
XMLMate: Evolutionary XML Test Generation

Nikolas Havrikov · Matthias Höschele · Juan Pablo Galeotti · Andreas Zeller
Saarland University, Saarbrücken, Germany

{havrikov, hoeschele, galeotti, zeller}@st.cs.uni-saarland.de

ABSTRACT
Generating system inputs satisfying complex constraints is still a
challenge for modern test generators. We present XMLMATE, a
search-based test generator specially aimed at XML-based systems.
XMLMATE leverages program structure, existing XML schemas,
and XML inputs to generate, mutate, recombine, and evolve valid
XML inputs. Over a set of seven XML-based systems, XMLMATE
detected 31 new unique failures in production code, all triggered
by system inputs and thus true alarms.

Video: http://youtu.be/-yKom5mbft0

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing)

General Terms
Reliability, Verification

Keywords
Test generator, search-based testing, evolutionary algorithms, XML

1. INTRODUCTION
One of the major advances in testing of the past decade is the

concept of automatic test generation: Not only do we want to ex-
ecute tests automatically, but also to generate them automatically.
Given an arbitrary program, the idea is to generate and execute tests
to automatically reveal failures.

Automatic test generation is not without challenges, though. Its
main problem is long-standing: How can we obtain a sufficient cov-
erage of the program and its behavior? Let us consider the follow-
ing example. The FreeDots1 tool renders musical scores as Braille
music suitable for blind users. Its input comes in MusicXML for-
mat, an XML representation of musical scores.

1http://delysid.org/freedots.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

private void transcribeSection(final Part part, final Section section,
final int sectionNumber,
final boolean numbering) {

final int staffCount = section.getStaffCount();
for (int staffIndex = 0; staffIndex < staffCount; staffIndex++) {
final Staff staff = section.getStaff(staffIndex);

if (transcriber.getCurrentColumn() > 0) transcriber.newLine();

if (numbering && staffIndex == 0) {
transcriber.printString(new UpperNumber(sectionNumber));
transcriber.spaceOrNewLine();
transcriber.printString(
new LowerRange(section.getFirstMeasureNumber(),
section.getLastMeasureNumber()));
transcriber.spaceOrNewLine();

} else {
transcriber.indentTo(2);

}
// more code...

}

Figure 1: Random XML generators struggle to cover central
parts of the FreeDots code (marked with “#”)

If we wanted to test the FreeDots system, a simple and straight-
forward strategy would be to use a black-box random XML genera-
tor. Unfortunately, functions such as transcribeSection() shown
in Figure 1 have very specific conditions that are not easily satisfied
by a random input, resulting in uncovered alternatives.

To cover the FreeDots code, we thus (a) need inputs that would
be expected by the method—that is, XML trees that satisfy the Mu-
sicXML rules; and (b) generator techniques that are aware of code
structure to reach testing goals.

XMLMATE is a search-based test generator that generates, mu-
tates, recombines, and evolves XML inputs. As shown in Figure 2,
XMLMATE draws on three sources of information:

1. XMLMATE is search-based, systematically evolving an input
population to maximize coverage; it thus is driven by code
and embedded conditions.

2. XMLMATE uses XML schemas, which help ensuring struc-
tural and syntactic validity of the generated inputs.

3. XMLMATE can use existing XML inputs (from tests or real
executions), mutate and recombine them to obtain both real-
istic and novel inputs.

Our contributions, as detailed in the remainder of this paper, are
as follows:

1. We apply search-based testing to XML-handling systems,
generalizing previous work for graphical user interfaces [5]
(Section 2).

XML Schema

Sample Inputs

Inputs

Coverage

XMLMATE Program

Figure 2: How XMLMATE works. From an XML schema
and, optionally, sample XML inputs, XMLMATE feeds the
program under test with generated inputs, which XMLMATE
then evolves in order to maximize coverage.

2. We report our experience executing our XMLMATE prototype
on seven XML-handling systems (Section 3), in which XML-
MATE found 31 unique failures.

2. SEARCH-BASED XML TESTING
XMLMATE is a search-based test generator. As sketched in Fig-

ure 2, it either takes a population of sample XML inputs or ran-
domly generates one, and then systematically evolves this popula-
tion over several generations to reach the desired coverage goal. To
evolve inputs it applies mutation and crossover operators to individ-
uals and favors the procreation and survival of the fittest according
to a fitness function geared towards obtaining coverage and trigger-
ing exceptions. Measuring the fitness of an input requires execut-
ing the program under test; therefore, the runtime of the approach
scales linearly with the runtime of the program.

XMLMATE is built on top of the EVOSUITE search-based testing
framework [2]. In contrast to EVOSUITE, XMLMATE does not gen-
erate unit tests, but XML inputs; hence, it uses XML inputs as chro-
mosomes and XML manipulations as mutation operators. How-
ever, the genetic algorithm itself, as well as the fitness function,
are adapted directly from EVOSUITE.

XML Trees In XMLMATE, the central data structure is an XML
tree, the standard representation of XML inputs. In Figure 3, an
XML-processing program takes a textual XML input and parses it

<math>
 <mrow>
 <munderover>
 <mo>∑</mo>
 <mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mn>1</mn>
 </mrow>
 <mi>n</mi>
 </munderover>
 <mrow>
 <apply>
 <power/>
 <ci>x</ci>
 <cn>2</cn>
 </apply>
 </mrow>
 </mrow>
</math>

mrow

munderover

∑ mrow

x = 1

n

mrow

apply

power 2x

math

nX

x=1

x2

Figure 3: A MathML formula as XML source, as XML tree,
and the rendered presentation

mrow

munderover

∑ mrow

x = 1

n

mrow

apply

2x

math

powerdivide

nX

x=1

x

2

nX

x=1

x2

Figure 4: Mutating a MathML formula from power to divide

into an XML tree representation—in this case, MathML, an XML
representation of mathematical notations, capturing both structure
and content. A MathML interpreter would process the tree recur-
sively to render it as a mathematical formula, as shown.

Mutation and Instantiation The schema instantiation engine of
XMLMATE is responsible for the random generation of initial popu-
lations and the basis for all mutation operators. We implemented a
mutation operator that randomly mutates elements in a way which
guarantees that the resulting value is schema-valid for its type. As
an example, consider Figure 4, where we mutate an operator in a
MathML formula. Here, the divide and power operators both are
math operators, and thus of a matching type; this is a standard mu-
tation that XMLMATE could generate.

Besides mutation, a test generator also needs instantiation: that
is, the creation of entirely new inputs. This is implemented as the
mutation of an empty dummy element of the root type defined in
the schema—in other words, a mutation from nothing to something.

XMLMATE mutates XML elements according to its type. For
example, if the given XML element is of a a simple type, and its
schema definition contains a pattern restriction (i.e., a regular ex-
pression which defines all valid values), XMLMATE uses the Au-
tomaton library [7] to instantiate these regular expressions.

Crossover Like many genetic algorithms, XMLMATE not only
mutates inputs, but also recombines them. This crossover opera-
tion is implemented on two levels. On the chromosome level, the
crossover operator can swap entire XML inputs within a popula-
tion. This does not change the individual XML inputs, and is a
standard crossover operation to evolve test suites. The more inter-
esting crossover operation takes place on the XML tree level. Here,
the crossover operator swaps entire XML subtrees, as shown in Fig-
ure 5. This is not only direct and intuitive; XMLMATE can also
preserve validity of the inputs according to the schema, something
that is hard to achieve in general.

Fitness Function XMLMATE uses the extended fitness function
implemented in EVOSUITE, formally defined in [1]. This extended
fitness function optimises towards achieving code coverage and
triggering a high number of unique exceptions. XMLMATE lever-
ages this definition by targeting the entire system instead of a single
compilation unit.

3. THE XMLMATE PROTOTYPE
Let us briefly describe some of our experience from executing

the XMLMATE prototype on seven publicly available XML-based
systems listed in Table 1: ROME is an Atom and RSS processing
and generation library. JEuclid is a rendering and conversion li-

Table 1: XML-based systems under test
Subject Version #Classes #SLOC Format Schema Size Source
ROME 1.0 117 10,624 Atom 11k https://rometools.jira.com/
JEuclid 3.1.9 256 15,291 MathML 124k http://jeuclid.sourceforge.net/
Freedots 20101116 158 8,865 MusicXML 303k http://delysid.org/freedots.html
Apache Batik 1.7 1,446 178,447 SVG 132k http://xmlgraphics.apache.org/batik/
SVG Salamander 1.0 176 17,688 SVG 132k https://svgsalamander.java.net/
SVG Image 1.0 1 469 SVG 132k http://goo.gl/F4Ivaw
FlyingSaucer R8pre2 294 41,619 XHTML 68k http://code.google.com/p/flying-saucer/

1X

x=1

xk

x2

nX

x=1

x2
nX

x=1

k
mrow

munderover

∑ mrow

x = 1

n

mrow

apply

power 2x

math

mrow

munderover

∑ mrow

k = 1

∞

mapply

apply

power kx

math

mrow

munderover

∑ mrow

x = 1

n

mrow

k

math

divide k

1X

x=1

xk

k mrow

munderover

∑ mrow

k = 1

∞

mapply

apply

power kx

math

divide apply

power 2x

Figure 5: Crossing over x2 and k in two MathML formulas

brary for MathML. Freedots allows blind users to view MusicXML
as braille notation and offers MIDI playback functionality. Apache
Batik and SVG Salamander are libraries for SVG modification, ren-
dering and conversion. SVG Image is a simple Java application that
renders SVG images. FlyingSaucer is a XHTML rendering library.

3.1 Sample and Random Seeding
By default, XMLMATE evolves a randomly generated initial pop-

ulation (i.e., no sample inputs are used). For each subject, we man-
ually selected a population size (i.e., number of chromosomes) and
a maximum number of individuals per chromosome. Overall, the
size of the obtained random initial populations ranged from 15 to
25 chromosomes, and the number of XML inputs per chromosome
ranged from 10 to 20 depending on subject.

As previously stated, XMLMATE could also evolve a user-selected
initial population. In order to execute XMLMATE using sample ini-
tial populations, we composed a set of sample inputs for each eval-
uation subject. These sets were obtained directly from the sample
documents and test suites included in the source packages of the in-
dividual test subjects. The samples seeds for MathML, XHTML and
SVG were taken from official test suites. For Atom we crawled
the web for available feeds; for MusicXML, we converted pub-
licly available sets of classical music MIDI files to MusicXML using
Musescore2. Each sample initial population consisted of arbitrar-
ily chosen input sets matching the size of their randomly seeded
counterpart.

3.2 Achieved Coverage
We executed each configuration of XMLMATE with a time bound

of 6 hours. Each execution was repeated 10 times.

2http://musescore.org

Table 2 exhibits the achieved branch coverage for each config-
uration on the selected XML-based systems. When comparing the
two configurations of XMLMATE (i.e., random seeds and sample
seeds), results are mixed: On two subjects (JEuclid and Batik),
coverage increased; on two (Freedots and ROME), coverage de-
creased; and on the other three, coverage is basically unchanged. A
further analysis of the effect size on each subject indicates that, in
terms of coverage, there is no difference between any of the XML-
MATE configurations.

3.3 Failures Found
At the end of the day, any testing and analysis tool will be val-

ued by the defects it finds. Exceptions or crashes at the system level
can serve as partial oracles. In contrast to unit-level, undeclared ex-
ceptions at the system-level rarely denote an improper usage of the
system, but a valid interaction or input that is not correctly handled.
In order to measure failures on our selected subjects, we count the
number of unique pairs composed by the exception type and the
program line where the exception was thrown (i.e., the topmost el-
ement in the stack trace). We do not consider an exception a failure
if the exception type is explicitly declared in the test driver. For
example, for JEuclid, IOException and SAXException types are
both ignored since they are declared exceptions in parseFile(),
render() and convert().

Table 2 also summarises the failures found by XMLMATE along
all executions. The tests generated by XMLMATE triggered failures
in six out of our seven subjects. With random seeds, XMLMATE
triggered a total of 21 unique failures—that is, failures that differ by
the topmost element of the stack trace and exception type, and thus
imply a similar number of fixes. Starting with sample inputs and
evolving these further raises the number of unique failures to 31,
highlighting the potential value of sample inputs for finding failures
at system-level.

XMLMATE triggered 31 unique failures
across six out of seven subjects.

The most frequent Java exception types found by XMLMATE
were NullPointer (5), IllegalArgument (3), Runtime (2), Index-
OutOfBounds (2), followed by ArrayIndexOutOfBounds,
NoSuchElement, StringIndexOutOfBounds, StackOverflow,
NumberFormat, and IllegalPathState, each occurring once; the
remaining exception types are specific to the respective program.

It is important to note that each of these failures can be repro-
duced via the respective XML input; consequently, all of them im-
ply a potential denial of service attack on a system that processes
such XML inputs. As long as we assume that the “external” input
actually is external, that is, under control of a third party, all alarms
generated by XMLMATE are true, by construction.

Incidentally, our investigations also led to the discovery of de-
fects in other programs. While investigating the structure of XML
files generated by our tests, we found one small file which causes
the Firefox web browser to consume the entire available main mem-
ory and then shut down. Another file caused the Opera web browser

Table 2: Results of executing XMLMATE on the XML-based systems
Subject Average Branch Coverage Total triggered unique failures

XMLMATE XMLMATE XMLMATE XMLMATE
(sample seeds) (random seeds) (sample seeds) (random seeds)

ROME 32% 36% 1 1
JEuclid 51% 48% 1 3
Freedots 36% 37% 10 12
Apache Batik 5% 3% 3 4
SVG Salamander 16% 16% 3 4
SVG Image 40% 40% 3 4
FlyingSaucer 24% 24% 0 0
Total — — 21 31

to crash with an AccessViolation error. Finally, some JEuclid
tests caused fatal crashes of the Java 1.6 virtual machine both on
Linux and Windows machines, which could indicate a potential se-
curity vulnerability of the Java virtual machine. All issues have
been reported to the respective software authors.

All failures reported by the system-level tools
could be triggered in deployed code.

4. RELATED WORK
Search-based testing is a successful unit test generation tech-

nique. After the pioneering work of Tonella et al. [9], the EVO-
SUITE framework currently provides an industrial-strength imple-
mentation [2]. With EXSYST [5], this idea has been applied to sys-
tematically generate interaction sequences for GUI applications to
exercise program behavior from a system interface.

Most related to our work is white-box fuzzing, as implemented
in the SAGE tool [4], introduced as a way to efficiently explore
behavior instead of solely relying on entropy. The advantage of
XMLMATE over SAGE is that XMLMATE can make use of XML
schemas to restrain XML inputs, while SAGE has to infer all con-
straints through symbolic analysis. Additionally, XMLMATE can
also start its seed with entirely random inputs; having sample real
inputs is helpful, but not necessary.

Godefroid et al. [3] present a white-box approach that extends
SAGE [4] by efficiently guiding input generation using a constraint
solver; this work also can use a grammar to constrain inputs. In
contrast to XMLMATE (and SAGE proper), this work does not lever-
age sample inputs to seed test generation.

The mutation of XML instances in the context of testing web ser-
vices has been implemented previously. Offut, Xu et al. [8, 10]
describe a test generation approach using data perturbation in order
to mutate XML requests. Lee, Offut et al. [6] use similar techniques
to apply mutation analysis in the context of testing web compo-
nents. These approaches require user interaction and provide no
fully automated approach that aims to maximize coverage.

5. CONCLUSIONS
We have introduced XMLMATE, a white-box tool for evolving

random or sample initial populations towards higher branch cov-
erage by means of a genetic algorithm. By bringing search-based
system testing to XML inputs, XMLMATE improves practical test
generation in many ways. Deploying XMLMATE is straightforward:
All one needs is a schema with the essential syntactic constraints.
As XMLMATE generates inputs at the system level, every failure
found can also occur during production; its absence of false alarms
is an important advantage over test generators at the unit level.

In our experience using XMLMATE to generate test cases for a
selection of XML-based systems, sample seeding seems to have no
benefit over random seeding in terms of structural branch coverage,

but more failures have been detected by evolving sample inputs
instead of randomly generated populations.

The XMLMATE prototype, as well as all the drivers and instruc-
tions for reproducing our experiments, are publicly available for
download at:

http://www.st.cs.uni-saarland.de/testing/xmlmate/

6. ACKNOWLEDGMENTS
This work was funded by an European Research Council (ERC)

Advanced Grant “SPECMATE – Specification Mining and Testing”.
Kevin Streit, Alessandra Gorla and Eva May provided helpful com-
ments on earlier revisions of this paper. Special thanks go to Gor-
don Fraser for EVOSUITE support.

7. REFERENCES
[1] G. Fraser and A. Arcuri. 1600 faults in 100 projects:

Automatically finding faults while achieving high coverage
with evosuite. Empirical Software Engineering, 2013. To
appear.

[2] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Trans. Softw. Eng., 39(2):276–291, Feb. 2013.

[3] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. SIGPLAN Not., 43(6):206–215, June
2008.

[4] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated
whitebox fuzz testing. In Network Distributed Security
Symposium (NDSS). Internet Society, 2008.

[5] F. Gross, G. Fraser, and A. Zeller. Search-based system
testing: high coverage, no false alarms. In Proceedings of the
2012 International Symposium on Software Testing and
Analysis, ISSTA 2012, pages 67–77, New York, NY, USA,
July 2012. ACM.

[6] S. C. Lee and J. Offutt. Generating test cases for XML-based
web component interactions using mutation analysis. In
Software Reliability Engineering, 2001. ISSRE 2001.
Proceedings. 12th International Symposium on, pages
200–209. IEEE, 2001.

[7] A. Møller. dk.brics.automaton – finite-state automata and
regular expressions for Java, 2010.
http://www.brics.dk/automaton/.

[8] J. Offutt and W. Xu. Generating test cases for web services
using data perturbation. ACM SIGSOFT Software
Engineering Notes, 29(5):1–10, 2004.

[9] P. Tonella. Evolutionary testing of classes. SIGSOFT Softw.
Eng. Notes, 29(4):119–128, July 2004.

[10] W. Xu, J. Offutt, and J. Luo. Testing web services by XML
perturbation. In Software Reliability Engineering, 2005.
ISSRE 2005. 16th IEEE International Symposium on, pages
10–pp. IEEE, 2005.

