
Who Controls the Internet? Analyzing Global Threats
using Property Graph Traversals

Milivoj Simeonovski
CISPA, Saarland University

Saarland Informatics Campus
simeonovski@cs.uni-saarland.de

Giancarlo Pellegrino
CISPA, Saarland University

Saarland Informatics Campus
gpellegrino@cispa.saarland

Christian Rossow
CISPA, Saarland University

Saarland Informatics Campus
rossow@cispa.saarland

Michael Backes
CISPA, Saarland University &

MPI-SWS
Saarland Informatics Campus

backes@cs.uni-saarland.de

ABSTRACT
The Internet is built on top of intertwined network ser-
vices, e.g., email, DNS, and content distribution networks
operated by private or governmental organizations. Recent
events have shown that these organizations may, knowingly
or unknowingly, be part of global-scale security incidents
including state-sponsored mass surveillance programs and
large-scale DDoS attacks. For example, in March 2015 the
Great Cannon attack has shown that an Internet service
provider can weaponize millions of Web browsers and turn
them into DDoS bots by injecting malicious JavaScript code
into transiting TCP connections.

While attack techniques and root cause vulnerabilities
are routinely studied, we still lack models and algorithms
to study the intricate dependencies between services and
providers, reason on their abuse, and assess the attack im-
pact. To close this gap, we present a technique that models
services, providers, and dependencies as a property graph.
Moreover, we present a taint-style propagation-based tech-
nique to query the model, and present an evaluation of our
framework on the top 100k Alexa domains.

Keywords
Cyber-attacks; (DoS) denial of service attacks; property
graph traversals

1. INTRODUCTION
About half of the world population is using the Internet

every day to communicate with friends, read newspapers,
and carry out financial transactions. These services rely on
core operations such as IP routing, domain name resolu-
tion, and email transfers, which are carried out by organiza-
tions ranging from universities and governmental agencies to

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052587

.

private-sector organizations. Such organizations thus have
extensive power, which, if misused, can result in global-scale
security violations. Service providers can perform various at-
tacks such as advertising false BGP paths to sensitive targets
through their network [3, 4] and injecting HTTP responses
into TCP connections [17]. Even more severe security vio-
lations can be performed when providers cooperate. Recent
events have shown that cooperation between providers and
state authorities resulted in global-scale security incidents
such as mass surveillance, e.g., the PRISM program [14],
and distributed denial-of-service (DDoS) attacks, e.g., the
Great Cannon attack [19, 16].

Service providers can also be victims of attacks. The In-
ternet is often considered as a model of resilience due to its
distributed and decentralized design. While this applies in
cases of random node failures, it does not guarantee surviv-
ability of the network with targeted attacks [5, 26]. For
example, attackers can focus their efforts against a few,
carefully selected providers to disrupt network operations
at large scale. These types of attacks have already been ob-
served against root name servers, the servers at the top of
the DNS hierarchy, so far they have had very limited impact.
However, the skills and power of attackers are increasing,
and the DNS infrastructure of Dyn.com, which serves pop-
ular websites, was struck by two DDoS attacks. While the
volume of the attacks has not yet been disclosed, this attack
caused outages in the name resolution of popular services
such as Amazon, Netflix, Twitter, Reddit, and Spotify.

An increasing number of reports and studies are showing
that a limited number of players have an important influence
on the overall security of the Internet infrastructure. While
we have a good understanding of attack techniques [16, 17],
attackers [24], and victims [21], we have a rather limited
capability to assess the impact of attacks against, or per-
formed by, core service providers. In the past decades, the
security of the Internet core infrastructures has been un-
der continuous scrutiny. Many works focused on different
facets, using analysis techniques such as topological anal-
yses (e.g., [12, 13, 10]) and traditional threat analysis via
attack enumeration (e.g., [6]). However, the contribution of
these works is limited to a single core service, and, to date,
the interdependencies between core services remain largely
unexplored.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper, we take a step forward and propose an
investigation technique to assess global-scale threats. We
present a model of the Internet infrastructures based on
property graphs. Nodes of our model are servers, organi-
zations, and autonomous systems, that are connected with
edges to represent relationships. To mine data from our
model, we present a combination of taint-style techniques
and propagation rules, which is automatically translated in
graph traversals. We assessed our approach on a model with
1.8 millions of nodes and 4.7 millions of relationships. Start-
ing from the top 100K Alexa domains, we built our model
using publicly available resources, e.g., RIPE Atlas, and by
acquiring relationships via Web service crawling. Finally, we
mined our model to assess the impact of attacks. We present
six metrics to select attacker and victim candidates. Then,
we measure the impact of three different attack scenarios,
which are based on the Great Cannon attack, the PRISM
program, and the DDoS against Dyn.com.

Our results show that already just a few players may have
an extensive power: 14 countries and 14 autonomous sys-
tems can, directly or indirectly, affect the security of about
23% of websites. Our analysis show that the United States
is the country with the largest fraction of power, i.e., 16%
of websites, and that network operators, albeit of moderate
size such as Google1, can match in terms of affected websites
the aggregate result of large countries like Russia, Germany,
Japan, and China. In addition, our results show that lit-
tle has been learned from past attacks. For example, 70%
of JavaScript (JS) inclusion is still done over unprotected
connections, i.e., via HTTP URLs, which can be used to
mount the Great Cannon attack. Finally, our results indi-
cate that the DDoS attack against Dyn.com was the result of
careful choice. Dyn’s ASes host authoritative name servers
used directly and indirectly by 3% to 5% of the 100K Alexa
domains.

This paper provides the following contribution:

• We present a first study on attacks based on depen-
dencies between Internet core services;

• We present a framework to model and reason on
global-scale threats;

• We present a taint-style technique based on propaga-
tion rules and property graphs to quantify the impact
of security incidents;

• We assess our technique on 1.8M data items acquired
from the top 100K Alexa domains.

2. BACKGROUND
Before presenting our framework, we describe relevant

case studies and introduce our threat model.

2.1 Case Studies
Our study is motivated by three recent, large-scale and

well-known security incidents.

The Great Cannon DDoS Attack—On March 16th,
2015, Greatfire.org, a non-profit organization monitor-
ing Internet censorship in China, and GitHub, the hosting
provider, were victim of a large DDoS attack, among the
largest DDoS ever experienced by GitHub [19]. The at-
tack was caused by malicious JavaScript code, which was
1Google is also a network operator as it controls the autonomous
system 15169

injected into TCP connections crossing the Chinese network
borders [16, 11]. The injected code turned Web browsers
into an HTTP-based DDoS botnet by aggressively request-
ing resources from the targets [16, 11, 22].

The PRISM Program—On June 7th 2013, The Guardian
documented PRISM, a National Security Agency surveil-
lance program with direct access to Internet communica-
tions and stored information including emails, chats, and
VoIP calls, from servers of popular tech companies such as
Microsoft, Yahoo, Google, and Facebook [14]. While the di-
rect involvement of popular tech providers is still unclear, in
this paper, we make the assumption that establishing this
type of collaboration is possible and can be voluntary, or
coerced by authorities by means of law and court orders.

The DDoS Attack Against Dyn.com—On October 21st
2016, the DNS infrastructure of Dyn.com was struck with
two DDoS attacks. According to Dyn.com,2 the attack
caused increased DNS query latency and delayed zone propa-
gation. As a result, Dyn.com customers, including Amazon,
Netflix, Twitter, Reddit, and Spotify, experienced outages
on the name resolution. At the time of writing, the details of
the attacks are not published, however, the outage clearly
affected hundreds of millions of Internet users, who could
not access the online services of Netflix and Twitter.

2.2 Threat Model
From our three case studies, we derive the threat model for

this paper. We focus on attacks that can target and involve
a large number of individuals and organizations around the
globe. We represent attacks as a set of three elements: an
attacker, the attack goal, and the attack technique.
Attacker—Attackers can be a service provider, a group of
providers, or a country. In case the attacker is the provider,
we consider the attackers: domain name provider, email
provider, network provider, content distribution network,
and domain name owners.

Service cooperation can be achieved via collaboration be-
tween two or more attackers, or via a centralized coordi-
nator, e.g., state-sponsored attacks. In both cases, we as-
sume that colluding attackers have a shared, collective mem-
ory and information acquired by one attacker is available to
other attacker.
Goal—The attack goal answers the question what attack-
ers intend to achieve. From our case studies, we consider
three goals: DDoS via distribution of malicious JavaScript,
acquisition of emails, and DoS against service providers.
Technique—To achieve their goals, attackers can use dif-
ferent techniques. For example, law enforcement agencies
may require access to user’s email boxes. Network providers
may intercept TCP traffic traversing their own autonomous
system (AS) to inject malicious JavaScript code. In this
paper, we consider the following techniques: email sniffing,
redirection via malicious domain resolution, in-path content
injection, and hosting malicious content.

3. MODELING FRAMEWORK
We now present our modeling framework. We base our

model on labeled property graphs. Labeled property graphs
store information in nodes and edges in the form of key-
value properties. We present property graphs in details in
Section 3.1. We represent elements such as domain names,

2http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/



google.com

Google Inc. 172.217.18.14

fra02s19-in-f14.1e100.net US AS15169

ns1.google.com aspx.l.google.com

66.102.1.27

theguardian.com

NS MX MXA

A

CTRL_BY

LOC_IN ORIG_FROM
ORIG_FROM

PTR

Figure 1: Excerpt of property graph for google.com

IPs, organizations, and countries as nodes. Then, we use
edges to represent relationships between nodes. For exam-
ple, if a domain name resolves to an IP, then we add an
edge between the two nodes. In a similar way, we represent
relationships between IPs and countries in the sense that if
an IP is located in a country, then we place an edge between
the country and the IP. Finally, we use labels to specify the
type of relationship.

We mine information from graphs using graph queries.
Graph queries allow to visit graphs based on nodes, edges,
and properties. In this paper, we used a technique based
on taint-style propagation technique and propagation rules.
Starting from an initial set of nodes, we propagate a taint
value according to a list of rules. Propagation rules are pre-
sented in Section 3.2, and queries and their evaluation are
presented in Section 3.3.

3.1 Property Graph
A labeled property graph G = (V,E, λ, µ) is a directed

multigraph where V is a set of nodes, E ⊆ (V × V ) is a set
of edges, λ : V ∪ E → Σ is a function that labels nodes and
edges with symbols of the alphabet Σ, and µ : (V ∪E)×K →
S is a function that associates key-value properties, e.g.,
(k, s) where k ∈ K is the key and s ∈ S is the string value,
to nodes and edges.

Figure 1 shows an excerpt of a property graph. We use
node labels to type model elements. For example, we use the
label Domain for Internet domain names, e.g., google.com
and Address for IP addresses, e.g., 172.217.18.14. We use
node properties to store element data. For example, we use
the key IPv4 for nodes Address to store the dot-decimal
notation for IPv4 addresses. Our model uses other types
of nodes including Organization, Autonomous System (AS),
and Country. The full list of node labels and properties is
shown in Table 1.

When we can establish a relationship between elements,
we place an edge, with the label specifying the type of
relationship. Relationships can be established, for exam-
ple, with DNS queries and publicly available databases
such as RIPE Atlas. We present data acquisition in de-
tail in Section 4. With reference to Figure 1, the domain
name google.com resolves to 172.217.18.14 (DNS record
type A), which is hosted in the AS number 15169 and ge-
olocated in the United States. These three relationships
are represented with edges labeled with A, ORIGIN_FROM,
and LOC_IN respectively. Then, google.com has four au-
thoritative DNS server one of which is ns1.google.com.
The domain name google.com has also an email server
aspmx.l.google.com whose IPv4 is 66.102.1.27, also
hosted in AS 15169. When we can also establish owner-
ship of elements such as domain names, then we place edges
between the Organization and the element. For example,
in Figure 1 we have a node Google Inc. which is the or-
ganization that owns the domain google.com. We repre-

Labels Description

Address Node for IP address
Domain Node for a domain name; the source data set, e.g.,

Alexa or JS, is a node property
DNS Zone The zone administrated by an authoritative name

server
AS IANA number assigned to the AS; The hosted IPs

is a node property
Country Code Country code, number of IPs
Organization Service provider name

ORIG_FROM AS where an Address originates from
LOC_IN Country where an element is located
CTRL_BY Organization controlling, e.g., a Domain
A DNS record mapping Address to Domain
MX DNS record mapping Domain for email delivery
NS DNS record for name servers
ZONE DNS record for authoritative information of a

DNS zone
CNAME Aliases from Domain to Domain
PTR PTR DNS record type maps an Address to a Do-

main
INCL_JS_FROM Domain name or Address hosting JS library

Table 1: Labels of nodes and relationships

sent this relationship with an edge CTRL_BY. Finally, Fig-
ure 1 shows a relationship that exists between the domain
theguardian.com and the email server aspx.l.google.com.
The complete list of edge types is shown in Table 1.

3.2 Taint-style Propagation and Rules
A central concept of our framework is taint-style propaga-

tion and propagation rules. These elements are the building
blocks to specify queries. The idea behind propagation rules
is that each node of the graph may become compromised by
an attacker. For example, if an attacker controls a host,
then the Address node is considered compromised. As a
consequence of this fact, Domain nodes that resolve to the
compromised Address are compromised as well. The “prop-
agation” of compromise between nodes follow specific rules
that depend on the attack. Attacks may result in less severe
consequences for node elements. Consider, for example, the
Great Cannon attack. Web sites that included JS hosted
in malicious networks can be considered compromised as
well. However, in the specific case of the Great Cannon,
the malicious JS code did not perform attacks against the
originating server. Thus, in this case, no further entities are
compromised.

Our framework supports an arbitrary granularity for com-
promise levels. In this paper, we use three levels with the
following symbols: c ∈ Σ for (completely) compromised,
pc ∈ Σ for partially compromised, and ⊥∈ Σ for non-
compromised. When a node n is compromised (i.e., c),
we add the compromise level as a node property C, e.g.,
µ(n, C) = c. The propagation is implemented via rules.
Each rule is a pair of preconditions and postconditions. Pre-
conditions are evaluated on the graph. If they hold, then
postconditions will hold in the graph. This is achieved by
modifying the graph such that postconditions will match.
The general form of a rule is the following:

pre

post
(r)

Where pre and post are two predicates for pre and post-
condition, respectively.



With reference to the previous example, the propagation
rule based on the A (name lookup) edge is the following:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = A
µ(m, C) := c

(rA)

This rule can be read as follows: If node n is compromised,
there is an edge e between m and n, and the label of e is A,
then we mark m as compromised.

We use similar rules to Rule rA for other type of relation-
ships. For example, for MX edges we have the following rule:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = MX

µ(m, C) := c
(rMX)

Rules rA and rMX can be applied in sequence. For example,
let us assume that an address node n is compromised. Then,
according to Rule rA, any domain m resolving to n, i.e.,
(m,n) ∈ E, is also compromised. If m is a domain for mail
exchange, according to Rule rMX, any domain p using m as its
mail exchange server, i.e., (p,m) ∈ E, is also compromised.
In general, starting from a compromised node and a set of
rules, we can propagate values c to other nodes.

Propagation rules are also used to represent weaker forms
of compromise. Consider the case in which m is a web server
hosting shared JS libraries. If m is compromised, it can,
for example, distribute malicious JS libraries, which can be
included in third-party websites q. As a result of this, users
of q will execute the malicious code. However, this type of
compromise may not entirely compromise the server of q,
instead it can be used to attack other servers or compromise
a user session. We model these forms of compromise with
the following rule:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = JS

µ(m, C) := pc
(rJS)

3.3 Query and Evaluation
We can now define more precisely a query to our model

and its evaluation. A query Q = (I, R, γ) is composed of
three elements: initial set of source nodes I, a set of rules
R = {r1, r2, · · · , rn}, and result function γ. The set I con-
tains nodes in G, i.e., I ⊆ N . For example, if we want to
evaluate an attack, source nodes are the initial nodes under
control of the attacker and we mark them as compromised.
Then, the set R is a set of rules, starting from source nodes,
that propagate the taint to other nodes. Finally, the re-
sult function γ is a generic function that given the graph G
transformed by the propagation rules returns a data value.

The algorithm to evaluate a query Q is shown in Listing 1.
The algorithm is divided into three parts. The first part from
Line 3 to Line 7 initializes node labels of G. Each node n in
the initial set of compromised nodes I is marked accordingly,
i.e., µ(n, C) := c. The remaining nodes are initialized with
the symbol⊥. The second part of the algorithm from Line 10
to Line 16 applies the propagation rules. We use an auxiliary
queue Q where we keep the rules to apply. This part of
the algorithm loops over the queue until it is empty. At
each iteration, we retrieve a rule r from Q, check whether
the precondition holds, and apply the post conditions. The
resulting graph is stored in G. If the preconditions of r still
holds also in the new graph, then we enqueue r in Q. The
loop terminates when Q is empty, i.e., all preconditions no

Listing 1: Attack Evaluation

1 def evaluate (G, Q)
2 # Node property initialization
3 for n in N :
4 if n in I:
5 µ(n, C) := c
6 else :
7 µ(n, C) := ⊥
8
9 # Taint Propagation

10 Q := R
11 while Q != ∅:
12 r := Q.pop ()
13 if match_pre (r, G) is True:
14 G := apply_post (r, G)
15 if match_pre (r, G) is True:
16 Q. enqueue (r)
17
18 # Query result
19 return γ(G)

longer hold. Finally, we apply the result function and return
the result.

4. DATA SETS AND ACQUISITION
We instantiated our model on a data set of 1.8M nodes

from which 350k are unique IP addresses, 1.1M are domain
names and 12k are autonomous system. These nodes are
connected with 4.7M relationships. Our acquisition starts
from popular domains and it is expanded with server and
network information. Finally, we add organizations and
countries.

4.1 Initial Domain Names
We built our data set starting from domains that individ-

uals and organizations may use for carrying out their daily
activities. For this purpose, we used the top 100k Alexa
domains, a data set of popular domain names maintained
by Alexa.3 For each domain, we created a node Domain.
Our model contains additional domains that were implicitly
acquired via Web crawling starting from the Alexa domains.
To distinguish the origin of a domain name, we use a node
property O that flags a node according to its origin.

4.2 Servers
Starting from the initial domain names, we resolve hosts

that are responsible for core operations, i.e., web servers,
authoritative name servers, email servers, content distribu-
tion servers, and routers. The collection of data is done via
Domain Name System queries and a Web crawler.

Authoritative Name Servers—The DNS records of a
domain name are maintained by the authoritative name
servers. Each authoritative name server is responsible for a
portion of the domain name space, the so-called DNS zone.
DNS zone information is stored in the SOA record type. For
each domain, we retrieve the SOA record, and add a node
Zone connected with an edge ZONE to the domain. Then,
we retrieve the fully-qualified domain name of authoritative
name servers which are listed in the NS records. For each
NS record, we add a node Domain connected with an edge

3http://www.alexa.com/



NS to the zone node of the domain. In addition, for each
NS domain name, we resolve the IP addresses, and we add
a node Address with the IP and an edge A from the domain
to the IP.

Web Servers—Our initial data set is composed of domains
of popular websites. By resolving the domain name, we
obtain the IPs of the web server. For each of these IPs,
we add a node Address in our model and place an edge A
between the domain and the address. Domain names may
be also have aliases via the DNS CNAME record. In this case,
we add the alias domain in the graph and link with a CNAME
edge. Then, we further resolve the alias domain and add an
Address node with A edge.

Email Servers—Next, we identify email transfer agents.
When email clients want to send an email to a recipient,
they request the MX record of the domain name of the email
address. The MX record can be a list of IP addresses and
domains. For each IP, we add a node Address and connect
it with an MX edge to the domain. For each domain, we add
a node Domain in the graph and the MX edge. Then, we
resolve the domain name into an IP address and add a node
Address with a A edge to the MX domain.

Content Distribution Networks—More and more web-
sites include JS libraries that are hosted on third-party
servers. For example, websites can include JS code of ad-
vertisement network services to show advertisements to their
users. Websites can also use JS frameworks to support web-
site functionalities, e.g., user interface or communication
with the server side. Among the popular frameworks we
have, for example, jQuery and Angular.js.

Starting from a list of domain names, we identify these
JS “include” relationships with a web crawler. We first visit
the website and then retrieve all tags to external JS code.
We also extract links to internal web pages, e.g., anchor
tags, and repeat the analysis on the page of the new links.
We repeat this operation for a depth of 2. For each of the
retrieved JS URLs, we add an Address node if the host is
an IP, and a Domain node if it is a domain name. For each
edge, we store the URL scheme as property using the key S.
For example, if the included JS is unprotected, i.e., HTTP,
then S = HTTP.

4.3 Routing Information and Networks
We now add information about servers’ networks.

Autonomous Systems—An autonomous system is a col-
lection of IP networks and routers which are under the con-
trol of a network operator. We retrieve the origin AS of an
IP using the RIPEStat database service by RIPE NCC [2].
For each AS, we create an AS node and add an edge from
the Address node to the AS node. We additionally retrieve
the total number of prefixes announced by an AS and store
this number as a node property.

4.4 Countries and Organizations
Finally, we include countries and organization information

in the graph. Our goal is to establish a relationship between
these entities and the servers of Section 4.2. There are three
ways to establish that, i.e., at IP level, at AS level, and at
domain level.

The first option is to link organizations and countries to
individual IPs. This can be achieved via geolocation. Ac-
cordingly, we added geolocation data in our model using the

MaxMind database [1]. While this can be achieved for coun-
tries, we are not aware of a database or an automated tech-
nique to associate a single IP to an organization controlling
the server. Given the large number of IPs in our database,
establishing this relationship manually is not a feasible task.
The second option is to link entities to autonomous systems.
This mapping is already available in RIPEstat and we in-
clude it in our model. The third is to link entities to do-
main names. The Domain WHOIS protocol can be used to
query information about registered domain names including
the domain registrant. Depending on the providing server,
the structure and content of the provided information vary.
WHOIS data is optimized for readability to humans [9] and
thus does not have a consistent document format [15]. While
a human can easily use WHOIS to retrieve data items for a
single domain, it does not scale to a large volume of domain
names. As an alternative source of data, we used the X.509
certificates used for HTTPS. X.509 certificates are primar-
ily used to store servers’ public-key and the domain names
on which the certificate is valid. Additionally, a X.509 cer-
tificate contains the organization name to which the certifi-
cate has been issued. We included this information in our
database.

5. ENTITY IDENTIFICATION
Before assessing attacks, we use our model to select enti-

ties that can be either attack victims or the attackers. The
selection criteria are based on metrics that reflect the pop-
ularity and the influence of entities. To this end, we de-
fined six metrics divided into first- and second-order metrics.
First-order metrics are basic metrics which rank entities ac-
cording to the number of hosted servers. Second-order met-
rics combine basic metrics and measure the level of influence
that an entity may have on third-party services. The most
popular entities of our metrics are shown in Table 2.

5.1 First Order Metrics
We start with four first-order metrics, one for each server

of our model, i.e., name servers, web servers, email servers,
and JS hosting servers. We calculate these metrics using
two sets of queries, one for ASes and the other for countries.

Metric #1 (Hosted Alexa Domains)—The first metric
counts the number of Alexa domains hosted by an AS or
a country. For an AS a, the first propagation rule is the
following:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = ORIG_FROM
µ(m, C) := c

(rORIG)

followed by Rule rA. These two rules, starting from the
source node a, propagate the taint value to all IP addresses
and then to domain names. Domain names can originate
from the Alexa database, or can be imported during the
acquisition. To filter Alexa domains, we refine Rule rA by
adding a check on the node property, i.e., µ(n,O) = Alexa:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = A, µ(n,O) = Alexa

µ(m, C) := c
(rA,Alexa)

Finally, we define a function γ which returns the number
of compromised domains.



Metric 1

Country Dom.

United States 30,582
Netherlands 4,296
Germany 4,178
China 4,158
Japan 3,053
France 2,526
Great Britain 2,400
Russia 1,678
Canada 1,186
India 1,087
Ireland 986
EU 950
Spain 848
South Korea 755

ASN Name Dom.

13335 CloudFlare 7,170
16509 Amazon-1 2,816
14618 Amazon-2 1,892
20940 Akamai 1,830
16276 Ovh 1,025
37963 Alibaba 779
24940 Hetzner 725
15169 Google 525
36351 Softlayer 518
4134 ChinaNet 468

19551 Incapsula Inc 397
54113 Fastly 361
63949 Linode 358
4808 China Unic. 348

(a)

Metric 2

Country JS

United States 47,910
Germany 7,830
China 7,273
Netherlands 6,963
Great Britain 4,455
Japan 4,205
France 4,048
Russia 2,865
Ireland 1,919
EU 1,581
Canada 1,347
Italy 1,159
Spain 952
Poland 943

ASN Name JS

16509 Amazon-1 10,085
13335 CloudFlare 5,489
20940 Akamai 3,004
14618 Amazon-2 2,207
16276 Ovh 1,970
24940 Hetzner 1,508
15133 EdgeCast 1,360
37963 Alibaba 940
36351 Softlayer 910
4134 ChinaNet 814

15169 Google 814
4837 China169 728

54994 Quantil 606
35415 Webzilla 551

(b)

Metric 3

Country MX

United States 41,434
Germany 12,047
Great Britain 6,811
France 6,261
Netherlands 6,091
Japan 4,314
Russia 3,923
Italy 3,293
Canada 3,042
Ireland 2,897
Spain 2,703
Turkey 2,094
Iran 1,946
India 1,892

ASN Name MX

8075 Microsoft 8,503
16276 Ovh 2,669
24940 Hetzner 2,497
46606 Unified L. 1,353
36351 Softlayer 865
26496 GoDaddy 799
16509 Amazon-1 643
60781 Leaseweb 579
15169 Google 568
39572 Advancedh. 522
12876 AS12876 452
63949 Linode 438
14618 Amazon-2 329
32475 SingleHop 298

(c)

Metric 4

Country NS

United States 34,235
Germany 6,697
France 3,865
Great Britain 3,139
Netherlands 3,116
Canada 2,244
Russia 2,167
Turkey 2,143
Japan 2,126
Spain 1,662
China 1,617
Iran 1,552
Brazil 1,070
India 954

ASN Name NS

16276 Ovh 2,415
24940 Hetzner 2,131
16509 Amazon 1,907
46606 Unified L. 1,524
36351 Softlayer 1,345
32475 SingleHop 1,155
13335 CloudFlare 699
32244 Liquid Web 674
16552 Tiggee 611
26496 GoDaddy 535
60781 Leaseweb 398
33517 DynDNS 364
12876 AS12876 354
4808 China Unic. 351

(d)

Metric 5

Country JS/NS

United States 41,231
Germany 3,101
Netherlands 3,045
China 3,009
Russia 2,254
France 2,084
Japan 2,000
EU 1,636
Great Britain 1,364
Spain 1,219
Canada 801
Singapore 787
Poland 540
Iran 474

ASN Name JS/NS

16509 Amazon-1 15,429
13335 CloudFlare 4,933
33517 DynDNS 3,570
4837 China169 2,008

26496 GoDaddy 1,938
4812 China Tlc. 1,875

16552 Tiggee 1,467
16276 Ovh 1,307
15169 Google 1,012
24940 Hetzner 873
15395 London Off. 822
36351 Softlayer 753
4808 China Unic. 494

20940 Akamai 414

(e)

Metric 6

Country MX/NS

United States 28,800
Netherlands 14,213
Ireland 11,440
Germany 5,380
Great Britain 3,116
France 2,996
Russia 2,588
Japan 1,663
Spain 1,421
Iran 1,123
Canada 933
China 842
Italy 798
Turkey 797

ASN Name MX/NS

8075 Microsoft 11,596
13335 CloudFlare 6,790
16509 Amazon-1 2,018
16276 Ohn 1,969
26496 GoDaddy 1,750
24940 Hetzner 1,708
33517 DynDNS 1,523
36351 Softlayer 575
39572 Advancedh. 560
60781 Leaseweb 478
16552 Tiggee 475
49505 Selectel 433
63949 Linode 428
4837 China169 352

(f)

Table 2: Metrics to identify possible attackers and victims: (a) the number of Alexa domains, (b) number of domains hosting
JS libraries, (c) number of mailexchange servers, (d) number of name server, (e) number of JS servers whose NS is in a
country/AS, and (f) number of MX servers whose NS in a country/AS

For a contry c, we use a similar query and a new rule that
propagates the taint from c to all IPs and ASes located in
c. The rule is the following:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = LOC_IN
µ(m, C) := c

(rLOC)

Metric #2 (Hosted JS Libraries Providers)—The sec-
ond metric calculates the number of JS hosting servers which
are located in an AS or a country. The approach followed
is similar to the one illustrated for Metric #1, however, we
use a slightly modified version of Rule rA:

∆, e′ = (p,m) ∈ E, λ(e′) = JS

µ(m, C) := c
(rA,JS)

where ∆ is the precondition of rA. The new propositions
e′ = (p,m) ∈ E and λ(e′) = JS describe the pattern
that uniquely distinguishes JS hosting servers from other
domains, e.g., a domain hosts a JS program if it has an
incoming edge of type JS.

Metric #3 (Hosted Email Servers)—The third metric
measures the number of email servers hosted by an attacker
or victim. The query is similar to Metric #2 in which we
modify Rule rA to consider domains with incoming edges of
type MX.

Metric #4 (Hosted Name Servers)—The fourth metric
measures the number of name servers hosted by an attacker
or victim. Also, this rule is similar to the previous ones and
Rule rA consider domains with incoming edges of type NS.

5.2 Second Order Metrics
Starting from the previous metrics, we build more sophis-

ticated ones that quantify the influence of a provider or a
country on third-party servers.

Metric #5 (Name Servers for JS Providers)—This
metric measures the number of JS hosting servers whose au-
thoritative name servers are hosted by a victim or attacker.
The rules used for an AS are rORIG and the following one:

· · · , e = (m,n) ∈ E, λ(e) = NS, e′ = (p,m) ∈ E, λ(e′) = JS
µ(m, C) := c

(rNS,JS)
where we used “· · · ” as a place holder for the taint precondi-
tion. This rule propagates the taint from an AS to its own
IPs. An IP is counted if two conditions are met. First the
IP n has an incoming edge NS from another node m, i.e., n
is an authoritative server for m. Second, the node m has an
incoming edge of type JS from a node p, i.e., m hosts a JS
library for p. The query for the case of a country contains
the Rule rLOC followed by rORIG and rNS,JS.

Metric #6 (Name Servers for Email Servers)—This
metric measures the number of domain of email servers
whose name server is hosted by a victim/attacker. The con-
struction of the query is the same as for Metric #5. In the
case of AS, the rules used are rORIG and a modified version
of rNS,JS:

· · · , e = (m,n) ∈ E, λ(e) = NS, e′ = (p,m) ∈ E, λ(e′) = MX
µ(m, C) := c

(rNS,MX)

6. ATTACK EVALUATION
We now evaluate the impact of attacks. We consider three

attack scenarios, namely, distribution of JS malicious con-
tent (Section 6.1), email sniffing (Section 6.2), and DoS
against core service providers (Section 6.3). We present
results with two levels of granularity. First, we show the
overall impact of attacks in terms of total number of af-



fected Alexa domains. Second, for a selection of attacks, we
present attack results on a per-victim base.

6.1 Distribution of JS Malicious Content
For this attack, we consider three techniques: hosting ma-

licious JS content, injection of malicious JS on in-path TCP
connections, and malicious name resolution redirection. We
select attackers according to metrics #2 and #4 in Table 2.
Then, for each technique and attacker, we measure attack
results as the number of websites that, as a result of the at-
tack, will distribute the malicious JS content to their users.
Tables 3 (a) and 3(b) show the attack results when the at-
tacker is an AS or a country, respectively.

Hosting Malicious JS Content—In this attack we as-
sume that the attacker is either an AS or a country that
colluded with web servers hosting JS code. For example, in
the case of AS, we assume that the web servers hosted by
the AS are cooperating with the origin AS. Possible attack-
ers can be selected with Metric #2, which count the total
number of domains hosting JS for each AS or country.

The attack results are shown in Table 3(a). The attack re-
sults show that countries can be very powerful attackers. For
example, according to Metric #2, the United States hosts
47k JS hosting providers (see Table 2(a)) which could dis-
tribute malicious code to about 16% of the top 100k Alexa
domains. However, ASes are also very powerful and affect a
fraction of websites that is even larger than that of individual
countries, and even groups of countries. For example, the AS
of Google can affect about 9% of Alexa domains, the number
of domains that can be affected by the Netherlands, Rus-
sia, Germany, Japan, China and Great Britain combined.
Even more interestingly, the AS of Google reaches 9% of
websites with only 762 servers compared to 3% of the 10k
servers of Amazon. This result highlights that the power
of operators can be more precisely measured by taking into
account to what extent other services depend on them. The
AS of Google is not an isolated case. Other ASes can af-
fect as many domains as a country. Examples of these ASes
are CloudFlase, EdgeCast, Amazon-1 and Akamai. Each of
them can distribute malicious code to more domains than
the top six countries (excluding the United States).

Propagation rules—We created this table with the following
rules. When the attacker is the AS, we use Rule rORIG, rA,
and rJS. If the attacker is a country, then we use the Rule
rLOC followed by the previous ones, i.e., rORIG, rA, and rJS. The
resulting graph is then processed by the γ function, which
counts the number of tainted Alexa domains.

In-path Malicious JS Injection—Interestingly, a very
large fraction, i.e., 82% of Table 3(a), of JS hosting service
distribute JS libraries over unprotected connections, i.e.,
HTTP instead of HTTPS. Accordingly, hosting ASes and
countries can intercept TCP connections from border gate-
ways and inject malicious content similarly as performed for
the Great Cannon attack. We may extend the measurement
to protected resources, however, the attacker is required to
control a valid certificate for the domain being hijacked.
While this is a possible attack scenario, it requires addi-
tional effort that, considering the low number of protected
resources, will produce a limited increase of the attack re-
sult. Table 3(a) shows the attack results on Alexa Web sites
that include an unprotected JS program.

Among the 82% of JS inclusion over unprotected connec-
tions, 1,079 of them are crossing the Chinese network bor-
ders. However, China is not the country that can affect the
largest fraction of websites. Other countries could perform
better than China including the United States with 12,267
websites, the Netherlands with 2,639 websites, and Russia
with 1,409 websites. An interesting aspect of our results is
that this type of attack method does not perform any better
than the hosting malicious content attack. In fact, injecting
malicious JS code via web server collusion affects 17% fewer
affected domains on average than hosting malicious content.

Similarly to the attack based on hosting malicious con-
tent, we observed that ASes can affect more domains than
countries. For example, the AS of Google can affect as many
domains as the Netherlands, Russia, and Germany together.
However, also in this case, in-path malicious JS injection
does not reach as many domains as the injection via server
collusion. For example, an in-path code injection can cause
Google to lose about 41% of total websites.

Now, we present a fine-grained analysis of this attack. We
map the attack results to countries that would be affected if
another country decides to perform this attack. An excerpt
of these results are presented in Table 4(a). Attack results
can be interpreted as a form of dependency among countries.
Our results show two interesting facts. First, with different
intensity, almost all the popular countries (except for six of
them) can attack at least one domain of another country.
Second, the dependency among countries is not symmetric.
For example, consider the United States. According to all
metrics, the United States is the most powerful attacker in
our model. However, this influence is not symmetric, e.g.,
when compared to the Netherlands. While the United States
can affect 283 Dutch domains, 967 US domains can be at-
tacked by the Netherlands.

Propagation rules—The rules for this measurement are sim-
ilar to those of the previous attack. However, we modified
Rule rJS to limit the propagation to unprotected JS edges
only:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = JS, µ(e,S) = HTTP

µ(m, C) := pc
(rJS)

where S is the property key that stores the URL scheme of
the include JS.

Malicious Name Resolution Redirection—Finally, ma-
licious content can be distributed to Web browsers via ma-
licious domain name resolution. In this attack, we assume
that the authoritative name server of a domain hosting JS
redirects users to a malicious server. The attack result is
the number of websites that include a resource hosted on a
server whose name server is colluded or compromised. This
attack exploits three types of relationships of our model.
The first relationship is between domains and the domains
hosting JavaScript. The second relationship is the domain
name resolution which maps, eventually, domain names to
IPs. The third type of relationship is the domain name res-
olution process with an operator, e.g., country or network
provider.

With this technique, countries do not gain considerably
more power than the previous attacks. In most of the cases,
all players can affect a slightly lower number of websites.
Only two players stand out from the rest, i.e., the AS of



Country/AS Host. coll. In-path Inj.

United States 15,658 12,267
Netherlands 3,292 2,639
Russia 1,701 1,409
Germany 1,622 1,317
Japan 1,311 1,151
China 1,141 1,079
Great Britain 1,094 895
Ireland 1,048 828
EU 905 824
France 713 603
Canada 399 246
Poland 176 151
Italy 105 97
Spain 83 69

15169 Google 9,469 5,553
13335 CloudFlare 4,310 3,165
15133 EdgeCast 3,404 2,306
16509 Amazon-1 3,216 2,264
20940 Akamai 2,279 1,800
14618 Amazon-2 572 351
35415 Webzilla 515 479
24940 Hetzner 379 330
16276 Ovh 342 287
36351 Softlayer 334 286
4837 China169 227 226
4134 ChinaNet 198 185

37963 Alibaba 148 146
54994 Quantil 71 71

(a)

Country/AS DNS redir.

United States 12,375
Russia 1,362
Netherlands 1,225
China 1,032
Japan 880
EU 743
Germany 621
France 454
Singapore 317
Great Britain 225
Spain 173
Iran 124
Canada 117
Poland 65

15169 Google 7,859
33517 DynDNS 4,311
16509 Amazon-1 3,685
13335 CloudFlare 3,012
4812 China Tlc 595
4837 China169 555
4808 China Unic 401

16552 Tiggee 361
26496 GoDaddy 316
24940 Hetzner 227
16276 Ovh 199
36351 Softlayer 196
20940 Akamai 88
15395 London Off 88

(b)

Country/AS MX coll.

United States 24,459
Germany 2,301
Great Britain 1,838
Russia 1,602
France 1,382
Japan 1,317
Netherlands 1,279
Ireland 809
Canada 614
India 496
Spain 410
Iran 392
Italy 384
Turkey 319

15169 Google 11,127
8075 Microsoft 2,465

26496 GoDaddy 1,267
16276 Ovh 565
24940 Hetzner 347
16509 Amazon-1 332
36351 Softlayer 237
60781 Leaseweb 170
12876 AS12876 134
46606 Unified L 113
63949 Linode 108
14618 Amazon-2 104
39572 Advancedh 96
32475 SingleHop 93

(c)

Country/AS MX+NS

United States 13,077
Netherlands 3,933
Ireland 3,006
China 2,300
Germany 1,405
Great Britain 1,735
Russia 1,466
France 910
Japan 902
Iran 344
Spain 338
Canada 265
Italy 242
Turkey 213

8075 Microsoft 3,003
13335 CloudFlare 2,280
4837 China169 1,784

26496 GoDaddy 1,447
16509 Amazon-1 1,256
33517 DynDNS 1,178
16276 Ovh 555
24940 Hetzner 335
16552 Tiggee 227
36351 Softlayer 179
39572 Advancedh. 96
60781 Leaseweb 75
49505 Selectel 65
63949 Linode 57

(d)

Table 3: Attack evaluation: (a) hosting malicious JS content and in-path malicious JS injection, (b) malicious name resolution
(c) email sniffing via malicious email provider, and (d) malicious name resolution for email sniffing

CN DE FR GB JP NL RU US Total

US 134 355 223 172 657 290 287 4,248 6,366
RU 0 107 22 14 0 70 364 124 701
NL 12 53 42 42 189 171 55 979 1,543
JP 7 4 1 1 597 7 0 185 802
GB 79 20 15 49 21 29 9 322 544
FR 0 18 84 10 24 10 17 150 313
DE 77 191 31 14 33 38 62 312 758
CN 475 6 3 0 19 0 1 109 613

Total 784 754 421 302 1,540 615 795 6,429 11,640

(a)
CN DE FR GB JP NL RU US Total

US 1,472 1,060 626 765 455 2,047 229 17,245 23,899
RU 0 179 53 24 0 72 933 268 1,529
NL 5 85 43 72 0 512 21 548 1,286
JP 9 13 0 3 1,149 59 0 112 1,345
GB 9 165 115 766 59 292 16 496 1,918
FR 1 40 918 50 1 66 5 356 1,437
DE 6 1,503 88 144 4 209 37 542 2,533
CN 2,387 31 3 6 18 13 0 281 2,739

Total 3,889 3,076 1,846 1,830 1,686 3,270 1,241 19,848 36,686

(b)

Table 4: Attack results group by countries: (a) JS injection
on in-path TCP connections (b) Malicious email providers

Google and DynDNS. Google hosts 73 name servers that
can be used to distribute malicious JS to the users of 7,859
domains. This amounts to an increase of 677% of the num-
ber of controlled name servers. Similarly, DynDNS controls
3,570 name servers that can affect 4,311 domains. We dis-
cuss in detail the role played by DynDNS in our model in
Section 6.3.

Propagation rules—We create this table with the following
rules. When the attacker is the AS, we use Rule rORIG, rA,
and rJS. If the attacker is a country, then we use the Rule
rLOC followed by the previous ones, i.e., rORIG, rA, and rJS.
The resulting graph is then processed by a γ function that
counts the number of tainted Alexa domains. The number
of affected domains is showed in Table 3(b). The used prop-
agation rules are rORIG, rA, rNs and rJS, where rNs is defined
as follows:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = NS
µ(m, C) := c

(rNs)

6.2 Email Sniffing
To acquire a large number of emails, an attacker can rely

on various techniques. In this paper we consider two. The
first one is by acquiring them directly from the email server.
The second one is by redirecting an email client toward a
malicious mail server, which will accept the email, keep a
copy, and forward it to the intended recipient. This attack
can be performed by a provider or by a country. Tables 3(c)
and 3(d) show the attack results. All values are the number
of Alexa domains that will be affected by this attack grouped
by technique and attacker.

Malicious Email Provider—Attackers that can perform
this type of attack are selected using Metric #3, i.e., ASes
or countries hosting email servers. This attack technique
shows the predominance of the United States and Google
in managing the email infrastructure of a large fraction of
popular websites (See Table 3(c)). The United States alone
can acquire emails of 25% of the most popular websites.
Similarly, the AS of Google is hosting only 568 email servers
which are used by 11% of the websites. The other players,
such as Germany, have still relevant influence but up to 10
times less than the US or Google. Interestingly, most of the
domains that can be affected by a country are hosted in the
same country. For example 17K of the domains affected by
the US are hosted in the US (See Table 4(b)).

Malicious Name Resolution Redirection—Attackers
for this attack are selected using Metric #6. This met-
ric measures the number of mail server whose authoritative
name server is hosted by the attacker. Starting from this list
of attackers, we counted the number of Alexa domains that
use one of these mail servers. Table 3(d) shows the total
number of affected Alexa domains. As we cannot measure
to what extent TLS is used as part of the client-to-MTA
or MTA-to-MTA email transfer, we neglect the fact that



malicious name servers potentially cannot redirect commu-
nication. The numbers provided in this scenario thus rather
constitute upper bounds.

With this type of attack, we observe that Google loses
most of its power. This can be explained by the fact that
websites use Google email server via name servers which are
not hosted by Google.

6.3 DoS against Core Service Provider
In this section, we consider the case in which a service

provider is the victim of an attack. Here, we do not focus
on the specific attack technique, but on the impact of making
a provider unavailable. The metrics of Table 2 can be used
to select a candidate. The queries used for the attack results
can be reused for this type of assessment.

For example, let us consider the DoS attack that on the
21st of October 2016 was launched against Dyn.com. Dyn-
DNS is an autonomous system operated by Dyn.com. Ac-
cording to our model based on the top 100K Alexa domains,
DynDNS does not host a relevant number of mail servers and
JS hosting providers. However, it hosts 364 domain name
servers. These name servers are authoritative for 3,570 do-
mains hosting JS that provide JS to 5,559 top 100K Alexa
domains (not shown in Table 3), of which 4,331 are unpro-
tected JS inclusion. Furthermore, the name servers hosted
by DynDNS are authoritative for 1,523 domains running
mail servers which are used by 1,178 top Alexa domains.
If the Dyn.com DNS infrastructure is attacked, then a frac-
tion that ranges from 1 to 5% of the top 100K Alexa domains
would be affected. The operation of these domains may be
severely compromised, as JS used to deliver services via Web
applications would no longer be available.

7. LIMITATIONS
We evaluate the impact of the attacks over static data

acquired in a single time point, which can be seen as a snap-
shot of the current network status. Therefore the depen-
dency graph is static. Also, we did not consider different
network views (e.g., from different locations) and the data
has been collected from a single vantage point located at
Saarland University in Germany. This vantage points may
have an influence especially for geographically distributed
Content Delivery Networks (CDNs), in that our analyses are
potentially biased based on the client’s residence. An inter-
esting direction for future work would be to include different
vantage points. Besides geographic differences based on the
Web topologie, we believe that building a dependency graph
from different vantage points especially from countries de-
ploying censorship filters could also reveal other intriguing
results and change the impact of the attacks.

To acquire JavaScript dependencies between domains, we
used Scrapy4, a framework to extract static data from web-
sites. Scrapy does not support the execution of JavaScript.
As a result, our model does not include dependencies that
may originate from the execution of the JavaScript program.
The extraction of these dependencies can be achieved by
using advanced Web crawlers (e.g., jÄk [23]). While this,
as shown by prior research, can increase coverage up to
80% [23], it is not a viable option for large-scale analyses.
Crawlers that interpret JavaScript are considerably slower

4See https://scrapy.org/

than classic crawlers as they require more resources and
longer execution time for each website.

8. RELATED WORK
The security of the Internet infrastructure has been un-

der constant scrutiny of the research community. Countless
works have been presented by using formal and empirical
analyses. For example, Albert et al. [5] studied Internet ro-
bustness against random errors and targeted attacks. They
show that the Internet provides high error tolerance, but it
does not provide adequate robustness against attacks tar-
geting hubs (i.e., nodes with higher connection degree). Fol-
lowing this seminal work, other works assessed other aspects
of the problem such as hub selection (e.g., [26, 8]). Following
this research line, our work takes an empirical approach to
mine topology of the Internet infrastructures to study the
impact of large-scale attacks.

The security of the Internet has been studied also empir-
ically with measurements of BGP infrastructure [10], JS in-
clusion [20], Web service networks [13], and HTTPS ecosys-
tem [7]. Frey et al. [10] presented an analysis on the Eu-
ropean BGP backbone using publicly available BGP data.
Nikiforakis et al. [20] showed that the vast majority of web-
sites rely on external JS libraries stored on poorly main-
tained web servers. Finally, Cangialosi et al. [7] studied
dependences among providers based on shared X509 certifi-
cates, and its implications on the HTTPS ecosystem secu-
rity. Our work presents a similar what-if analysis which
complements these papers. However, while these works con-
sidered individual service in isolation, our work is more com-
prehensive, considering different services, intra-services re-
lationships, and a framework to support analyses similar to
the aforementioned works.

Finally, another line of works attempts to learn service
dependencies via observations of network traffic (e.g., NS-
DMiner [18] and Rippler [25]). While these tools can effec-
tively learn dependnecies, they require network traffic which
is not available for the global analyses like the one presented
by our paper and other works (e.g., [7]).

9. CONCLUSION
In this paper, we proposed an investigation techniques to

assess global-scale threats. We presented a model of the In-
ternet infrastructures based on property graphs. Moreover,
to mine the data from the model, we presented a taint-style
propagation technique for traversing the graph. We evalu-
ated our framework, on a model built upon the top 100k
Alexa domains by passively and actively collecting publicly
available information. Using the presented metrics for se-
lecting attacker and victim candidates, we assessed the im-
pact of the attackers and identified the most influential In-
ternet players. Finally, we showed how one country can
influence another by using JS injection on in-path TCP con-
nections and MX server collusion.

Acknowledgment
We thank the anonymous reviewers for their constructive
comments. This work was supported by the German
Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy
and Accountability (CISPA) (FKZ: 16KIS0345,
16KIS0656) and the project BOB (FKZ: 13N13250).



References
[1] MaxMind: IP Geolocation and Online Fraud

Prevention. http://dev.maxmind.com/.

[2] RIPE Stat: Information about specific IP addresses
and prefixes. https://stat.ripe.net/.

[3] The New Threat: Targeted Internet Traffic
Misdirection. http://research.dyn.com/2013/11/
mitm-internet-hijacking/.

[4] UK traffic diverted through Ukraine.
http://research.dyn.com/2015/03/
uk-traffic-diverted-ukraine/.

[5] R. Albert, H. Jeong, and A.-L. Barabási. Error and
attack tolerance of complex networks. nature,
406(6794):378–382, 2000.

[6] K. R. Butler, T. R. Farley, P. McDaniel, and
J. Rexford. A survey of bgp security issues and
solutions. Proceedings of the IEEE, 98(1):100–122,
2010.

[7] F. Cangialosi, T. Chung, D. R. Choffnes, D. Levin,
B. M. Maggs, A. Mislove, and C. Wilson.
Measurement and analysis of private key sharing in
the HTTPS ecosystem. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October
24-28, 2016, pages 628–640, 2016.

[8] R. Cohen, K. Erez, D. B. Avraham, and S. Havlin.
Breakdown of the Internet under Intentional Attack.
Physical Review Letters, 86(16):3682–3685, Apr. 2001.

[9] L. Daigle. WHOIS Protocol Specification. RFC 3912
(Draft Standard), Sept. 2004.

[10] S. Frey, Y. Elkhatib, A. Rashid, K. Follis, J. Vidler,
N. Race, and C. Edwards. It bends but would it
break? topological analysis of bgp infrastructures in
europe. In 2016 IEEE European Symposium on
Security and Privacy (Euro S&P 16), pages 423–438,
March 2016.

[11] E. Hjelmvik. China’s man-on-the-side attack on
github. http://bit.ly/2kx4zAE, 2015.

[12] W. Jiang, D. Lee, and S. Hu. Large-scale longitudinal
analysis of soap-based and restful web services. In
Web Services (ICWS), 2012 IEEE 19th International
Conference on, pages 218–225, June 2012.

[13] S.-C. Kil, Hyunyoungand Oh, E. Elmacioglu, W. Nam,
and D. Lee. Graph theoretic topological analysis of
web service networks. World Wide Web,
12(3):321–343, 2009.

[14] S. Landau. Making sense from snowden: What’s
significant in the nsa surveillance revelations. IEEE
Security Privacy, 11(4):54–63, July 2013.

[15] S. Liu, I. Foster, S. Savage, G. M. Voelker, and L. K.
Saul. Who is .com?: Learning to parse whois records.
In Proceedings of the 2015 ACM Conference on
Internet Measurement Conference, IMC ’15, pages
369–380, New York, NY, USA, 2015. ACM.

[16] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield,
S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and
V. Paxson. An analysis of china’s “great cannon”. In
5th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 15),
Washington, D.C., Aug. 2015. USENIX Association.

[17] G. Nakibly, J. Schcolnik, and Y. Rubin.
Website-targeted false content injection by network
operators. In 25th USENIX Security Symposium
(USENIX Security 16), pages 227–244, Austin, TX,
Aug. 2016. USENIX Association.

[18] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E.
Hutchinson. NSDMiner: Automated discovery of
Network Service Dependencies. In Proceedings of the
IEEE INFOCOM 2012, Orlando, FL, USA, March
25-30, 2012, pages 2507–2515, 2012.

[19] J. Newland. Large scale ddos attack on github.com.
https://github.com/blog/
1981-large-scale-ddos-attack-on-github-com,
2015.

[20] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
pages 736–747, New York, NY, USA, 2012. ACM.

[21] A. Noroozian, M. Korczyński, C. H. Gañan,
D. Makita, K. Yoshioka, and M. van Eeten. Who Gets
the Boot? Analyzing Victimization by
DDoS-as-a-Service, pages 368–389. Springer
International Publishing, Cham, 2016.

[22] G. Pellegrino, C. Rossow, F. J. Ryba, T. C. Schmidt,
and M. Wählisch. Cashing out the great cannon? on
browser-based ddos attacks and economics. In 9th
USENIX Workshop on Offensive Technologies
(WOOT 15), Washington, D.C., Aug. 2015. USENIX
Association.

[23] G. Pellegrino, C. Tschürtz, E. Bodden, and
C. Rossow. jÄk: Using Dynamic Analysis to Crawl
and Test Modern Web Applications, pages 295–316.
Springer International Publishing, Cham, 2015.

[24] D. A. Wheeler and G. N. Larsen. Techniques for cyber
attack attribution. Technical report, DTIC Document,
2003.

[25] A. Zand, G. Vigna, R. A. Kemmerer, and C. Kruegel.
Rippler: Delay injection for service dependency
detection. In 2014 IEEE Conference on Computer
Communications, INFOCOM 2014, Toronto, Canada,
April 27 - May 2, 2014, pages 2157–2165, 2014.

[26] J. Zhao, J. Wu, M. Chen, Z. Fang, X. Zhang, and
K. Xu. K-core-based attack to the internet: Is it more
malicious than degree-based attack? World Wide
Web, 18(3):749–766, 2015.


