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Abstract. More and more web applications rely on server-side requests
(SSRs) to fetch resources (such as images or even entire webpages) from
user-provided URLs. As for many other web-related technologies, devel-
opers were very quick to adopt SSRs, even before their consequences for
security were fully understood. In fact, while SSRs are simple to add from
an engineering point of view, in this paper we show that—if not properly
implemented—this technology can have several subtle consequences for
security, posing severe threats to service providers, their users, and the
Internet community as a whole.
To shed some light on the risks of this communication pattern, we present
the first extensive study of the security implication of SSRs. We propose
a classification and four new attack scenarios that describe different ways
in which SSRs can be abused to perform malicious activities. We then
present an automated scanner we developed to probe web applications
to identify possible SSR misuses. Using our tool, we tested 68 popular
web applications and find that the majority can be abused to perform
malicious activities, ranging from server-side code execution to amplifi-
cation DoS attacks. Finally, we distill our findings into eight pitfalls and
mitigations to help developers to implement SSRs in a more secure way.

1 Introduction

Web applications have evolved from purely client-to-server patterns to an in-
tertwined network of multiple web services. As a consequence, an increasing
number of web applications retrieve external resources provided by other web
services, often steered by user inputs. For example, social networks regularly
fetch pages to display image and video previews of links posted by users, online
calendars can import remote iCal data, web mail clients fetch emails from user-
provided inboxes, and online image editors retrieve images from user-provided
URLs. Such service-to-service communication is also integrated into business
web applications and is at the core of several web-based protocols (e.g., OpenID
and SAML) and Cashier-as-a-Service web applications (e.g., online stores using
PayPal Express Checkout).

To support service-to-service communication, web applications rely on server-
side requests (SSRs), which are HTTP requests generated by a server towards
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another web service. SSRs are often used to avoid passing relay messages between
different services via the user, or to allow complex services to perform requests
outside the boundaries of the same origin policy. Unfortunately, although the
communication between web services is not new, we noticed an alarming lack of
information and understanding regarding the threats and the security implica-
tions of this communication pattern. For example, when a user posts a URL to a
social network, the server-side web application automatically fetches the content
from the URL to display a visual preview of the page. However, giving the user
the freedom to choose the URL means that she can control the destination and
potentially also the content of SSRs. This communication pattern is getting more
and more common to improve user experience and provide advanced features in
a wide range of applications. Unfortunately, as is often the case for emerging web
technologies, developers are often too quick to jump on the bandwagon without
fully understanding the risks for security. In fact, as we present in this paper,
SSRs are difficult to get right and, if not properly implemented, they can be
abused to conduct malicious actions against the service itself, its users, or even
third-party web applications.

Existing work in this field focuses on Server-Side Request Forgery (SSRF),
a family of software vulnerabilities that allow an attacker to misuse SSRs to
perform port scans [27, 15] and buffer overflows [22]. However, this is only the
tip of the iceberg of the possible security flaws that affect this communication
pattern. Unfortunately, to date, we still lack a complete picture of the threats
posed by SSRs.

To shed some light on the risks of this communication pattern, in this paper
we present the first extensive assessment of the security implications of SSRs.
We first present a classification to propose a common terminology for future
research in the field. Our classification groups SSRs according to the level of
control the attacker has, the role played by the vulnerable systems, and the
potential attack targets. We then apply our classification to introduce four attack
scenarios in which seemingly innocuous services can be composed together to
form sophisticated attacks. For example, we show how popular services can be
abused to distribute links to phishing pages—bypassing existing URL blacklists
and reputation services.

In order to understand how widespread the problem is and what the most
common mistakes are, we propose a tool called günther and use it to analyze
68 web applications that accept user-provided URLs. We found weaknesses and
security risks in 52 of them. Finally, to help developers to take more informed de-
cisions and reduce the risks associated with this delicate communication pattern,
we distilled our findings in a list of eight security-related recommendations.

To summarize, this paper makes the following contributions:

– We propose a new classification to classify SSRs;
– We present four new attack scenarios in which SSRs can be used to mount

sophisticated Denial-of-Service (DoS) attacks, deliver malware, and bypass
client-side countermeasures. We show that SSRFs are only one of the possible
security flaws introduced by SSRs.
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Fig. 1: SSR pattern and risks

– We discuss the results of the experiments we conducted on 68 web services,
54 of which we found to be affected by at least one security flaw.

– We present a clear set of mitigations to help developers to implement SSRs
in a more secure way.

2 Background

In this section, we present the SSR communication pattern, and we elaborate on
its use in modern web applications. Then, we present an overview of the threat
models, and finally, we present the current understanding of the security risks.

2.1 Server-Side Request Communication Pattern

The SSR pattern is shown in Figure 1a. It involves three entities: a client C, an
SSR service S, and an external server ES. The protocol starts when C sends an
HTTP request reqpurlESq to S containing a user-specified urlES . The position
of urlES in the HTTP request is application-specific, e.g., it could be inserted in
the query string, in the POST data, or even in the resource field of the HTTP
request. S extracts the URL and initiates a connection to fetch the corresponding
resource resES from the remote server ES. Depending on the use of SSR, S can
forward the resource resES back to C (i.e., resS “ resES), or return the result
of a transformation (i.e., resS “ fpresESq). For instance, S can embed resES

into resS , or simply return an identifier of the retrieved resource.

Use Cases—SSRs are widely used in web applications. For example, social
networks use SSRs to retrieve user-provided URLs and share them on the user’s



page. SSRs are also common in business applications, such as web office suites,
in which they are used to include online resources (e.g., pictures) in documents.
The list also includes online development tools, news aggregators, and image
processing applications. Online development tools help developers, for example,
to validate documents such as XML or JSON objects, or allow developers to
test their web application with different browsers. SSRs are also at the core
of news aggregators, which retrieve news from newspapers or RSS documents.
Another use of SSRs is in web-based security protocols, such as the OpenID
authentication protocol [8]. In OpenID, a client wants to be authenticated at
the service provider (SP) by using her own credentials at the identity provider
(IdP). OpenID allows the two providers to communicate either indirectly, i.e.,
by using the client’s browser as a relay agent, or directly via SSRs. In this case,
the SP acts as an HTTP client and initiates the connection with the IdP, which
in turn acts as an HTTP server. SSRs are also used in other web-based security
protocols, such as SAML SSO.

Server- vs. Client-Side Requests—The counterparts of SSRs are client-side
requests (CSRs) in which C retrieves a resource at ES and sends it to S. How-
ever, replacing SSRs with CSRs may not be practical, secure, or efficient.

Practicality : CSRs can be implemented with cross-origin requests (CORs) in
which a resource in the domain of ES is transmitted to S. These requests are
subject to the same-origin policy (SOP for CORs) and the cross-origin resource
sharing mechanism [26] (CORS). The former forbids accessing resources in a
domain (i.e., ES) of a different origin from the request (i.e., S). These requests
can be relaxed with CORS; however, CORS assumes a pre-established agree-
ment between two different domain origins to allow requests from one to access
resources of the other. This solution is often not practical because each service
needs to keep and maintain a whitelist of domains that can access their services,
and developers may not be able to modify the whitelist of third-party services.
This has spurred the development of techniques to circumvent these obstacles,
e.g., to bypass SOP for CORs (often considered to be security flaws, such as
JSONP), or using the more flexible SSR paradigm.

Security : In protocols like OpenID, the involved parties do not agree on shared
secrets such as cryptographic keys. Instead, they generate or exchange keys dur-
ing the protocol run. In contrast to SSRs, CSRs may expose keys to attackers,
thus endangering the validity of the authentication process.

Efficiency : CSRs may introduce additional costs. For example, social networks
and online tools for developers may need to retrieve several resources to create
a synthesis of the web page or to analyze its content. For each resource, an SSR
service will issue one request and one response. With CSRs, on the other hand,
the number of messages can double: The first request-response pair retrieves the
resource from ES, while the second pair uploads the resource to S for further
processing.



2.2 Security Risks and Threat Models

While SSR is a useful communication pattern which enables service-to-service
communication, if not properly implemented it can be abused to perform a wide
range of malicious activities, such as:

R1 SSRs can be abused as stepping stones to attack ES, for instance by perform-
ing denial-of-service attacks against Internet-facing services. Other attacks
can be against services of S’s private network.

R2 S may accept untrusted URLs which reference local resources, e.g., files
hosted by S. For example, this attack can be used to exfiltrate system con-
figuration files, passwords, and databases.

R3 SSRs introduce a new level of indirection between web browsers and the
origin of resources. As a result, browsers may no longer be able to determine
the real origin of a page, thus leaving users exposed to malicious content
such as malware.

R4 Vulnerabilities in S can be exploited with incoming responses from ES.
Responses may be processed to generate resS for C. An adversarial ES can
potentially craft malicious messages resES with the purpose of exploiting
vulnerabilities in S.

These risks are shown in Figure 1b (for R1 and R2), Figure 1c (for R3), and
Figure 1d (for R4). Figure 1b corresponds to the initial threat model proposed
by Polyakov et al. [22]. The entities of Polyakov’s model are an attacker C, an
SSR service S, a service ES, the file system of S, and a firewall. C aims to access
ES or the local file system of S. However, ES is protected by a firewall that
blocks direct access from the Internet. S is exposed both to the Internet and
to the local network. If not carefully implemented, an attacker can abuse SSRs
performed by S to access internal servers that are in S’s network, i.e., R1, or
even retrieve files from S (e.g., via the file:// protocol), i.e., R2.

Unfortunately, Polyakov’s threat model is not complete as it neglects C as a
possible victim (i.e., R3) and it considers only a fraction of the attack surface of
S, thus ignoring other threats (i.e., R4). In this paper, we propose a more com-
plete threat model that also incorporates new attacks in which SSRs are abused
to target C (see Figure 1c) and S (see Figure 1d). In Figure 1c, ES hosts mali-
cious content and C is an honest client that adopts URL-based countermeasures
to protect the user from malicious content (such as filtering mechanisms like
Google Safe Browsing). The attacker targets C by tricking the user into vis-
iting the malicious page ES, possibly abusing an innocent but vulnerable S.
While C may believe she is visiting a well-reputed service S, in fact, S may
just act as a proxy for malicious content hosted at ES, effectively circumventing
any reputation-based mechanisms deployed by C. In Figure 1d, the attacker is
C, whereas ES hosts malicious content. The attacker submits the URL of the
malicious content to S, which fetches resES and processes it. For example, if
S implements poor resource validation mechanisms, it may be susceptible to
resource exhaustion attacks via specially-crafted resources.
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Fig. 2: SSRs classification

2.3 Awareness of the Security Risks

A closer look in the academic and non-academic literature and developer best
practices (e.g., design patterns, coding rules, and API documentation) shows
that (i) SSRs have received no attention by academic literature and (ii) existing
non-academic works focus exclusively on Polyakov’s threat model and thus ne-
glect threats against C and S. In addition, despite the popularity of the attacks
in Polyakov’s threat model, there is a lack of documentation describing proper
ways to implement SSR services and attack countermeasures. As a result, devel-
opers may develop vulnerable SSR services that can be abused by attackers.

3 SSR Classification

Despite anecdotal evidence, to date there is no systematic study of the SSR com-
munication pattern. Therefore, we introduce a classification that proposes a com-
mon terminology for us and for future researchers. Our classification (Figure 2)
includes and supersedes pre-existing categorizations, classifying SSRs according
to four different directions: flaws, attacker control, S’s behavior, and victims. To
the best of our knowledge, this is the most extensive existing classification of
SSRs.

The four dimensions of our classification are not mutually exclusive. In fact,
services often play multiple roles and may suffer from multiple flaws. For this
reason, our classification cannot be considered a taxonomy. Furthermore, our
classification is based on the current knowledge of SSR abuse which may change.
However, while target and control dimensions covers all possible combinations,
flaw and behavior dimensions are an enumeration and thus may be incomplete.
As the popularity of the SSR pattern increases, new types of vulnerabilities and
behaviors can be detected. Nevertheless, new discoveries can be used to extend
both flaws and behaviors dimensions. In the rest of this section, we describe each
category in more detail.



3.1 Flaw-Based Classification

The first classification is based on the type of flaw of S. A flaw can occur when
S accepts and processes inputs from C, and when S accepts and processes the
resource resES . This classification includes known vulnerabilities, i.e., forgery
and information disclosure vulnerabilities of the CWE database and OnSec clas-
sification. Additionally, we extend it with a new class of vulnerabilities called
insufficient security policy enforcement.

Insufficient Security Policy Enforcement—An HTTP conversation between
the browser of C and ES can involve different security policies. For exam-
ple, C may use URL-based reputation lists to avoid visiting malicious pages.
Similarly, the server may restrict access to its resources, e.g., by using the
Access-Control-Allow-Origin header (ACAO, for short). The problems arise
when S acts as an intermediary and it fails to enforce the aforementioned poli-
cies. We distinguish two types of this flaw, according to which side of the security
policy is not being enforced. However, as SSRs are used to bypass the SOP for
CORs, SSR services suffer by design from the server-side variant of this flaw.
For this reason, we focus on client-side security policies. While this flaw is not a
vulnerability per se, as we will see in Section 4.1, insufficient client-side security
policy enforcement is the root cause of a class of attacks targeting C that we
call Web Origin Laundering attacks.

Forgery—SSR forgeries occur when S does not properly validate the user in-
put that is used to generate the SSR, e.g., XML documents, PDF files, and
URLs. SSR forgeries encompass all the currently known SSRF vulnerabilities.
More specifically, this regroups and reorganizes flaws from Common Weak-
nesses Enumeration (CWE-113, CWE-661, CWE-829) [25], OnSec [16], and
Polyakov et al. [22] which were exploited in documented attacks, i.e., against
SAP NetWeaver [22], Google+ [27, 1], and Facebook [27]. Our classification also
includes the TCPDF bug3. Besides these vulnerabilities, our classification intro-
duces the class of improper URL validation vulnerabilities, which supersedes the
improperly-called class of SSRF flaws (CWE-918). This group of flaws occurs
when S does not validate user-provided URLs, e.g., rejecting URLs with unex-
pected URL schemes (e.g., file://), blacklisted domains, or invalid characters.
Then, our classification considers two special cases of improper URL validation,
i.e., improper enforcement of expected destination and improper neutralization
of CRLF in HTTP headers (CWE-113). Improper enforcement of expected des-
tination occurs when S does not sufficiently validate that the URL refers to an
expected destination [25]. Improper neutralization of CRLF in HTTP headers
occurs when software fails to remove the CR and LF characters from input data,
such that an attacker can inject HTTP headers or smuggle HTTP requests.

Information Gathering—A service S can unintentionally disclose sensitive
information of ES to an attacker. This class of vulnerabilities includes SSR vul-
nerabilities of the 2xx group of the CWE catalog, i.e., (i) improper neutralization
of error messages and (ii) side channels. The former type occurs when S reveals

3 See bug #1005, http://sourceforge.net/projects/tcpdf/files/CHANGELOG.TXT



information about exceptional behavior of ES in resS . For example, S may re-
turn an error message to C detailing the reasons why ES is not reachable or the
target resource is not available. Side channels occur when S unwillingly leaks
information about ES. A typical side channel can be caused by a noticeable
difference in the response time between reqpurlESq and resS or by the variation
in the type and size of the responses.

3.2 Behavior-Based Classification

SSRs can also be classified according to the behavior of S. We observed seven
distinct behaviors that capture the way a service can be abused. While some of
these may seem legitimate in isolation, we will show that their combination can
lead to sophisticated attacks.

Proxy—S acts as a proxy when it returns resES to C. We distinguish proxy
services as transparent (when resES is forwarded to C without any modification)
or non-transparent (when, for example, resES is embedded inside resS).

Open Origin Policy—An open origin policy service (OOP) always returns the
least restrictive ACAO:* header, ignoring the actual value (if any) that is set by
ES. OOP services allow bypassing SOP for CORs (if ES did not include the
ACAO header) and any cross-origin resource sharing policy.

Storage—A storage service can be used to store and retrieve resources. That
is, S fetches resES from ES and stores the resource locally. Then, S returns an
ID to C for the resource that can be later used to retrieve resES .

Amplifier—An amplifier service can increase the number of SSRs and/or the
amount of data sent in SSRs as compared to CSRs. We designate amplifiers as
request amplifiers (when they increase the number of requests) or data amplifiers
(when they increase the size of each request or response).

Bridge—A bridge service connects different layers of a protocol stack and allows
S to send packets to non-HTTP services. With reference to Figure 1a, when S
processes a crafted URL, instead of generating an HTTP request, it opens a
TCP connection and sends raw data to ES. This behavior is often the result of
forgery vulnerabilities, e.g., improper URL validation.

Interpreter—An interpreter service uses HTTP clients capable of interpreting
JavaScript code. For instance, S can be used to control the different parts of a
more complex attack, or to perform any computations on the attacker’s behalf.

Probe—A probe service can be used to collect information about an external
service ES. Information can be leaked to C over side channels. Depending on
the information leaked, probe services can be used to perform port scanning,
host discovery, or application fingerprinting. This type of service is the result of
two flaws: forgery, i.e., accepting custom TCP ports, and information gathering.
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Origin Laundering Attack 1.1 7 7 7 7 C
Attack 1.2 7 7 7 7 C

Denial of Service Attack 2.1 (Dom. Blacklist.) 7 7 7 7 S
Attack 2.2 (with Data Amplifier) 7 7 7 7 7 7 7 7 S, ES
Attack 2.3 (against Data Amplifier) 7 7 7 7 7 7 7 7 S, ES

Reconnaissance Attacks 7 7 7 7 S, ES
Bridging Attacks 7 7 7 7 S, ES

Table 1: Mapping between attacks and the four angles of our classification: flaw,
behavior, control, and target.

3.3 Control-Based Classification

The third SSRs classification is according to the control an attacker has on the
content of SSRs and responses generated by S. In particular, we distinguish the
control over the destination and the content of SSRs. The destination consists of
the domain or IP address of the server, the HTTP Host header, and the path of
the HTTP request, whereas the content of a request covers the request parame-
ters and the body. This classification supersedes Polyakov’s classification [22] as
we add control over the response. For the response, we consider only the content,
i.e., the body of the HTTP response resS .

3.4 Target-Based Classification

Finally, we examine who can be the target of an SSR-based attack. We distin-
guish between attacks against the client C, the SSR service S, and the remote
service ES. Most of the vulnerabilities discovered by prior work target ES, such
as the vulnerabilities on Facebook and Google services [27], the XXE on SAP
NetWeaver [22], and the vulnerability of DB4Web (CVE-2002-1484) which all
allowed attacks against third-party services. We extend this threat model with
attacks against the client, such as the Web Origin Laundering attack. In addi-
tion, we define S as a potential target, e.g., of resource exhaustion attacks.

4 Attacks

We now instantiate our classification and present seven attacks. Attacks are di-
vided into four categories: browser countermeasure evasions (Section 4.1), DoS
attacks (Section 4.2), reconnaissance (Section 4.3), and bridging attacks (Sec-
tion 4.4). Only the last two were previously known. The mapping between attacks
and our classification (including the root cause flaw) is shown in Table 1. As op-
posed to the known exploitations of SSRF [12, 27, 22, 15, 16], two out of seven
attacks actually target C—an insight that should bring additional attention to
SSR abuse.



4.1 Web Origin Laundering
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Web browsers implement
various URL-based de-
fenses to protect users
and data from attacks,
such as Google Safe Brows-
ing [9], NoScript [13], or
AdBlock [6]. These mech-
anisms make security de-
cisions based on requested URLs, e.g., limit the scope of JavaScript programs or
even deny the JavaScript execution. Web origin laundering is an attack which
hides resource origins, thus bypassing URL-based defenses, leaving users ex-
posed. With reference to our threat model, this is an attack against C, i.e., risk
R3. First, C requests a resource of ES via S. Note that the victim’s browser is
not aware of the fact that the request of step 1 contains the URL of a resource
of ES. Then, S fetches the resource from ES and returns it to C (steps 2-4).
Finally, the web browser verifies the origin of the resource to enforce security
mechanisms. Unfortunately, the browser will falsely assume that S is the origin,
possibly leading to a wrong decision in the security checks. We now preset two
instances of this attack to bypass browser countermeasures.

Attack 1.1—With reference to Figure 3, the attacker prepares a URL that is
distributed to C. For example, the URL refers to a proxy service to fetch mali-
cious content hosted by ES, e.g., http://ssr.com/?url=host.com/mal.html.
The attacker sends this URL to C, e.g., via phishing email, or linking it in fo-
rums and social networks. The victim clicks on the URL and, as a result, her
browser verifies whether the URL is blacklisted. As ssr.com is not blacklisted, C
sends message 1 to S. S extracts the URL from the parameter url, and fetches
the malicious content at host.com/mal.html. Finally, it returns the malicious
content to C. We have successfully performed this attack, bypassing the Google
Safe Browsing mechanism as implemented by Google Chrome 43.0.2357.130 and
Mozilla Firefox 39.0. In these attacks, we have used two proxy services to re-
lay known phishing pages, drive-by download pages, and other malicious con-
tent including malware binaries (i.e., EICAR Standard Anti-Virus Test File and
Virus.Win32.Virut).

Researchers have recently found criminals using a similar technique to dis-
tribute links to phishing pages. The attacker distributes a Google URL that
redirected to the malicious target4. However, browser countermeasures can dis-
cover the attempt to redirect the user to a malicious domain and then block the
attack. Furthermore, this attack is limited only to pages indexed by Google. Our
attack does not rely on redirect but instead on SSRs which hide the true origin
of the malicious content. Finally, an additional confirmation of the severity of

4 See https://isc.sans.edu/diary/How+Malware+Campaigns+Employ+Google+

Redirects+and+Analytics/19843



this threat was provided in a recent NoScript bypass attack based on a SSRF
vulnerability in the content delivery network of Akamai5.

Attack 1.2 (Escaping Content Dispositions)—Attack 1.1 can be blocked
by the Content-Disposition response header of S. This header suggests to a
browser not to display the returned resource to the user. We will discuss the use
of this header in Section 6. However, even in presence of the content disposition
header, it is still possible to deliver and display malicious content to the user.
Consider the following JavaScript code embedded in a malicious web page hosted
by a third-party service:

1 var malware = "http :// host.com/mal.html";
2 var cor = new XMLHttpRequest ();
3 cor.onreadystatechange=function () {
4 var ct = this.getResponseHeader("content -type")
5 window.location = "data:" + ct "," + encodeURIComponent(cor.responseText);
6 }
7 cor.open("GET", "http :// ssr.com/?url=" + encodeURIComponent(malware), false);
8 cor.send();

The URL of the malicious resource, i.e., urlES , is in the variable malware(Line
1) which is retrieved with an asynchronous request (Lines 2 and 7-8). Note that
the URL used in the Ajax request is of the SSR service S (line 7). If the attacker
directly used the value in malware (line 8), the attempt to reach a malicious
server RE would be detected (e.g., by Google Safe Browsing). Then, once the
malicious resource is fetched, the JavaScript program transforms it into a data
URL. Such URL does not point to a resource, but instead contains the resource
within the URL itself. Finally, the browser is directed to the data URL (line 5)
and the malicious content is displayed to the user. We have developed proofs
of concept of these attacks and bypassed the Google Safe Browsing mechanism
of Chrome and Firefox. To this end, we used a proxy service which returned
the Content-Disposition response header. Similarly to the previous attack,
we used URLs of real phishing pages and binaries of actual malware.

4.2 Denial of Service

We now present three scenarios in which SSR is abused to perform DoS attacks
against S. We group these attacks into two categories: domain blacklisting and
resource exhaustion.

Attack 2.1 (DoS via Domain Blacklisting)— As discussed before, browsers
prevent users from visiting websites that are known to host malicious content.
An attacker may be able to poison these blacklists to block benign sites that
expose a proxy behavior by using the web origin laundering technique. To this
end, the attacker prepares a URL for the proxy service that contains the URL
of a malicious page, and submits it to the blacklist operator (e.g., to Google in
the case of Safe Browsing) to initiate a scan. Since the malicious content seems
to originate from the proxy service, once the URL is detected as malicious, the
proxy itself gets blacklisted. To avoid to disrupt the operations of SSR services,

5 See https://www.blackhat.com/us-15/briefings.html
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we did not test this attack in practice. With reference to our threat model, this
is an attack against S, i.e., risk R4.

Attack 2.2 (DoS with Data Amplifier): In this second scenario, an attacker
can target any Internet-facing service and flood it with HTTP requests. The gen-
eral idea is to use an interpreter service as coordinator to amplify number and size
of requests by using data amplifier services via CORs. In order to bypass SOP
for CORs, this attack uses the web origin laundering presented in Section 4.1
whenever the interpreter needs to send a request towards another service role.
Figure 4 shows an example involving the attacker, an interpreter, and an ampli-
fier service. The attacker (C) submits the URL of the JavaScript program to the
interpreter service (S, step 1). The interpreter fetches and executes a malicious
program (steps 2 and 3) that performs two operations: enlistment and attack.
The enlistment consists in re-submitting the URL of the JavaScript programs to
the interpreter service. This will increase the number of instances of JavaScript
programs participating in the attack. In the attack phase, the JavaScript code
instructs the web service to send many HTTP requests to the victim (ES).
Browsers, such as used by S, can generate about 3,000 requests per second using
the XMLHttpRequest API [21]. One can further increase the attack impact by
using data amplifier services that receive compressed requests and submit the
decompressed data to the victim (step 6). Data amplifiers allow about a 1:1000
ratio between the data sent to the amplifier and the data sent to the victim [20].

For ethical reasons we did not perform any resource exhaustion DoS attacks.
Instead, we manually verified that the building blocks of this attack are offered
by the services involved in the attack. More specifically, we verified that (i)
interpreters offer the features needed for the attacks (e.g., XMLHttpRequest
API or Image API), (ii) chains and combinations of SSR services can be created,
and (iii) the composition of the services can be invoked by interpreters. With
reference to our threat model, this is an attack against ES, i.e., risk R1.

Attack 2.3 (DoS against Data Amplifier)—A similar setup of Attack 2.2
can also be used to attack the data amplifier, by keeping it busy with decompres-
sion tasks (see Figure 5). In this case, the attack also requires a storage service
to store attacker-controlled compressed data. The interpreter, again controlled
by a malicious program, will request the storage service to fetch the compressed
resource from the web server of the attacker (steps 4-6). Then, the storage service



returns an ID of the resource to the interpreter (step 7). Finally, the interpreter
will send many compressed requests to the victim that trigger the victim to
fetch resources from the storage (step 8, 8’, . . . ). The victim is not only forced
to decompress the requests, but it also has to continuously fetch compressed re-
sources from the storage service and decompress them, easily leading to memory
exhaustion. Similarly for Attack 2.2, we did not perform the attack but we ver-
ified that the building blocks of this attack are offered by the services involved
in the attack. With reference to our threat model, this is an attack against S,
i.e., risk R4.

4.3 Network Reconnaissance

TargetProbe ServiceAttacker
2

34

http://target.com:22/

Wrong HTTP status line:
SSH-2.0-OpenSSH_6.0

http://target.com:22/
1

ErrorError

Fig. 6: Port scanning with probe services

Network reconnaissance is a
previously-known family of
attacks (i.e., risk R1) which
entails attacks that gather in-
formation about a network,
server, or service. We distin-
guish between port scanning,
host discovery, and applica-
tion fingerprinting. Reconnaissance is the main documented attack exploiting
SSRF [15, 24]. While classical attacks require connecting directly to the victim,
probe services can be used to offer anonymity and even allow access to private
networks across firewall boundaries. Figure 6 shows this attack with a probe ser-
vice S. The attacker prepares a request for S which contains the URL with the
host or service to be scanned. For example, if the attacker would like to probe
an SSH service, she can submit the URL http://target.com:22. As a result, S
connects to the URL (an SSH server) and responds to the attacker, potentially
leaking information about the status of the target service. In our example, S
tries to interpret the response of the target as an HTTP response, and returns
the reason for the failure (e.g., reporting that a given SSH server banner is not
a valid HTTP message). If S does not leak information about the target, as we
will show, an attacker can use side channels to determine the state of a TCP
port, the availability of a resource, or the reachability of a host.

4.4 Protocol Bridging Attacks

Protocol bridging is a previously-known family of attacks. The service S often
supports different URL schemes, including ftp, gopher, and dict. In particu-
lar, the gopher scheme allows the attacker to send arbitrary data over the TCP
connection, by using the following URL: gopher://target.com:port/payload.
If a service does not properly validate the schemes of user-provided URLs, SSRs
can be used to send arbitrary data (i.e., payload) over TCP connections to non-
HTTP network services—effectively acting as a bridge between different proto-
cols. In the past, this technique has been used to connect to remote procedure
calls (RPC) services and exploit buffer overflow vulnerabilities [22], but it could



be used for many other malicious purposes, such as to send spam messages to
an SMTP server. With reference to our threat model, this is an attack against
ES, i.e., risk R1. A variation of this attack involves the file URL scheme to
retrieve files in S’s filesystem (e.g., by sending file:///etc/passwd to a bridge
service S). In one incident, such an attack allowed access to system files (e.g.,
passwd) of Google servers [1]. According to our threat model, this is an attack
against local resources of S, i.e., risk R2.

5 Case Studies and Analysis
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(T1) IP Addr. and TCP port 7 7
Non-HTTP schemes 7 7

(T2) Transparent Proxying 7
Store Resource 7
Malicious Content 7

(T3) ACAO: * 7 7
HTTP Req/Resp Compr. 7

(T4) Image/Ajax API 7
Web Worker 7 7

(T5) Side Channel 7 7

Table 2: Mapping between tests and classification

In an attempt to investigate
the prevalence of SSR at-
tacks, we analyzed 68 ser-
vices taken from seven web
application classes, i.e., so-
cial networks, business web
applications (e.g., spread-
sheet and calendar web ap-
plications), software devel-
opment tools, online image
processing, OpenID service
providers, RSS readers, and
online web screenshot tools.
For each category, we se-
lected the most popular web applications prioritized by Google search ranks.
About 60% of our case studies are among the top 50,000 web sites, including six
of the top 10 web sites on Alexa.

The goal of our analysis is to study real SSR services and map them to our
classification. To aid our analysis, we developed günther, a novel open-source
black-box testing tool6 that reveals SSR flaws and service behaviors. günther
takes as input a description of urlpreqESq, possibly enriched with session data
(i.e., session cookies). Then, günther generates a list of requests to probe the
service. günther consists of a tester and a monitor component. The tester probes
S whereas the monitor dynamically spawns servers to receive SSRs originated
by the service. With reference to Figure 1a, the tester and the monitor play
the roles of C and S, respectively. The current version of günther supports the
tests in Table 2, i.e., (T1) URL validation and validation bypass via HTTP 3xx
redirection, (T2) proxy behavior, (T3) response header analysis, (T4) HTTP
client analysis, and (T5) side channel analysis. These tests are mapped to flaws
and behaviors as shown in Table 2.

We ran günther against the 68 services in our dataset. The experiment re-
sults are shown in Table 3. We anonymized each service in Table 3a by replacing
its domain name with an identifier (column ID) because not all of them have

6 The tool is freely available here: https://github.com/tgianko/guenther



been fixed. To improve readability, we have grouped services with the same flaws
and behaviors in the same row. Our experiments revealed at least one service for
each flaw and service behavior. In total, 50 out of 68 services suffer from one of
the flaws in our classification. All these services are either proxy, open origin pol-
icy, probe, or bridge services. One also behaves as an amplifier and four can act
as interpreters and therefore can be abused to coordinate other attacks. Then,
ten services (14.7%) implement weak forms of URL validation that günther suc-
cessfully bypassed via HTTP 3xx redirections. Finally, only 14 services (20.6%)
in our experiments are not affected by SSR-based vulnerabilities.

6 Mitigations

After discussing the vast potential and impact of SSRs, we will now discuss
eight mitigations and pitfalls. From our experiments on the case studies, and
reviewing the state of the art on the mitigation side, we extracted a list of
seven mitigations. Finally, as none of the observed ones are sufficient to block
Attack 1.2, we propose an additional mitigation to enforce URL-based browser
countermeasures.

(M1) Monitoring—Monitoring is a mitigation technique which aims at de-
tecting suspicious activity at service runtime. The owner of S5 reported to us
that they rely on a sophisticated monitoring technique to detect the SSR abuse
targeting C (R3 in Figure 1c). Unfortunately, the use of monitoring to detect
this type of abuse has two shortcomings which make it insufficient as a general
solution. First, a complex infrastructure and a considerable amount of resources
are required to support monitoring, especially for popular services that serve a
large number of users. Second, while monitoring SSRs may successfully mitigate
large-scale abuses, it is often ineffective for detecting low-volume attacks. For
example, the advent of APT-based attacks has changed the distribution from
large-scale to a targeted distribution in which only a single user or organization
is attacked. For these reasons, we believe that monitoring should be comple-
mented with further preventive guidelines.

(M2) Avoid Acting as a Proxy or Wrap Response—Among our case stud-
ies, three services can be abused as transparent proxy to serve malicious content
to a client. However, we are not aware of intended use cases for transparent
proxies, and thus services should be explicitly designed to avoid this behavior.
For example, S can use a JSON envelope to wrap resES , which prevents a web
browser from interpreting the resource resES and thus blocks the Web Origin
Laundering Attack 1.1. Services S12, S59, and S60 use custom JSON data struc-
tures to wrap resES , i.e., they behaved as non-transparent proxies. However,
this countermeasure alone is not sufficient to also block Attack 1.2. As this sec-
ond attack uses malicious JavaScript to retrieve resES , the JavaScript program
can unpack resES and then encode it as inline data (i.e., via the data URI
scheme). Attack 1.2 can partially be mitigated by enforcing URL-based browser
countermeasures, such as Google Safe Browsing, at S (see M8).
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Business Applications
S5 7 7 7 7 7 7
S2 7 7
S1 7 7 7 7
S3, S7 7 7
S4, S6, S8
Development Tools
S10 7 7 7
S12 7 7 7 7
S14 7 7
S9, S11, S13 7 7
Image Editing
S15 7 7 7 7 7 7
S16 7 7 7 7
S17 7 7
S18
OpenID
S29 7 7 7
S35 7 7 7 7
S19-27, S31-34, S36-40 7 7
S28, S30
RSS Readers
S41, S46 7 7 7 7
S43-45, S47 7 7
S42
Screenshot
S54 7 7 7
S53, S56 7 7 7
S52, S55
S48-51 7
Social Networks
S64 7 7
S67 7 7 7
S59-60, S62, S65-66 7 7
S57-58, S61, S68, S63

Total 4 8 47 3 4 1 1 8 7 47

(a) Case studies to flaws/behaviors

Tests Accept Reject Bypass
(T1) IP address 60 8 2

Dict scheme 4 64 4
Goph. scheme 3 65 4
TCP port 55 13 0

(b) URL validation results

Tests Serv. % rel.
(T2) Transp. Prox. 3 4.41%

Non-transp. Prox. 6 8.82%
Store Resource 1 1.47%
Malicious URL 4 5.88%

(T3) ACAO:* 4 5.88%
Decompr. Req. 1 1.47%
Decompr. Resp. 36 52.94%

(T4) Image API 7 10.29%
XMLHTTPReq. API 5 7.35%
Web Worker 2 2.94%

(c) Proxy, header, and client test re-
sults

(T5) Tests Serv. % rel.
Port Scanning

Open/closed/filtered 13 19.12%
Open (partially) 40 58.82%
No leak 15 22.06%

Fingerprinting
Res. exists/does not exist 37 54.41%
Res. exists (partially) 3 4.41%
No leak 24 41.18%

Host Discovery
On/offline 45 66.18%
Online (partially) 16 23.53%
No leak 7 10.29%

(d) Side channel analysis

Table 3: Results of our Experimental Analysis

(M3) Perform Proper URL Validation—S should validate urlES before
fetching the target resource. Table 3b shows how our case studies validate user-
provided URLs. The vast majority accept URLs containing an IP address (60
services) and/or a port number (55 services). None of these behaviors can be
considered a vulnerability per se. Some applications rejected URLs with IP ad-
dresses, probably as an attempt to block attackers who may try to access local
machines in the company intranet. However, it is important to understand that
this countermeasure is often insufficient, as attackers can still address any IP by
pointing an attacker-controlled domain to a local IP address (DNS rebinding).
Moreover, we found weak forms of URL validation that can be circumvented.
URL validation of ten services can be bypassed with HTTP redirections (last



column in Table 3b). This is critical, because it shows how the service developers
attempted to mitigate the problem, but were not aware of all the details of this
security threat. Worse, while few of the 68 services accept URLs with the Dict
(four services) or Gopher schemes (three services), redirection helps to bypass
an additional four cases for each scheme. These bridges are a severe threat, as
they give full control of a TCP socket and enable attackers to communicate with
non-HTTP network services.

URL validation that protects against rebinding can be implemented in HTTP
libraries. To the best of our knowledge, SafeCurl [14] is the only HTTP library
that provides these countermeasures for PHP services. Developers using other
programming languages or headless browsers need to implement the above mech-
anisms on their own.

(M4) Content Disposition—The content disposition header is used to sug-
gest that a browser should not display a resource inline [7]. This header has been
proposed in the past to fix Reflected File Download attacks [11]. An SSR service
that uses this header can block the Web Origin Laundering Attack 1.1. In fact,
as the resource is not shown to the user inline, phishing attacks are prevented.
In our experiments, services S5 and S9 use the content disposition header. While
Content-Disposition mitigates Attack 1.1, it does not protect from Attack 1.2.
Content-Disposition alone does not solve the root cause of the insufficient secu-
rity policy enforcement flaw, but instead raises the difficulty for an attacker to
abuse SSRs. To mitigate Attack 1.2, see M8.

(M5) Limit Resource Usage—DoS attacks of Section 4.2 are the result of
a combination of services: interpreters to orchestrate the attack, amplifiers to
amplify the size and number of requests, and OOP services to chain SSRs ser-
vices. This mitigation targets the first two services (for the OOP services, see
instead M6). Table 3c shows that 10% of our case studies use browsers with full
JavaScript support, including JavaScript APIs that can be used to orchestrate
DoS attacks. In particular, seven services support the Image API, five services
support the XMLHttpRequest API, and two services support the Web Worker
API. These APIs can be abused to turn a seemingly innocuous web browser into
a weaponized HTTP-based bot that can generate thousands of HTTP requests
per second [10, 21]. To avoid this abuse, interpreter services need to limit the
request rate. Another source of resource exhaustion is data compression. With
reference to Table 3c, data compression is supported by most tested services, and
one also supports HTTP request decompression. Decompressing HTTP requests
is not a standardized behavior, but instead is a web server-specific feature [20].
We are not aware of the reasons to support this feature, and we would recom-
mend disabling it. Unlike this particular case, HTTP response compression is
standardized and a more common feature. Also in this case, we would recom-
mend disabling data compression. If this is not possible, then developers should
verify that their services limit the resources used when decompressing incom-
ing messages (see [20] for guidelines toward a secure implementation of data
decompression).



(M6) Remove Open Access Control Policies for CORs—As OOP services
can be accessed via CORs from any domain, they can be used by interpreters
to chain SSR services in order to mount the attack. Among our case studies,
four services use the header ACAO: *, which is bad practice in the presence of
our threat model. The other 64 services omit ACAO headers, thus effectively
blocking cross-origin requests. Another effective countermeasure to block this
attack is to limit the access to SSR services to CORs from trusted origins.

(M7) Limit Information Leakage—72% of the services can be used as probes
to perform network reconnaissance. This makes this role the most widespread
behavior among the applications we tested. All probe services of Table 3a allow,
with different degrees of granularity, network reconnaissance via response time
analysis and response code. Information leaks can be solved by making S’s be-
havior independent from the success of the SSR. For example, S can enforce a
constant response time (i.e., a fixed delay between C’s request and the response
sent to C). We observed this behavior for 15 services that do not allow distin-
guishing the port state, seven services that do not leak information about the
host availability, and 24 services that do not disclose the availability of an HTTP
resource. However, enforcing a constant time introduces undesired delays, thus
making it unsustainable for scenarios in which responsiveness is important. In
these cases, S may deploy weaker security measures which can limit network re-
connaissance attacks. This can be achieved, for example, by accepting URLs only
with selected TCP ports with mitigation M3, or by rate-limiting the requests.

(M8) Enforce URL-Based Browser Countermeasures—None of the mit-
igations we obseved in the wild (M1-7) can solve Web Origin Laundering Attack
1.2. The root cause of this attack is that S allows one to retrieve and serve
malicious content, and hide the true origin of the malicious content with S’s
domain.

To block Web Origin Laundering Attack 1.2, we propose that SSR services
should implement the same countermeasures deployed by browsers in order to
block harmful and unwanted content, e.g., Google Safe Browsing. Once the client
submits the URL to S, S validates the URL using the Google Safe Browsing pro-
tocol. If the URL is malicious, then S refuses to retrieve it. While this approach
at least partially mitigates the distribution of malicious content, it does not fix
the problem if web browsers implement custom security policies, e.g., NoScript
or AdBlock custom domain blacklists. In conclusion, a general solution to Web
Origin Laundering Attack 1.2 is still lacking.

7 Developers Feedback

We responsibly disclosed all vulnerabilities to the respective developers. In most
of the cases, developers reacted to our first reports. If developers were unrespon-
sive for over a month, we tried a second time and then alerted the US CERT. Our
disclosure resulted in a variety of responses from developers, strongly related to
the type of flaw of our classification.



Forgery—75% of such vulnerabilities have been fixed by now. Six vendors (i.e.,
S1, S14, S15, S35, S46, and S64) patched their services, while two vendors (S12
and S41) were unresponsive. The high number of fixes may be due to a partial
awareness of the security risks of forgery vulnerabilities: forgery is the first doc-
umented SSR flaw, and developers deploy countermeasures against forgery, i.e.,
URL validation (e.g., 64 services reject URLs with non-HTTP schemes, 13 with
TCP ports, and eight with IPs). However, the fact that countermeasures can be
bypassed with HTTP redirections indicates that the complete exploitation space
of SSR flaws is not entirely understood.
Information gathering—The disclosure of these vulnerabilities revealed a
more fragmented situation. Five services patched the problem, while the vast
majority ignored the issue or did not respond to our report. An interpretation of
these results is in the rejected reports. In three cases, developers did not want to
modify S as they are using monitoring to prevent abuses (i.e., S3, S5, and S59).
The use of monitoring suggests prudence and a general attention to security-
related issues. However, the choice of monitoring over a patch in S may indicate
that developers rate this risk a low priority. Other developers (S7, S60, and S62)
consider this flaw not to be a security risk at all.
Enforcement of security policies—Out of four affected services, S15 has been
shut down and S2 has partially solved the flaw by adding the content disposition
header into the response. Developers of S16 reported having fixed the flaw, but
the patch did not solve the problem. Lastly, developers of S5 rejected our report
because they use monitoring to prevent abuses. As discussed in Section 6, mon-
itoring may work for large-scale abuses, but potentially still misses individual
exploitations.

8 Related Work

In this section, we review SSR literature according to four thematic groups.
First, we review academic literature with a focus on vulnerability analysis and
detection. Then, we review known SSR-based attacks against popular web ap-
plications. Third, we present current attempts to classify and categorize existing
SSR threats. Finally, we survey existing tools to detect SSR vulnerabilities.
Vulnerability Analyses and Detection—Web vulnerabilities have been ex-
tensively studied from different angles, e.g., categorization and prioritization [17,
23], impact and trends [18], detection techniques [2, 19] and effectiveness [4], and
defense mechanisms [3]. While existing works focused largely on classical, yet se-
vere, vulnerabilities, to the best of our knowledge, no scientific work has studied
the SSR communication pattern.
Attacks and Classifications—The vast majority of security incidents are de-
scribed in reports and whitepapers. These attacks are SSR forgery attacks and
were brought to the community’s attention by Polyakov et al. [22] and Wa-
likar [27]. Polyakov et al. [22] described an XXE vulnerability in SAP NetWeaver
whereas Walikar [27] described an insufficient input validation vulnerability in
popular social networks. Other exploitations of SSR forgery vulnerabilities were



reported by Almroth et al. [1], in which they retrieve local resources in Google
services. All these attacks are included in Polyakov’s threat model. With re-
spect to the current knowledge about SSR-based attacks, our paper presents
five previously-unknown SSR-based attacks, i.e., two Web Origin Laundering
attacks and three DoS attacks.

Following the initial incidents, the community started classifying and catego-
rizing known SSR-based vulnerabilities. All efforts focused on SSR forgery (e.g.,
CWE [25] and OnSec [16]). However, current knowledge on SSR vulnerabilities
is sparse, disjoint, and incomplete. While the CWE database includes some SSR-
related vulnerabilities, they are mainly isolated entries which are not correlated
to each other. As a result, developers cannot identify all possible flaws that can
affect an SSR service. Furthermore, as we have shown, there are other attacks
targeting C and S which do not rely on forgery but instead abuse improper
enforcement of security policies.

Detection Tools—Existing detection tools target only SSRF vulnerabilities.
They are available in the form of proof-of-concept scripts (e.g., the SSRF bible [16])
or as testing tools. A proprietary tool that can find SSRF vulnerabilities is
Acunetix WVS version 9 with AcuMonitor7. However, this tool is not freely
available and we were not able to inspect it. Existing public tools offer limited de-
tection power (only SSRF) which make them inapplicable to the purpose of this
paper. Ussrfuzzer [28] fuzzes HTTP requests with URLs to detect SSRs, how-
ever, it does not perform any security test. In contrast, the OWASP Skanda [5]
tool can detect information disclosure flaws, in particular leaks of TCP port
status. However, it cannot be used to detect other types of leakage, e.g., web
application fingerprint, nor other vulnerabilities or security related features. For
all these reasons, we developed günther, a first comprehensive SSR testing tool,
that we plan to release to the public.

9 Conclusion

To the best of our knowledge, this is the first comprehensive study of the security
of SSRs. We presented a classification of SSRs based on the type of flaw, the
level of control of the messages, the behavior of the vulnerable services, and the
potential attack targets. Furthermore, we unveiled previously-unknown exploita-
tions techniques in which a combination of seemingly innocuous services can be
used to mount sophisticated attacks targeting both users and servers on the
Internet. We also presented experiments on 68 popular web applications. Our
experiments showed that the majority of the web applications can be abused
to perform malicious activities, ranging from server-side code execution to DoS
attacks. We also presented eight mitigations to help developers to implement
SSRs in a more secure way.

7 See http://www.acunetix.com/vulnerability-scanner/
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