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Abstract

We present the first cryptographically sound security proofof the well-known Otway-Rees protocol.
More precisely, we show that the protocol is secure against arbitrary active attacks including concurrent
protocol runs if it is implemented using provably secure cryptographic primitives. We prove secrecy
of the exchanged keys with respect to the accepted cryptographic definition of real-or-random secrecy,
i.e., indistinguishability of exchanged keys and random ones, given the view of a general cryptographic
attacker. Although we achieve security under cryptographic definitions, our proof is performed in a
deterministic setting corresponding to a slightly extended Dolev-Yao model; in particular, it does not
have to deal with probabilistic aspects of cryptography andis hence in the scope of current proof tools.
The reason is that we exploit a recently proposed ideal cryptographic library, which has a provably
secure cryptographic implementation, as well as recent results on linking symbolic and cryptographic
key secrecy. Besides establishing the cryptographic security of the Otway-Rees protocol, our result also
exemplifies the potential of this cryptographic library andthe recent secrecy preservation theorem for
symbolic yet cryptographically sound proofs of security.

1 Introduction
Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or SET use cryptographic
primitives like signature schemes or encryption in a black-box way, while adding many non-cryptographic
features. Vulnerabilities have accompanied the design of such protocols ever since early authentication
protocols like Needham-Schroeder [54, 36], over carefullydesigned de-facto standards like SSL and PKCS
[60, 33], up to current widely deployed products like Microsoft Passport [38]. However, proving the security
of such protocols has been a very unsatisfactory task for a long time.

One way to conduct such proofs is the cryptographic approach, whose security definitions are based on
complexity theory, e.g., [40, 39, 41, 30]. The security of a cryptographic protocol is proved by reduction, i.e.,
by showing that breaking the protocol implies breaking one of the underlying cryptographic primitives with
respect to its cryptographic definition. This approach captures a very comprehensive adversary model and
allows for mathematically rigorous and precise proofs. However, because of probabilism and complexity-
theoretic restrictions, these proofs have to be done by handso far, which yields proofs with faults and
imperfections. Moreover, such proofs rapidly become too complex for larger protocols.

The alternative is the formal-methods approach, which is concerned with the automation of proofs using
model checkers and theorem provers. As these tools currently cannot deal with cryptographic details like
error probabilities and computational restrictions, abstractions of cryptography are used. They are almost

∗Preliminary versions appeared in [4] and [6].
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always based on the so-called Dolev-Yao model [37]. This model simplifies proofs of larger protocols
considerably and gave rise to a large body of literature on analyzing the security of protocols using various
techniques for formal verification, e.g., [51, 49, 45, 34, 57, 1].

Among the protocols typically analyzed in the Dolev-Yao model, the Otway-Rees protocol [55], which
aims at establishing a shared key between two users by means of a trusted third party, stands out as one
of the most prominent protocols. It has been extensively studied in the past, e.g., in [56, 44, 57], and
various new approaches and formal proof tools for the analysis of security protocols were validated by
showing that they can prove the protocol in the Dolev-Yao model (respectively that they can find the well-
known type-flaw attack if the underlying model does not provide sufficient typing itself; the model that
our proof is based upon excludes this attack). However, all existing proofs of security of the Otway-Rees
protocol are restricted to the Dolev-Yao model, i.e., no theorem exists which allows for carrying over the
results of an existing proof to the cryptographic approach with its much more comprehensive adversary.
Thus, despite the tremendous amount of research dedicated to the Otway-Rees protocol, it is still an open
question whether an actual implementation based on provably secure cryptographic primitives is secure
under cryptographic security definitions. We close this gapby providing the first security proof of the
Otway-Rees protocol in the cryptographic approach. We showthat the protocol is secure against arbitrary
active attacks if the Dolev-Yao-based abstraction of symmetric encryption is implemented using a symmetric
encryption scheme that is secure against chosen-ciphertext attacks and that additionally ensures integrity of
ciphertexts. More precisely, we prove real-or-random secrecy of the exchanged keys, i.e., we show that
no cryptographic attacker is able to distinguish fresh, random keys and keys that are actually exchanged
between two honest participants unless the underlying cryptography can be broken. This is the accepted
cryptographic definition of key secrecy. Moreover, we show consistency of the protocol in that parties that
have successfully established a shared key have a consistent view of who the peers of the sessions are.1

Chosen-ciphertext security and integrity of ciphertexts are the standard security definition of authenticated
symmetric encryption schemes [32, 31], and efficient symmetric encryptions schemes provably secure in
this sense exist under reasonable assumptions [31, 59].

Obviously, establishing a proof in the cryptographic approach presupposes dealing with the mentioned
cryptographic details, hence one naturally assumes that our proof heavily relies on complexity theory and is
far out of scope of current proof tools. However, our proof isnot performed from scratch in the cryptographic
setting, but based on a recently proposed cryptographic library [22, 24, 16], which provides cryptograph-
ically faithful, deterministic abstractions of cryptographic primitives, i.e., the abstractions can be securely
implemented using actual cryptography. Moreover, the library allows for nesting the abstractions in an ar-
bitrary way, quite similar to the original Dolev-Yao model.While this was shown for public-key encryption
and digital signatures in [22] and subsequently extended with message authentication codes in [24], the most
recent extension of the library further incorporated symmetric encryption [16] which constitutes the most
commonly used cryptographic primitive in the typical proofs with Dolev-Yao models, and also serves as the
central primitive for expressing and analyzing the Otway-Rees protocol. However, as shown in [16], there
are intrinsic difficulties in providing a sound abstractionfrom symmetric encryption in the strong sense of
security used in [22]. Very roughly, a sound Dolev-Yao-style abstraction of symmetric encryption can only
be established if a so-calledcommitment problemdoes not occur, which means that whenever a key that is
not known to the adversary is used for encryption by an honestuser then this key will never be revealed
to the adversary. We will elaborate on the origin of this problem in more detail in the paper. While [16]
discusses several solutions to this problem, the one actually taken is to leave it to the surrounding protocol
to guarantee that the commitment problem does not occur, i.e., if a protocol that uses symmetric encryption
should be faithfully analyzed, it additionally has to be shown that the protocol guarantees that keys are no

1A violation of this consistency property has been pointed out in [44] which arises due to a different modeling of the trusted
third party. We will discuss this in the following.
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longer sent in a form that might make them known to the adversary once an honest participant has started
using them. Our proof shows that this is a manageable task that can easily be incorporated in the overall
security proof without imposing a major additional burden on the prover.

Once we have shown that the Otway-Rees protocol does not raise the commitment problem, we prove
the security of the Otway-Rees protocol based on the deterministic abstraction. In combination with a
recent result on linking symbolic and cryptographic key secrecy [18], this allows us to perform a symbolic
proof of secrecy for the Otway-Rees protocol and to derive the desired cryptographic key secrecy from that.
Similarly, we establish the consistency property based on the abstraction and exploit a general integrity
preservation theorem [10] to derive the consistency property for the cryptographic setting. As the proof
is deterministic and rigorous, it should be easily expressible in formal proof tools, in particular theorem
provers. Even done by hand, our proof is much less prone to error than a reduction proof conducted from
scratch in the cryptographic approach. We also want to pointout that our result not only provides the up-to-
now missing cryptographic security proof of the Otway-Reesprotocol, but also exemplifies the usefulness of
the cryptographic library [22], their extensions [24, 16],and the corresponding general theorems for linking
symbolic and cryptographic properties based on this library [10, 21, 14, 15, 18, 5] for the cryptographically
sound verification of cryptographic protocols.

Further Related Work. Cryptographic underpinnings of a Dolev-Yao model were firstaddressed by
Abadi and Rogaway in [3]. However, they only handled passiveadversaries and symmetric encryption.
The protocol language and security properties handled wereextended in [2, 46], but still only for passive ad-
versaries. This excludes most of the typical ways of attacking protocols, e.g., man-in-the-middle attacks and
attacks by reusing a message part in a different place or a concurrent protocol run. A full cryptographic jus-
tification for a Dolev-Yao model, i.e., for arbitrary activeattacks and within arbitrary surrounding interactive
protocols, was first given recently in [25, 22] with extensions in [24, 16]. Based on the specific Dolev-Yao
model whose soundness was proven in [22], the well-known Needham-Schroeder-Lowe protocol was proved
in [13], a variant of the3KP payment protocol was proved in [8], and the Yahalom protocol was proven in
[19]. Besides the proof that we present in this paper, the proof in [13, 8, 19] are the only Dolev-Yao-style,
computationally sound proofs that we are aware of. However,they are considerably simpler than the one we
present in this work since it only addresses integrity properties whereas our proof additionally establishes
confidentiality properties; moreover, the Needham-Schroeder-Lowe protocol and the3KP protocol do not
use symmetric encryption, hence the commitment problem does not occur there which greatly simplifies the
proof. Another cryptographically sound proof of the Needham-Schroeder-Lowe protocol was concurrently
developed by Warinschi [61]. The proof is conducted from scratch in the cryptographic approach which
takes it out of the scope of formal proof tools.

Laud [47] has recently presented a cryptographic underpinning for a Dolev-Yao model of symmetric en-
cryption under active attacks. His work enjoys a direct connection with a formal proof tool, but it is specific
to certain confidentiality properties, restricts the surrounding protocols to straight-line programs in a specific
language, and does not address a connection to the remainingprimitives of the Dolev-Yao model. Herzog
et al. [42] and Micciancio and Warinschi [50] have recently also given a cryptographic underpinning under
active attacks. Their results are narrower than that in [22]since they are specific for public-key encryption,
but consider slightly simpler real implementations; moreover, the former relies on a stronger assumption
whereas the latter severely restricts the classes of protocols and protocol properties that can be analyzed
using this primitive. Section 6 of [50] further points out several possible extensions of their work which all
already exist in the earlier work of [22]. Canetti and Herzog[35] have recently linked ideal functionalities
for mutual authentication and key exchange protocols to corresponding representations in a formal language.
They apply their techniques to the Needham-Schroeder-Loweprotocol by considering the exchanged nonces
as secret keys. Their work is restricted to the mentioned functionalities and in contrast to the cryptographic
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library [22] hence does not address soundness of Dolev-Yao models in their usual generality. The consid-
ered language does not allow loops and offers public-key encryption as the only cryptographic operation.
Moreover, their approach to define a mapping between ideal and real traces following the ideas of [50] only
captures trace-based properties (i.e., integrity properties); reasoning about secrecy properties additionally
requires ad-hoc and functionality-specific arguments. Since computational soundness has become a highly
active line of research, we exemplarily list further recentresults in this area without going into further details
[11, 23, 27, 20, 9, 17, 7, 29, 12].

Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-
time considerations, in particular [52, 48, 53, 43] and, as asecond step, to encode them into proof tools. This
approach can not yet handle protocols with any degree of automation. It is complementary to the approach
of proving simple deterministic abstractions of cryptography and working with those wherever cryptography
is only used in a blackbox way.

Outline. Section 2 introduces the notation used in the paper and briefly reviews the aforementioned cryp-
tographic library. Section 3 shows how to model the Otway-Rees protocol based on this library as well as
how initially shared keys can be represented in the underlying model. Section 4 contains the symbolic and
cryptographic security properties of the Otway-Rees protocol. The symbolic property is proven in Section 5,
and Section 6 shows how to derive the cryptographic propertyfor the cryptographic implementation of the
protocol. Section 7 concludes.

2 Preliminaries
In this section, we give an overview of the ideal cryptographic library of [22, 24, 16] and briefly sketch its
provably secure implementation. We start by introducing the notation used in this paper.

2.1 Notation
Let ↓ denote an error element available as an addition to the domains and ranges of all functions and algo-
rithms. The list operation is denoted asl := (x1, . . . , xj), and the arguments are unambiguously retrievable
asl[i], with l[i] = ↓ if i > j. A databaseD is a set of functions, called entries, each over a finite domain
called attributes. For an entryx ∈ D, the value at an attributeatt is writtenx.att . For a predicatepred
involving attributes,D[pred ] means the subset of entries whose attributes fulfillpred . If D[pred ] contains
only one element, we use the same notation for this element.

2.2 Overview of the Ideal and Real Cryptographic Library
The ideal (abstract) cryptographic library of [22, 24, 16] offers its users abstract cryptographic operations,
such as commands to encrypt or decrypt a message, to make or test a signature, and to generate a nonce.
All these commands have a simple, deterministic semantics.To allow a reactive scenario, this semantics
is based on state, e.g., of who already knows which terms; thestate is represented as a database. Each
entry has a type (e.g., “ciphertext”), and pointers to its arguments (e.g., a key and a message). Further,
each entry contains handles for those participants who already know it. A send operation makes an entry
known to other participants, i.e., it adds handles to the entry. The ideal cryptographic library does not allow
cheating. For instance, if it receives a command to encrypt amessagem with a certain key, it simply makes
an abstract database entry for the ciphertext. Another usercan only ask for decryption of this ciphertext if
he has obtained handles to both the ciphertext and the secretkey.

To allow for the proof of cryptographic faithfulness, the library is based on a detailed model of asyn-
chronous reactive systems introduced in [58, 28] and represented as a deterministic machineTHH, called
trusted host. The parameterH ⊆ {1 . . . , n} denotes the honest participants, wheren is a parameter of the
library denoting the overall number of participants. Depending on the considered setH, the trusted host
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offers slightly extended capabilities for the adversary. However, for current purposes, the trusted host can
be seen as a slightly modified Dolev-Yao model together with anetwork and intruder model, similar to “the
CSP Dolev-Yao model” or “the inductive-approach Dolev-Yaomodel”.

The real cryptographic library offers its users the same commands as the ideal one, i.e., honest users
operate on cryptographic objects via handles. The objects are now real cryptographic keys, ciphertexts, etc.,
handled by real distributed machines. Sending a term on an insecure channel releases the actual bitstring
to the adversary, who can do with it what he likes. The adversary can also insert arbitrary bitstrings on
non-authentic channels. The implementation of the commands is based on arbitrary secure encryption and
signature systems according to standard cryptographic definitions, with certain additions like type tagging
and additional randomizations.

The security proof of [22] states that the real library isat least as secureas the ideal library. This is
captured using the notion ofreactive simulatability[58, 28], which states that whatever an adversary can
achieve in the real implementation, another adversary can achieve given the ideal library, or otherwise the
underlying cryptography can be broken. This is the strongest possible cryptographic relationship between a
real and an ideal system. In particular it covers arbitrary active attacks. Moreover, a composition theorem
exists in the underlying model [58, 26], which states that one can securely replace the ideal library in larger
systems with the real library, i.e., without destroying thealready established simulatability relation.

2.3 Detailed Description of the State of the Cryptographic Library
We conclude this section with the rigorous definition of the state of the ideal cryptographic library. A
rigorous definition of the commands of the ideal library usedfor modeling the Otway-Rees protocol as
well as local adversary commands that model the slightly extended adversary capabilities can be found
in [22, 16].

The machineTHH has portsinu? andoutu ! for inputs from and outputs to each useru ∈ H and foru =
a, denoting the adversary. The notation follows the CSP convention, e.g., the cryptographic library obtains
messages atinu? that have been output atinu !. Besides the numbern of users, the ideal cryptographic library
is parameterized by a tupleL of length functions which are used to calculate the “length”of an abstract
entry, corresponding to the length of the corresponding bitstring in the real implementation. Moreover,L

contains bounds on the message lengths and the number of accepted inputs at each port. These bounds can
be arbitrarily large, but have to be polynomially bounded inthe security parameter.

Using the notation of [22], the ideal cryptographic libraryis asystemSyscry,idn,L that consists of several
structures({THH},SH), one for each value of the parameterH. Each structure consists of a set of machines,
here only containing the single machineTHH, and a setSH := {inu?, outu ! | u ∈ H} denoting those ports of
THH that the honest users connect to. Formally, we obtainSys

cry,id
n,L := {({THH},SH) | H ⊆ {1, . . . , n}}.

In the following, we omit the parametersn andL for simplicity.2

The main data structure ofTHH is a databaseD. The entries ofD are abstract representations of the
data produced during a system run, together with the information on who knows these data. Each entry in
D is of the form (recall the notation in Section 2.1)

(ind , type , arg , hndu1
, . . . , hndum

, hnd a, len)

whereH = {u1, . . . , um}. For each entryx ∈ D:

• x.ind ∈ INDS, called index, consecutively numbers all entries inD. The setINDS is isomorphic
to N and is used to distinguish index arguments from others. The index is used as a primary key
attribute of the database, i.e., we writeD[i] for the selectionD[ind = i].

2Formally, these parameters are thus also parameters of the ideal Otway-Rees systemSysOR,id that we introduce in Section 3.2.
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• x.type ∈ typeset identifies thetypeof x.

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many valuesai are indices of other
entries inD and thus inINDS. We sometimes distinguish them by a superscript “ind”.

• x.hndu ∈ HNDS∪{↓} for u ∈ H∪{a} are handles by which a user or adversaryu knows this entry.
x.hndu = ↓ means thatu does not know this entry. The setHNDS is yet another set isomorphic to
N. We always use a superscript “hnd” for handles.

• x.len ∈ N0 denotes the “length” of the entry; it is computed by applyingthe functions fromL.

Initially, D is empty.THH has a countersize ∈ INDS for the current size ofD. For the handle attributes,
it has counterscurhndu (current handle) initialized with0.

3 The Otway-Rees Protocol
The Otway-Rees protocol [55] is a four-step protocol for establishing a shared secret encryption key between
two users. The protocol relies on a distinguished trusted third partyT, i.e.,T 6∈ {1, . . . , n}, and it is assumed
that every useru initially shares a secret keyKut with T. Expressed in the typical protocol notation, the
Otway-Rees protocol works as follows.3

1. u→ v : M, (Nu,M, u, v)Kut

2. v → T : M, (Nu,M, u, v)Kut
, (Nv ,M, u, v)Kvt

3. T→ v : M, (Nu,Kuv)Kut
, (Nv ,Kuv)Kvt

4. v → u : M, (Nu,Kuv)Kut
.

3.1 Capturing Distributed Keys in the Abstract Library
In order to capture that keys shared between users and the trusted third party have already been generated
and distributed, we assume that suitable entries for the keys already exist in the database. We denote the
handle ofu to the secret key shared withv, where eitheru ∈ {1, . . . , n} andv = T or vice versa, as
sksehndu,v . More formally, we start with an initially empty databaseD, and for each useru ∈ H two entries of
the following form are added (the first one being a public-keyidentifier for the actual secret key as described
below in more detail):

(ind := pkseu , type := pkse, arg := (), len := 0);

(ind := skseu , type := skse, arg := (ind − 1),

hndu := sksehndu,T, hndT := sksehndT,u, len := skse len∗(k)).

Herepkseu andskseu are two consecutive natural numbers; treating public-key identifiers as being of length
0 is a technicality in the proof of [16], andskse len∗(k) denotes the abstract length of the secret key. These
lengths will not matter in the following.

The first entry has to be incorporated in order to reflect special capabilities that the adversary may
have with respect to symmetric encryption schemes in the real world. For instance it must be possible
for an adversary against the ideal library to check whether encryptions have been created with the same
secret key since the definition of symmetric encryption schemes does not exclude this and it can hence

3For simplicity, we omit the explicit inclusion ofu andv in the unencrypted part of the first and second message since the
cryptographic library already provides the identity of the(claimed) sender of a message, which is sufficient for our purpose.
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Figure 1: Overview of the Otway-Rees Ideal System.

happen in the real system. For public-key encryption, this was achieved in [22] by tagging ciphertexts with
the corresponding public key so that the public keys can be compared. For symmetric encryption, this is
not possible as no public key exists, hence this problem is solved by tagging abstract ciphertexts with an
otherwise meaningless “public key” solely used as an identifier for the secret key. Note that the argument of
a secret key points to its key identifier. In the following, public-key identifiers will not matter any further.

We omit the details of how these entries for useru are added by a commandgen symenc key, followed
by a commandsend s for sending the secret key over a secure channel.

3.2 The Otway-Rees Protocol Using the Abstract Library
We now model the Otway-Rees protocol in the framework of [58]and using the ideal cryptographic library.

For each useru ∈ {1, . . . , n} we define a machineMOR
u , called aprotocol machine, which executes the

protocol sketched above for participant identityu. It is connected to its user via portsKS outu !, KS inu?
(“KS” for “Key Sharing”) and to the cryptographic library via portsinu !, outu?. We further model the
trusted third party as a machineMOR

T . It does not connect to any users and is connected to the cryptographic
library via portsinT!, outT?. The combination of the protocol machinesMOR

u , the trusted third partyMOR
T ,

and the trusted hostTHH is theideal Otway-Rees systemSysOR,id. It is shown in Figure 1;H andA model
the arbitrary joint honest users and the adversary, respectively.

Using the notation of [22], we haveSysOR,id := {(M̂H,SH) | H ⊆ {1, . . . , n}}, cf. the definition
of the ideal cryptographic library in Section 2.3, whereM̂H := {THH} ∪ {M

OR
u | u ∈ H ∪ {T}} and

SH := {KS inu?,KS outu ! | u ∈ H}, i.e., for a given setH of honest users, only the protocol machines
MOR

u with u ∈ H are actually present in a protocol run. The others are subsumed in the adversary.
The state of the protocol machineMOR

u consists of the bitstringu and a setNonceu of pairs of the form
(nhnd,mhnd, v, j), wherenhnd,mhnd are handles,v ∈ {1, . . . , n}, andj ∈ {1, 2, 3, 4}. Intuitively, a pair
(nhnd,mhnd, v, j) states thatMOR

u generated the handlenhnd in thej-th step of the protocol in a session run
with v and session identifiermhnd. The setNonceu is initially empty. The trusted third partyMOR

T maintains
an initially empty setSIDT to store already processed session IDs.

We now define how the protocol machineMOR
u evaluates inputs. They either come from useru at port

KS inu? or fromTHH at portoutu?. The behavior ofMOR
u in both cases is described in Algorithm 1 and 3

respectively, which we will describe below. The trusted third partyMOR
T only receives inputs from the

cryptographic library, and its behavior is described in Algorithm 2. We refer to Stepi of Algorithm j as
Stepj.i. All three algorithms should immediately abort if a commandto the cryptographic library does not
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Algorithm 1 Evaluation of Inputs from the User (Protocol Start)
Input: (new prot,Otway Rees, v) atKS inu? with v ∈ {1, . . . , n} \ {u}.

1: nhnd
u ← gen nonce().

2: IDhnd ← gen nonce().
3: Nonceu := Nonceu ∪ {(n

hnd
u , IDhnd, v, 1)}.

4: uhnd ← store(u).
5: vhnd ← store(v).
6: lhnd1 ← list(nhnd

u , IDhnd, uhnd, vhnd).
7: chnd1 ← sym encrypt(sksehndu,T, l

hnd
1 ).

8: mhnd
1 ← list(IDhnd, chnd1 ).

9: send i(v,mhnd
1 ).

yield the desired result, e.g., if a decryption requests fails. For readability we omit these abort checks in the
algorithm descriptions; instead we impose the following convention on all three algorithms.

Convention 1 For all w ∈ {1, . . . , n} ∪ {T} the following holds. IfMOR
w enters a command at portinw !

and receives↓ at port outw? as the immediate answer of the cryptographic library, thenMOR
w aborts the

execution of the current algorithm, except if the command was of the formlist proj or send i.

Protocol start. The user of the protocol machineMOR
u can start a new protocol with userv ∈ {1, . . . , n}\

{u} by inputting(new prot,Otway Rees, v) at portKS inu?. Our security proof holds for all adversaries
and all honest users, i.e., especially those that start protocols with the adversary (respectively a malicious
user) in parallel with protocols with honest users. Upon such an input,MOR

u builds up the term corresponding
to the first protocol message using the ideal cryptographic library according to Algorithm 1. The command
gen nonce generates the ideal nonce as well as the session identifier.MOR

u stores the resulting handlesnhnd
u

andmhnd in Nonceu for future comparison together with the identity ofv and an indicator that these handles
were generated in the first step of the protocol. The commandstore inputs arbitrary application data into
the cryptographic library, here the user identitiesu andv. The commandlist forms a list andsym encrypt

is symmetric encryption. The final commandsend i means thatMOR
u sends the resulting term tov over an

insecure channel. The effect is that the adversary obtains ahandle to the term and can decide what to do
with it (such as forwarding it toMOR

v ).

Evaluation of network inputs for protocol machines. The behavior of the protocol machineMOR
u upon

receiving an input from the cryptographic library at portoutu? (corresponding to a message that arrives
over the network) is defined similarly in Algorithm 3. By construction ofTHH, such an input is always
of the form (v, u, i,mhnd) wheremhnd is a handle to a list. To increase readability, and to clarifythe
connection between the algorithmic description and the usual protocol notation, we augment the algorithm
with explanatory comments at its right-hand side to depict which handle corresponds to which Dolev-Yao
term. We further use the naming convention that ingoing and outgoing messages are labeledm, where
outgoing messages have an additional subscript corresponding to the protocol step. Encryptions are labeled
c, the encrypted lists are labeledl, both with suitable sub- and superscripts.

MOR
u first determines the session identifier and aborts if it is notof type nonce. MOR

u then checks if
the obtained message could correspond to the first, third, orfourth step of the protocol. (Recall that the
second step is only performed byT.) This is implemented by looking up the session identifier inthe set
Nonceu. After that,MOR

u checks if the obtained message is indeed a suitably constructed message for the
particular step and the particular session ID by exploitingthe contents ofNonceu. If so,MOR

u constructs a
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Algorithm 2 Behavior of the Trusted Third Party

Input: (v,T, i,mhnd) atoutT? with v ∈ {1, . . . , n}.
1: IDhnd ← list proj(mhnd, 1). {IDhnd ≈M}
2: type1 ← get type(IDhnd).

3: c(3)
hnd

← list proj(mhnd, 3). {c(3)
hnd

≈ {Nv,M, u, v}Kvt
}

4: l(3)
hnd

← sym decrypt(sksehndT,v , c
(3)hnd). {l(3)

hnd

≈ {Nv,M, u, v}}

5: yhndi ← list proj(l(3)
hnd

, i) for i = 1, 2, 3, 4.
6: yi ← retrieve(yhndi ) for i = 3, 4.
7: if (IDhnd ∈ SIDT) ∨ (type1 6= nonce) ∨ (yhnd2 6= IDhnd) ∨ (y3 6∈ {1, . . . , n} \ {v}) ∨ (y4 6= v) then
8: Abort
9: end if

10: SIDT := SIDT ∪ {ID
hnd}.

11: c(2)
hnd

← list proj(mhnd, 2). {c(2)
hnd

≈ {Nu,M, u, v}Kut
}

12: l(2)
hnd

← sym decrypt(sksehndT,y3
, c(2)

hnd

). {l(2)
hnd

≈ {Nu,M, u, v}}

13: xhndi ← list proj(l(2)
hnd

, i) for i = 1, 2, 3, 4.
14: type2 ← get type(xhnd1 ).
15: xi ← retrieve(xhndi ) for i = 3, 4.
16: if (type2 6= nonce) ∨ (xhnd2 6= yhnd2 ) ∨ (x3 6= y3) ∨ (x4 6= y4) then
17: Abort
18: end if
19: sksehnd ← gen symenc key(). {sksehnd ≈ Kuv}

20: l
(2)hnd

3 ← list(xhnd1 , sksehnd). {l
(2)hnd

3 ≈ {Nu,Kuv}}

21: c
(2)hnd

3 ← sym encrypt(sksehndT,y3
, l

(2)hnd

3 ). {c
(2)hnd

3 ≈ {Nu,Kuv}Kut
}

22: l
(3)hnd

3 ← list(yhnd1 , sksehnd). {l
(3)hnd

3 ≈ {Nv ,Kuv}}

23: c
(3)hnd

3 ← sym encrypt(sksehndT,v , l
(3)hnd

3 ). {c
(3)hnd

3 ≈ {Nv,Kuv}Kvt
}

24: mhnd
3 ← list(IDhnd, c

(2)hnd

3 , c
(3)hnd

3 ). {mhnd
3 ≈M, {Nu,Kuv}Kut

, {Nv ,Kuv}Kvt
}

25: send i(v,mhnd
3 ).

message according to the protocol description, sends it to the intended recipient, updates the setNonceu,
and possibly signals to its user that a key has been successfully shared with another user.

Behavior of the trusted third party. The behavior ofMOR
T upon receiving an input(v,T, i,mhnd) from

the cryptographic library at portoutT? is defined similarly in Algorithm 2. We omit an informal description.

3.3 On Polynomial Runtime
In order to use existing composition results of the underlying model, the protocol machinesMOR

w andMOR
T

must be polynomial-time. Similar to the cryptographic library, we define that each of these machines main-
tains explicit polynomial bounds on the message lengths andthe number of inputs accepted at each port.

4 The Security Property
In the following, we formalize the security property of the ideal and real Otway-Rees protocols. The property
consists of akey secrecy propertyand aconsistency property. We first formalize the ideal key secrecy
property which is an instantiation of a general key secrecy definition for arbitrary protocols based on the
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Algorithm 3 Evaluation of Inputs fromTHH (Network Inputs)

Input: (v, u, i,mhnd) atoutu? with v ∈ {1, . . . , n} \ {u}.
1: IDhnd ← list proj(mhnd, 1). {IDhnd ≈M}
2: type1 ← get type(IDhnd).
3: if type1 6= nonce then
4: Abort
5: end if
6: if v 6= T ∧ ∀j, nhnd : (nhnd, IDhnd, v, j)} 6∈ Nonceu then {First Message is input}

7: c(2)
hnd

← list proj(mhnd, 2). {c(2)
hnd

≈ (Nv,M, v, u)Kvt
}

8: nhnd
u ← gen nonce().

9: Nonceu := Nonceu ∪ {(n
hnd
u , IDhnd, v, 2)}.

10: uhnd ← store(u).
11: vhnd ← store(v).

12: l
(3)hnd

2 ← list(nhnd
u , IDhnd, vhnd, uhnd). {l

(3)hnd

2 ≈ Nu,M, v, u}

13: c
(3)hnd

2 ← sym encrypt(sksehndu,T, l
(3)hnd

2 ). {c
(3)hnd

2 ≈ (Nu,M, v, u)Kut
}

14: mhnd
2 ← list(IDhnd, c(2)

hnd

, c
(3)hnd

2 ). {mhnd
2 ≈M, (Nv ,M, v, u)Kvt

, (Nu,M, v, u)Kut
}

15: send i(T,mhnd
2 ).

16: else ifv = T then {Third Message is input}

17: c(2)
hnd

← list proj(mhnd, 2). {c(2)
hnd

≈ (Nv,Kuv)Kvt
}

18: c(3)
hnd

← list proj(mhnd, 3). {c(3)
hnd

≈ (Nu,Kuv)Kut
}

19: l(3)
hnd

← sym decrypt(sksehndu,T, c
(3)hnd). {l(3)

hnd

≈ Nu,Kuv}

20: yhndi ← list proj(l(3)
hnd

, i) for i = 1, 2.
21: type2 ← get type(yhnd2 ).
22: if (6 ∃!w ∈ {1, . . . , n} \ {u} : (yhnd1 , IDhnd, w, 2) ∈ Nonceu) ∨ (type2 6= skse) then
23: Abort
24: end if
25: Nonceu := (Nonceu \ {(y

hnd
1 , IDhnd, w, 2)}) ∪ {(yhnd1 , IDhnd, w, 3)}.

26: mhnd
4 ← list(IDhnd, c(2)

hnd

). {mhnd
4 ≈M, {Nv ,Kuv}Kvt

}
27: send i(w,mhnd

4 ).
28: Output(ok responder,Otway Rees, w, IDhnd, yhnd2 ) atKS outu !.
29: else ifv 6= T ∧ ∃!nhnd : (nhnd, IDhnd, v, 1) then {Fourth Message is input}

30: c(2)
hnd

← list proj(mhnd, 2). {c(2)
hnd

≈ {Nu,Kuv}Kut
}

31: l(2)
hnd

← sym decrypt(sksehndu,T, c
(2)hnd). {l(2)

hnd

≈ {Nu,Kuv}}

32: xhndi ← list proj(l(2)
hnd

, i) for i = 1, 2.
33: type3 ← get type(xhnd2 ).
34: if xhnd1 6= nhnd ∨ type3 6= skse then
35: Abort
36: end if
37: Nonceu := (Nonceu \ {(x

hnd
1 , IDhnd, v, 1)}) ∪ {(xhnd1 , IDhnd, v, 4)}.

38: Output(ok initiator,Otway Rees, v, IDhnd, xhnd2 ) atKS outu !.
39: else
40: Abort
41: end if
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ideal cryptographic library. It was introduced in [18] and is symbolic, based on the typical notion that a term
is not an element of the adversary’s knowledge set. In the given Dolev-Yao-style library, the adversary’s
knowledge set is the set of all terms to which the adversary has a handle. After that we introduce the notion
of cryptographic, real-or-random key secrecy based on the real cryptographic library. Finally, we express
the consistency property, and we distinguish perfect and computational fulfillment of the property.

4.1 Definition of the Key Secrecy Property
The first step towards defining symbolic key secrecy is to consider one state of the ideal Dolev-Yao-style
library and to define that a handle points to a symmetric key, that the key is symbolically unknown to the
adversary, and that it has not been used for encryption. These are the symbolic conditions under which
we can hope to prove that the corresponding real key is indistinguishable from a fresh random key for the
adversary. Note that the operations that the Otway-Rees protocol performs on new keys are allowed in this
sense. For Condition(3) in the definition, note that the arguments of a ciphertext term are(l, pk ) wherel is
the plaintext index andpk the index of the public tag of the secret key, withpk = sk − 1 for the secret key
index.

Definition 4.1 (Symbolically Secret Encryption Keys [18])Let {T} ⊆ H ⊆ {1, . . . , n,T}, a database state
D of THH, and a pair(u, lhnd) ∈ H × HNDS of a user and a handle be given. Leti := D[hndu =
lhnd].ind be the corresponding database index. Theterm under(u, lhnd) (1) is a symmetric encryption key
iff D[i].type = skse, (2) is symbolically unknown (to the adversary)iff D[i].hnd a = ↓, (3)has not been used
for encryption, or shortis unused, iff for all indices j ∈ N we haveD[j].type = symenc ⇒ D[j].arg [2] 6=
i− 1, and (4)is a symbolically secret keyiff it has the three previous properties. ✸

A secret-key belief function is a general way to designate the keys whose secrecy should be proved. The
underlying theory from [18] is based on such functions. We instantiate them for the Otway-Rees protocol
and thus essentially for all individual key exchange protocols. A secret key belief function maps the user
view to a set of triples(u, lhnd, t) of a user, a handle, and a type, pointing to the supposedly secret keys. For
the Otway-Rees protocol, we define secret-key belief functions seckeys initiator OR for the initiator and
seckeys responder OR for the responder that designate the exchanged keys.

Definition 4.2 (Secret-key Belief Functions for the Otway-Rees Protocol)A secret-key belief functionfor a
setH is a functionseckeys that maps each viewview of the user to an element of(H×HNDS×{skse})∗.

The secret-key belief functionsseckeys initiator OR and seckeys responder OR of the Otway-
Rees protocol map each element(ok initiator,Otway Rees, v, IDhnd, sksehnd) respectively
(ok responder,Otway Rees, v, IDhnd, sksehnd) of view arriving at port KE outu? in the users view
to (u, sksehnd, skse) if u ∈ H, and toǫ otherwise. Elements ofview that are not of this form are also
mapped toǫ. ✸

We now define symbolic key secrecy for such a function. In addition to the conditions for individual keys,
we require that all elements point to different terms, so that we can expect the corresponding list of crypto-
graphic keys to be entirely random.

Definition 4.3 (Symbolic Key Secrecy Generally and for the Otway-Rees Protocol)Let a userH suitable for
a structure({THH},SH) of the cryptographic librarySyscry,id and a secret-key belief functionseckeys for
H be given. The ideal cryptographic library with this userkeeps the keys inseckeys strictly symbolically
secretiff for all configurationsconf = ({THH},SH,H,A) of this structure, everyv ∈ viewconf (H), and
every element(ui, lhndi , ti) of the setseckeys(v), the term under(ui, lhndi ) is a symbolically secret key of
typeti, andD[hndui

= lhndi ].ind 6= D[hnduj
= lhndj ].ind for all i 6= j.

11



The ideal Otway-Rees protocolkeeps the exchanged keys of honest users strictly symbolically secretiff
the ideal cryptographic library keeps the keys inseckeys initiator OR andseckeys responder OR strictly
symbolically secret with all usersH∗ that are the combination of the machinesMOR

u for u ∈ H and a userH
of those machines. ✸

General cryptographic key secrecy requires that no polynomial-time adversary can distinguish the keys
designated by the functionseckeys from fresh keys. The cryptographic key secrecy of the Otway-Rees
protocol is the instantiation forseckeys initiator OR andseckeys responder OR and the configurations of
the Otway-Rees protocol.

Definition 4.4 (Cryptographic (Real-or-random) Key Secrecy Generally and for the Otway-Rees Protocol)
Let a polynomial-time configurationconf = (M̂H,SH,H,A) of the real cryptographic librarySyscry,real

SE

and a secret-key belief functionseckeys for H be given. LetgenSE denote the key generation algorithm.
This configurationkeeps the keys inseckeys cryptographically secretiff for all probabilistic-polynomial
time algorithmsDis (the distinguisher), we have

|Pr[Dis(1k, va, keysreal ) = 1]− Pr[Dis(1k, va, keysfresh ) = 1]| ∈ NEGL

whereNEGL denotes the negligible function of the security parameterk and the used random variables
are defined as follows: Forr ∈ runconf , let va := viewconf (A)(r) be the view of the adversary, let
(ui, l

hnd
i , ti)i=1,...,n := seckeys(viewconf (H)(r)) be the user-handle-type triples of presumably secret keys,

and let the keys bekeysreal := (ski )i=1,...,n with

ski := Dui
[hndui

= lhndi ].word if Dui
[hndui

= lhndi ].type = ti, elseǫ;

andkeysfresh := (sk ′i )i=1,...,n with sk ′i ← genA(1
k) if ti = ska, elsesk ′i ← ǫ.

A polynomial-time configuration(M̂H ∪ {M
OR
u | u ∈ H},SH,H,A) of the real Otway-Rees protocol

SysOR,real keeps the exchanged keys of honest users cryptographicallysecretiff the configuration(M̂H,SH,

{H} ∪ {MOR
u | u ∈ H},A) keeps the keys inseckeys initiator OR andseckeys responder OR cryptograph-

ically secret. ✸

4.2 Definition of the Consistency Property
The consistency property states that if two honest users establish a session key then both need to have
a consistent view of who the peers to the session are, i.e., ifan honest useru establishes a key withv,
andv establishes the same key with another userw, thenu has to equalw. Moreover, we incorporate the
correctness of the protocol into the consistency property,i.e., if the aforementioned outputs occur andu = w

holds, then both parties have obtained the same key.4 In the following definitions, we writet : D to denote
the contents of databaseD at timet, andt : p?m andt : p!m to denote that messagem occurs at input port
respectively output portp at timet.

The consistency propertyReqCons is formally captured as follows: Assume that outputs
(ok initiator,Otway Rees, v, IDhnd

u , sksehndu ) and(ok responder,Otway Rees, w, IDhnd
v , sksehndv ) occur at

KS outu ! respectively atKS outv ! at arbitrary timest1 andt2 for honest usersu andv such that the session
identifiers are the same, i.e.,t1 : D[hndu = IDhnd

u ] = t2 : D[hndv = IDhnd
v ]. Then the handlessksehndu and

sksehndv point to the same entry in the database, i.e.,t1 : D[hndu = sksehndu ] = t2 : D[hndv = sksehndv ] if
and only ifu = w. The formal definition ofReqCons is given in Figure 2.

4A violation of this correctness aspect has been pointed out in [44] which arises since in their modeling the trusted thirdparty
creates multiple keys if it is repeatedly triggered with thesame message. We explicitly excluded this in our definition of the trusted
third party by storing the session IDs processed so far, cf. Step 7 and 10 in Algorithm 2.
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∀u, v ∈ H,∀t1, t2 ∈ N : # For all honest usersu andv:

t1 : KS outu !(ok initiator,Otway Rees, v , IDhnd
u , sksehndu ) ∧ # if u shares a key withv

t2 : KS outv !(ok responder,Otway Rees,w , IDhnd
v , sksehndv ) ∧ # andv shares a key withw

t1 : D[hndu = IDhnd
u ] = t2 : D[hndv = IDhnd

v ] # and the sessions are equal

⇒ (u = w ⇔ # thenu is equal tow iff

t1 : D[hndu = sksehndu ] = t2 : D[hndv = sksehndv ]) # both keys are equal.

Figure 2: The Consistency PropertyReqCons.

Note that the consistency propertyReqCons specifically relies on the state ofTHH, hence it cannot be
used as is to capture the security of the real Otway-Rees system, whereTHH is replaced with the secure
implementation of the cryptographic library. The corresponding consistency propertyReqConsreal for the real
Otway-Rees system can be defined by requiring that both handles point to the same bitstring, i.e., by re-
placingt1 : D[hndu = sksehndu ] = t2 : D[hndv = sksehndv with t1 : Du[hndu = sksehndu ].word = t2 :
Dv[hndv = sksehndv ].word for the databasesDu andDv of the real library.

The notion of a systemSys fulfilling such a propertyReq essentially comes in two flavors [10].Perfect
fulfillment, Sys |=perf Req , means that the property holds with probability one (over the probability spaces
of runs, a well-defined notion from the underlying model [58]) for all honest users and for all adversaries.
Computational fulfillment, Sys |=poly Req , means that the property only holds for polynomially bounded
users and adversaries, and only with negligible error probability. Perfect fulfillment implies computational
fulfillment.

The following theorem captures the security of the Otway-Rees protocol.

Theorem 4.1 (Security of the Otway-Rees Protocol)Let SysOR,id and SysOR,real be the ideal and real
Otway-Rees system, respectively, as defined in Section 3.2.Then we have:

• Secrecy: SysOR,id keeps the exchanged keys of honest users strictly symbolically secret, and all
polynomial-time configurations ofSysOR,real keep the exchanged keys of honest users cryptographi-
cally secret.

• Consistency:SysOR,id perfectly fulfills the consistency propertyReqCons, andSysOR,real computation-
ally fulfills the consistency propertyReqConsreal , i.e.,SysOR,id |=perf ReqCons∧SysOR,real |=poly ReqConsreal .

✷

5 Proof in the Ideal Setting
This section contains the proof of the ideal part of Theorem 4.1, i.e., the proof of the Otway-Rees protocol
using the ideal, deterministic cryptographic library. Theproof idea is the following: If an honest useru
successfully terminates a session run with another honest userv, then we first show that the established
key has been created before by the trusted third party. Afterthat, we exploit that the trusted third party as
well as all honest users may only send this key within an encryption generated with a key shared between
u andT respectivelyv andT, and we conclude that the adversary hence never gets a handleto the key.
The main challenge was to find suitable invariants on the state of the ideal Otway-Rees system. This is
somewhat similar to formal proofs using the Dolev-Yao model, and the similarity supports our hope that the
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new, sound cryptographic library can be used in the place of the Dolev-Yao models in automated tools. The
proof of the invariants is postponed to Appendix A.

5.1 Invariants
The first invariants,correct nonce ownerandunique nonce use, are easily proved and essentially state that
handlesxhnd where(xhnd, ·, ·, ·) is contained in a setNonceu indeed point to entries of type nonce, and
that no nonce is in two such sets. The next two invariants,nonce secrecyandnonce-list secrecy, deal with
the secrecy of certain terms. They are mainly needed to provethe invariantcorrect list generation, which
establishes who created certain terms. The last invariant,key secrecy, states that the adversary never learns
keys created by the trusted third party for use between honest users.

• Correct Nonce Owner.For allu ∈ H, and for all(xhnd, ·, ·, ·) ∈ Nonceu, it holdsD[hndu = xhnd] 6=
↓ andD[hndu = xhnd].type = nonce.

• Unique Nonce Use. For all u, v ∈ H, all w,w′ ∈ {1, . . . , n}, and all j ≤ size: If
(D[j].hndu , ·, w, ·) ∈ Nonceu and(D[j].hndv , ·, w

′, ·) ∈ Noncev, then(u,w) = (v,w′).

Nonce secrecystates that the nonces exchanged between honest usersu andv remain secret from all other
users and from the adversary. For the formalization, note that the handlesxhnd to these nonces are contained
as elements(xhnd, ·, v, ·) in the setNonceu. The claim is that the other users and the adversary have no
handles to such a nonce in the databaseD of THH:

• Nonce Secrecy.For all u, v ∈ H and for all j ≤ size: If (D[j].hndu , ·, v, ·) ∈ Nonceu then
D[j].hndw 6= ↓ impliesw ∈ {u, v,T}. In particular, this meansD[j].hnd a = ↓.

Similarly, the invariantnonce-list secrecystates that a list containing such a handle can only be known to
u, v, andT. Further, it states that the identity fields in such lists arecorrect. Moreover, if such a list is an
argument of another entry, then this entry is an encryption created with the secret key that eitheru or v share
with T. (Formally this means that this entry is tagged with the corresponding public-key identifier as an
abstract argument, cf. Section 3.1.)

• Nonce-List Secrecy.For all u, v ∈ H and for all j ≤ size with D[j].type = list: Let x ind
i :=

D[j].arg [i] for i = 1, 2, 3, 4. If (D[x ind
1 ].hndu , ·, v, l) ∈ Nonceu then

a) D[j].hndw 6= ↓ impliesw ∈ {u, v,T} for l ∈ {1, 2, 3, 4}.

b) If l ∈ {1, 4} andD[x ind
3 ].type = data, thenD[x ind

3 ].arg = (u) andD[x ind
4 ].arg = (v).

c) If l ∈ {2, 3} andD[x ind
3 ].type = data, thenD[x ind

3 ].arg = (v) andD[x ind
4 ].arg = (u).

d) for l ∈ {1, 2, 3, 4} and for allk ≤ size it holds j ∈ D[k].arg only if D[k].type = symenc and
D[k].arg [1] ∈ {pkseu, pksev}.

The invariantcorrect list ownerstates that certain protocol messages can only be constructed by the “in-
tended” users respectively by the trusted third party.

• Correct List Owner. For all u, v ∈ H and for all j ≤ size with D[j].type = list: Let x ind
i :=

D[j].arg [i] for i = 1, 2 andxhnd1,u := D[x ind
1 ].hndu .

a) If (xhnd1,u , ·, v, l) ∈ Nonceu andD[x ind
2 ].type 6= skse, thenD[j] was created byMOR

u in Step 1.6
if l = 1 and in Step 3.12 ifl = 2.
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b) If (xhnd1,u , ID
hnd
u , v, l) ∈ Nonceu andD[x ind

2 ].type = skse, thenD[j] was created byMOR
T in

Step 2.22 ifl = 3 and in Step 2.20 ifl = 4. Moreover, we haveD[hndu = IDhnd
u ] = D[hndT =

IDhnd
T ], whereIDhnd

T denotes the handle thatT obtained in Step 2.1 in the same execution.

Finally, the invariantkey secrecystates that a secret key entry that has been generated by the trusted third
party to be shared between honest usersu and v can only be known tou, v, andT. In particular, the
adversary will never get a handle to it. This invariant is keyfor proving the secrecy and the consistency
property of the Otway-Rees protocol.

• Key Secrecy.For allu, v ∈ H and for allj ≤ size with D[j].type = skse:

If D[j] was created byMOR
T in Step 2.19 and, with the notation of Algorithm 2, we have that y3 = u

andy4 = v in the current execution ofMOR
T , thenD[j].hndw 6= ↓ impliesw ∈ {u, v,T}.

Formally, the invariance of the above statements is captured in the following lemma.

Lemma 5.1 The statementscorrect nonce owner, unique nonce use, nonce secrecy, nonce-list secrecy,
correct list owner, and key secrecyare invariants ofSysOR,id, i.e., they hold at all times in all runs of
{MOR

u | u ∈ H ∪ {T}} ∪ {THH,H,A} for all H ⊆ {1, . . . , n}, all usersH and all adversariesA. ✷

The proof is postponed to Appendix A.

5.2 Proof of the Ideal Part of Theorem 4.1
For the proof of the ideal part of Theorem 4.1, the following property ofTHH proven in [22] will be useful.

Lemma 5.2 The ideal cryptographic librarySyscry,id has the following property: The only modifications
to existing entriesx in D are assignments to previously undefined attributesx.hndu (except for counter
updates in entries for signature keys, which we do not have toconsider here), and appending new elements
to the list of arguments of symmetric encryptions. ✷

Proof. (Theorem 4.1) Assume thatMOR
u outputs(ok x ,Otway Rees, v, IDhnd

u , sksehndu ) atKS outu ! for x ∈
{initiator, responder}, u ∈ H andv ∈ {1, . . . , n} at timet3, and setskse ind := D[hndu = sksehndu ].ind .
By definition of Algorithms 1 and 3, this output can only happen in Step 3.28 respectively 3.38, and only
after there was an input(v, u, i,m3hnd

u ) respectively(v, u, i,m4hnd
u ) atoutu? at a timet2 < t3. Here and in the

sequel we use the notation of Algorithm 1- 3, but we distinguish the variables from its different executions
by an additional superscript indicating the number of the (claimed) received protocol message, here3 and4,
and give handles an additional subscript for their owner, hereu.

Case 1: Output in Step 3.28. Assume thatMOR
u outputs(ok responder,Otway Rees, v, IDhnd

u , skse3
hnd

u )
at KS outu ! for u ∈ H andv ∈ {1, . . . , n} in Step 3.28 at timet3. Hence, the execution of Algorithm 3

for this input must have givenl(3),3
hnd

u 6= ↓ in Step 3.19, since the algorithm would otherwise abort by
Convention 1 without creating an output.

Let l(3),3
ind

:= D[hndu = l
(3),3hnd

u ].ind . The algorithm further impliesD[l(3),3
ind

].type = list. Let

y3i
ind

:= D[l(3),3
ind

].arg [i] for i = 1, 2 at the time of Step 3.20. By definition oflist proj and since the
condition of Step 3.22 is false, we have

y3
hnd

1,u = D[y31
ind

].hndu at timet3, (1)

(y3
hnd

1,u , IDhnd, v, 3) ∈ Nonceu ∧D[y32
ind

].type = skse at timet3, (2)
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and
(y3

hnd

1,u , IDhnd, v, 2) ∈ Nonceu ∧D[y32
ind

].type = skse at timet2. (3)

Case 2: Output in Step 3.38. This case is similar to the first one: Assume thatMOR
u outputs

(ok initiator,Otway Rees, v, IDhnd
u , skse4

hnd

u ) at KS outu ! for u ∈ H and v ∈ {1, . . . , n} in Step 3.38

at timet3. The execution of Algorithm 3 for this input must have givenl
(2),4hnd

u 6= ↓ in Step 3.31, since it

would otherwise abort by Convention 1 without creating an output. Letl(2),4
ind

:= D[hndu = l
(2),4hnd

u ].ind ,

where the algorithm impliesD[l(2),4
ind

].type = list. Let x4i
ind

:= D[l(2),4
ind

].arg [i] for i = 1, 2 at the time
of Step 3.32. By definition oflist proj and because of the conditions of Step 3.29 and 3.34, we have

x4
hnd

1,u = D[x41
ind

].hndu at timet3, (4)

(x4
hnd

1,u , IDhnd
u , v, 4) ∈ Nonceu ∧D[x42

ind
].type = skse at timet3, (5)

and
(x4

hnd

1,u , IDhnd
u , v, 1) ∈ Nonceu ∧D[x42

ind
].type = skse at timet2. (6)

This first part of the proof shows thatMOR
u has received a list corresponding to a third or fourth protocol

message. Now we applycorrect list ownerto the list entryD[l(3),3
ind

] for the first case respectively to

D[l(2),4
ind

] for the second case to show that this entry was created byMOR
T .

Proof. (cont’d) Equations (1) and (2) respectively Equations (4) and (5) are the preconditions for Part b)

of correct list owner. Hence the entryD[l(3),3
ind

] was created byMOR
T in Step 2.20 respectively the entry

D[l(2),4
ind

] was created byMOR
T in Step 2.22.

In both cases, the algorithm execution must have started with an input(w,T, i,m2hnd

T ) at outT? at a

time t1 < t2 with w ∈ {1, . . . , n}. We concludel(3),2
hnd

T 6= ↓ in Step 2.4 because of Convention 1, set

l(3),2
ind

:= D[hndT = l
(3),2hnd

T ].ind , and obtainD[l(3),2
ind

].type = list. Correct list ownerfurthermore

impliesD[hndT = ID2hnd

T ] = D[hndu = IDhnd
u ]. Let y2i

ind
:= D[l(3),2

ind
].arg [i] for i = 1, 2, 3, 4 at the

time of Step 2.5.
As the condition of Step 2.7 is false immediately afterwards, we obtainy2

hnd

i,T 6= ↓ for i ∈ {1, 2, 3, 4}.
The definition oflist proj and Lemma 5.2 imply

y2
hnd

i,T = D[y2i
ind

].hndT for i ∈ {1, 2, 3, 4} at timet3. (7)

Step 2.7 further ensuresy23 ∈ {1, . . . , n} \ {w} andy24 = w.

As above, we concludel(2),2
hnd

T 6= ↓ in Step 2.12, setl(2),2
ind

:= D[hndT = l
(2),2hnd

T ].ind , and obtain

D[l(2),2
ind

].type = list. Let x2i
ind

:= D[l(2),2
ind

].arg [i] for i = 1, 2, 3, 4 at the time of Step 2.13. As
the condition of Step 2.16 is false immediately afterwards,we obtainx2

hnd

i,T 6= ↓ for i ∈ {1, 2, 3, 4}. The
definition of list proj and Lemma 5.2 again imply

x2
hnd

i,T = D[x2i
ind

].hndT for i ∈ {1, 2, 3, 4} at timet3. (8)

Step 2.16 furthermore ensuresx23 = y23 andx24 = y24. By definition of the commandgen symenc key, we

obtainskse2
hnd

T 6= ↓ in Step 2.19 and setskse2ind := D[hndT = skse2
hnd

T ].ind .
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Now we exploit thatMOR
T creates the entryD[l(3),3

ind
] in Step 3.22 with the inputlist(y2

hnd

1,T , skse2
hnd

T )

respectively the entryD[l(2),4
ind

] in Step 2.20 with the inputlist(x2
hnd

1,T , skse2
hnd

T ). With the definitions oflist

and list proj, and with Equations (7) and (8), this impliesy21
ind

= y31
ind andskseind = y32

ind
= y22

ind
=

skse2
ind respectivelyx21

ind
= x31

ind andskseind = x42
ind

= x22
ind

= skse2
ind. Thus Equations (1) and (3)

imply

(y2
hnd

1,u , IDhnd
u , v, 2) ∈ Nonceu ∧D[y22

ind
].type = skse at timet2 (9)

respectively Equations (4) and (6) imply

(x2
hnd

1,u , IDhnd
u , v, 1) ∈ Nonceu ∧D[x22

ind
].type = skse at timet2. (10)

We are now ready to show symbolic secrecy of the exchanged keys, i.e., to derive that the terms selected by
seckeys initiator OR andseckeys responder OR are symbolically unused symmetric keys that have further-
more not been used for encryption yet.

Proof. (cont’d, secrecy requirement) With the notation of the previous proof, assume additionally that

v ∈ H. Together with Equation 9 and Equation 10,nonce-list secrecyapplied to the entryD[l(3),3
ind

]

respectivelyD[l(2),4
ind

] now immediately implies that{y23 , y
2
4} = {u, v} respectively{x23, x

2
4} = {u, v}.

This gives the precondition to applykey secrecyto the entryD[skse2
ind

], which impliesD[skse2
ind

].hnd a =

↓. Because ofskse2ind = skseind we haveD[skse2
ind

].hnd a = D[skseind].hnd a = ↓, i.e., the term under
(u, sksehndu ) is symbolically unknown. Moreover Equation 9 and Equation 10 imply D[skseind].type =

D[skse2
ind

].type = skse, i.e., the term under(u, sksehndu ) is a symmetric key.
It remains to show that the key is unused at timet3. The only way to create an entryD[j] with

D[j].type = symenc andD[j].arg [2] = skseind − 1 is by inputting a commandsym encrypt at port inw?
such thatD[skseind].hndw 6= ↓. Since we have shown thatD[skseind].hndw 6= ↓ only if w ∈ {u, v,T}, it
remains to show that neither of them enters such a command until time t3. By inspection of Algorithm 2,
this clearly holds forT, since this may only happen in Steps 2.21 or 2.23. In both cases, the key used is
one of those that were initially distributed, i.e.,D[j].arg [2] = sksew − 1 for somew ∈ {1, . . . , n}. Since
we have shown that each key selected byseckeys initiator OR or seckeys responder OR is newly generated
by MOR

T , we in particular havesksew 6= skseind. Similar reasoning can be applied to Algorithm 1 and 3 of
MOR

u to show that the only used keys are the ones shared betweenu andT respectively betweenv andT.

It remains to show the consistency requirementReqSec.

Proof. (cont’d, consistency requirement) Assume that MOR
u outputs

(ok initiator,Otway Rees, v, IDhnd
u , sksehndu ) at KS outu ! at time t3 and that MOR

v outputs
(ok responder,Otway Rees, w, IDhnd

v , sksehndv ) atKS outv ! at timet′3 for u, v ∈ H andw ∈ {1, . . . , n},
and lett3 : D[hndu = IDhnd

u ] = t′3 : D[hndv = IDhnd
v ]. We again use the notation of the main proof.

To show the left-to-right direction of the consistency property, assume thatu = w. Let skse indu :=
D[hndu = sksehndu ].ind andskse indv := D[hndv = sksehndv ].ind . Now the main proof immediately yields
D[hndu = IDhnd

u ] = D[hndT = ID2hnd

T ] = D[hndv = IDhnd
v ], i.e., bothD[skse indu ] andD[skse indu ] have

been created in an execution ofMT with the same handleIDhnd
T . Because of the check in Step 2.7 and

because of Step 2.10 both entries must have been created in the same execution, which immediately implies
t3 : D[hndu = sksehndu ] = t′3 : D[hnd v = sksehndv ], and we are done.
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To show the right-to-left direction, assume thatt3 : D[hndu = sksehndu ] = t′3 : D[hndv = sksehndv ]
holds. We have already shown that

D[hndu = sksehndu ].hnd z 6= ↓ =⇒ z ∈ {u, v,T}. (11)

Hence onlyu, v, andT can get a handle toD[hnd v = sksehndv ].
We first show that ifw also got a handle toD[hnd v = sksehndv ] thenu = w trivially holds. Because of

D[hndu = sksehndu ].hnd z 6= ↓ only if z ∈ {u, v,T}, we concludew ∈ {u, v,T}. Hence it remains to show
w 6∈ {v,T}. However, the output(ok,Otway Rees, w, IDhnd

v , sksehndv ) may only occur if the checks in
Step 3.22 or 3.29 succeeded, which ensures that(·, ·, w, ·) ∈ Noncev immediately before timet′3. Consider
the first time that an element containingw as its third component was entered intoNoncev. This could either
happen in Step 1.3 or in Step 3.9. In both cases however, we obtainw ∈ {1, . . . , n} \ {v} by definition of
Algorithm 1 and 3, hence we haveu = w as desired.

To conclude the proof, we have to consider those cases wherew does not get a handle toD[hndv =
sksehndv ]. We show that if an honestv outputs(ok,Otway Rees, w, IDhnd

v , sksehndv ), then the adversary
can ensure thatw gets a handle toD[hnd v = sksehndv ] (i.e., that there exists an adversary that sched-
ules messages in a way that givesw this handle), and hence we obtainu = w as in the previous case.
The existence of such an adversary is intuitively clear and technically follows immediately from the main
proof: We have that the entryD[hndv = sksehndv ] was created byMOR

T , and assume thatMOR
T out-

puts send i(w′,mhnd
3 ) in Step 2.25 for somew′. Let m3ind := D[hndT = mhnd

3 ]. We can assume that
w′ ∈ H as the adversary would otherwise obtain a handle toD[hndu = sksehndu ], which would yield a
contradiction to Equation 11. As shown in the proof of the secrecy property,nonce-list secrecyimplies
w′ ∈ {v,w}, hence either the second component or the third component ofD[m3ind] is an encryption

with the key thatw shares withT. The commandsend i gives the adversary a handlemhnd
3,a to m3ind, i.e.,

mhnd
3,a := D[m3ind].hnd a. If w = w′ (which means thatw will be able to decrypt the third component of

D[m3ind]), the adversary forwardsmhnd
3 to w. (Formally, it inputsadv send i(w,T,mhnd

3,a ) at ina?.) The

machineMOR
w will then obtain a handle toD[hnd v = sksehndv ] in Step 3.20, where the correctness of the

previous decryption step follows as in the main proof. Ifw 6= w′, i.e.,w will be able to decrypt the sec-
ond component ofm3ind, the adversary first determines handles to the first two components ofm3ind by

means of the commandlist proj, i.e., IDhnd
a ← list proj(mhnd

3,a , 1) andc(2)
hnd

3,a ← list proj(mhnd
3,a , 2). It then

creates a messagemhnd ← list(IDhnd
a , c

(2)hnd

3,a ) and sendsmhnd to w claiming to bev. (Formally, the in-

put isadv send i(w, v,mhnd). Similar to the previous case, the machineMOR
w will then obtain a handle to

D[hndv = sksehndv ], but now in Step 3.32.

6 Proof of the Cryptographic Realization
If Theorem 4.1 has been proven, it remains to show that the Otway-Rees protocol based on the real cryp-
tographic library computationally fulfills correspondingsecrecy and consistency requirements. Obviously,
carrying over properties from the ideal to the real system crucially relies on the fact that the real crypto-
graphic library is at least as secure as the ideal one. As briefly sketched in the introduction, this has been
established in [22, 16], but only subject to the side condition that the surrounding protocol, i.e., the Otway-
Rees protocol in our case, does not raise a so-calledcommitment problem. Establishing this side condition is
crucial for using symmetric encryption in abstract, cryptographically sound proofs. We explain the commit-
ment problem in detail in the next section to illustrate the cryptographic issue underlying the commitment
problem, and we exploit the invariants of Section 5 to show that the commitment problem does not occur
for the Otway-Rees protocol. As our proof is the first Dolev-Yao-style, computationally sound proof of a
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protocol that uses symmetric encryption, our result also shows that the commitment problem, and hence
also symmetric encryption, can be conveniently dealt with in cryptographically sound proofs of security by
means of the approach of [16].

For technical reasons, one further has to ensure that the surrounding protocol does not create “encryption
cycles” (such as encrypting a key with itself), which had to be required even for acquiring properties weaker
than simulatability, cf. [3] for further discussions. Thisproperty is only a technical subtlety and clearly holds
for the Otway-Rees protocol.

6.1 Absence of the Commitment Problem for the Otway-Rees Protocol
As the name suggests, a “commitment problem” in simulatability proofs captures a situation where the sim-
ulator commits itself to a certain message and later has to change this commitment to allow for a correct
simulation. In the case of symmetric encryption, the commitment problem occurs if the simulator learns
in some abstract way that a ciphertext was sent and hence has to construct an indistinguishable ciphertext,
knowing neither the secret key nor the plaintext used for thecorresponding ciphertext in the real world. To
simulate the missing key, the simulator will create a new secret key, or rely on an arbitrary, fixed key if the
encryption systems guarantees indistinguishable keys, see [3]. Instead of the unknown plaintext, the simula-
tor will encrypt an arbitrary message of the correct length,relying on the indistinguishability of ciphertexts
of different messages. So far, the simulation is fine. It evenstays fine if the message becomes known later
because secure encryption still guarantees that it is indistinguishable that the simulator’s ciphertext contains
a wrong message. However, if the secret key becomes known later, the simulator runs into trouble, because,
learning abstractly about this fact, it has to produce a suitable key that decrypts its ciphertext into the correct
message. It cannot cheat with the message because it has to produce the correct behavior towards the honest
users. This is typically not possible.

The solution for this problem taken in [16] for the cryptographic library is to leave it to the surrounding
protocol to guarantee that the commitment problem does not occur, i.e., the surrounding protocol must
guarantee that keys are no longer sent in a form that might make them known to the adversary once an
honest participant has started using them. To exploit the simulatability results of [16], we hence have to
prove this condition for the Otway-Rees protocol. Formally, we have to show that the following property
NoComm does not occur: “If there exists an input from an honest user that causes a symmetric encryption
to be generated such that the corresponding key is not known to the adversary, then future inputs may only
cause this key to be sent within an encryption that cannot be decrypted by the adversary”. This event can be
rigorously defined in the style of the secrecy and consistency property but we omit the rigorous definition due
to space constraints and refer to [16]. The eventNoComm is equivalent to the event “if there exists an input
from an honest user that causes a symmetric encryption to be generated such that the corresponding key is
not known to the adversary, the adversary never gets a handleto this key” butNoComm has the advantage
that it can easily be inferred from the abstract protocol description without presupposing knowledge about
handles of the cryptographic library. For the Otway-Rees protocol the eventNoComm can easily be verified
by inspection of the abstract protocol description, and a detailed proof based on Algorithms1-3 can also
easily be performed by exploiting the invariants of Section5.

Lemma 6.1 (Absence of the Commitment Problem for the Otway-Rees Protocol) The ideal Otway-Rees
systemSysOR,id perfectly fulfills the propertyNoComm, i.e.,SysOR,id |=perf NoComm. ✷

Proof. Note first that the secret key shared initially between a userand the trusted third party will never be
sent by definition in case the user is honest, and it is alreadyknown to the adversary when it is first used in
case of a dishonest user. The interesting cases are thus the keys generated by the trusted third party in the
protocol sessions.
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Let j ≤ size, D[j].type = skse such thatD[j] was created byMOR
T in Step 2.19, where, with the

notation of Algorithm 2, we havey3 = u andy4 = v for y3, y4 ∈ {1, . . . , n}. If u or v were dishonest,
then the adversary would get a handle forD[j] afterMOR

T finishes its execution, i.e., in particular before
D[j] has been used for encryption for the first time, since the adversary knows the keys shared between the
dishonest users and the trusted third party. If bothu andv are honest,key secrecythen immediately implies
thatt : D[j].hnd a = ↓ for all t ∈ N, which finishes the proof.

6.2 Proof of Real-or-random Secrecy and Computational Consistency
As the final step in the overall security proof, we show how to derive corresponding secrecy and consistency
properties from the proofs in the ideal setting and the simulatability result of the underlying library. In
particular, we derive cryptographic, real-or-random key secrecy as well as computational fulfillment of the
consistency property.

Once we have shown that the considered keys are symbolicallysecret and that the commitment problem
does not occur for the Otway-Rees protocol, we can exploit the following key-secrecy preservation theorem:

Theorem 6.1 (Symbolic Key Secrecy Implies Cryptographic Key Secrecy [18]) Let a polynomial-time hon-
est userH of a structure({THH},SH) of the ideal cryptographic library and a secret-key belief function
seckeys for H be given such that the cryptographic library with this user keeps the keys inseckeys strictly
symbolically secret. Then every polynomial-time configuration (M̂H,SH,H,A) of the real cryptographic
library (with the same userH) keeps the keys inseckeys cryptographically secret. ✷

It is easy to show that this theorem implies the cryptographic secrecy part of Theorem 4.1 once the ideal,
symbolic part has already been shown: We have shown in Section 5 that the ideal Otway-Rees proto-
col keeps the keys of honest users strictly symbolically secret, i.e., the cryptographic library with user
H∗ denoting the combination of{H} ∪ {MOR

u | u ∈ H} keeps the keys inseckeys initiator OR and
seckeys responder OR strictly symbolically secret. Hence Theorem 6.1 implies that every polynomial-time
configuration(M̂H,SH,H

∗,A) of the real cryptographic library keeps the keys inseckeys initiator OR and
seckeys responder OR cryptographically secret, and thus that the every polynomial-time configurations of
SysOR,real keeps the exchanged keys of honest users cryptographicallysecret.

We only briefly sketch how to deriveReqConsreal from the the ideal counterpart since the proofs contains
requires slightly more knowledge about the underlying proof of soundness of the cryptographic library [22,
16]: One first exploits that the real and ideal consistency properties closely resemble so-calledintegrity
propertiesin the sense of [10]. Integrity properties correspond to sets of traces at the in- and output ports
connecting the system to the honest users, i.e., propertiesthat can be expressed solely via statements about
events at the port setSH; in particular, integrity property hence do not rely on the state of the underlying
machine. Integrity properties are preserved under simulatability, i.e., they carry over from the ideal to the
real system without any additional work. Formally, the followingpreservation theoremhas been established
in [10].

Theorem 6.2 (Preservation of Integrity Properties (Sketch)) Let two systemsSys1, Sys2 be given such that
Sys1 is at least as secure asSys2 (writtenSys1 ≥

poly
sec Sys2). LetReq be an integrity property for bothSys1

andSys2, and letSys2 |=
poly Req . Then alsoSys1 |=

poly Req . ✷

Note that this theorem would allow us to deriveReqConsreal from its ideal counterparts, provided that we
can somehow link the statements involving the state of the ideal and real cryptographic library, i.e., the
statementst1 : D[hndu = sksehndu ] = t2 : D[hndv = sksehndv and t1 : Du[hndu = sksehndu ].word =
t2 : Dv[hndv = sksehndv ].word . If one looks at the underlying proof of soundness of the cryptographic
library, there exists a so-called combined system that links state parts of the real library to state parts of the
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ideal library. In particular, we obtain that if the real Otway-Rees protocol is run with an arbitrary adversary
and if we havet1 : D[hndu = sksehndu ] = t2 : D[hndv = sksehndv ] then there always exist an adversary
against the ideal Otway-Rees protocol such thatt1 : Du[hndu = sksehndu ].word = t2 : Dv [hndu =
sksehndu ].word . Together with the aforementioned integrity preservationtheorem, this shows that the real
Otway-Rees protocol computationally fulfillsReqConsreal and hence finishes the proof of Theorem 4.1.

7 Conclusion
We have proven the Otway-Rees protocol in the real cryptographic setting via a deterministic, provably se-
cure abstraction of a real cryptographic library. Togetherwith composition and preservation theorems from
the underlying model, this library allowed us to perform theactual proof effort in a deterministic setting
corresponding to a slightly extended Dolev-Yao model. In particular, we prove real-or-random secrecy of
the exchanged keys, i.e., no polynomial-time adversary attacking the protocol is able to distinguish fresh,
random keys and keys that are actually exchanged in the protocol. Besides establishing the cryptographic
security of the Otway-Rees protocol, our result also servesan an exemplification of the potential of the
cryptographic library and the recent secrecy preservationtheorem for symbolic, automated, and crypto-
graphically sound proofs of security protocols.
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A Proof of the Invariants
A.1 Correct Nonce Owner and Unique Nonce Use
We start with the proof ofcorrect nonce owner.

Proof. (Correct nonce owner) Let (xhnd, ·, v, j) ∈ Nonceu for u ∈ H, v ∈ {1, . . . , n}, andj ∈ {1, 2, 3, 4}.
By construction, this entry has been added toNonceu byMOR

u in Step 1.3, Step 3.9, Step 1.25, or Step 1.37.
In the last two cases, the entry(xhnd, ·, v, j − 1) respectively(xhnd, ·, v, j − 3) was already contained in
Nonceu (for the same handlexhnd and the same identityv) hence it is sufficient to consider the first two
cases. In both casesxhnd has been generated by the commandgen nonce() at some timet, input at portinu?
of THH. Convention 1 impliesxhnd 6= ↓, asMOR

u would abort otherwise and not add the entry to the set
Nonceu. The definition ofgen nonce then impliesD[hndu = xhnd] 6= ↓ andD[hndu = xhnd].type = nonce

at timet. Because of Lemma 5.2 this also holds at all later timest′ > t, which finishes the proof.

The following proof ofunique nonce useis quite similar.

Proof. (Unique Nonce Use) Assume for contradiction that bothx1 := (D[j].hndu , ·, w, ·) ∈ Nonceu
andx2 := (D[j].hndv , ·, w

′, l) ∈ Noncev at some timet. Without loss of generality, lett be the first
such time and letx2 6∈ Noncev at timet − 1. By construction,x2 is thus added toNoncev at timet by
Step 1.3, Step 3.9, Step 1.25, or Step 1.37. In the last two cases, the entry(xhnd, ·, w′, l − 1) respectively
(xhnd, ·, w′, l − 3) was already contained inNonceu (for the same handlexhnd and the same identityw′)
hence it is sufficient to consider the first two cases. In both cases,D[j].hndv has been generated by the
commandgen nonce() at time t − 1. The definition ofgen nonce implies thatD[j] is a new entry and
D[j].hndv its only handle at timet − 1, and thus also at timet. With correct nonce ownerthis implies
u = v. Further,x2 = (D[j].hndv , ·, w

′, l) is the only entry that is put intoNoncev at timest−1 andt. Thus
alsow = w′. This is a contradiction.

A.2 Correct List Owner
In the following subsections, we provecorrect list owner, nonce secrecy, key secrecy, andnonce-list secrecy
by induction. Hence assume that all three invariants hold ata particular timet in a run of the system, and
we have to show that they still hold at timet+ 1.

Proof. (Correct list owner) Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i := D[j].arg [i] for

i = 1, 2 andxhnd1,u := D[x ind
1 ].hndu , and assume that(xhnd1,u , ID

hnd
u , v, l) ∈ Nonceu at timet+ 1.

The only possibilities to violate the invariantcorrect list ownerare that (1) the entryD[j] is created at
timet+1 or that (2) the handleD[j].hndu is created at timet+1 for an entryD[j] that already exists at time
t or that (3) the entry(xhnd1,u , ID

hnd
u , v, l) is added toNonceu at timet + 1. In all other cases the invariant

holds by the induction hypothesis and Lemma 5.2.
We start with the third case. Assume that(xhnd1,u , ID

hnd
u , v, l) is added toNonceu at time t + 1. By

construction, this only happens in a transition ofMOR
u in Step 1.3, 3.9, 3.25, and 3.37. However, in the first

two subcases, the entryD[x ind
1 ] has been generated by the commandgen nonce input atinu? immediately

before, hencex ind
1 cannot be contained as an argument of an entryD[j] at timet. Formally, this corresponds
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to the fact thatD is well-formed[22]. Since a transition ofMOR
u does not modify entries inTHH, this also

holds at timet+1. For the latter two cases, note that Step 3.22 and Step 3.29 ensure that(xhnd1,u , ID
hnd
u , v, 2) ∈

Nonceu respectively(xhnd1,u , ID
hnd
u , v, 1) ∈ Nonceu already at timet. Hence the claim follows by induction

hypothesis and from the previous two subcases.
For proving the remaining two cases, assume thatD[j].hndu is created at timet + 1 for an already

existing entryD[j] or thatD[j] is generated at timet+ 1. Because both can only happen in a transition of
THH, this implies(xhnd1,u , ID

hnd
u , v, l) ∈ Nonceu already at timet, since transitions ofTHH cannot modify

the setNonceu. Because ofu, v ∈ H, nonce secrecyimpliesD[x ind
i ].hndw 6= ↓ only if w ∈ {u, v,T}.

Lists can only be constructed by the basic commandlist, which requires handles to all its elements. More
precisely, ifw ∈ H ∪ {a,T} creates an entryD[j′] with D[j′].type = list and(x′1, . . . , x

′
k) := D[j].arg at

time t+ 1 thenD[x′i].hndw 6= ↓ for i = 1, . . . , k already at timet. Applied to the entryD[j], this implies
that eitheru, v, orT have created the entryD[j].

We now only have to show that the entryD[j] has been created byu in the claimed steps. This can easily
be seen by inspection of Algorithms 1, 2, and 3. We only show itin detail for the first part of the invariant; it
can be proven similarly for the second part where the claim about the session identifier immediately follows
from the proof.

Let (xhnd1,u , ID
hnd
u , v, l) ∈ Nonceu for l ∈ {1, 2} andD[x ind

2 ].type = nonce. By inspection of Algo-
rithms 1, 2, and 3 and becauseD[j].type = list, we see that the entryD[j] must have been created by
eitherMOR

u or MOR
v in Step 1.6 ifl = 1 or in Step 3.12. (The remaining list generation commands always

haveD[x ind
2 ].type ∈ {skse, symenc} by construction.) This already implies that the entryD[j] has not been

generated byT. Now assume for contradiction that the entryD[j] has been generated byMOR
v . This implies

that also the entryD[x ind
1 ] has been newly generated by the commandgen nonce input at inv?. However,

only MOR
u can add elements to the setNonceu (it is the local state ofMOR

u ), but if an entry(xhnd1,u , ·, ·, ·) is
added to the setNonceu by MOR

u , thenxhnd1,u has been newly generated by the commandgen nonce input
by MOR

u by construction. This implies(xhnd1,u , ·, ·, ·) 6∈ Nonceu at all times, which yields a contradiction to
xhnd1,u ∈ Nonceu at timet+ 1. HenceD[j] has been created by useru.

A.3 Nonce Secrecy

Proof. (Nonce secrecy) Let u, v ∈ H, j ≤ size with x := (D[j].hndu , ID
hnd, v, l) ∈ Nonceu, and

w ∈ (H ∪ {a}) \ {u, v} be given. Because ofcorrect nonce owner, we know thatD[j].type = nonce. The
invariant could only be affected if (1)x is put into the setNonceu at timet + 1 or (2) if a handle forw is
added to the entryD[j] at timet+ 1.

For proving the first case, note that the setNonceu is only extended by an entryx by MOR
u in Steps 1.3

and 3.9 (again the modifications ofNonceu in Steps 3.25 and 3.37 do not have to be considered since
an entry(D[j].hndu , ID

hnd, v, l − 1) respectively(D[j].hndu , ID
hnd, v, l − 3) already existed inNonceu

before, which is ensured by the checks in Steps 3.22, 3.29, and 3.34). In both cases,D[j].hndu has been
generated byTHH at timet since the commandgen nonce was input atinu? at timet. The definition of
gen nonce immediately implies thatD[j].hndw = ↓ at timet if w 6= u. Moreover, this also holds at time
t+ 1 since a transition ofMOR

u does not modify handles inTHH, which finishes the claim for this case.
For proving the second case, we only have to consider those commands that add handles forw to entries

of typenonce. These are only the commandslist proj or adv parse input at inw?, whereadv parse has to
be applied to an entry of typelist, since only entries of typelist can have arguments which are indices to
nonce entries. More precisely, if one of the commands violated the invariant there would exist an entryD[i]
at timet such thatD[i].type = list, D[i].hndw 6= ↓ andj ∈ (x ind

1 , . . . , x ind
m ) := D[i].arg . However, both

commands do not modify the setNonceu, hence we havex ∈ Nonceu already at timet. Now nonce secrecy
yieldsD[j].hndw = ↓ at timet and hence also at all times< t because of Lemma 5.2. This implies that
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the entryD[i] must have been created by eitheru or v, since generating a list presupposes handles for all
elements (cf. the previous proof). Assume without loss of generality thatD[i] has been generated byu. By
inspection of Algorithms 1 and 3, this immediately impliesj = x ind

1 , since such handles only occur as first
element in a list generation byu. Because ofj = D[i].arg [1] and(D[j].hndu , ·, v, ·) ∈ Nonceu at timet,
nonce-list secrecyfor the entryD[i] implies thatD[i].hndw = ↓ at timet. This yields a contradiction.

A.4 Key Secrecy

Proof. (Key Secrecy) Let j ≤ size,D[j].type = skse such thatD[j] was created byMOR
T in Step 2.19, where,

with the notation of algorithm 2, we havey3 = u andy4 = v for honestu, v. Now the message output in
Step 2.25 maintains the entryD[j] within an encryption withsksehndT,u and one withsksehndT,v . By assumption,
these keys are shared betweenu andT respectivelyv andT, and they are never sent. The definition of the
commandsym decrypt implies that onlyu andT respectivelyv andT can get a handle to the entryD[j]
out of these encryptions. Such a decryption could only happen in Steps 3.19 and 3.31 yielding handles
l(3)

hnd

respectivelyl(2)
hnd

. Let y1 := D[hndu = l(3)
hnd

].arg [1], yhnd1 := D[y1].hndu , andx1 := D[hndu =

l(2)
hnd

].arg [2], xhnd1 := D[x1].hndu . In both cases, the checks in Step 3.22 respectively in Step 3.29 and
3.34 imply (yhnd1 , IDhnd, w, 2) ∈ Nonceu respectively(xhnd1 , IDhnd, w, 1) ∈ Nonceu as otherwiseMOR

u

would abort the current transition without updating its state and without producing any output. Nownonce-
list secrecyimmediately implies thatD[hndu = l(2)

hnd

].hnd a = D[hndu = l(3)
hnd

].hnd a = ↓. Sinceu,

v, andT only send the entryD[j] as an argument ofD[hndu = l(2)
hnd

] or D[hndu = l(2)
hnd

], we obtain
D[j].hnd a = ↓, which finishes the proof.

A.5 Nonce-List Secrecy

Proof. (Nonce-list secrecy) Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i := D[j].arg [i] and

xhndi,u := D[x ind
i ].hndu for i = 1, 2, 3, 4, andw ∈ (H ∪ {a}) \ {u, v}. Letxhnd1,u ∈ Nonceu,v.

We first show that the invariant cannot be violated by adding an element(xhndi,u , IDhnd
u , v, l) to Nonceu

at timet+ 1. This can only happen in a transition ofMOR
u in Step 1.3, 3.9, 3.25, or 3.37. As shown in the

proof of correct list owner, in the first two cases, we havel ∈ {1, 2} and that the entryD[x ind
i ] has been

generated byTHH immediately before and hence thatx ind
i 6∈ D[j].arg for all entriesD[j] that already exist

at timet+1. This also holds for all entries at timet+1, since the transition ofMOR
u does not modify entries

of THH. This yields a contradiction tox ind
i = D[j].arg [i]. In the last two cases, Step 3.22 and Step 3.29

ensure that(xhnd1,u , ID
hnd
u , v, 2) ∈ Nonceu respectively(xhnd1,u , ID

hnd
u , v, 1) ∈ Nonceu already at timet. In

all cases, we hence know that(xhndi,u , IDhnd
u , v, l) ∈ Nonceu for l ∈ {1, 2} already holds at timet.

Part a) of the invariant can only be affected if a handle forw is added to an entryD[j] that already exists
at timet. (Creation ofD[j] at timet with a handle forw is impossible as above because that presupposes
handles to all arguments, in contradiction tononce secrecy.) The only commands that add new handles for
w to existing entries of typelist arelist proj, sym decrypt, adv parse, send i, andadv send i applied to an
entryD[k] with j ∈ D[k].arg . Nonce-list secrecyfor the entryD[j] at timet then yieldsD[k].type = enc.
Thus the commandslist proj, send i, andadv send i do not have to be considered any further. Moreover,
nonce-list secrecyalso yieldsD[k].arg [1] ∈ {pkseu, pksev}. The secret keys shared betweenu andT

respectivelyv andT are not known tow 6∈ {u, v,T}, formally D[hndu = sksehndu ].hndw = D[hndv =
sksehndv ].hndw = ↓. Hence the commandsym decrypt does not violate the invariant. Finally, the command
adv parse applied to an entry of typesymenc with unknown secret key also does not give a handle to the
cleartext list, i.e., toD[k].arg [2], but only outputs its length.
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Part b) and c) of the invariant can only be affected if the listentryD[j] is created at timet + 1. (By
well-formedness, the argument entryD[x ind

3 ] cannot be created afterD[j].) As in Part a), it can only be
created by a partyw ∈ {u, v,T} because other parties have no handle to the nonce argument. Inspection of
Algorithms 1, 2, and 3 shows that this can only happen in Steps1.6 and 3.12, because for all other commands
list we haveD[x ind

3 ].type 6= data which would violate the precondition.

• If the creation is in Step 1.6, the preceding Step 1.3 implies(D[x ind
1 ].hndw , ID

hnd, w′, 1) ∈ Noncew
for somew′ and someIDhnd and Step 1.4 impliesD[x ind

3 ].type = data. Thus the precondition
(D[x ind

1 ].hndu , ID
hnd, v, 1) ∈ Nonceu andunique nonce usethen implyu = w. Thus Steps 1.4, 1.5,

and 1.6 yieldD[x ind
3 ].arg = (u) andD[x ind

4 ].arg = (v).

• If the creation is in Step 3.12, the proof is analogous: The preceding Step 3.9 implies
(D[x ind

1 ].hndw , ID
hnd, w′, 2) ∈ Noncew for somew′ and someIDhnd and Step 3.11 implies

D[x ind
3 ].type = data. Then the precondition, Step 3.9, andunique nonce useimply u = w. Fi-

nally, Steps 3.10, 3.11, and 3.12 yieldD[x ind
3 ].arg = (v) andD[x ind

4 ].arg = (u).

Part d) of the invariant can only be violated if a new entryD[k] is created at timet+1with j ∈ D[k].arg
(by Lemma 5.2 and well-formedness). AsD[j] already exists at timet, nonce-list secrecyfor D[j] implies
D[j].hndw = ↓ for w 6∈ {u, v,T} at timet. We can easily see by inspection of the commands that the new
entryD[k] must have been created by one of the commandslist andsym encrypt, since entries newly created
by other commands cannot have arguments that are indices of entries of typelist. Since all these commands
entered at a portinz ? presupposeD[j].hndz 6= ↓, the entryD[k] is created byw ∈ {u, v,T} at timet + 1.
However, the only steps that can create an entryD[k] with j ∈ D[k].arg (with the properties demanded
for the entryD[j]) are Steps 1.7, 3.13, 2.21, and 2.23. In all these cases, we have D[k].type = symenc.
Further, we haveD[k].arg [1] = pksew′ wherew′ denotesw’s current believed partner. We have to show
thatw′ ∈ {u, v}.

• Case 1:D[k] is created in Step 1.7. Then our precondition(D[x ind
1 ].hndu , ID

hnd
u , v, l) ∈ Nonceu and

(D[x ind
1 ].hndw , ID

′hnd
u , w′, l′) ∈ Noncew for someID ′hnd

u , l′ andunique nonce useimply w′ = v.

• Case 2:D[k] is created in Step 3.13. This execution of Algorithm 3 must give l(3)
hnd

2 6= ↓ in Step 3.12,

since it would otherwise abort by Convention 1. Letl
(3)
2

ind
:= D[hndw = l

(3)hnd

2 ].ind . The algorithm

further impliesD[l
(3)
2

ind
].type = list. Let x0i

ind
:= D[l

(3)
2

ind
].arg [i] for i = 1, 2, 3, 4 at the time of

Step 3.12, and letx0
hnd

i,w be the corresponding handles obtained in Step 3.1, 3.8, 3.11, and 3.10. As the

algorithm does not abort in Steps 3.3 and 3.6, we haveD[x03
ind

].type = data andD[x03
ind

].arg = (w′).

Together with the precondition(D[x01
ind

].hndu , ·, v, l) ∈ Nonceu, the entryD[l
(3)
2

ind
] therefore fulfills

the conditions ofnonce-list secrecy. This impliesD[x02
ind

].arg ∈ {u, v}, and thusw′ ∈ {u, v}.

• Case 3:D[k] is created in Step 2.21 or Step 2.23. As in Case 3, this execution of Algorithm 2 must

give l(3)
hnd

6= ↓ in Step 2.4 andl(2)
hnd

6= ↓ in Step 2.12. We setl(3)
ind

:= D[hndw = l(3)
hnd

].ind and

l(2)
ind

:= D[hndw = l(2)
hnd

].ind , and we haveD[l(3)
ind

].type = D[l(2)
ind

].type = list.

Let y0i
ind

:= D[l(3)
ind

].arg [i] for i = 1, 2, 3, 4 at the time of Step 2.5, and lety0
hnd

i,w be the handles

obtained in Step 2.5. Let furtherx0i
ind

:= D[l(2)
ind

].arg [i] for i = 1, 2, 3, 4 at the time of Step 2.13,
and letx0

hnd

i,w be the handles obtained in Step 2.13.
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As the algorithm does not abort in Steps 2.7 and 2.16, we haveD[y03
ind

].type = D[y04
ind

].type =

D[x03
ind

].type = D[x04
ind

].type = data andD[x04
ind

].arg = D[y04
ind

].arg = (w′). Further, the reuse

of x0
hnd

1,w in Step 2.20 impliesx01
ind

= x ind
1 . Similarly, we obtainy01

ind
= y ind1 because of Step 2.22.

Together with the precondition(D[x ind
1 ].hndu , ID

hnd, v, l) ∈ Nonceu, the entryD[l(3)
ind

] respec-

tively D[l(2)
ind

] therefore fulfills the condition ofnonce-list secrecy. This impliesD[y03
ind

].arg ∈

{u, v} respectivelyD[y03
ind

].arg ∈ {u, v}, and thusw′ ∈ {u, v}.

Hence in all cases we obtainedw′ ∈ {u, v}, i.e., the list containing the nonce was indeed encrypted with the
key that one of the intended honest participants shared withthe trusted third party.
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