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ABSTRACT

Quantitative information-flow analysis (QIF) determines the amount
of information that a program leaks about its secret inputs. For
this, QIF requires an assumption about the distribution of the se-
cret inputs. Existing techniques either consider the worst-case over
a (sub-)set of all input distributions and thereby over-approximate
the amount of leaked information; or they are tailored to reason-
ing about uniformly distributed inputs and are hence not directly
applicable to non-uniform use-cases; or they deal with explicitly
represented distributions, for which suitable abstraction techniques
are only now emerging. In this paper we propose a novel approach
for a precise QIF with respect to non-uniform input distributions:
We present a reduction technique that transforms the problem of
QIF w.r.t. non-uniform distributions into the problem of QIF for
the uniform case. This reduction enables us to directly apply ex-
isting techniques for uniform QIF to the non-uniform case. We
furthermore show that quantitative information flow is robust with
respect to variations of the input distribution. This result allows
us to perform QIF based on approximate input distributions, which
can significantly simplify the analysis. Finally, we perform a case
study where we illustrate our techniques by using them to analyze
an integrity check on non-uniformly distributed PINs, as they are
used for banking.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Informa-

tion flow controls; H.1.1 [Models and Principles]: Systems and
Information Theory—Information theory

General Terms
Security

Keywords
Quantitative information flow

1. INTRODUCTION
The goal of an information-flow analysis is to keep track of sensi-

tive information during computation. If a program does not expose
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any information about its secret inputs to unauthorized parties, it
has secure information flow, a property that is often formalized as
noninterference. In many cases, achieving noninterference is ex-
pensive, impossible, or simply unnecessary: Many systems remain
secure as long as the amount of exposed secret information is suffi-
ciently small. Consider for example a password checker. A failed
login attempt reveals some information about the secret password.
However, for well-chosen passwords, the amount of leaked infor-
mation is so small that a failed login-attempt will not compromise
the security of the system.

Quantitative information-flow analysis (QIF) is a technique for
establishing bounds on the information that is leaked by a program.
The insights that QIF provides go beyond the binary output of Bool-
ean approaches, such as non-interference analyzers. This makes
QIF an attractive tool to support gradual development processes,
even without explicitly specified policies. Furthermore, because
information-theory forms the foundation of QIF, the quantities that
QIF delivers can be directly associated with operational security
guarantees, such as lower bounds for the expected effort of uncov-
ering secrets by exhaustive search.

Technically, a quantitative information-flow analysis requires an
assumption about the probability distribution of the confidential in-
puts. Existing approaches deal with this assumption in four fun-
damentally different ways. We briefly present all four alternatives
and discuss their implications on applicability and automation of
quantitative information-flow analyses.

The first kind of approach focuses on computing the channel ca-
pacity, which is the maximum leakage with respect to all possible
input distributions [7,8,17,23,24,27,31]. Maximizing over all pos-
sible input distributions is a safe, but often overly pessimistic as-
sumption: Consider a password checker with two possible observ-
able outcomes, succeed and fail. The capacity of the channel
from secret passwords to observables is 1 bit, corresponding to a
distribution that assigns probability 0.5 to both outcomes. A naive
security analysis will infer that an n-bit password can be leaked in
as few as n login attempts and conclude that the system is insecure.
However, if the passwords are well-chosen (e.g. drawn uniformly
from a large set), a login attempt will reveal much less than one bit
of information, which is the reason why the password checker is in
fact secure.

The second kind of approach considers the maximum leakage
with respect to a subset of possible input distributions, where the
subset is specified in terms of bounds on the entropy of the input
variables [9, 11]. While entropy bounds are an attractive way of
specifying interesting subsets of input distributions, precise reason-
ing about the leakage of programs in terms of such bounds turns
out to be challenging. In particular, deriving tight bounds for the
leakage of programs with loops in terms of entropy bounds for their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


input variables is still an open problem.
The third kind of approach analyzes programs with respect to

uniformly distributed inputs [2, 20, 22]. Under the uniformity as-
sumption, computing the information-theoretic characteristics of
deterministic programs can be reduced to computing the programs’
preimages and determining their numbers or sizes [20]. It has been
shown that these tasks can be performed using symbolic [2] and
randomized algorithms [22], allowing one to analyze large state-
spaces with precision guarantees. However, the applicability of
those techniques has so far been restricted to domains with uni-
formly distributed inputs.

Finally, the fourth kind of approach analyzes programs with re-
spect to an arbitrary, but fixed, probability distribution on the secret
inputs [12, 25, 30]. The first automated approach delivers precise
results [30], but is limited to programs with small state-spaces due
to the explicit representation of the input distribution. An abstrac-
tion technique [29] addresses this problem by partitioning the (to-
tally ordered) domain into intervals, on which a piecewise uniform
distributions is assumed. However, it is an open problem how to
choose the initial partition of the domain in order to allow for an
analysis that is precise and efficient at the same time.

In summary, it has been an open problem to perform quantita-
tive information-flow analysis with non-uniform distributions in a
precise, scalable, and general way. In this paper, we make the fol-
lowing contributions towards this goal.

Our first contribution is a technique for reducing the problem
of QIF with respect to non-uniform distributions to the problem of
QIF with respect to uniform distributions. Our reduction enables
one to directly apply existing tools for uniform QIF [2, 20, 22] to
the non-uniform case. The main idea of the reduction is to repre-
sent a non-uniform distribution in terms of a generator program that
receives uniformly distributed input and produces outputs accord-
ing to the desired distribution. We exhibit and prove a connection
between the information-flow properties of the target program and
the sequential composition of the target program with the generator
program. This connection enables us to analyze the composed pro-
gram with respect to uniform inputs, and to draw conclusions about
the information flow of the target program with respect to the non-
uniform distribution. Our reduction is motivated by a number of
examples that occur in practice. For example, the (non-uniformly
distributed) PINs used in electronic banking are derived from uni-
form bit-strings, e.g., using decimalization techniques [13]. An-
other example are the keys of a public-key cryptosystem, which
are typically produced by key generation algorithms that operate
on uniformly distributed input.

Our second contribution is to show that QIF is robust with re-
spect to small variations in the input distribution. This allows us
to replace actual input distributions with approximate distributions.
Based on the quality of the approximation, we give upper and lower
bounds on the error this approximation introduces in the analysis.
Focusing on approximate distributions can simplify the information-
flow analysis, e.g. by allowing to replace “almost uniform” distri-
butions by uniform distributions.

Finally, we give examples of how our two results can be used
for the quantitative information-flow analysis of realistic systems.
We use our reduction technique to estimate the information leaked
by an integrity check on non-uniformly distributed PINs, and we
use our robustness result to bound the error that is introduced by
assuming uniformly distributed PINs.

The paper is organized as follows. In Section 2 we introduce
basic notions of information flow. The reduction of non-uniform
analysis to the uniform case is shown in Section 3. The robustness
results are presented in Section 4. Section 5 contains our experi-

ments where we apply our results to analyze an integrity check on
non-uniformly distributed PINs. We present related work in Sec-
tion 6 and conclude in Section 7.

2. PRELIMINARIES

2.1 Programs
A program P = (I, F, R) is a triple consisting of a set of initial

states I, a set of final states F, and a transition relation R ⊆ I ×

F. We consider programs that implement total functions, i.e., we
require that for all s ∈ I there is exactly one s′ ∈ F with (s, s′) ∈ R,
and we use the shorthand notation P(s) = s′ for (s, s′) ∈ R.

Given a final state s′ ∈ F, we define its preimage P−1(s′) to be
the set of all input states from which s′ is reachable, i.e.,

P−1(s′) ≡ {s | (s, s′) ∈ R} .

The preimage of an unreachable state is the empty set.

2.2 Qualitative Information Flow
We assume that the initial state of each computation is secret.

We consider an attacker that knows the program, in particular its
transition relation, and the final state of each computation.

We characterize partial knowledge about the elements of I in
terms of partitions of I, i.e., in terms of a family {B1, . . . , Br} of
pairwise disjoint blocks such that

⋃r
i=1 Bi = I. A partition of I

models that each s ∈ I is known up to its enclosing block Bi. We
compare partitions using the (im-)precision order ⊑ defined by

{B1, . . . , Br} ⊑ {B
′
1, . . . , B

′
r′ }

≡ ∀i ∈ {1, . . . , r} ∃ j ∈ {1, . . . , r′} : Bi ⊆ B′j .

The knowledge gained by an attacker about initial states of com-
putations of the program P by observing their final states is given
by the partition Π that consists of the preimages of reachable final
states, i.e.,

Π ≡ {P−1(s′) | s′ ∈ F} .

The partition {I} consisting of a single block corresponds to the
case where no information leaks, and {{s} | s ∈ I} where each block
is a singleton set captures the case that P fully discloses its input.
Partitions Π with {{s} | s ∈ I} ⊏ Π ⊏ {I} capture that P leaks partial
information about its input.

More generally, one can assume that initial and final states are
pairs of high and low components, i.e., I = IH× IL and F = FH×FL,
and that the observer can access the low components of the initial
and final states of a given computation. For a low input l and a low
output l′ we then define the low-preimage P−1

l
(l′) of l′ to be the set

of all high components of input states with low component l, from
which a final state with low component l′ is reachable, i.e.

P−1l (l′) ≡ {h | ∃h′ ∈ FH : ((h, l), (h′, l′)) ∈ R} .

As before, we can characterize the knowledge an attacker gains
about the high components of initial states states in terms of a par-
tition of IH . However, the exact shape of this partition strongly de-
pends on the role of the low input. For example, when the low input
is controlled by an attacker who can exhaustively run the program
with all possible low inputs, then the knowledge the attacker gains
about the high input is characterized by partition corresponding to
the intersection of all low-preimages, i.e.,

Π ≡
⋂

l∈IL

{P−1l (l′) | l′ ∈ FL} ,

where the intersection of partitions Π1,Π2 is defined by pairwise
intersection of their blocks, i.e. Π1∩Π2 = {A∩B | A ∈ Π1, B ∈ Π2}.



Several approaches in the literature consider weaker attackers, e.g.
those that run the program with a single, fixed low input [25], or
those that can observe a bounded number of program runs with
adaptively chosen low inputs [20]. While the precise definition of
Π depends on the considered attacker model, the characterization
of attacker knowledge in terms of a partition (or an equivalence
relation) is universal.

The results of this paper rely only on such a partition-based char-
acterization of attacker knowledge and can hence be used in con-
junction with all of the aforementioned attacker models. For the
sake of presentation, we focus on the simplest scenario, namely
programs in which the entire initial state is high, and the entire fi-
nal state is low (and hence Π = {P−1(s′) | s′ ∈ F}).

2.3 Quantitative Information Flow
We use information theory to characterize the information that P

reveals about its input. This characterization has the advantage of
being compact and easy to compare. Moreover, it yields concise
interpretations in terms of the effort needed to determine P’s input
from the revealed information, e.g., by exhaustive search.

We begin by introducing necessary notation. Let A be a finite set
and p : A → R a probability distribution. For a random variable
X : A → B, we define pX : B→ R as pX(x) =

∑

a∈X−1 (x) p(a), which
we will also denote by Pr(X = x).

The (Shannon) entropy [34] H(X) = −
∑

x∈B pX(x) log2 pX(x) of
X is a lower bound for the average number of bits required for rep-
resenting the results of independent repetitions of the experiment
associated with X. Thus, in terms of guessing, the entropy H(X)
is a lower bound for the average number of questions with binary
outcome that need to be asked to determine X’s value [6]. Given
another random variable Y : A → C, we write H(X|Y = y) for the
entropy of X given that the value of Y is y. The conditional en-

tropy H(X|Y) of X given Y is the expected value of H(X|Y = y)
over all y ∈ C; it captures the remaining uncertainty about X when
Y is observed.

For analyzing programs, we assume a probability distribution p

on I and we suppose that it is known to the attacker. For analyzing
the program P, we define two random variables. The first random
variable D : I → I models the choice of an input in I, i.e., D is the
identity D(s) = s. The second random variable captures the input-
output behavior of P. We overload notation and also denote it by P.
Formally, we define P : I → F by P(s) = s′ whenever (s, s′) ∈ R.

The conditional entropy H(D|P) captures the remaining uncer-
tainty about the program’s input when the output is observed. We
will use H(D|P) as a measure of information flow in this paper, be-
cause it is associated with operational security guarantees: one can
give lower bounds for the effort for determining a secret by exhaus-
tive search in terms of H(D|P), see [21, 26].

We mention for completeness that several approaches in the liter-
ature (e.g. [11,25,30]) focus on computing the mutual information
I(D; P) between the input and the output of a program, which is
defined as the reduction in uncertainty about the input when the
output is observed, i.e. I(D; P) = H(D) − H(D|P). For given H(D),
the value of I(D; P) can be immediately be derived from that of
H(D|P), and vice versa. We present our results in terms of the re-
maining uncertainty H(D|P) because of its more direct connection
to operational security guarantees.

3. NON-UNIFORMQUANTITATIVE

INFORMATION-FLOWANALYSIS
In this section we first show how to reduce the problem of QIF

w.r.t. non-uniform distributions to the problem of QIF w.r.t. uni-

ID̂ FD̂ = IP FP

U D

D̂ P

P ◦ D̂
Figure 1: Overview of the random variables required for reduc-

ing non-uniform QIF analysis to the uniform case. The input

to P is distributed according to the variable D. The input to D̂

is given by the uniformly distributed random variable U; the

output distribution of D̂matches that of D.

form distributions. We then show how this reduction allows us
to leverage existing QIF techniques for programs with uniformly
distributed inputs for the QIF-analysis of programs with arbitrarily
distributed inputs.

3.1 Reducing the Non-uniform Case to the
Uniform Case

The main idea behind our reduction is to express a probability
distribution p as a program D̂ that takes input that is uniformly dis-
tributed and produces output that is distributed according to p. We
prove an assertion that connects the remaining uncertainty about
the inputs of the sequentially composed program D̂; P (with respect
to uniform distributions) to the remaining uncertainty about the in-
puts of the program P with respect to the distribution p.

Our reduction is motivated by a number of examples that occur in
practice. For example, the Personal Identification Numbers (PINs)
used in electronic banking are often not uniformly distributed, but
derived from uniform bitstrings using decimalization techniques
[13] (We will apply our techniques to analyze a program handling
such PINs in Section 5). Another example are the keys of a public-
key cryptosystem, which are typically not uniformly distributed
bitstrings. However, they are produced by a key generation algo-
rithm that operates on uniformly distributed input. More gener-
ally, a large number of randomized algorithms expect uniformly
distributed randomness. E.g. in complexity theory, randomized al-
gorithms are based on probabilistic Turing machines that work with
uniformly distributed random tapes. For a language-based perspec-
tive on distribution generators, see [32].

Formally, let P = (IP, FP ,RP) be a program and p an arbitrary
distribution on IP. Let D̂ = (ID̂, FD̂ ,RD̂) be a program that maps to
P’s initial states, i.e., FD̂ = IP, and let u be the uniform distribution
on ID̂. We require that the distribution produced by D̂ matches the
distribution on P’s inputs, i.e., uD̂ = p. We define the random vari-
ables D and U as the identity functions on IP and ID̂, respectively,
and we use them for modeling the choice of an input according to
p and u, respectively. Figure 1 depicts these mappings and their
connections.

The setup is chosen such that the uncertainty about the output
of the composed program P ◦ D̂ matches the uncertainty about the
output of P, i.e. H(P ◦ D̂) = H(P). Similarly, we have H(D̂) =
H(D). As a consequence, we can express the remaining uncertainty
about the input of P in terms of a difference between the remaining
uncertainties about the (uniformly distributed) inputs of P ◦ D̂ and
D̂.

Lemma 1. Let P, D̂,D,U be as defined in Section 3.1. Then

H(D|P) = H(U |P ◦ D̂) − H(U |D̂).



Proof. The output of P is determined by the output of D, namely
H(P,D) = H(D). Therefore it holds H(D|P) = H(D) − H(P), and
hence by construction

H(D|P) = H(D̂) − H(P ◦ D̂) . (1)

Similarly, the outputs of D̂ and P ◦ D̂ are determined by the output
of U, hence

H(U |P◦ D̂)−H(U |D̂) = H(U)−H(P◦ D̂)− (H(U)−H(D̂)) . (2)

The assertion then follows by combining (1) and (2).

Lemma 1 shows how the remaining uncertainty about the (non-
uniform) input of P can be expressed as a difference of remaining
uncertainties about (uniform) inputs of D̂ and P ◦ D̂. In the follow-
ing, we show how this result can be exploited for automating the
quantitative information-flow analysis w.r.t. non-uniform distribu-
tions using established tools for uniform QIF.

3.2 Automation of QIF for Non-uniform
Distributions

We summarize two kinds of techniques for automatically ana-
lyzing the information-flow of programs with respect to uniform
distributions. The first kind of technique allows for the accurate,
but possibly expensive QIF of a given program [2, 20], and the sec-
ond kind of technique uses a randomized algorithm for obtaining
approximate results with quality guarantees [22]. As we will show
next, Lemma 1 allows one to use both kinds of techniques for ana-
lyzing programs with respect to non-uniform distribution.

3.2.1 Accurate Quantification

The following proposition from [20] connects the combinatorial
characteristics of the partition ΠQ induced by a program Q with the
remaining uncertainty about the uniformly distributed input of Q.

Proposition 1 (see [20]). Let U = id be uniformly distributed

and let Q be a program taking input distributed according to U.

Then

H(U |Q) =
1

#(IQ)

∑

B∈ΠQ

#(B) log2 #(B) .

Proposition 1 can be turned into an algorithm for computing H(U |Q):
Enumerate all blocks B in the partition ΠQ, determine their sizes,
and use these data for computing H(U |Q). The algorithm described
in [20] uses this approach for a partition Π that reflects the knowl-
edge gained by an attacker that can adaptively provide input to the
program. The algorithm described in [2] extracts a logical repre-
sentation of Π by computing weakest preconditions and employs
model counting techniques for determining the sizes of individual
blocks from this logical representation.

The following theorem enables us to directly apply both tech-
niques to programs with non-uniform input distributions.

Theorem 1. Let P, D̂,D be as defined in Section 3.1. Then

H(D|P) =
1

#(ID̂)





∑

B∈ΠP◦D̂

#(B) log2 #(B) −
∑

B′∈ΠD̂

#(B′) log2 #(B
′)




.

Proof. The statement is obtained by applying Proposition 1 to
both terms on the right hand side of Lemma 1.

3.2.2 Randomized Quantification

The direct computation of H(D|P) on basis of Theorem 1 re-
quires the enumeration of all blocks in the partitions ΠP and ΠP◦D̂,

respectively. Each partition may have as many elements as IP,
which severely limits scalability. The following proposition from [22]
is an extension of a result from [3] and addresses this limitation: it
implies that, for uniformly distributed inputs, one can give tight
bounds for H(U |Q) by considering only a small subset of randomly
chosen blocks.

Proposition 2 (see [22]). Let U = id be uniformly distributed

and let Q be a program taking input distributed according to U. Let

B1, . . . , Bn be drawn randomly fromΠQ with respect to the distribu-

tion p(B) = #(B)

#(IQ)
. Then

1

n

n∑

i=1

log #(Bi) − δ ≤ H(U |Q) ≤
1

n

n∑

i=1

log #(Bi) + δ

holds with probability of more than 1 −
(log #(ΠQ))

2

nδ2
.

As described in [22], Proposition 2 can be turned into a random-
ized algorithm for quantitative information-flow analysis. To this
end, observe that the random choice of blocks can be implemented
by executing the program on a (uniformly chosen) input s ∈ IQ
and determining the preimage B = Q−1(s′) of s′ = Q(s). If this
preimage is represented by a logical assertion, one can compute
the size #(B) of B using model counting techniques [15]. In this
way, H(U |Q) can be approximated with high confidence levels us-
ing a number of samples n that is only polylogarithmic in the size
of the state space.

The following theorem enables us to leverage these techniques
for analyzing programs with non-uniform inputs.

Theorem 2. Let P, D̂,D be as defined in Section 3.1. Let B1, . . . , Bn

be drawn randomly from ΠP◦D̂ and let B′1, . . . , B
′
n be drawn ran-

domly from ΠD̂ with respect to the distribution p(B) = #(B)

#(ID̂)
. Then

1

n

n∑

i=1

log
#(Bi)

#(B′
i
)
− 2δ ≤ H(D|P) ≤

1

n

n∑

i=1

log
#(Bi)

#(B′
i
)
+ 2δ

with a probability of more than

(

1 −
(log #(ΠD̂))

2

nδ2

)2

.

Proof. Apply Proposition 2 to both terms on the right hand side
of Lemma 1. For the confidence levels, observe that the blocks
Bi are drawn independently from the blocks B′i , hence the proba-
bilities that the inequalities hold multiply. Observing that #(ΠD̂) ≥
#(ΠP◦D̂), we replace the larger probability by the smaller one, which
concludes this proof.

Finally, the exact computation of the blocks Bi can be prohibitively
expensive. Fortunately, one can avoid this expensive computation
by resorting to under- and over-approximations Bi and Bi of Bi, i.e.

subsets of initial states with B
i
⊆ Bi ⊆ Bi. The computation of B

i

and Bi can be done using existing techniques for symbolic execu-
tion and abstract interpretation, see [22]. In this paper, we simply
assume the existence of such approximations.

Corollary 1. Let B1, . . . , Bn and B′1, . . . , B
′
n be chosen as in

Theorem 2. Let Bi ⊆ Bi ⊆ Bi and Bi
′ ⊆ B′i ⊆ B′

i
, for all i ∈ {1, . . . n}.

Then

1

n

n∑

i=1

log
#(Bi)

#(B′
i
)
− 2δ ≤ H(D|P) ≤

1

n

n∑

i=1

log
#(Bi)

#(B′
i
)
+ 2δ

with a probability of more than

(

1 −
(log #(ΠD̂))

2

nδ2

)2

.



Corollary 1 follows directly from Theorem 2 by replacing all
blocks that occur in the numerator (denominator) of the right (left)
hand side and on the denominator (numerator) on the left (right)
hand side by their over-(under-)approximating counterparts.

4. ROBUSTNESS
In this section, we show that the remaining uncertainty about a

secret is robust with respect to small variations in the input distri-
bution. This allows us to replace actual input distributions with ap-
proximate distributions. Based on the quality of the approximation,
we give upper and lower bounds on the error this approximation in-
troduces in the analysis. Focusing on approximate distributions can
simplify the information-flow analysis, e.g. by allowing to replace
“almost uniform” distributions by uniform distributions.

We say that two distributions p and q on some set S are γ-close if
the probabilities they assign to each value differ at most by a factor
of γ.

p
γ
≈ q ≡ ∀x ∈ S :

1

γ
q(x) ≤ p(x) ≤ γ q(x)

In the following we will consider a random variable with respect
to different probability distributions on its input domain. We intro-
duce the notation Xp emphasize that we consider variable X with re-
spect to the underlying distribution p. The following lemma states
that, for γ-close distributions p and q, the distributions of Xp and
Xq are also γ-close.

Lemma 2. Let X be a random variable and let p and q be distri-

butions on the domain of X. Then p
γ
≈ q implies pXp

γ
≈ pXq .

Proof. For all x we have

1

γ
· pXq (x) =

∑

a∈X−1 (x)

1

γ
· q(a) ≤

∑

a∈X−1(x)

p(a) = pXp (x) .

The proof for the upper bound follows along the same lines.

We next show that the entropy of a random variable is robust
with respect to small changes in its input distribution. Formally, we
show that for two random variables X and Y with γ-close distribu-

tions, i.e., pX
γ
≈ pY , the Shannon entropy H(X) can be bounded in

terms of the entropy H(Y).

Lemma 3. Let X and Y be random variables with pX
γ
≈ pY . Then

we have

H(X)






≤ γ · H(Y) + γ log2 γ

≥ 1
γ
· H(Y) −

log2 γ

γ

.

Proof. H(X) = −
∑

x pX(x) log2 pX(x)
(∗)

≤ −
∑

x γ·pY(x) log2
pY (x)

γ
=

γ · H(Y) + γ log2 γ,

where (∗) follows from pX
γ
≈ pY . The proof of the lower bound is

analogous.

We can use Lemma 3 together with Lemma 2 to obtain bounds
on the remaining uncertainty of a program for distribution p from

an analysis with respect to a distribution q with p
γ
≈ q.

Theorem 3. Let p and q be distributions with p
γ
≈ q. Then we

have

H(Dp|Pp)






≤ γ · H(Dq) − 1
γ
· H(Pq) + log2 γ

(

γ + 1
γ

)

≥ 1
γ
· H(Dq) − γ · H(Pq) − log2 γ

(

γ + 1
γ

) .

Proof. Observe that H(Dp|Pp) = H(Dp) − H(Pp) because Pp

is determined by Dp. Since p
γ
≈ q, Lemma 2 yields pDp

γ
≈ pDq .

Applying Lemma 3 yields the assertion.

In Section 5.2 we show an application of Theorem 3, where we
analyze a program with respect to a uniformly distributed q in order
to derive bounds for the real, almost uniform, distribution p.

5. CASE STUDY
In this section we illustrate the techniques described in the previ-

ous sections. Namely, we will give an example of how an analysis
with respect to non-uniform distributions can be reduced to the uni-
form case, which we handle using existing tool support [20]. Fur-
thermore, we give an example of how our robustness result can be
used to estimate the error introduced by replacing in the analysis an
almost uniform distribution by a uniform one.

We consider a program for checking the integrity of Personal
Identification Numbers (PINs) as used in electronic banking. Pre-
vious formal analyses of this program [19, 37] assume uniformly
distributed PINs; they are not fully accurate because PIN genera-
tion methods typically produce a skewed distribution. Using the
techniques presented in this paper, we perform the first formal anal-
ysis that takes this skew into account.

We analyze the integrity check with respect to PINs that stem
from two different PIN generation algorithms. The first genera-
tion algorithm is easily expressed as a program, and we will use
the techniques developed in Section 3 to perform a precise non-
uniform QIF. The second generation algorithm produces PINs that
are almost uniformly distributed, and we will use the techniques de-
veloped in Section 4 to perform an approximate QIF of the integrity
check program. We begin by describing the integrity check and its
use in practice.

5.1 PIN Integrity Check
When a customer authenticates himself at an Automated Teller

Machine (ATM), he enters his PIN. This PIN is then sent to his bank
for verification [1, 4]. Before sending, the PIN is XORed with the
customer’s Personal Account Number (PAN) and encrypted using
a symmetric cryptosystem. In case the ATM cannot communicate
directly with the customer’s bank, the encrypted PIN⊕PAN will
pass through a series of switches. Each of these switches decrypts
and extracts the PIN, checks it for integrity, and re-encrypts the
PIN using a key that is shared with the next switch. All operations
on the PIN are performed in dedicated tamper-resistant Hardware
Security Modules (HSMs), which protect the communication keys
and the PINs even if the switch is compromised.

Unfortunately, HSMs fail to fulfill this purpose because the out-
come of the PIN integrity check leaks information about the value
of the PIN [13]: Upon receiving an encrypted pin, the HSM de-
crypts and XORs the result with a given account number to extract
the PIN. The HSM then performs a simple integrity check on the
PIN, namely it checks whether all PIN digits are < 10. Clearly, this
check will succeed if the given account number is the customers
PAN. However, the protocol does not forbid the use of the integrity
check with an arbitrary account number PAN’, in which case the
HSM will reveal whether PIN⊕PAN⊕PAN’ is a valid PIN. As the
PAN itself is not secret, the integrity check can be seen as an oracle
that, on input m, reveals whether all digits of PIN⊕m are < 10.

We model the integrity check of a single PIN digit as a program
P = (IP, FP,RP) with IP = {0, . . . , 9}, FP = {0, 1}, and

P(s) ≡ s ⊕ m < 10 ,



wherem ∈ {0, . . . , F} is fixed. For example, form = F, the integrity
check is equivalent to the condition s ≥ 6.

5.2 Non-uniform PINs from Decimalization
Tables

The PIN generation algorithm described in [5] works as follows:
In a first step the customer’s account number is encrypted using
DES under a fixed PIN derivation key. In a second step, the cipher-
text is converted into a hexadecimal number. The first 4 digits of
this number are taken and decimalized. The decimalization leaves
digits 0 − 9 unchanged, and maps A − F to 0 − 5.

We assume DES to be an ideal cipher, i.e., a random permuta-
tion. This assumption is known as the Ideal Cipher Model [35]
and is commonly used in cryptography to abstract from the inner
details of block ciphers. In this model, the output of the DES en-
cryption is uniformly distributed and we can characterize the skew
of the PIN as described in Section 3. More precisely, we capture the
PIN generation algorithm as a program D̂ which, given uniformly
distributed input (i.e. the result of encrypting the PAN with DES),
computes a PIN as described above. The purpose of this section is
to illustrate our reduction to uniform distributions. For clarity of
presentation, we will focus on a simplified scenario with one-digit
PINs, i.e., ID̂ = {0, . . . , F}, FD̂ = {0, . . . , 9}, and

D̂(s) = s mod 10

For computing H(D|P) for m = F using Theorem 1, we need to
determine the partitionsΠD̂ and ΠP◦D̂ induced on ID̂ by D̂ and P◦D̂,
respectively. It is easy to see that ΠD̂ consists of blocks of values
that are equal modulo 10 and that ΠP◦D̂ combines the blocks from
ΠD̂ with values < 6 or ≥ 6 modulo 10, respectively.

ΠD̂ = {{0, A}, {1, B}, {2,C}, {3,D}, {4, E}, {5, F}, {6}, {7}, {8}, {9}}

ΠP◦D̂ = {{0, 1, 2, 3, 4, 5, A, B,C,D, E, F}, {6, 7, 8, 9}}

We apply Theorem 1 to this data and obtain

H(D|P)

=
1

#(ID̂)





∑

B∈Π
P◦D̂

#(B) log2 #(B) −
∑

B′∈ΠD̂

#(B′) log2 #(B
′)





=
1

16

((
12 log2(12) + 4 log2(4)

)
−

(
6 · 2 log2(2) + 4 · 1 log2(1)

))

≈ 2.4387

This result shows that, after a integrity check with account number
PAN⊕F, there are 2.4387 bits of uncertainty left about a single digit.
A sightly more complex analysis (whose details we omit) reveals
that, for a 4 pin digit, one check with PAN⊕FFFF leaves 12.9631
bits of uncertainty.

5.3 Automated Analysis of Adaptive Attacks
The analysis presented above considers an adversary that per-

forms the PIN integrity check using a single fixed input m = F. In
practice, however, an attacker can repeatedly perform PIN integrity
checks with different values of m, thereby further narrowing down
the possible values of the PIN. For assessing the security of a sys-
tem it is necessary to take such repeated queries into account. We
briefly report on experimental results where we use existing auto-
mated techniques for reasoning about this kind of attack.

The basis for our analysis is the formal model for knowledge re-
finement in adaptive attacks described in [19, 20]. In this model,
each attack strategy induces a partition on the set of secret inputs.
An attack strategy of n steps is optimal if the remaining uncertainty
about the secret after an attack is minimal among all possible attack

strategies of n steps. Here, the remaining uncertainty is computed
from the attack strategy’s induced partition using Proposition 1. As
a consequence, the automatic tool presented in [19, 20] requires
that the inputs are uniformly distributed. Using our reduction tech-
niques, we leverage this restriction: We can simply apply the tool
to P ◦ D̂ and obtain H(U |P ◦ D̂). We then use Theorem 1 to ob-
tain H(D|P) from H(U |P ◦ D̂) and H(U |D̂) (which is a constant).
The results of the analysis are depicted in Figure 2. The value of
H(D̂|P) = 1 in the last row accounts for the fact that a single PIN
digit can can be narrowed down to two equally likely alternative
values.

5.4 Almost Uniform PINs
The Interbank PIN generation algorithm [18] works as follows.1

In a first step, the PAN is encrypted, yielding a string of 16 hex-
adecimal numbers. This string is scanned from left to right, and the
first four decimal digits that are encountered are used as the PIN.
If there are less than 4 decimal digits in the string, A is subtracted
from each digit in the string, and the process is repeated until four
decimal digits are found. This second scan ignores the positions in
the string that already yielded decimal digits in the first round. 2

We use the techniques presented in Section 4 for analyzing the
PIN integrity check with respect to PINs that are generated accord-
ing to the Interbank PIN generation algorithm. To this end, we first
determine γ such that the PIN distribution is γ-close to the uniform
distribution. Then we perform a uniform analysis of the PIN in-
tegrity check and use Theorem 3 with γ to estimate the uncertainty
about a PIN drawn from the skewed distribution.

For an analysis of the Interbank PIN distribution, let the random
variable X denote the number of decimal digits in the hexadecimal
string obtained by encrypting the account number. We assume this
string to be uniformly distributed. Pr(X = k) can be calculated as
follows:

Pr(X = k) =

(

16

k

) (

5

8

)k (
3

8

)16−k

The probability that there are at least 4 decimal digits in the string
is

Pr(X ≥ 4) = 1 −

3∑

k=0

Pr(X = k) ≈ 0.9995 ,

in which case the resulting PINs are uniformly distributed.
Let the random variable Y denote the output of the generation

algorithm, i.e., the generated PIN. Then

Pr(Y = a) = Pr(Y = a|X ≥ 4) Pr(X ≥ 4) + Pr(Y = a|X ≤ 3) Pr(X ≤ 3)

= Pr(X ≥ 4) · 10−4 + Pr(Y = a|X ≤ 3)
︸              ︷︷              ︸

≤6−4

Pr(X ≤ 3)

We set γ = Pr(X ≥ 4) +
(
5
3

)4
Pr(X ≤ 3) ≈ 1.003. A simple calcula-

tion shows that 1
γ
< Pr(X ≥ 4), which gives us the following lower

bound on Pr(Y = a):

Pr(Y = a) ≥ Pr(X ≥ 4) · 10−4 >
1

γ
· 10−4

Similarly, we can obtain an upper bound on Pr(Y = a) as follows:

Pr(Y = a) ≤ Pr(X ≥ 4) · 10−4 + Pr(X ≤ 3) · 6−4 = γ · 10−4.

1We thank Graham Steel for pointing us to this example.
2Additionally, a PIN of 0000 is replaced by 0100. We will ignore
this detail in our analysis.



#Steps ΠP◦D̂ H(U |P ◦ D̂) H(D̂|P)

0 [[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]] 4 3.25
1 [[0,1,8,9,10,11],[2,3,4,5,6,7,12,13,14,15]] 3.05 2.30
2 [[0,1,10,11],[8,9],[2,3,12,13],[4,5,6,7,14,15]] 2.09 1.34
3 [[0,1,10,11],[8,9],[2,3,12,13],[4,5,14,15],[6,7]] 1.75 1.0

Figure 2: Results of automatically analyzing the PIN integrity check with respect to multiple runs of an adaptive attacker.

We conclude that the distribution of the PINs is γ-close to the uni-

form distribution u, i.e., pY
γ
≈ u.

Consider again the PIN integrity check program P from Sec-
tion 5.1, generalized to 4 PINs, i.e., IP = {0, . . . , 9}

4, FP = {0, 1},
and

P(s1s2s3s4) =
∧

i=1...4

si ⊕ mi < 10

Theorem 3 gives the following formula to bound H(DpY |PpY ):

H(DpY |PpY ) ≤ γ · H(Du) −
1

γ
· H(Pu) + log2 γ

(

γ +
1

γ

)

We set m = FFFF, which results in the following upper bound:

H(DpY |PpY )

≤ γ · log2 10
4
+

1

γ
·

(

44

104
log2

44

104
+

104 − 44

104
log2

104 − 44

104

)

+ log2 γ

(

γ +
1

γ

)

≈ 13.1654

A lower bound of H(DpY |PpY ) ≥ 13.0664 follows along the same
lines.

The small delta between the upper and lower bounds shows that
the uniform analysis is (almost) precise for PINs generated accord-
ing to the Interbank algorithm. We conclude by comparing this
result with the result of the analysis with respect to PINs gener-
ated using decimalization tables presented in Section 5.2 where,
for 4 digit PINs, we obtained a remaining uncertainty of 12.9631
bits. The difference between the remaining uncertainties gives an
account of the security that is gained by using a better (i.e., less
skewed) PIN generation algorithm.

6. RELATED WORK
Denning is the first to quantify information flow in terms of the

reduction in uncertainty about a program variable [14]. Millen [28]
and Gray [16] use information theory to derive bounds on the trans-
mission of information between processes in multi-user systems.
Lowe [24] shows that the channel capacity of a program can be
over-approximated by the number of possible behaviors. The chan-
nel capacity corresponds to the maximal leakage w.r.t. to any input
distribution and hence is an over-approximation of the information
that is actually revealed.

Clark, Hunt, and Malacaria [10] connect equivalence relations
to quantitative information flow, and propose the first type system
for statically deriving quantitative bounds on the information that
a program leaks [11]. The analysis assumes as input (upper and
lower) bounds on the entropy of the input variables and delivers
corresponding (upper and lower) bounds for the leakage of the pro-
gram. For loops with high guards, the analysis always reports com-
plete leakage of the guard.

Malacaria [25] shows how to characterize the leakage of loops
in terms of the loop’s output and the number of iterations. Closely

related on this approach, Mu and Clark [30] propose a precise, auto-
matic QIF based on a distribution transformer semantics, which can
deal with non-uniform input distributions. Their approach relies
on an explicit representation of the probability distribution trans-
formed by the program (and hence the set of initial states), which
prevents the direct application to programs with large state spaces.
The problem is mitigated by an interval-based abstraction proposed
in [29]. The abstraction splits a totally ordered domain into inter-
vals, each of which assumed to be uniformly distributed. In our
approach, the probability distribution is represented in terms of
preimages of a generating program, which offers the possibility of
a symbolic treatment of large state spaces.

Köpf and Basin [20] show how to compute partitions on the se-
cret input that represent what an attacker can learn in an adaptive
attack. Backes, Köpf, and Rybalchenko [2] show how to determine
the partitions corresponding to the information (with respect to a
non-adaptive attacker) that a program leaks by computing weakest
preconditions. Both approaches rely on counting the number and
the sizes of the preimages in order to quantify the remaining un-
certainty about the input w.r.t. uniform distributions. When used in
conjunction with these approaches, the ideas presented in this paper
can be used to weaken the requirement of a uniform distribution.

Köpf and Rybalchenko [22] propose approximation and random-
ization techniques to approximate the remaining uncertainty about
a program’s inputs for programs with unbounded loops. Their ap-
proach relies on approximating the sizes of blocks (but without
their complete enumeration) and it delivers bounds w.r.t. uniformly
distributed inputs. As we have shown, the reduction presented in
this paper can be used for extending the techniques to programs
with non-uniform input distributions.

McCamant and Ernst propose a dynamic taint analysis for quan-
tifying information flow [27]. Their method does not assume a par-
ticular input distribution and provides over-approximations of the
leaked information along a particular path. However, it does not
yield guarantees for all program paths, which is important for se-
curity analysis. Newsome, McCamant, and Song [31] also use the
feasible outputs along single program paths as bounds for channel
capacity (i.e. the maximal leakage w.r.t. to all possible input dis-
tributions), and they apply a number of heuristics to approximate
upper bounds on the number of reachable states of a program.

Chatzikokolakis, Chothia, and Guha [7] use sampling to build up
a statistical system model. Based on this model, they compute the
channel capacity, i.e. the maximum leakage w.r.t. all possible input
distributions.

DiPierro, Hankin, and Wiklicky [33] consider probabilistic pro-
cesses with given input distributions and (instead of information
theory) use the distance of the produced output distributions to
quantify information flow.

Clarkson, Myers, and Schneider [12] use non-uniform input dis-
tributions to model adversaries beliefs, which they update accord-
ing to the program semantics. They do not discuss techniques for
automation or abstraction.

Smith [36] proposes min-entropy as an alternative measure of



information flow. Min-entropy gives bounds on the probability of
guessing a secret in one attempt, whereas Shannon-entropy gives
bounds on the average number of guesses required for determin-
ing a secret. The investigation of a reduction from non-uniform to
uniform QIF for min-entropy remains future work.

7. CONCLUSIONS AND FUTUREWORK
We have considered the problem of quantifying the information-

flow in programs with respect to non-uniform input distributions.
We have made the following contributions to solve the problem.
First, we have shown how the problem of non-uniform QIF can be
reduced to the uniform case. To this end, we represented the non-
uniform input distribution as a program that receives uniform input,
and we sequentially composed it with the target program. We have
proved a connection between the information-theoretic characteris-
tics of the target program and its composition with the distribution
generator. This connection enables us to perform a precise non-
uniform analysis using existing QIF techniques for the uniform
case. Second, we have shown that the result of a QIF is robust
with respect to small variations in the input distribution. This result
shows that we can estimate the information-theoretic characteris-
tics of a program by considering an approximate input distribution.
This is useful in cases where the input distribution can only be ap-
proximated or an approximation simplifies the analysis. Finally, we
have performed a case-study where we illustrated both techniques
and demonstrated their usefulness in practice.
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