familiar SQL-like language, associated
with the database schema and not within the application
code provides additional benefits. Declarative, schema-
based policies are easier to reason about, analyze, and
audit than policies written in application code. More-
over, policy changes can be affected reliably based on
the schema, without requiring inspection of queries or
modification of compliant queries. The use of SQL-like
syntax and the high-level of policy abstraction further aid
policy writing, debugging and audit.

We demonstrate Qapla’s portability by incorporating
it with PHP’s and Python’s database adapters, and us-
ing it to enforce fine-grained policies in two applica-
tions: the widely-used HotCRP conference management

system [2], and the APPLY system for managing aca-
demic job applications, which we use in our organiza-
tion. HotCRP includes fine-grained policies to maintain
confidentiality of paper submissions, provide author and
reviewer anonymity, and prevent untimely disclosure of
results to authors and PC members. APPLY likewise has
policies to control access to application materials, ref-
erence letters, and evaluators’ notes depending on user
roles and to allow users access to aggregated historical
information yet prevent them from seeing their own past
case materials. The policies cover many important appli-
cation workflows such as user login, searching for pa-
pers, reviews, comments by authors, chair, reviewers,
etc., in HotCRP, and applications, letter request, review,
and search in APPLY. We identified and implemented a
total of 30 policies in HotCRP and 41 policies in APPLY.
The policies are concise, specified in one place, and tend
to require only local changes or extensions when new
features are introduced to applications.

An experimental evaluation shows that Qapla incurs
moderate overheads. Interestingly, we also observe that
Qapla overheads are generally lower than the overheads
of native access control support in a commercial database
on policies that can be expressed using the latter.

To summarize, our contributions lie in the architecture,
design, policy language and evaluation of Qapla, which
enables the specification and enforcement of a rich class
of complex and fine-grained policies (including those
based on linking and aggregation) in a database-agnostic
and application-transparent manner.

Organization. We present Qapla’s policy language in
Section 2 and its architecture in Section 3. Our applica-
tion of Qapla to HotCRP and APPLY is described in Sec-
tion 4, followed by an experimental evaluation in Sec-
tion 5. We discuss related work in Section 6 and con-
clude in Section 7.

2 Qapla policy framework
Qapla allows a policy compliance team to associate a set
of policies with a database schema. These policies spec-
ify data confidentiality requirements that take into ac-
count the database schema, contents, the authenticated
user, time and operations like joins, aggregations and
UDFs. We do not consider data integrity policies al-
though we believe they can be added to our design.

Every Qapla policy applies to a class of queries and
specifies how those queries must be restricted to be com-
pliant. These restrictions are specified as SQL WHERE
clauses that are added to the query by Qapla before
the query is executed, thus filtering out non-compliant
records. We formally define when a policy applies to
a query and the query rewriting procedure in Section 3.
An application can obtain a tuple using a query only if
(a) at least one policy applies to that query, and (b) the

1464 26th USENIX Security Symposium USENIX Association

query rewritten under the restrictions of the policy pro-
duces that tuple. If no policy applies to a query, the query
is not executed. This whitelist principle ensures that data
is accessed only due to some explicitly written policy and
never leaked due to accidental omission of policies.

The remaining section provides an overview
of Qapla policies using the running example of
the human resource’s database of a fictitious
company, Acme. The database has three tables
Employees(empID, name, address, age,
gender, dept), Payroll(empID, salary)
and Benefits(empID, health_plan). The first
table maps employees to their home address, age, gender
and department. The second table maps employees to
their salary, while the third table specifies which health
plan each employee subscribes to.

Single-column policies. The simplest Qapla policy
protects a single database column by specifying which
rows of the column can be accessed by each user, and
when. It has the form: col :- W . Here, W is a SQL
WHERE clause that specifies which rows from the col-
umn col can be returned. W may refer to the authen-
ticated user and the wall clock time using the variables
$user and $time, which are instantiated by the Qapla ref-
erence monitor when the clause is added to the query.
The policy applies to any query that references only the
column col (queries that read more than one column are
subject to link policies described later).

Example 1 (name, age, health_plan) The names of
Acme’s employees should be accessible to all other em-
ployees. The following policy specifies this.

name :- EXISTS(SELECT 1 FROM Employees
WHERE empID= $user)

The SQL fragment EXISTS(. . .) specifies a condition that
holds only if the authenticated user exists in the table
Employees. An identical policy applies to the columns
age and health_plan. Reading the columns in isola-
tion only allows enumeration of the set of ages or health
plans of all employees.

Example 2 (address, salary) The columns address
and salary can be read only by members of the HR
(human resources) department. Additionally, an em-
ployee may read his or her own address or salary. The
following policy enforces this on address. A similar
policy applies to salary.

address :- (empID= $user) OR
EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND dept= HR)

Compared to the policy of name, this policy allows dif-
ferent employees access to different entries in address.

Note that the WHERE clause is organized as a disjunction
of conditions, one for each class of users.

This is an example of a role-based access control
(RBAC) policy, where an employee’s role is dictated by
her affiliation with a particular department. This policy
relies on the availability of the mapping from users to
their roles in the database itself. In applications where
this mapping is outside the database (e.g., on a file sys-
tem), Qapla’s policy language can be easily extended to
support predicates that lookup this mapping outside the
database. Qapla can interpret these non-database predi-
cates in the policies using native procedures, and apply
the remaining SQL policy to the database queries.

Link policies. When a query reads two or more
columns, the applicable policy may be more restrictive
than the individual policies of all the columns read, be-
cause additional information can be exposed by linking
the columns to each other, as in the following example.

Example 3 (linking name and age) The policies of
the columns name and age allow any employee to read
these columns individually (Example 1). However, not
every employee should be able to read the columns name
and age together since that reveals every employee’s
age, which may be private. The right policy is that only
members of HR and an employee himself/herself may
read the employee’s name and age together. In Qapla,
this policy is expressed by mentioning both columns age
and name to the left of :- in the policy.

{name,age} :- Employees : ((empID= $user) OR
EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND

dept= HR))

Such policies, which apply to simultaneous access of two
or more columns, are called link policies. Their general
form is

{col1, . . . ,coln} :- filter conditions
with filter conditions of the form T1:W1 , . . . , Tm:Wm.
Here, {col1, . . . ,coln} are columns spanning the tables
T1, . . . ,Tm and W1, . . . ,Wm are separate WHERE clauses
for these tables. This policy applies to any query that
reads a subset of the columns {col1, . . . ,coln} (for any
purpose including projection, selection, joining, group-
ing or aggregation). The WHERE clauses of all the tables
mentioned in the query are added to the query by Qapla
(see Section 3 for details).

Columns in separate tables. When the goal is to re-
strict the linking of data in two or more separate tables,
the effect of a link policy can sometimes be simulated by
simply restricting access to the individual columns con-
taining the common keys of the two tables. However,
when different sets of columns spanning the tables need

USENIX Association 26th USENIX Security Symposium 1465

different policies, the policies must be specified using the
general form of link policies described above.

Transformation policies. Applications often apply
functions or transformations to columns to hide sensi-
tive information. A transformed column may have more
permissive policies than the column itself. Qapla directly
supports such transformations-aware policies.

Example 4 Suppose Acme provides a home-to-office
shuttle service to its employees, run by Acme’s “logis-
tics” department. The shuttle service has a fixed stop in
every neighborhood that houses an employee but it is not
door-to-door. In order to provide this service, members
of the logistics department must know the neighborhood
in which every employee lives, but not their precise home
addresses. To enforce this, the privacy compliance team
can create a user-defined function (UDF), neigh, that
maps an address to a neighborhood, and add the follow-
ing Qapla policy.

{name,address[neigh]} :-
(empID= $user) OR
EXISTS(SELECT 1 FROM Employees

WHERE empID= $user AND
(dept= HR OR dept= logistics))

This policy says that an employee’s name and
neigh(address) can be linked by the employee,
members of HR and members of logistics. The pol-
icy is strictly more permissive than the policy on
{name,address}, which allows access only to
the respective employee and HR, but not to logis-
tics. The revised policy allows logistics to run the query
“SELECT name, neigh(address) FROM Employees”,
but not “SELECT name, address FROM Employees”.

The general form of a Qapla transformation policy is

{col1[t1], . . . ,coln[tn]} :- filter conditions

The filter conditions are of the same form as in a link
policy. The policy applies to any query that accesses a
subset of the columns col1, . . . ,coln but only after the
respective transformations t1, . . . ,tn have been applied.

Aggregation policies. Many applications declassify
aggregate statistics on otherwise private columns. Ac-
cordingly, Qapla provides aggregation policies. An ag-
gregation policy specifies two sets of columns: 1) LS
(link set)—columns which can be projected, used to join
or group data (SQL’s GROUP BY) or be aggregated in a
query, and 2) JS (join set)—columns which can be used
only to join tables in the query and nothing else. With
each column in LS an optional transformation or aggre-
gation operation can be specified, which restricts the use
of that column to only that transformation or aggregation.

The general syntax is

{JS = {jcol1, . . . ,jcolm},
LS = {col1[t1], . . . ,coln[tn]}} :- filter conditions

Example 5 Suppose Acme has a workers’ council
(WoC) that periodically computes salary statistics to en-
sure fairness in worker compensation. One statistic it
computes is the distribution of average salary over age
ranges (20-30 years, 30-40 years, etc.). Rather than pro-
vide WoC full access to the Employees table, the pol-
icy compliance team can selectively provide WoC rights
to compute only such statistics by writing the following
aggregation policy. Here, age_range is a function that
rounds an individual’s age to a 10-year range.

{JS = {Payroll.empID,Employees.empID},
LS = {age[age_range],salary[AVG]}} :-

EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND
(dept= HR OR dept= WoC))

This policy allows WoC to run any query that joins ta-
bles Payroll and Employees, and then uses only
age_range(age) and average on salary (in any
way). For example, it allows the following two queries
among many other instances of similar queries:

(i) SELECT AVG(salary), age_range(age)
FROM Employees,Payroll GROUP BY
age_range(age) HAVING AVG(salary)>
50000

which lists age groups with average salaries above
50000.

(ii) SELECT AVG(salary) FROM Employees,
Payroll WHERE age_range(age) = (30,40)

which lists the average salary of a specific age
group.

Correctly, the policy does not allow queries that look
at the age or salary columns directly. For in-
stance, the following query is disallowed by the policy:
SELECT AVG(salary) WHERE age= 75.

Relation between policy classes. Qapla’s four policy
classes—single-column policies, link policies, transfor-
mation policies and aggregation policies—are increas-
ingly more general. Single-column policies are an in-
stance of link policies, where the set of linked columns
is a singleton. Link policies are a special case of trans-
formation policies where the transformations are identity
functions. A transformation policy S :- filter conditions
is the same as the aggregation policy {JS = {},LS =
S} :- filter conditions.

1466 26th USENIX Security Symposium USENIX Association

Qapla reference	monitor

Application

Database engine

query

policy-compliant
resultpolicies

rewritten
query

tru
st
ed

un
tru
st
ed

Qapla metadata	
tables

Application	data	
tables	

authentication
credentials

Figure 1: Qapla architecture

Policy inference heuristics. To reduce the burden of
specifying policies, Qapla provides safe heuristics.

Heuristic 1: A link policy for a set of columns also au-
tomatically applies to any subset of those columns since
reading a subset only reveals less information than does
reading the whole set. Thus, there is no need to spec-
ify a link policy on a subset unless the subset’s policy is
strictly more permissive than the policy of the whole set,
and some application needs the permissiveness.

Heuristic 2: If a query uses column transformations or
aggregations but a specific applicable transformation or
aggregation policy does not exist, Qapla applies the link
policy of the set of columns that occur in the query, if one
exists. This is safe because transforming or aggregating
a column always reduces the information revealed.

Heuristic 3: In place of writing an explicit link pol-
icy on a set of columns, the designer can explicitly in-
struct Qapla to automatically construct a link policy for a
set of columns by combining the policies of the individ-
ual columns in the set. This synthesized policy applies
the filter conditions of the individual columns even when
they are read together. This is useful in some cases. For
instance, we may want to allow only HR members and an
employee simultaneous access to the employee’s name
and address. However, this is exactly the policy of
the individual column address (Example 2), so in this
case, the policy designer can ask Qapla to synthesize the
link policy for {name,address} by combining the in-
dividual policies of name and address.

3 Qapla design
Figure 1 depicts Qapla’s architecture. Qapla’s metadata
and policies are stored in the database separate from the
application data. The Qapla reference monitor authenti-
cates with the database with its own unique credentials,
and it has the exclusive privilege to access all tables di-
rectly. It intercepts the application’s database queries,
and associates each query with the authenticated end user
on whose behalf the query was issued by the application.
The query is rewritten to ensure its compliance with poli-
cies, and the rewritten query is executed by the database.

3.1 Threat model

Qapla is designed to prevent data leaks due to application
bugs that result in non-compliant queries to the database.
Qapla intercepts all queries to the database in a reference
monitor and rewrites the queries to make them policy
compliant. In our current design and implementation, the
reference monitor runs in the same address space as the
application. Consequently, any application-level bugs or
vulnerabilities that circumvent this monitor to access the
database directly or steal the reference monitor’s privi-
leged database credentials are out of scope. Additionally,
we rely on the application to correctly tell Qapla which
user’s behalf it (the application) is acting on. However, it
is not difficult to change this design to avoid these limi-
tations (see Section 3.5 for initial ideas).

We also assume that users do not collude offline to
combine non-overlapping parts of the database they are
individually authorized to read, and that individual users
do not link information they have obtained in separate
queries.

The Qapla reference monitor, the database adapter it is
embedded in, the database system, the operating system,
the storage layer, and the communication between the
database adapter and the database system are assumed to
be correctly configured and trusted. The database cura-
tor or compliance team is assumed to have installed cor-
rect policies, and any information referenced by policies
is assumed to be correctly stored in the database. Un-
der these assumptions, Qapla guarantees that only policy
compliant query results are returned to the application.

3.2 Enforcement

Qapla’s policy enforcement on a query consists of two
steps: 1) Identifying the set of policies that apply to the
query, and 2) Rewriting the query to filter out tuples dis-
allowed by all the applicable policies. We describe the
two steps in detail.

Applicable policies. Internally, Qapla treats every pol-
icy as an aggregation policy of the form {JS,LS} :-
filter conditions, where JS and LS are, respectively, the
set of columns that may be used to (only) join two or
more tables, and the set of columns that may be pro-

USENIX Association 26th USENIX Security Symposium 1467

Does a policy apply to a query?
1 input: Query Q; Policy {JS,LS} :- filter conditions
2 output: true if policy applies to Q, false otherwise

3 { js, ls} = parseQuery(Q)
4 if (js 6⊆ JS) return false
5 for each column c in ls:
6 if (c 6∈ LS) then return false
7 for each transformed/aggregated column c[t] in ls:
8 if (c[t] 6∈ LS and c 6∈ LS) then return false
9 return true

Figure 2: Algorithm to decide if a policy applies to a query

jected, grouped by and aggregated. As explained in
Section 2, this is the most general form of policies;
all single-column, link and transformation policies can
be expressed in this form. Qapla parses every appli-
cation query to extract the corresponding sets js and ls
of columns that are used only to join and those that the
query actually projects, groups by, or aggregates.

A policy applies to a query if the query’s use of
the columns js and ls is allowed by the corresponding
sets JS and LS of the policy. Formally, the policy
applies to the query when js ⊆ JS and when every
column c and every transformed column c[t] in ls is
dominated by a column or transformed column in LS.
Domination is defined as follows: Every (transformed)
column dominates itself, and a column dominates
any transformation of itself. Thus, a policy with
JS = {Benefits.empID,Employees.empID} and
LS = {age,health_plan} applies to a query with
js = {Benefits.empID,Employees.empID} and
ls = {age[age_range],health_plan[COUNT]}.
Figure 2 summarizes this algorithm.

To efficiently find all policies that apply to a query,
Qapla maintains two data structures. The first data struc-
ture maps every pair of a column and a transformation
(that applies to the column) to a bitvector representing
the policies in the system. The ith bit is set in the bitvec-
tor of the (transformed) column j if policy i’s LS contains
a column that dominates j. To find all applicable policies
whose LS matches a given query’s ls, Qapla simply takes
the bit-wise AND of the bitvectors of all (transformed)
columns in ls. The second data structure is similar but
applies to JS and allows finding all policies whose JS
matches a query’s js.

Query rewriting algorithm. The query rewriting al-
gorithm modifies an application query to make it com-
pliant. In the simple and common case where only one
policy applies to the query, the policy rewriting algorithm
replaces each reference to a table in the query with a sub-
query that generates a list of rows compliant with the
filter conditions of the columns accessed from the table.

The subquery is of the form (SELECT ∗ FROM table
WHERE list-of-conditions), where list-of-conditions are
the filter conditions of the table provided in the policy.
The overall effect is that the application query is executed
over joins of policy-compliant sub-tables of one or more
database tables, where the sub-tables have been created
using the filter conditions of the applicable policy.

Example 6 In the context of Acme’s database, as-
sume that some link policy exists for the column set
{name, age, health_plan, Employees.empID,
Benefits.empID} and that it specifies the
WHERE clauses fE and fB for filtering the tables
Employees and Benefits, respectively. Con-
sider the following query: SELECT name, age,
health_plan FROM Employees JOIN Benefits
ON Employees.empID = Benefits.empID. This
query will be rewritten to:

SELECT name, age, health_plan FROM
(SELECT ∗ FROM Employees WHERE fE)
Employees JOIN
(SELECT ∗ FROM Benefits WHERE fB)
Benefits ON
(Employees.empID = Benefits.empID)

When more than one policy applies to a query and the
query does not return an aggregate, Qapla rewrites the
query according to each applicable policy and takes a
SQL UNION of these. This ensures that a tuple exists
in the result only when at least one applicable policy al-
lows it. If the query returns an aggregate value and more
than one policy applies, Qapla picks the first applicable
policy, but the application may override this to a specific
applicable policy at the cost of minor changes to its code.
(We have not encountered the need for such changes in
our evaluation.)

3.3 Optimizations

We describe three optimizations to reduce the overhead
of policy enforcement in Qapla. Our current prototype
and evaluation only include the first optimization, but im-
plementing the remaining two optimizations is not diffi-
cult.

Query template cache. The Qapla reference monitor
implements a query template cache to amortize the over-
head of parsing and rewriting queries with the same
structure. A query template is a query with all its con-
stant values replaced with placeholder variables. The
Qapla template cache maps query templates to their
rewritten forms. When a query is received, Qapla con-
verts the query to a template and checks if a query tem-
plate with the same hash is cached (if the application
query is already parametrized, Qapla hashes it directly).
For a hit, Qapla retrieves the associated rewritten query
template, and binds its variables with the values from the

1468 26th USENIX Security Symposium USENIX Association

submitted query. For a miss, Qapla parses and rewrites
the query with the applicable policies, and inserts the re-
sulting rewritten query template into the cache.

Partial evaluation. The Qapla reference monitor of-
ten generates complex rewritten queries containing sev-
eral nested sub-queries accessing one or more tables, and
having large filter conditions. Executing the query ef-
ficiently depends on the ability of the DBMS to gener-
ate an efficient execution plan for the rewritten query.
To reduce the complexity of the rewritten query, Qapla
can pre-evaluate parts of the rewritten query that do not
depend on database values (e.g., parts that depend only
on the identity of the user on whose behalf the applica-
tion makes the access) before posting the query to the
database. This can significantly simplify the query since
any predicates connected by ‘AND’ to a pre-evaluated
predicate that is false can all be replaced by a single false
before the query is sent to the database. Similarly, any
predicates connected by ‘OR’ to a pre-evaluated predi-
cate that is true can all be replaced by a single true.

Materialized Views. To offset the cost of policy
checks during query evaluation, Qapla can create ma-
terialized views, one for each (group of) user(s) with
similar permissions, by applying applicable policies to
the tables offline. In a group’s materialized view, every
cell inaccessible to the group is replaced with a special
value that is not a legal value for the underlying table.
At runtime, every application query is run against the
materialized view appropriate for the authenticated user.
The query is rewritten by Qapla to disregard any record
that contains the special value in a field that is used in
the query.1 Our preliminary evaluation suggests that
this optimization can reduce runtime overheads on read-
intensive workloads by an order of magnitude. However,
proportional to the number of user groups with differ-
ent policies, maintaining materialized views adds stor-
age cost and runtime overhead to propagate updates to
all materialized views.

3.4 Cell-blinding mode

The policy enforcement algorithm described in Sec-
tion 3.2 drops a row during query execution if any field
in the row is inaccessible according to the policy and is
used in the query. This row-suppression mode of policy
enforcement ensures that information about an inacces-
sible field cannot be inferred even when that information
is correlated with other fields in the row. This makes
row-suppression a very safe choice for policy enforce-
ment (and, hence, Qapla uses it by default). However,

1For confidentiality, it is insufficient to disregard a record only when
one of its inaccessible fields is projected. It is also necessary to dis-
regard a record if one of its inaccessible fields will be tested by the
query’s WHERE clause(s). Doing so prevents implicit information leaks
through the WHERE clause(s).

row-suppression is not the only possible way of enforc-
ing Qapla’s policies. We briefly describe here a second
mode of policy enforcement, the cell-blinding mode.

The primary consideration for the cell-blinding mode
is compatibility with legacy applications, which may
issue broad queries that project more columns than
actually necessary, and eventually remove these extra
columns internally in their own code. With the row-
suppression mode, such broad queries may result in
fewer records than expected by the application. Transi-
tioning such applications to make them compatible with
row-suppression may require effort and time, as devel-
opers may have to rewrite queries to not project unneces-
sary columns. This transition can be particularly difficult
when the set of necessary columns depends on the appli-
cation state.

The cell-blinding mode changes the semantics of
policy enforcement to compromise some security and
efficiency in return for accommodating overly broad
queries. In this mode, Qapla rewrites the application
queries to replace (blind) inaccessible cells with special
values that can be returned in results, before executing
the original query’s logic. (This replacement is identical
to the replacement of inaccessible cells in the creation of
materialized views from Section 3.3 but, here, the special
values must not depend on any secrets since they can be
returned directly in query results.)

However, the cell-blinding mode has two drawbacks.
First, if some fields of a record are inaccessible accord-
ing to the policy, the record is still returned (with the in-
accessible fields blinded). This leaks some information
when the presence of the record in the database is sen-
sitive and when blinded fields are correlated with other
non-blinded fields. Second, the cell-blinding mode im-
poses significant overhead on query execution (up to two
orders of magnitude for some queries with MySQL) due
to the need to check policies on, and possibly blind, in-
dividual cells in every query. We believe that the use of
materialized views described in Section 3.3 can reduce
this overhead substantially. A full study of this approach
remains as future work.

Due to these limitations of the cell-blinding mode, it is
preferable to use the row-suppression mode and to mod-
ify the application to restrict overly general queries. The
rest of the paper uses only the row-suppression mode of
policy enforcement.

3.5 Discussion

We discuss some limitations of Qapla’s current threat
model and some ideas on how to strengthen the design
to eliminate these threats. We also discuss how Qapla
can be used for logging policy violations.

Isolation of the reference monitor. Currently, we as-
sume that the application, which runs in the same ad-

USENIX Association 26th USENIX Security Symposium 1469

dress space as the reference monitor, cannot circumvent
the reference monitor or steal its authentication creden-
tials. However, this is not a fundamental limitation. To
provide guarantees against a malicious application, we
can also isolate the reference monitor in a separate pro-
cess [15, 24], or co-locate it with the DB servers. There
are also efficient ways of isolating the reference moni-
tor within the application address space, such as using
light-weight contexts [30].

User authentication. Qapla’s current design requires
the application to specify which user’s behalf it is acting
on. An application may specify the wrong user to Qapla
due to a bug, thus breaking Qapla’s policy enforcement.
This problem can be easily addressed by having the user
authenticate to the reference monitor instead of the appli-
cation. The application can then ask for the authenticated
user’s identity from the reference monitor.

Protection against offline linking attacks. Qapla
does not protect against offline linking attacks that span
multiple queries. For two queries whose results can be
linked offline (such as in example 3), randomizing the
order of query results may mitigate the attack in some
cases. However, randomizing the order of query results
cannot eliminate linking attacks in all cases. In partic-
ular, some linking may be possible due to information
contained in the data itself (e.g., names may have high
correlation with the nationality of users, or fine-grained
aggregate queries may reveal individual records). We
expect the policy designer to be aware of potential data
leaks of this type, and design the policies such that com-
pliant queries return a minimum threshold number of re-
sults (similar to k-anonymity [37]). Tools to check such
conditions on policies can be easily designed.

Support for logging. A natural question is whether we
can modify Qapla’s reference monitor to detect and log
non-compliant queries (e.g., for debugging or auditing).
While this is not a design goal, Qapla can be used to
detect non-compliant queries to a limited extent – by re-
running a query twice, with and without policy checks
and comparing the results for any differences. Non-
compliant queries can then be logged.

3.6 Implementation

The Qapla implementation consists of about 20K lines of
C code. It provides the API to create application-specific
policies, associates policies with column identifiers, and
maintains an in-memory mapping from column identi-
fiers to associated policies. It also provides an API for
setting application-specific user authentication parame-
ters in the reference monitor. Qapla uses an existing
SQL parser from the MySQL workbench [4] to extract
accessed tables and columns. A rewrite module imple-
ments the lookup for applicable policies and the query

rewriting algorithm. A template cache module maintains
a cache of rewritten query templates, and a customiz-
able translation module can translate the SQL dialect of
one DBMS to that of another, allowing Qapla uses across
DBMSs. In our evaluation, we translate MySQL queries
into a commercial DBMS’s queries.

Qapla can support existing PHP and Python based ap-
plications. For PHP applications, we modified the PHP
Data Objects (PDO) [5] module in the PHP interpreter.
For Python applications, we rely on the Django frame-
work [1], which provides an object-relational mapping
(ORM) API for database interaction. Django provides a
database-independent abstraction to the application de-
veloper. We modified this abstraction and interface with
the Qapla reference monitor using the ctypes library.
Both PDO and Django can be used to connect with dif-
ferent databases, such as MySQL, SQLite, MSSQL and
Oracle. Modifications to PDO and Django were limited
to 135 and 141 lines of code, respectively.

4 Case studies
In this section, we describe our use of Qapla to ensure
policy compliance in HotCRP and APPLY.

4.1 HotCRP compliance with Qapla

Policies. We studied HotCRP’s schema and wrote poli-
cies based on our knowledge of its workflow. In many
cases, we reverse-engineered HotCRP’s policies by in-
specting its code base to confirm and correct our intu-
ition. In total, we specified 30 policies for the 22 ta-
bles and 215 columns in the schema of HotCRP version
2.99, which supports a broad range of configurations for
a conference. The policies cover a single-track confer-
ence with a double-blind submission process, handling
of chair conflicts with paper managers, and a review pro-
cess with no rebuttal. Due to space constraints we cannot
show all the policies but Table 1 shows the policies as-
sociated with important tables like contacts, papers, re-
views, and conflicts. The policies are explained in plain
English for clarity and brevity of exposition but are ac-
tually written in the language introduced in Section 2.
Macros abbreviate common SQL fragments that appear
in many policies. Many of the policies are fine-grained
access control predicates on user, time, and the content
of various database tuples. There are also link and aggre-
gation policies.

Link policy example. An author can independently
view the names of all PC members, his own paper sub-
mission, and the reviews for his papers after the notifi-
cation date. However, the author is not allowed to see
the join of the three columns, which reveals the review-
ers’ identities. In the HotCRP schema, these columns re-
side in three different tables (ContactInfo, Paper, and Pa-
perReview). The PaperReview table can be joined with

1470 26th USENIX Security Symposium USENIX Association

id table column list allow the authenticated user U access to row R if ...

C1
ContactInfo email

(U is a chair) or (R is U’s contact information) or (U and R are on
the PC)

C2
ContactInfo password (R is U’s contact information) or (U is chair)

P1
Paper

paperId, title, abstract,
timeSubmitted,
timeWithdrawn

(U is R’s author) or (U is on the PC and either the submission
deadline has not passed or R was submitted fully)

P2
PaperStorage

paperStorageId, size, paper,
other paper metadata

(U is R’s author) or (U is on the PC and R was submitted fully)

P3
Paper

authorInformation,
collaborators

(U is R’s author) or (the notification deadline has passed, R was
accepted and U is on the PC)

P4
Paper outcome

(the notification deadline has passed and U is R’s author or a PC
member) or (U is R’s paper manager or a non-conflicted PC
member)

P5
Paper shepherdContactId

(the notification deadline has passed and U is R’s author) or (U is
R’s paper manager or a non-conflicted PC member)

P6
Paper managerContactId (U is a chair or R’s manager or a non-conflicted PC member)

P7
Paper leadContactId

(U is R’s manager) or (U has submitted a review for R) or (U is a
non-conflicted PC member and the discussion has started)

R1
PaperReview

reviewId, paperId, <review
content>, reviewSubmitted

(P7 conditions) or (the notification deadline has passed and U is R’s
author or a non-conflicted PC member)

R2
PaperReview

contactId, reviewEditVersion,
reviewRound, requestedBy,
reviewType, commentToPC,
reviewToken, timeRequested

(P7 conditions) or (R is a sub-review and U is the reviewer who
asked for it)

C PaperConflict all columns
(U is R’s author) or (U is a chair) or (U is a PC member and the
subject of R)

AL
ActionLog all columns U is R’s manager or a non-conflicted chair

AO
Outcome
statistics

Total number of submissions
and accepted papers

the notification deadline has passed

AS
Avg. review
scores

Average score across all
submitted reviews

U is a PC member

AR
Review
statistics

Number of reviews submitted
by each PC member

U is a PC member and statistics excludes each row conflicted with U

Table 1: Subset of HotCRP policies

Contact via the contactId key column, and with Paper via
the paperId key column. The link policy can be imple-
mented by specifying a restrictive policy for PaperRe-
view.contactId, which does not allow the author to read
the column (R2 in Table 1). The policy prevents PC au-
thors from identifying reviewers of their own papers, yet
allows them to know and participate in discussions with
reviewers of non-conflicted papers.

Aggregation policy example. During the review and
discussion process, HotCRP provides aggregate statistics
to all reviewers. The statistics include the average review
score across all papers as well as the number of reviews
submitted by each PC member. To allow this feature to
function correctly, we specify two aggregate policies (AS
and AR in Table 1), one allowing an AVG computation
on the overAllMerit score field and the other allowing a

COUNT on the review field grouped by PC member. In
the second case, conflicted papers must be excluded.

Implementation effort. We replaced the MySQLi
database adapter [6] normally used in HotCRP with
our modified Qapla-enabled PDO adapter. We modified
HotCRP to forward the user authentication credentials to
the Qapla reference monitor. (Apache was configured to
fork a separate process for each HotCRP user session, so
there is a separate instance of the adapter/reference mon-
itor for each user session.) HotCRP uses broad queries
and relies on post-filtering to remove the information the
user should not see. We changed approximately 150 LoC
in HotCRP’s code to make these queries policy compli-
ant so that they can work with Qapla. In most cases, we
added a couple of queries to identify the contextual infor-
mation required to convert the broad queries into more

USENIX Association 26th USENIX Security Symposium 1471

specific queries. With Qapla in place, we can remove
the post-filtering queries, but we ignored them for now.
Table 2 summarizes the changes we made in HotCRP.

Type of change lines of code
Replace MySQLi with PDO adapter 96
Change paper query 110
Change review query 25
Change comment query 17
Authentication with Qapla 5

Table 2: HotCRP changes

4.2 APPLY compliance with Qapla

We briefly describe our use of Qapla to protect the appli-
cation management system (APPLY) for managing fac-
ulty, PhD, post-doc, and internship applications in our
organization. APPLY’s database is similar to the ficti-
tious Acme database from Section 2 and the confidential-
ity concerns are also similar. The database contains user
accounts for applicants and reviewers, contact and ap-
plication details of the applicants, references, and inter-
nal application review aspects such as comments. Users
within the organization are assigned roles based on what
application type (intern, PhD, postdoc, faculty) they are
allowed to access. APPLY prevents reviewers from ac-
cessing applications created before they joined the orga-
nization. Additionally, APPLY allows explicit delegation
of the right to view (sets of) applications to specific users
or roles, and disallows a user from accessing an applica-
tion in case of a conflict of interest. A single policy con-
dition, listed below, covers a large number of columns
across many tables.
User U has access to application A if:

(A is U’s own application) or
((U joined before A was submitted) and
(U has no conflict of interest with A) and
((U is faculty) or (U has been delegated access to A)))

There are additional restrictions on many sensitive
columns and exceptions for other roles. For example,
users cannot see reference letters written for them and
an applicant’s country of birth and citizenship cannot be
seen by reviewers until the application has been accepted
(to prevent discrimination). Office staff can access all
applicant names, emails, and postal addresses (to corre-
spond with them) and CVs of accepted applicants (to pre-
pare contracts). In total, we wrote 41 policies for APPLY.

Implementation effort. APPLY is implemented using
Django and Python and stores its data in a database com-
prising 36 tables and 202 columns. The modifications
necessary for APPLY were quite similar to those required
for HotCRP. First, we modified 10 LoC to pass user au-
thentication credentials to the Qapla reference monitor.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2
MySQL

Q3 Q1 Q2
Commercial DBMS

Q3

L
a

te
n

c
y
 (

m
s
)

Baseline
Qaplaexec

Qaplarewrite
Qaplaparse

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2
MySQL

Q3 Q1 Q2
Commercial DBMS

Q3

L
a

te
n

c
y
 (

m
s
)

Baseline
Qaplaexec

Qaplarewrite
Qaplaparse

Figure 3: HotCRP query latency on MySQL and a commercial
DBMS (baseline is measured without Qapla).

Second, we changed 63 LoC to remove unused columns
from queries to make them compatible with our policies.

5 Evaluation
In this section, we present results of an experimental
evaluation of Qapla’s overhead when used with HotCRP
and APPLY. We also perform a brief security evaluation
by injecting HotCRP bugs that existed in prior versions.

All experiments were performed on Dell Precision
T1600 workstations with an Intel Xeon E3-1225 3.1Ghz
quad core CPU, 8GB main memory, and 10Gbit Ether-
net links. The client and server machines were running
OpenSuse Linux 12.1 (kernel version 3.1.10-1.29, x86-
64). The HotCRP server software consisted of Apache
HTTP server 2.4.18, PHP 5.6.15, and HotCRP 2.99. The
APPLY software included Python 2.7 and Django 1.9.7.
By default, the backend database for each application
was MySQL Server 5.7.11. In some experiments, we
used instead a well-known commercial DBMS, which re-
mains unnamed due to license restrictions on the publica-
tion of benchmark results. Both DBMSs were configured
with a query cache of 500MB, unless stated differently.
Unless stated otherwise, the results correspond to the de-
fault setup with MySQL.

For HotCRP, we used an anonymized database snap-
shot of a major conference hosted on HotCRP in the past.
The database included about 150 submissions, over 400
contacts, and over 700 reviews. The papers were re-
viewed in 3 rounds. For APPLY, we used an anonymized
database snapshot of 9396 applications received by our
organization for internships, doctoral, postdoc and fac-
ulty positions.

5.1 Query latency

The first experiment measures Qapla’s latency overhead
on individual queries. Qapla introduces overheads asso-
ciated with query parsing, query rewriting, and execut-
ing the rewritten query in the database. Table 3 lists the
actual HotCRP queries we used in the experiment. Fig-
ure 3 shows the average query latency over 1000 trials,
on MySQL and on the commercial DBMS. The Qapla la-

1472 26th USENIX Security Symposium USENIX Association

Baseline query Policy summary
Q1 select title, abstract from Paper where paperId=X paper author or PC member and the paper is under submission
Q2 select title, overAllMerit from Paper join PaperRe-

view where paperId=X
paper author after notification or PC member who is not a conflict
and has submitted his/her review and the paper is under submission

Q3 select title, overAllMerit, reviewerName from Paper
join PaperReview join ContactInfo where paperId=X

PC member who is not conflicted and has submitted his/her review
and the paper is under submission

Table 3: Microbenchmarks queries

tency is broken down into three components: query pars-
ing (Qaplaparse), query rewriting (Qaplarewrite), and
execution of the rewritten query (Qaplaexec). The error
bars show the standard deviation. In this experiment, the
query caches of the backend DBMSs and Qapla’s tem-
plate cache were disabled.

The contribution of query parsing and rewriting is
small, particularly for the more complex queries (on
MySQL, 23%, 15%, 8% of the overall query latency for
Q1, Q2, and Q3 respectively). The query rewriting over-
head is slightly larger with the commercial DBMS, be-
cause Qapla has to translate HotCRP queries, which were
written for MySQL, to use a SQL syntax appropriate for
that DBMS.

In all cases, Qapla’s latency overhead is dominated
by the execution time of the rewritten queries. A query
rewritten with policy conditions may be significantly
more complex than the original query as each relation
in the query is replaced with a subquery, which may ac-
cess additional tables that appear in the policy. The ef-
ficiency of the rewritten query depends on the database
query optimizer being able to generate an efficient query
plan. The costs of executing the rewritten queries are
lower with the commercial DBMS, whose query opti-
mizer likely is more sophisticated than that of MySQL.
Thus, while the commercial DBMS has a slightly higher
baseline latency, it is able to execute the rewritten queries
relatively faster than MySQL, reducing Qapla’s overhead
substantially for the more complex queries Q2 and Q3.

Our experiment inflates Qapla’s true overheads to
some extent, because the rewritten query may require
accessing tables that are not mentioned in the original
query to ensure compliance. HotCRP accesses these
same tables in a separate query to perform the filtering
in its own code. To understand this further, we measure
the overheads for traces of queries corresponding to user
actions in the next experiment.

5.2 Action overhead and latency

A user task in HotCRP and APPLY typically involves
multiple actions, such as logging in, clicking on a url to
visit a page, and clicking on a button to save a form. For
each action, the application in turn issues several SQL
queries to get the required data for the response and for
policy compliance checks. In this section, we measure

the overhead for the sequence of SQL queries involved
in several application user tasks. We recorded the SQL
queries issued for each of the tasks, and replay the query
trace with and without Qapla.

We measured the overhead for executing the query
traces and the client-perceived latency overhead under
various configurations of the baseline and Qapla. Base is
the baseline system without Qapla. Qapla is Qapla and
Qaplat-cache is Qapla with the template cache enabled. In
all configurations, the query cache of the backend DBMS
was enabled.

5.2.1 HotCRP

In HotCRP, we measured four user tasks: H1: As an
author, view reviews for a submission (resulting in two
actions). H2: As a PC member, search for a paper with a
keyword, and add a comment (resulting in four actions).
H3: As PC chair, search for a paper with a keyword,
and declare a conflict with a PC member (resulting in
five actions). H4: As PC chair, invoke the automatic
review assignment for all submissions (resulting in three
actions).

Task trace execution overhead. First, we measured
the average time for executing the traces for tasks H1-
H4 on MySQL and the commercial DBMS, respectively,
under the three configurations and across 1000 trials (all
standard deviations are below 5%).

With MySQL, the relative overheads of Qaplat-cache
are 6x, 4.7x, 5.4x, and 7.8x for the tasks, respectively.
With the commercial DBMS, the relative overheads of
Qaplat-cache are 2.5x, 6.5x, 3.8x, and 2.9x. The re-
sults for Qaplat-cache show that Qapla’s query template
cache is effective in reducing the overhead resulting from
Qapla’s query parsing and rewriting. The template cache
hit rates for each action are 25%, 71%, 82%, and 99%,
respectively, yielding a reduction in Qapla’s overhead of
up to 22%, relative to Qapla, for H4 with the commer-
cial DBMS. In the case of H1, we observe a net increase
in overhead, because the cost of maintaining the template
cache cannot be offset due to the low hit rate.

Client-side latency. To measure the client-perceived
latencies from the perspective of a Web client, we exe-
cuted each task with a client-side driver that issues HTTP
requests to HotCRP for each action involved in per-

USENIX Association 26th USENIX Security Symposium 1473

 0

 1

 2

 3

 4

 5

H1 H2 H3 H4

N
o

rm
a

liz
e

d
 l
a

te
n

c
y

HotCRP highest overhead action in each task

Base

59.7 101.6 93.7 1517.5

Qaplat-cache

Figure 4: HotCRP client latency of highest overhead action in
each task. MySQL, normalized to Base. The labels show Base
absolute latency numbers in milliseconds.

forming the task manually. The driver fetches the static
HTML pages (but excludes dynamic content such as css,
javascripts) from HotCRP and stores them locally. Thus,
the experiment includes the overheads of executing PHP
code, including database queries, and sending the HTML
pages over the network. The template cache as well as
the database query cache were flushed after each iteration
of a task to fully expose worst-case latency overheads.

Figure 4 shows the average latency, across 1000 tri-
als, of the action with the highest relative overhead in
Qaplat-cache (all standard deviations are below 0.05%).
The latency overheads for the actions are 40%, 25%,
47%, and 320%, respectively. The latency could be re-
duced further by removing the redundant post-filtering
queries in HotCRP.

Most of the latency is due to the PHP execution (in-
cluding database queries), while the network overhead
is minimal (0.2ms on average). All the actions are per-
formed in less than 150ms, except the assignment page
generated in H4, which takes 1.5 seconds in Base and
6.4 seconds in Qaplat-cache. The assignment algorithm
invokes about 3780 queries for the given set of papers
and reviewers, while the remaining actions invoke less
than 200 queries. H4 is a task used by the PC chair(s)
only, and normally only a few times per conference, de-
pending on the number of reviewing rounds.

5.2.2 APPLY

In APPLY, we measured the following tasks: A1: As
an applicant, view the status of a submitted application
(resulting in 3 actions). A2: As the faculty member in
charge of post-doc applications, mark the status of mul-
tiple applications to reject, and send rejection emails to
the marked applications (resulting in 7 actions). A3: As
a faculty member, search for an applicant by name, and
request recommendation letters from the applicant’s rec-
ommenders (resulting in 7 actions). A4: As a student
reviewing doctorate applications, see a list of doctorate
applications currently under review, and view the details
of a single application (resulting in 4 actions).

 0

 1

 2

 3

 4

 5

 6

 7

A1 A2 A3 A4

N
o

rm
a

liz
e

d
 l
a

te
n

c
y

APPLY highest overhead action in each task

Base

129.2 89.1 98.7 50.2

Qaplat-cache

Figure 5: APPLY client latency of highest overhead action,
MySQL, normalized to Base. The labels show Base absolute
latency numbers in milliseconds.

Task execution trace overhead. With MySQL, the
relative overheads of Qaplat-cache are 5.35x, 5.4x, 5.2x,
and 4.5x for A1-A4, respectively. With the commercial
DBMS, the relative overheads are 4.2x, 3x, 3.3x, and
3.3x, respectively.

Client-side latency. Figure 5 shows the average la-
tency, across 100 trials, of the action with the highest
relative overhead in Qaplat-cache (all standard deviations
are below 12%). The latency overheads are low except
for an action in A3: 12.5%, 74%, 6.25x, and 34%, re-
spectively. The high overhead in action A3 is due to a
single query with very high runtime, which is the cause
of nearly all the overhead. On investigating the query
behavior, we found that the performance overhead is due
to the MySQL query optimizer’s inability to deal with
a specific query pattern, possibly because this pattern is
unlikely to occur in hand-written queries. When we ran
the same query on the commercial DBMS, the overheads
came down to approximately 50%.

5.3 HotCRP submission throughput

For most HotCRP actions, latency is the metric of inter-
est, as it affects user-perceived delays. Right before a
submission deadline, however, throughput is also a mea-
sure of interest, because many authors re-submit a final
revision of their submission within the last minutes be-
fore a deadline. To examine the performance under such
conditions, we measured the number of submissions per
second HotCRP can sustain with and without Qapla.

In this experiment, clients concurrently upload sub-
missions of size 356KB, which is close to the average
submission size in the past HotCRP conference deploy-
ment. We varied the number of concurrent clients from
1 to 64. 32 clients were sufficient to saturate the CPU.
Prior to the experiment, we cached the entire conference
database (∼880MB) in memory. Figure 6 shows the
number of submissions per second our HotCRP instal-
lation can sustain for different numbers of concurrently
connected clients. The results were averaged across 3

1474 26th USENIX Security Symposium USENIX Association

 0

 5

 10

 15

 20

1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(S

u
b

m
is

s
io

n
s
/S

e
c
.)

Active concurrent clients

Base
Qaplat-cache

Figure 6: Submission throughput

runs, each of 120 seconds. The error bars show the stan-
dard deviation across 3 runs. The overheads are mod-
erate (below 20.2%), and can be compensated by provi-
sioning a somewhat faster server.

5.4 Trace replay

In the next experiment, we check if HotCRP-Qapla can
correctly execute all the actions performed in a HotCRP
conference deployment across the various review stages,
and produce the same output as the unmodified HotCRP.
We use a trace derived from the anonymized logfile of
the past HotCRP deployment. The logfile contains over
10,000 log entries that correspond to HotCRP database
updates. From it, we constructed a trace by inspecting
the HotCRP codebase to determine the set of SELECT
queries that typically precede a specific update. For ex-
ample, submitting a review for a submission must have
been preceded by viewing the submission page. Since
update queries are not subject to policy checks in Qapla,
they are not of interest to our experiment and were not in-
cluded in the trace. Table 4 shows the actions performed
for each log entry.

The trace consists of actions corresponding to four
phases: submissions, review, discussion, and post noti-
fication stage. We replayed the entire trace against the
original HotCRP and HotCRP-Qapla and compared the
outputs. Because the trace is read-only, we replayed it
against the final state of the HotCRP database at the end
of the conference review period. As a result, several
policies were not exercised the way they would be in a
real deployment and, consequently, the outputs of ap-
proximately 27% of the actions differed with and with-
out Qapla enforcement (e.g., withdraw link enabled or
not, papers may have been withdrawn at a later stage of
the conference). Most of these actions were in the first
phase. We verified separately that the relevant policies
are enforced as expected.

We found that approximately 3% of action outputs dif-
fered for other reasons. These reasons are: (i) some
non-compliant queries we have not yet modified (e.g.,
chair unable to make assignments to conflict papers), (ii)

Log entry High-level task reads Count
Create/update
account

User logs in, visits her profile 1090

Register, update,
submit, or with-
draw paper

User logs in, visits the submis-
sion page

2082

Added prima-
ry/none reviewer

Chair logs in, visits the paper’s
reviewers assignment/conflicts

1335

Set paper lead-
/shepherd

Chair logs in, visits the paper’s
page

126

Save/submit/delete
review/comment

Reviewer logs in, visits the pa-
per’s page

3279

Download pa-
per(s)

Reviewer logs in, visits the pa-
per’s page, downloads the paper

2582

Send accept/re-
ject notification

Chair logs in, sends decisions to
contact authors

2

Table 4: Trace actions for HotCRP

policies that are more restrictive than HotCRP assumes
(e.g., conflicted PC members unable to download the pa-
per), and (iii) missing policies (e.g., external reviewers
not considered).

5.5 Native DBMS access control

As discussed in Section 6, some production DBMS sys-
tems support fine-grained access control over tables and
views to a limited extent. In this section, we compare us-
ing Qapla to enforcing policies directly in our commer-
cial DBMS, which unlike MySQL has some support for
fine-grained access control. More precisely, this database
supports the equivalent of our single-column policies
through a special configuration mechanism. We speci-
fied many of the HotCRP policies through this mecha-
nism. However, as our work on HotCRP and APPLY
demonstrates, applications often require richer policies
(such as link and aggregate policies), which cannot be
expressed using the DBMS’s policy mechanism. To en-
force these policies, we had to create additional views on
all HotCRP tables, restrict access to those views and up-
date all queries, whether compliant or not, to use views
rather than the underlying tables.

We ran the experiments from Section 5.2 to compare
the performance of the DBMS access control mecha-
nism with that of Qapla. Figure 7 shows the average
latency for HotCRP actions, across 100 trials, normal-
ized to Base. The error bars show the standard devia-
tion. Qapla policy enforcement overhead is lower than
the overhead of enforcing policies through the DBMS
access control for most actions.

The results show that using the native support for fine-
grained access control in the commercial DBMS is less
efficient than Qapla’s policy enforcement. Moreover,
to get this level of performance from the commercial
DBMS, we had to carefully tune its cache configuration

USENIX Association 26th USENIX Security Symposium 1475

 0

 2

 4

 6

 8

 10

H1 H2 H3 H4

N
o

rm
a

liz
e

d
 l
a

te
n

c
y

HotCRP actions

Base

6.8 26.2 41.0 890.8

DBaccess control

Qaplat-cache

Figure 7: HotCRP action latency with policies enforced using
a commercial DBMS’s native support for fine-grained access
control, normalized to Base. Numerical labels indicate abso-
lute Base latency in milliseconds.

for this experiment. Qapla, on the other hand, achieves
better performance with both MySQL and the commer-
cial DBMS, has a DBMS-independent policy language,
and does not require the use of views and the resulting
changes to compliant queries.

5.6 Fault injection experiments

To verify that Qapla is effective at preventing acciden-
tal data leaks, we manually reviewed HotCRP’s change
logs for bugs that caused data leaks and other policy vio-
lations [2]. We are confident that Qapla can prevent any
data leaks that are related to missing or incorrect filtering
code in HotCRP, which appear to account for the major-
ity of cases.

As a sanity check, we reproduced two sample bugs
HotCRP had in the past. One bug notified authors about
changes to PC-only fields during response periods. An-
other bug allowed PC members to search for papers
based on their acceptance status and learn of the accep-
tance of their papers prematurely. We simulated these
bugs by making changes to the policy check functions
implemented in HotCRP, or by removing the invocations
of these functions at certain places in the application. We
executed user actions on the buggy HotCRP application
with and without Qapla and manually examined the out-
puts. We verified that Qapla prevents the data from being
revealed to unauthorized parties.

There is one class of data leaks that Qapla cannot
prevent by itself, namely when a policy depends on in-
correct data recorded in the database. For instance, if
HotCRP failed to record the conflicts declared by users
correctly in the database, Qapla could not prevent the as-
sociated leak. We have not found instances of such bugs
in HotCRP’s change logs, but it is possible that such bugs
might occur.

6 Related work
Database access control. The database community
has explored fine-grained access and disclosure control
within databases, using SQL conditions [28], queries
against restricted authorization views [34], and data-
derived security views [13]. A formal framework for
the design of database access control is presented by
Guarnieri et al. [26]. In contrast to these systems,
Qapla’s goal is to provide a portable policy layer that
works with existing DBMSs and applications, without
relying on any support for policies within the DBMSs.

DataLawyer [40] is a database middleware system that
analyzes and rejects non-compliant queries to a rela-
tional DBMS. Policies are stated as SQL queries on the
database and a usage log, which contains provenance
information. DataLawyer supports rich policies, moti-
vated, for instance, by medical databases. Since policies
are associated with the entire database, each query must
be checked against all policies, each requiring a sepa-
rate query. Qapla policies are more restricted (e.g., they
cannot refer to provenance), but Qapla is much more ef-
ficient because policies are indexed by columns. Also
Qapla policies are expressed directly as filter conditions,
making them easy to write and understand.

In the context of link policies, DiMon [16], its exten-
sion D2Mon [38] and Biskup’s work [14] enforce access
policies by relying on an explicit, complete specification
of information that a querier can infer from past queries.
These systems deny a query when the query would allow
the inference of policy-prohibited information. Qapla’s
approach is complementary and easier to implement and
use; we require the specification of only access rules, ab-
stracting away the inferences those accesses would allow.
If indeed a complete specification of possible inferences
were to exist, it could be used to assist the policy designer
understand the consequences of Qapla policies.

Turan et al. [39] present an algorithm to partition a
database schema such that two pieces of data that should
not be linked (according to a policy) lie in separate logi-
cal subschemas. This could be a useful optimization in a
Qapla deployment. However, it cannot be used for poli-
cies where, of three columns, any two may be linked to-
gether, but all three may not be linked simultaneously.

IVD [31] is an authorization system deployed in Face-
book, which automatically learns write access control
rules on their graph database system from production
logs, and enforces them at runtime. Qapla’s focus, on
the other hand, is on read access control and link policies
in relational DBMSs.

Access control in production DBMSs. Current pro-
duction DBMSs support access control at various levels
of granularity. However, the extent of support and the
language used to express policies varies among DBMSs

1476 26th USENIX Security Symposium USENIX Association

and, as far as we know, no DBMS can support all
of Qapla’s policies without requiring changes to either
the schema or queries (including queries that are policy
compliant). Qapla enforces fine-grained policies with-
out requiring changes to the schema or policy compli-
ant queries, and requires no support for such policies in
the backend DBMS. Moreover, as shown in Section 5.5,
Qapla’s overhead is lower than a commercial database’s
native support for fine-grained policies.

Oracle VPD [11] provides extensive support for cell-
level access control on tables and views. However, a pol-
icy on a table cannot depend on the results of a query
on the table itself. Such policies occur in our applica-
tions. For instance, the first clause in policy C1 in Table 1
checks that the user is the chair, which is defined using
the table that the policy protects. Such policies can be
enforced in VPD only by either changing the schema or
creating additional views. The use of views, in general,
also requires changing queries to use the views instead
of the underlying tables. On the other hand, automatic
query rewriting as in Qapla is transparent to applications
that issue policy compliant queries.

IBM DB2 [9] and SQL Server [10] require a combi-
nation of row-level (data-dependent) access control and
column masking policies to specify fine-grained poli-
cies, which can obscure the policy specification. Post-
greSQL [7] has support for row-level policies, but they
apply to all columns of a table uniformly. A policy on a
subset of columns requires the creation of a view contain-
ing only those columns. MySQL and MariaDB do not
support data-dependent access control. Fine-grained ac-
cess control in these DBMSs requires creating a separate
view for every group of users with the same privilege,
or creating stored procedures and granting privileges to
users to execute the procedures [3, 8].

In all production DBMSs we know of, enforcing link
policies requires creating a separate view for each policy.
Transformation and aggregation policies require separate
views or stored procedures. As mentioned above, creat-
ing additional views or using stored procedures requires
significant changes even to applications that issue only
policy-compliant queries.

Database interposition. Interposing on database
queries to improve security is a common technique. Per-
haps most closely related to our work is CLAMP [33],
which has the same goals as Qapla. However, CLAMP’s
architecture and policy language are different from
Qapla’s. In CLAMP, when a user initiates a session, the
enforcement framework performs user authentication,
instantiates a logical view of the database restricted only
to data that the user can access (based on applicable
policies), and isolates a fresh instance of the application
in a virtual machine, restricting it to only communicate
with the authenticated user and giving it access to only

the logical view of the database via query interposition
(as in Qapla). CLAMP’s design supports a stronger
threat model than Qapla’s current prototype—CLAMP
isolates user sessions from each other and from the
reference monitor, and does not rely on the application
to authenticate the user (see Section 3.5)—but the
expressiveness of policies, which is really the focal
point of our work, is limited in CLAMP. CLAMP only
supports per-table policies, which specify the rows that
each user has access to. Support for finer policies that
differentiate columns of a table from each other or take
into account linking, transformation and aggregation
is missing in CLAMP. Qapla can be strengthened with
CLAMP’s isolation and authentication techniques in a
straightforward manner.

Diesel [24] is a framework for applying the principle
of least privilege on relational databases. Diesel poli-
cies specify subsets of a database that each application
module can access. For example, a policy may specify
that a user-facing module can only access the Users ta-
ble, but not administrative tables, thus limiting damage
in the event of a user session compromise. This is very
different from Qapla’s (and CLAMP’s) goal of specify-
ing what data each user can access. Nonetheless, Diesel
also relies on query interposition (as in Qapla) to enforce
its policies.

Passe [15] hardens the web framework Django to iso-
late application modules from each other. Like Diesel,
it uses query interposition to enforce least privilege on
data accessible to each module. Unlike Diesel, but
like CLAMP and Qapla, Passe’s policies are sensitive
to the authenticated user. However, Passe’s policies are
fundamentally different from those of Qapla, CLAMP
and Diesel—they enforce data-dependency relations on
query parameters. For example, a Passe policy may en-
force that the third parameter of the second query made
by a specific application module is always a value re-
turned for the first query of the module. Moreover,
Passe’s policies are not specified by administrators. In-
stead, they are learnt by automated testing in an offline
phase. This learning can have both false positives (it may
learn a policy that is too restrictive) and false negatives (it
may not learn a required policy). Due to the very differ-
ent nature of Passe’s policies, it is not possible to directly
compare their expressiveness to that of Qapla’s policies.

Policy languages. EPAL [12] specifies enterprise pri-
vacy policies in terms of user categories, data categories,
purposes, actions, obligations, and conditions. Qapla
relies on authentication-based access control instead of
purpose-based access control. Also, Qapla uses SQL
syntax to specify policy languages, similar to [19, 28].
SQL is a natural choice to specify policies for database-
backed applications, since it enables specifying complex
policies on query operators easily, and developers are al-

USENIX Association 26th USENIX Security Symposium 1477

ready familiar with it.

CMS confidentiality. CoCon is a new conference
management system whose confidentiality properties
were verified formally in the Isabelle proof assistant [27].
Qapla on the other hand, is a general, language-
independent runtime compliance layer for database
queries, which we have used to enforce compliance in an
existing and widely used conference management sys-
tem, HotCRP.

Privacy in statistical databases. Differential pri-
vacy [23] and privacy-preserving queries [32, 17] are fo-
cused on statistical databases, where only statistical in-
formation, but no information about individual records,
should be revealed. Qapla instead focuses on applica-
tions that require access to specific database records, sub-
ject to fine-grained policies.

Information Flow Control. UrFlow [19], Hails [25],
Jacqueline [41], DBTaint [22], RESIN [42], La-
belFlow [18] and Nemesis [21] use language-based tech-
niques to enforce information flow control in web appli-
cations written in specific languages. In contrast, Qapla
can be ported to any language easily but it enforces ac-
cess policies, not information flow control. Qapla can
be integrated with a language-based technique to control
information flow with fine-grained policies.

IFDB [36] enforces authorization policies by modify-
ing the PostgreSQL database engine, as well as the ap-
plication environments in PHP and Python. For enforc-
ing column policies, IFDB relies on declassifying views.
Row policies are specified with secrecy and integrity la-
bels, which are associated with database records. IFDB
enforces row policies by tracking the labels through the
application process and stored procedures. Qapla speci-
fies all policies using one mechanism. Qapla’s enforce-
ment uses query rewriting and is database-agnostic.

Sif [20], SeLINQ [35], and Li et al. [29] assign labels
or security types to database columns, and use security-
typed programming languages to write restricted query
interfaces to the database and the application code. How-
ever, these systems cannot enforce data-dependent poli-
cies. Furthermore, some of these systems [35, 29] rely
on programming applications in languages that integrate
database query mechanisms. While the current prototype
of Qapla focuses on applications using SQL to query
databases, it can be easily extended to protect applica-
tions using other programming paradigms for database
queries. Qapla does not impose any restrictions on the
programming language for the applications themselves.

7 Conclusion
We have presented and evaluated Qapla, a system
that ensures compliance with confidentiality policies in
database-backed systems. Fine-grained access policies

are stated in a SQL-like language separate from applica-
tion code, and may refer to user id, time, tables, columns,
rows, as well as query operators like aggregation, group
by, and join. Qapla adds a reference monitor to the
database adapter, which intercepts and rewrites queries
to ensure compliance.

Qapla reliably prevents a large class of data confi-
dentiality breaches due to application bugs. Qapla’s
declarative specification of applicable policies, separate
from application code and associated with the database
schema, eases the task of specifying, enforcing and au-
diting confidentiality policy. The system’s policy lan-
guage and enforcement is independent of the DBMS
used as a backend.

Acknowledgements
We would like to thank our shepherd, Mathias Payer,
and the anonymous reviewers for their valuable feed-
back. The work was supported in part by the European
Research Council (ERC Synergy imPACT 610150) and
the German Science Foundation (DFG CRC 1223).

References
[1] Django. https://www.djangoproject.com/.

[2] HotCRP release news. http://read.seas.harvard.
edu/~kohler/hotcrp/news.html.

[3] Implementing row level security in MySQL. https:
//www.sqlmaestro.com/en/resources/all/row_
level_security_mysql/.

[4] MySQL Workbench. http://mysqlworkbench.org/.

[5] PHP Data Objects (PDO). http://php.net/manual/en/
intro.pdo.php.

[6] PHP MySQL Improved Extension. http://php.net/
manual/en/book.mysqli.php.

[7] PostgreSQL 9.5.3 Documentation. https://www.
postgresql.org/docs/current/static/
ddl-rowsecurity.html.

[8] Protect Your Data: Row-level Security in MariaDB 10.0.
https://mariadb.com/blog/protect-your-
data-row-level-security-mariadb-100.

[9] Row and Column Access Control Support in IBM DB2
for i. http://www.redbooks.ibm.com/redpapers/
pdfs/redp5110.pdf.

[10] SQL Server 2016 Technical Documentation. https:
//msdn.microsoft.com/en-us/library/
dn765131.aspx?f=255&MSPPError=-2147217396.

[11] The Virtual Private Database in Oracle9iR2. http:
//www.cgisecurity.com/database/oracle/pdf/
VPD9ir2twp.pdf, January 2002.

[12] ASHLEY, P., HADA, S., KARJOTH, G., POWERS, C., AND
SCHUNTER, M. Enterprise Privacy Authorization Language
(EPAL 1.2). http://www.w3.org/Submission/2003/
SUBM-EPAL-20031110, 2003.

[13] BENDER, G. M., KOT, L., GEHRKE, J., AND KOCH, C. Fine-
grained Disclosure Control for App Ecosystems. In Proceedings
of the ACM International Conference on Management of Data
(SIGMOD), 2013.

1478 26th USENIX Security Symposium USENIX Association

https://www.djangoproject.com/
http://read.seas.harvard.edu/~kohler/hotcrp/news.html
http://read.seas.harvard.edu/~kohler/hotcrp/news.html
https://www.sqlmaestro.com/en/resources/all/row_level_security_mysql/
https://www.sqlmaestro.com/en/resources/all/row_level_security_mysql/
https://www.sqlmaestro.com/en/resources/all/row_level_security_mysql/
http://mysqlworkbench.org/
http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.mysqli.php
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://mariadb.com/blog/protect-your-
data-row-level-security-mariadb-100
http://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf
https://msdn.microsoft.com/en-us/library/dn765131.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/dn765131.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/dn765131.aspx?f=255&MSPPError=-2147217396
http://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
http://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
http://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110

[14] BISKUP, J. History-dependent inference control of queries by
dynamic policy adaption. In Proceedings of the Annual IFIP
WG 11.3 Conference Data and Applications Security and Privacy
(DBSec), 2011.

[15] BLANKSTEIN, A., AND FREEDMAN, M. J. Automating isola-
tion and least privilege in web services. In Proceedings of the
IEEE Symposium on Security and Privacy (SP), 2014.

[16] BRODSKY, A., FRAKAS, C., AND JAJODIA, S. Secure
databases: constraints, inference channels, and monitoring dis-
closures. IEEE Transactions on Knowledge and Data Engineer-
ing 12 (2000).

[17] CHEN, R., AKKUS, I. E., AND FRANCIS, P. SplitX: High-
performance Private Analytics. In Proceedings of the ACM SIG-
COMM, 2013.

[18] CHINIS, G., PRATIKAKIS, P., IOANNIDIS, S., AND ATHANA-
SOPOULOS, E. Practical Information Flow for Legacy Web Ap-
plications. In Proceedings of the Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Pro-
grams and Systems (ICOOOLPS), 2013.

[19] CHLIPALA, A. Static Checking of Dynamically-varying Secu-
rity Policies in Database-backed Applications. In Proceedings of
the USENIX Conference on Operating Systems Design and Im-
plementation (OSDI), 2010.

[20] CHONG, S., VIKRAM, K., AND MYERS, A. C. SIF: Enforcing
Confidentiality and Integrity in Web Applications. In Proceed-
ings of the USENIX Security Symposium, 2007.

[21] DALTON, M., KOZYRAKIS, C., AND ZELDOVICH, N. Neme-
sis: Preventing Authentication & Access Control Vulnerabilities
in Web Applications. In Proceedings of the USENIX Security
Symposium, 2009.

[22] DAVIS, B., AND CHEN, H. DBTaint: Cross-application Informa-
tion Flow Tracking via Databases. In Proceedings of the USENIX
conference on Web Application development (WebApps), 2010.

[23] DWORK, C. Differential Privacy. In Proceedings of the Inter-
national Colloquium on Automata, Languages and Programming
(ICALP), 2006.

[24] FELT, A. P., FINIFTER, M., WEINBERGER, J., AND WAGNER,
D. Diesel: Applying privilege separation to database access. In
Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2011.

[25] GIFFIN, D. B., LEVY, A., STEFAN, D., TEREI, D., MAZIÈRES,
D., MITCHELL, J. C., AND RUSSO, A. Hails: Protecting Data
Privacy in Untrusted Web Applications. In Proceedings of the
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI), 2012.

[26] GUARNIERI, M., MARINOVIC, S., AND BASIN, D. A.
Strong and Provably Secure Database Access Control. CoRR
abs/1512.01479 (2015).

[27] KANAV, S., LAMMICH, P., AND POPESCU, A. A Conference
Management System with Verified Document Confidentiality. In
Proceedings of the International Conference on Computer Aided
Verification (CAV), 2014.

[28] LEFEVRE, K., AGRAWAL, R., ERCEGOVAC, V., RAMAKRISH-
NAN, R., XU, Y., AND DEWITT, D. Limiting Disclosure in
Hippocratic Databases. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), 2004.

[29] LI, P., AND ZDANCEWIC, S. Practical Information-flow Control
in Web-Based Information Systems. In Proceedings of the IEEE
Workshop on Computer Security Foundations (CSFW) (2005).

[30] LITTON, J., VAHLDIEK-OBERWAGNER, A., ELNIKETY, E.,
GARG, D., BHATTACHARJEE, B., AND DRUSCHEL, P. Light-
weight contexts: An os abstraction for safety and performance.
In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[31] MARINESCU, P. D., PERRY, C., POMAROLE, M., YUAN, T.,
TAGUE, P., AND PAPAGIANNIS, I. IVD: Automatic learning
and enforcement of authorization rules in online social networks.
In Proceedings of the IEEE Symposium on Security and Privacy
(SP), 2017.

[32] MCSHERRY, F. D. Privacy Integrated Queries: An Extensible
Platform for Privacy-preserving Data Analysis. In Proceedings
of the ACM International Conference on Management of Data
(SIGMOD), 2009.

[33] PARNO, B., MCCUNE, J. M., WENDLANDT, D., ANDERSEN,
D. G., AND PERRIG, A. Clamp: Practical prevention of large-
scale data leaks. In Proceedings of the 2009 30th IEEE Sympo-
sium on Security and Privacy (SP), 2009.

[34] RIZVI, S., MENDELZON, A., SUDARSHAN, S., AND ROY, P.
Extending Query Rewriting Techniques for Fine-grained Access
Control. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2004.

[35] SCHOEPE, D., HEDIN, D., AND SABELFELD, A. SeLINQ:
Tracking Information Across Application-database Boundaries.
SIGPLAN Not. – Volume 49,9, Aug 2014.

[36] SCHULTZ, D., AND LISKOV, B. IFDB: Decentralized Informa-
tion Flow Control for Databases. In Proceedings of the ACM
European Conference on Computer Systems (EuroSys), 2013.

[37] SWEENEY, L. K-anonymity: A model for protecting privacy. In-
ternational Journal of Uncertainty Fuzziness Knowledge-Based
Systems – Volume 10, 5, 2002.

[38] TOLAND, T. S., FRAKAS, C., AND EASTMAN, C. M. The infer-
ence problem: Maintaining maximal availability in the presence
of database updates. Computers and Security 29, 1.

[39] TURAN, U., AND TOROSLU, I. H. Privacy preserving secure de-
composition algorithm for attribute based access control mecha-
nism. CoRR abs/1402.5742 (2014).

[40] UPADHYAYA, P., BALAZINSKA, M., AND SUCIU, D. Auto-
matic Enforcement of Data Use Policies with DataLawyer. In
Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), 2015.

[41] YANG, J., HANCE, T., AUSTIN, T. H., SOLAR-LEZAMA, A.,
FLANAGAN, C., AND CHONG, S. Precise, dynamic informa-
tion flow for database-backed applications. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2016.

[42] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving application security with data flow assertions. In Pro-
ceedings of the ACM Symposium on Operating Systems Princi-
ples (SOSP), 2009.

USENIX Association 26th USENIX Security Symposium 1479

