
Mining Android Apps for Anomalies

Konstantin Kuznetsova, Alessandra Gorlab, Ilaria Tavecchiac, Florian Grossa,
Andreas Zellera

aSaarland University, Saarbrücken, Germany
bIMDEA Software Institute, Madrid, Spain

cSWIFT, Bruxelles, Belgium

Abstract

How do we know a program does what it claims to do? Our CHABADA prototype can

cluster Android apps by their description topics and identify outliers in each cluster

with respect to their API usage. A “weather” app that sends messages thus becomes an

anomaly; likewise, a “messaging” app would typically not be expected to access the

current location. In this paper we present a new approach for anomaly detection that

improves the classification results of our original CHABADA paper [1]. Applied on a

set of 22,500+ Android applications, our CHABADA prototype can now predict 74% of

novel malware as such, without requiring any known malware patterns, maintaining the

false positive rate close to 10%.

Keywords: Android apps, malware detection, application behavior, app mining,

description analysis

1. Introduction

Detecting whether a mobile application behaves as expected is a prominent problem

for users. Whenever they install a new app on their mobile device, they run the risk of

it being “malware”— that is, to act against their interests. Security researchers have

largely focused on detecting malware in Android apps, but their techniques typically

check new apps against a set of predefined known patterns of malicious behavior. This

Email addresses: kuznetsov@cs.uni-saarland.de (Konstantin Kuznetsov),
alessandra.gorla@imdea.org (Alessandra Gorla), fgross@cs.uni-saarland.de
(Florian Gross), zeller@cs.uni-saarland.de (Andreas Zeller)

Preprint submitted to Elsevier December 18, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Weather
 + Travel

Figure 1: Detecting applications with anomalous behavior. Starting from a collection of “benign” apps (1),

CHABADA identifies their description topics (2) to form clusters of related apps (3). For each cluster,

CHABADA identifies the APIs used (4), and can then identify outliers that use APIs that are uncommon

for that cluster (5).

approach works well to detect new malware that uses known patterns, but does not help

against new attack patterns. Moreover, in Android it is not easy to define what malicious

behavior is, and therefore to define what are the key features to detect malware. The

problem is that any specification on what makes behavior beneficial or malicious very

much depends on the current context.

Typical Android malware, for instance, sends text messages to premium numbers,

or collects sensitive information of the user, such as the mobile number, the current

location, and the list of emails associated to different accounts. However, this very same

information, and the very same operations, frequently occur in benign applications as

well. Sending text messages to premium numbers is for instance a legitimate paying

method to unlock new app features; Tracking the current location is what a navigation

app has to do; Collecting the list of contacts and sending it to an external server is what

most free messaging apps like WhatsApp do upon synchronization. The question thus

is not whether the behavior of an app matches a specific malicious pattern or not; it is

whether an app behaves as one would expect.

In our previous work we presented CHABADA, a technique to check implemented

app behavior against advertised app behavior [1]. We analyzed the natural language

descriptions of 22.500+ Android applications, and we checked whether the description

matched the implemented behavior, represented as a set of application programming

interfaces (APIs). The key of CHABADA is to associate descriptions and API usage to

detect anomalies.

Our CHABADA approach runs over the five steps illustrated in Figure 1:

2

1. CHABADA starts with a collection of 22,500+ supposedly “benign” Android

applications downloaded from the Google Play Store.

2. Using Latent Dirichlet Allocation (LDA) on the app descriptions, CHABADA

identifies the main topics (“theme”, “map”, “weather”, “download”) for each

application.

3. CHABADA then clusters applications by related topics. For instance, if there were

enough apps whose main description topics are “navigation” and “travel”, they

would form one cluster.

4. In each cluster, CHABADA identifies the APIs each app statically accesses. It only

considers sensitive APIs, which are governed by a user permission. For instance,

APIs related to Internet access are controlled by the “INTERNET” permission.

5. Using unsupervised learning, CHABADA identifies outliers within a cluster with

respect to API usage. It produces a ranked list of applications for each cluster,

where the top apps are most abnormal with respect to their API usage—indicating

possible mismatches between description and implementation. Unknown applica-

tions would thus first be assigned to the cluster implied by their description, and

then be classified as being normal or abnormal.

By flagging anomalous API usage within each cluster, CHABADA is set up to detect

any suspicious app within a set of similar apps, and can therefore detect whether an app

has any mismatch between advertised and implemented behavior. We show how this

works in practice with a real app as an example. Figure 2 shows the description of the

Official New York Jets team app1, available from the Google Play Store. Its description

clearly puts it into the “sports” cluster.

Beside expected common API calls, the instance of the Official New York Jets app

that we analyzed can check whether GPS location is available, via the API method

LocationManager.addGpsStatusListener(), and can send text messages, via the API

method SmsManager.sendTextMessage(), which are highly uncommon operations for

1https://play.google.com/store/apps/details?id=com.yinzcam.nfl.jets

3

https://play.google.com/store/apps/details?id=com.yinzcam.nfl.jets

This is the official mobile app of the New York Jets. Make your Android device a unique part of your

game-day experience for Jets games. Want to catch breaking news of the team? See real-time statistics

for every drive? Watch video-on-demand clips of press conferences and player interviews? Follow post-

game blogs and pre-game previews of the matchups? Now, you can stay in touch with the Jets anytime,

anywhere, on your Android device.

FEATURES:

– News: Real-time breaking news from the Jets, previews of upcoming matchups, post-game blogs

– Video: Video-on-demand clips of Jets’ press conferences, coach and player interviews

– Photos: Gallery of game-time action

– Audio: Podcasts

– Stats: Real-time statistics and scores from the official NFL stats engine, head-to-head stats of the

matchup, player stats, drive-by-drive stats, box score, out-of-town scores around the league

– Standings: Division and conference standings

– Fantasy: Keep track of your favorite fantasy players

– Depth chart: Shown by offense, defense and special teams

– Social media: Aggregated Twitter of all of your favorite Jets tweeps, check in to the stadium on game-day,

one-click tweet of all media items, one-click Facebook posting of all media items

– Digital keepsake: Your game-time moment superimposed on the stadium jumbotron in the form of a

unique digital keepsake

– Schedule: Schedule of upcoming games, and scores/stats of previous games from the season, ticket

purchase for games

– Concessions: Interactive map of MetLife Stadium with searchable concessions-stands and amenities

– Problem-reporting: Reports of various problems and issues around the stadium

– Evolving home-screen: Pre-game, in-game, post-game, off-season countdown, draft-day

– In-stadium live video and replays: Limited beta test; connect to the MLSOpen Wi-Fi network at MetLife

Stadium

Follow us @nyjets on Twitter for updates or visit www.newyorkjets.com. SUPPORT/QUESTIONS; Email

support@yinzcam.com or send a tweet to @yinzcam The Official New York Jets app is created and main-

tained by YinzCam, Inc., on behalf of the New York Jets.

Figure 2: Official New York Jets app description

this kind of applications. These API method calls, together with similar others, make

Official New York Jets an outlier within the “sports” cluster. By flagging such anomalies,

CHABADA can detect false advertising, plain fraud, masquerading, and other question-

able behavior. CHABADA can be used as a malware detector as well. By training it on a

sample of benign apps, CHABADA can classify new apps as benign or malware, without

any previous notion of malicious behavior.

This chapter extends our previous conference paper [1] by presenting several new

techniques that lead to significant improvements:

4

1. We now rank down irrelevant APIs when looking for anomalies. Specifically,

we give a lower weight to APIs that are common within a particular cluster

(e.g., Internet access, which is frequently used in applications). By giving more

importance to less common behavior, CHABADA can highlight outliers more

easily.

2. We incorporate an additional technique for anomaly detection. The anomaly

detection of CHABADA is now based on a distance-based algorithm, which allows

to clearly identify the APIs that make an app anomalous.

3. To use CHABADA as a classifier of malicious applications, we now run anomaly

detection as a preliminary step, and we exclude the anomalies from the training set.

This allows to remove noise from the training set, and consequently to improve

the abilities of the classifier. CHABADA can now predict 74% of malware as such

(previously 56%), and suffers from only 11% of false positives (previously 15%).

4. We can now automatically select the optimal parameters for the classifier. This

also contributes to the improvement of CHABADA as a malware classifier.

The remainder of this paper is organized as follows. We first describe how CHABADA

clusters applications by description topics in Section 2. This book chapter does not

improve our first paper [1] on this side, but we include a description of this step for the

sake of completion. Section 3 describes how in each cluster we detect outliers with

respect to their API usage. In particular we describe the new algorithm that CHABADA

uses, and we highlight the advantages of the new approach. Section 4 evaluates the

improvements of CHABADA. After discussing the related work (Section 5), Section 6

closes with conclusions and future work.

2. Clustering Apps by Description

The intuition behind CHABADA is simple: applications that are similar, in terms

of their descriptions, should also behave similarly. As a consequence, applications

that behave differently from their similars should be further inspected, as they may

5

have malicious behavior. For this, we must first establish what makes two descriptions

“similar”. We start with describing our Android apps collection, and how we collected

it (Section 2.1). After initial processing (Section 2.2), CHABADA identifies topics of

app descriptions (Section 2.3), and then clusters the apps based on common topics

(Section 2.4 to Section 2.6).

2.1. Collecting Applications

CHABADA is based on detecting anomalies from “normal”, hopefully benign ap-

plications. As a base for such “normal” behavior, CHABADA relies on a large set of

applications from the Google Play Store, the central resource for Android apps. Our

automated crawler ran at regular intervals (i.e. every two weeks) during the Winter and

Spring of 2013, and for each of the 30 categories in the Google Play Store, downloaded

the top 150 free 2 applications in each category. A single complete run of our script thus

returned 4,500 apps; as the top 150 apps shifted during our collection, we obtained a

total of 32,136 apps across all categories.

In addition to the actual app (coming as an APK file), we also collected the store

metadata—such as name and description.

2.2. Preprocessing Descriptions with NLP

Before subjecting app descriptions to topic analysis, CHABADA applies standard

techniques of natural language processing (NLP) for filtering and stemming [2].

App descriptions in the Google Play Store frequently contain paragraphs in multiple

languages—for instance, the main description is in English, while at the end of the

description developers add a short sentence in different languages to briefly describe

the application. To be able to cluster similar descriptions, CHABADA has to work on a

single language, and because of its predominance we chose English. CHABADA relies

on Google’s Compact Language Detector3 to detect the most likely language of the app

description, and it removes non-English paragraphs.

2Section 4.4 discusses possible induced bias.
3http://code.google.com/p/chromium-compact-language-detector

6

http://code.google.com/p/chromium-compact-language-detector

After multi-language filtering, CHABADA removes stop words (common words

such as “the”, “is”, “at”, “which”, “on”, . . .), and applies stemming on all descriptions

employing the power of Natural Language Toolkit4. Stemming is a common NLP

technique to identify the word’s root, and it is essential to make words such as “playing”,

“player”, and “play” all match to the single common root “plai”. Stemming can improve

the results of later NLP processes, since it reduces the number of words. CHABADA also

removes non-text items such as numerals, HTML tags, links and email addresses thanks

to specific Python modules such as HTMLParser 5.

As an example, consider the description of Official New York Jets in Figure 2; after

the preprocessing phase, it appears as:

action aggreg amen android anytim anywher app around audio behalf beta blog box break can

catch chart check clip coach com concess concessions-stand confer connect countdown creat

defens depth devic digit divis draft-dai drive drive-by-dr email engin everi evolv experi facebook

fantasi favorit featur follow form galleri game game-dai game-tim head-to-head home-screen

in-gam in-stadium inc interact interview issu item jet jumbotron keep keepsak leagu limit live

maintain make map matchup media metlif mlsopen mobil moment network new newyorkjet nfl

now nyjet off-season offens offici one-click out-of-town part photo player podcast post post-gam

pre-gam press preview previou problem problem-report purchas question real-tim replai report

schedul score searchabl season see send shown social special stadium stai stand stat statist

superimpos support team test ticket touch track tweep tweet twitter uniqu upcom updat us variou

video video-on-demand visit want watch wi-fi yinzcam york

We remove from our data set those applications whose description has less than

10 words after the preprocessing we just described. Also, we eliminate all applications

without any sensitive APIs (see Section 3 for details). This resulted in a final set of

22,521 apps, which form the base for CHABADA.

2.3. Identifying Topics with LDA

To identify sets of topics for the apps under analysis, CHABADA resorts to topic

modeling using Latent Dirichlet Allocation (LDA) [3].

LDA is an unsupervised, statistical algorithm that discovers latent semantic topics

in a collection of text documents. LDA represents documents as random mixtures over

4http://www.nltk.org
5https://docs.python.org/2/library/htmlparser.html

7

http://www.nltk.org
https://docs.python.org/2/library/htmlparser.html

multiple latent topics, where each “topic” is characterized by a distribution over a fixed

vocabulary of words. Given a set of documents and the number of topics, LDA produces

the probability distribution of each topic-document pair and of each word-topic pair,

and consequently learns, for each topic, a set of words.

By analyzing a set of app descriptions on sports and social networking, for instance,

LDA would group words such as “team”, “soccer”, “league”, and “sport” into one topic,

and “share”, “facebook”, “twitter”, and “suggest” into another topic. Applications

whose description is mainly about sports would thus be assigned to the first topic, since

most of the words occurring in the description belong to the first group. Applications

such as the Official New York Jets, however, would be assigned to both topics, as the

words in the description appear in both groups.

CHABADA feeds the NLP pre-processing output (i.e., the English text without

stop words, and after stemming) into the Mallet framework [4]. CHABADA can be

freely configured to choose the number of topics to be identified by LDA; by default it

identifies 30, the number of categories covered by the apps in the Google Play Store.

Furthermore, by default CHABADA is configured such that an app can belong to at most

4 topics. Limiting the number of topics an app can belong to makes the clustering more

effective in our experience.

Table 1 shows the resulting list of topics for the 22,521 descriptions that we analyzed

with CHABADA; the “assigned name” is the abstract concept we assigned to that topic.

Our example application, Official New York Jets, is assigned to these four topics:

• Topic 24 (“sports”) with a probability of 63.1%,

• Topic 8 (“share”) with a probability of 17.7%,

• Topic 10 (“files and videos”) with a probability of 10.4%, and

• Topic 6 (“game”) with a probability of 6.7%.

2.4. Clustering Apps with K-means

Topic modeling can assign application descriptions to topics with a certain probabil-

ity. What we want, however, is to cluster applications with similar descriptions within

8

Table 1: Topics mined from Android Apps
Id Assigned Name Most Representative Words (stemmed)

0 “personalize” galaxi, nexu, device, screen, effect, instal, customis

1 “game and cheat sheets” game, video, page, cheat, link, tip, trick

2 “money” slot, machine, money, poker, currenc, market, trade, stock, casino coin, finance

3 “tv” tv, channel, countri, live, watch, germani, nation, bbc, newspap

4 “music” music, song, radio, play, player, listen

5 “holidays” and religion christmas, halloween, santa, year, holiday, islam, god

6 “navigation and travel” map, inform, track, gps, navig, travel

7 “language” language, word, english, learn, german, translat

8 “share” email, ad, support, facebook, share, twitter, rate, suggest

9 “weather and stars” weather, forecast, locate, temperatur, map, city, light

10 “files and video” file, download, video, media, support, manage, share, view, search

11 “photo and social” photo, friend, facebook, share, love, twitter, pictur, chat, messag, galleri, hot, send social

12 “cars” car, race, speed, drive, vehicl, bike, track

13 “design and art” life, peopl, natur, form, feel, learn, art, design, uniqu, effect, modern

14 “food and recipes” recip, cake, chicken, cook, food

15 “personalize” theme, launcher, download, install, icon, menu

16 “health” weight, bodi, exercise, diet, workout, medic

17 “travel” citi, guid, map, travel, flag, countri, attract

18 “kids and bodies” kid, anim, color, girl, babi, pictur, fun, draw, design, learn

19 “ringtones and sound” sound, rington, alarm, notif, music

20 “game” game, plai, graphic, fun, jump, level, ball, 3d, score

21 “search and browse” search, icon, delet, bookmark, link, homepag, shortcut, browser

22 “battle games” story, game, monster, zombi, war, battle

23 “settings and utils” screen, set, widget, phone, batteri

24 “sports” team, football, leagu, player, sport, basketbal

25 “wallpapers” wallpap, live, home, screen, background, menu

26 “connection” device, connect, network, wifi, blootooth, internet, remot, server

27 “policies and ads” live, ad, home, applovin, notif, data, polici, privacy, share, airpush, advertis

28 “popular media” seri, video, film, album, movi, music, award, star, fan, show, gangnam, top, bieber

29 “puzzle and card games” game, plai, level, puzzl, player, score, challeng, card

the same group. It would appear reasonable to consider obtained topics as separate

clusters, but unfortunately topic modeling does not provide a binary decision of whether

a description belongs to a particular topic. Moreover, each description may be related

to many topics, and even with equal probability, so it would not be clear how to pick a

specific cluster for a given application description.

As a consequence, CHABADA uses K-means [5], one of the most common clustering

algorithms, to group applications with similar descriptions, and it does so by using

topic probabilities as features. Given a set of elements and the number of clusters K to

be identified, K-means selects one centroid for each cluster, and then associates each

element of the data set to the nearest centroid, thus identifying clusters. It should be

noted that using words instead of topics would significantly increase the dimension of

the feature space, and would thus make K-means almost ineffective.

9

In this context, we use applications as the elements to be clustered, and we use the

probabilities of belonging to topics as features. As an example, Table 2 shows four

applications app1 to app4, with the corresponding probabilities of belonging to topics.

If we applied K-means to partition the set of applications into two clusters, it would

create one cluster with app1 and app3, and a second cluster with app2 and app4.

Table 2: Four applications and their likelihoods of belonging to specific topics

Application topic1 topic2 topic3 topic4

app1 0.60 0.40 — —

app2 — — 0.70 0.30

app3 0.50 0.30 — 0.20

app4 — — 0.40 0.60

2.5. Finding the Best Number of Clusters

One of the challenges with K-means is to estimate the number of clusters that should

be created. The algorithm needs to be given either some initial potential centroids,

or the number K of clusters to identify. There exist several approaches to identify

the best solution, among a set of possible clustering solutions. Therefore, CHABADA

runs K-means several times, each time with a different K number, to obtain a set of

clustering solutions it would then be able to evaluate. The range for K covers solutions

among two extremes: having a small number of clusters (even just 2) with a large variety

of apps; or having many clusters (potentially even one per app) and thus being very

specific. CHABADA fixes num_topics × 4 as an upper bound, since according to the

default settings an application can belong to up to 4 topics.

To identify the best solution, i.e., the best number of clusters, CHABADA uses the

elements silhouette, as discussed in [6]. The silhouette of an element is the measure of

how closely the element is matched to the other elements within its cluster, and how

loosely it is matched to other elements of the neighboring clusters. When the value of

the silhouette of an element is close to 1, it means that the element is in the appropriate

cluster. If the value is close to −1, instead, it means that the element is in the wrong

cluster. Thus, to identify the best solution, CHABADA computes the average of the

10

Table 3: Clusters of applications. “Size” is the number of applications in the respective cluster. “Most

Important Topics” list the three most prevalent topics; most important (> 10%) shown in bold. Topics less

than 1% not listed.
Id Assigned Name Size Most Important Topics

1 “sharing” 1,453 share (53%), settings and utils, navigation and travel

2 “puzzle and card games” 953 puzzle and card games (78%), share, game

3 “memory puzzles” 1,069 puzzle and card games (40%), game (12%), share

4 “music” 714 music (58%), share, settings and utils

5 “music videos” 773 popular media (44%), holidays and religion (20%), share

6 “religious wallpapers” 367 holidays and religion (56%), design and art, wallpapers

7 “language” 602 language (67%), share, settings and utils

8 “cheat sheets” 785 game and cheat sheets (76%), share, popular media

9 “utils” 1,300 settings and utils (62%), share, connection

10 “sports game” 1,306 game (63%), battle games, puzzle and card games

11 “battle games” 953 battle games (60%), game (11%), design and art

12 “navigation and travel” 1,273 navigation and travel (64%), share, travel

13 “money” 589 money (57%), puzzle and card games, settings and utils

14 “kids” 1,001 kids and bodies (62%), share, puzzle and card games

15 “personalize” 304 personalize (71%), wallpapers (15%), settings and utils

16 “connection” 823 connection (63%), settings and utils, share

17 “health” 669 health (63%), design and art, share

18 “weather” 282 weather and stars (61%), settings and utils (11%), navigation and

travel

19 “sports” 580 sports (62%), share, popular media

20 “files and videos” 679 files and videos (63%), share, settings and utils

21 “search and browse” 363 search and browse (64%), game, puzzle and card games

22 “advertisements” 380 policies and ads (97%)

23 “design and art” 978 design and art (48%), share, game

24 “car games” 449 cars (51%), game, puzzle and card games

25 “tv live” 500 tv (57%), share, navigation and travel

26 “adult photo” 828 photo and social (59%), share, settings and utils

27 “adult wallpapers” 543 wallpapers (51%), share, kids and bodies

28 “ad wallpapers” 180 policies and ads (46%), wallpapers, settings and utils

29 “ringtones and sound” 662 ringtones and sound (68%), share, settings and utils

30 “theme wallpapers” 593 wallpapers (90%), holidays and religion, share

31 “personalize” 402 personalize (86%), share, settings and utils

32 “settings and wallpapers” 251 settings and utils (37%), wallpapers (37%), personalize

elements’ silhouette for each solution using K as the number of clusters, and it selects

the solution whose silhouette is closest to 1.

2.6. Resulting App Clusters

Table 3 shows the list of clusters that CHABADA identifies for the 22,521 apps

that we analyzed. Each of these 32 clusters contains apps whose descriptions contain

similar topics, listed under “Most Important Topics”. The percentages reported in the

last column represent the weight of specific topics within each cluster.

The clusters we identified are quite different from the categories one would find in

an app store such as the Google Play Store. Cluster 22 (“advertisements”), for instance,

11

is filled with applications that do nothing but display ads in one way or another; these

apps typically promise or provide some user benefit in return. Cluster 16 (“connection”)

represents all application that deal with Bluetooth, Wi-Fi, etc.; there is no such category

in the Google Play Store. The several “wallpaper” clusters, from adult themes to religion,

simply represent the fact that several apps offer very little functionality.

The Official New York Jets app ended up in Cluster 19, together with other appli-

cations that are mostly about sports. Table 3 lists the clusters of apps related by their

descriptions in which we now can search for outliers with respect to their behavior.

3. Identifying Anomalies by APIs

After clustering apps based on similarity of their description topics, CHABADA

searches for outliers regarding their actual behavior. Section 3.1 shows how CHABADA

extracts API features from Android binaries. Section 3.2 describes how it filters APIs

to be used as features, and how it weighs APIs according to their importance. Sec-

tion 3.3 describes how CHABADA detects API outliers, while Section 3.4 describes how

CHABADA can be used as a classifier.

3.1. Extracting API Usage

As discussed in the introduction, CHABADA uses static API usage as a proxy for

behavior. Going for API usage is straightforward: while Android bytecode can also

be subject to advanced static analysis such as information flow analysis and standard

obfuscation techniques that easily thwart any static analysis, API usage has to be

explicitly declared; in Android binaries, as in most binaries on other platforms, static

API usage is easy to extract. For each Android application, CHABADA extracts the

(binary) APK file with apktool6, and with a smali parser extracts all API invocations.

3.2. Sensitive and Rare APIs

Using all API calls would result in too much information to represent the behavior of

an application. Therefore, we focus on a subset of APIs only, namely sensitive APIs that

6https://code.google.com/p/android-apktool

12

https://code.google.com/p/android-apktool

Table 4: Filtered APIs used in Official New York Jets that make this app an outlier in its cluster. Each

application is associated to an anomaly score, which is explained in Section 3.

com.yinzcam.nfl.jets Anomaly Score 10920.1

Feature importance:

android.location.LocationManager.addGpsStatusListener() 2900.00

android.net.wifi.WifiManager.pingSupplicant() 2900.00

android.net.wifi.WifiManager.setWifiEnabled() 1452.51

android.telephony.SmsManager.sendTextMessage() 1162.01

java.lang.Runtime.exec() 970.02

are governed by an Android permission setting. These APIs access sensitive information

(such as the user’s picture library, the camera, or the microphone) or perform sensitive

tasks (altering system settings, sending messages, etc.) When installing an app, the

user must explicitly permit usage of these APIs. For this purpose, each Android app

includes a manifest file which lists the permissions that the application requires for

its execution. To obtain the set of sensitive APIs, we relied on the work of Felt et al.,

who identified and used the mapping between permissions and Android methods [7];

CHABADA only considers a sensitive API to be used by the app if and only if it is

declared in the binary and if its corresponding permission is requested in the manifest

file. This allows to eliminate API calls that are used within third party libraries, and not

used by the application directly.

As an example for such sensitive APIs, consider Table 4. These are some of the

APIs used by the Official New York Jets app that are governed by a specific permission;

through these APIs, the app accesses the GPS status, accesses the WiFi status, sends

text messages, and executes arbitrary shell commands. The score of each API method

expresses its impact on the overall anomaly score of the app. The anomaly score will be

introduced and explained in the next section. Table 4 reports the top APIs ordered by

anomaly score.

As each permission governs several APIs, going for permissions alone would be too

few features to learn from; going for sensitive APIs allows a much more fine-grained

characterization of the application behavior. Section 4 will provide empirical evidence

that using APIs as features yields better results than using permissions.

13

Filtering the APIs by considering only the sensitive ones, considerably limits the

number of features. In [1] we show that it is possible to identify anomalous apps by

using all sensitive APIs as features. We noticed, though, that among the sensitive APIs

there exist some that are not as interesting as others. For instance, Internet access is

governed by the “INTERNET” permission, and consequently any API requiring this

permission should be considered as a sensitive one. However, most apps access Internet,

and consequently accessing Internet is not an important feature for an application, since

it has no discriminating power. On the contrary, sending text messages (governed by the

“SEND-SMS” permission) is not a common feature among Android apps, and should

thus be considered more than others. The cluster context, however, must be taken

into account, since wallpaper applications, for instance, do not frequently use Internet

connection, and consequently this could be a discriminating feature.

Removing common features would be too aggressive. Instead, we employ the

idea of feature ranking based on statistical analysis. We then use different weights

either to emphasize or diminish a particular feature. Our strategy is similar to IDF

(inverse document frequency) [8], which is a part of the TF-IDF measure, well known in

Information Retrieval. It is intended to reflect how important a word is to a document in

a collection of documents (typically referred to as corpus).

Accordingly, we define weights with the following formula:

Wa = log
N

dfa

The weight Wa of an API a is obtained by dividing the total number of applications

(N) in a cluster by the number of applications dfa calling the API a, and then taking the

logarithm of that quotient. Thus, the weight of a rare API is high, whereas the weight of

a common API is likely to be low.

Section 4 provides empirical evaluation that using IDF helps CHABADA identifying

the important features for anomaly detection.

3.3. Distance-based Outlier Detection

Now that we have all API features for all apps, the next step is to identify outliers —

that is, those applications whose API usage would be abnormal within their respective

14

topic cluster. Since we have no notion about an underlying generating model for our

data, it is reasonable to utilize a non-parametric approach to identify these outliers.

Namely, we changed CHABADA such that it uses a distance-based technique [9], that

is it uses the distance of an app to the other apps within the same cluster as a measure

of anomaly. Distance-based approaches can identify outliers according to different

definitions:

1. Outliers are those elements with fewer than k neighbors, where a neighbor is an

element that is within a maximum specified distance [9].

2. Outliers are those elements whose distance to their respective k-th nearest neigh-

bor is highest. This is what is usually referred as the k-Nearest Neighbors (k-NN)

algorithm [10].

3. Outliers are those elements whose average distance to their respective k nearest

neighbors is highest [11].

CHABADA uses Orca, an open source framework that implements distance-based

outlier detection [12]. The distance function of Orca computes the Euclidean distance

of two apps in the feature space (i.e., the APIs). The first definition of outliers requires

to specify the maximum neighborhood, and does not provide ranking scores for the

outliers. The second definition does not take into account the local density of samples.

Thus, CHABADA identifies anomalies considering the average distance of an element,

i.e. an app in the cluster, to the k nearest neighbors. The intuition is that if there are

other samples that are close to the candidate in the feature space, then the sample is

probably not an outlier. We use 5 as the value for k, as this number offers a good tradeoff

between two extremes: a small value for k would be too sensitive to noise, and would

therefore miss many outliers; on the other hand, a high value for k would regard almost

any app as an outlier.

CHABADA uses the average distance to the 5 closest neighbors as the “anomaly”

score of each app in the cluster, and it ranks the apps according to this score. The higher

the score, the more anomalous the behavior of an app is. Some apps may be flagged as

anomalies because they use few APIs that are never (or seldomly) used in the cluster.

15

Others may be considered anomalies because they use combinations of APIs that do

not occur frequently. Table 4 shows the anomaly score for the Official New York Jets

app, and shows the features with the highest values, i.e., the APIs that have the highest

impact on the final anomaly score.

By virtue of this distance-based technique, CHABADA can assign an anomaly score

to each app within each cluster. These anomalies, though, are meant to be manually

evaluated, and it is therefore critical to select a cutoff value. Apps whose anomaly

score is above this cutoff value would be reported as anomalies, and the ones below this

value would be considered normal. It is not trivial to select a cutoff value, as it strongly

depends on the data. An easy solution would be to report as outliers a certain fraction

of the data, namely the apps with the highest score. An alternative common approach

would be to use quartile statistics.

The potential outliers here would be those apps whose score exceeds the third quartile

by more than 1.5 times the interquartile range (third quartile minus first quartile). This

is one of the standard measures for identifying outliers in a data set.

Within various clusters anomaly scores differ widely in their their range, contrast,

as well as in their meaning, and unfortunately this makes it difficult to interpret and

compare the results. In many cases, an identical outlier score in two different clusters can

denote substantially different degrees of outlierness, depending on different local data

distributions. Simple normalization for k-NN does not result in good contrast between

outliers and inlier scores, as it would just scale data onto the range [0, 1]. A solution to

this problem is to represent values as a probability of an application of being an outlier.

Following the approach proposed by Kriegel et al. [13] CHABADA transforms the

anomaly scores into probabilities using Gaussian Scaling.

Without drawing any assumptions on the distribution of the data, we can suppose,

according to the central limit theorem, that the computed anomaly scores have normal

distribution. Given the sample mean µ and the sample standard deviation σ of the set of

anomaly scores S, we can use its cumulative distribution function and the “Gaussian

error function” erf() to turn the anomaly score into a probability value:

P(s) = max
{
0, erf

(
s−µ√
2·σ

)}

16

All applications with non-zero probability are reported by CHABADA as outliers.

3.4. CHABADA as a Malware Detector

CHABADA can also be used to detect malware. For this task we use One-Class

Support Vector Machine learning (OC-SVM) [14], which is an unsupervised machine

learning technique to learn the features of one class of elements. The learned model

can then be used to evaluate new apps, and the classifier would decide whether they are

similar or different to the training set. Note how this is in contrast to the more common

usage of Support Vector Machines as classifiers, where each app additionally has to

be labeled as belonging to a specific class —say, “benign” vs. “malicious”—during

training.

OC-SVMs have been successfully applied in various contexts that span from doc-

ument classification [15] to automatic detection of anomalous Windows registry ac-

cesses [16]. In our context, the interesting feature of OC-SVM is that one can provide

only samples of one class (say, of regular benign applications), and the classifier will

be able to identify samples belonging to the same class, tagging the others as malware.

OC-SVMs, therefore, are mainly used in those cases in which there exist many samples

of one class of elements (e.g. benign applications), and not many samples of other

classes (e.g. malicious applications).

The OC-SVM algorithm first projects input data into a high dimensional feature

space via an appropriate kernel function, and considers the origin as the only sample

different from the training data. It then identifies the maximal margin on the hyperplane

that best separates the training data from the origin. The kernel mapping is necessary

since usually data in the initial feature space are not separable via linear hyperplane

division.

A training dataset containing anomalies would not result in a good model, since

outliers could significantly influence the decision boundary of a OC-SVM. With the

filtered APIs as features (as described in Section 3.2), CHABADA first identifies outliers,

as described in Section 3.3, and then trains a OC-SVM within each cluster with the

subset of the applications that were not tagged as outliers. Thus, the obtained model

represents the APIs that are commonly used by the applications in that cluster. The

17

resulting cluster-specific models are then used to classify new apps, that can be benign,

and thus expected to have features that are similar to the trained model, or malicious,

and thus expected to differ. Our OC-SVM uses a radial-bases-function (Gaussian) kernel,

which is the most commonly used for OC-SVM. It has been shown that for this type of

classification it performs better than other kernels (e.g., linear or polynomial) [17], and

this was also confirmed by our experiments.

The Gaussian kernel size, which represents how tight the boundary should fit over

the training data, has to be manually specified. It is essential to properly select this

parameter, as it highly influences the performance of the classifier. Too small values

would lead to overfitting, while a larger value of the kernel size would give a smoother

decision surface and more regular decision boundary.

Selecting the kernel size of OC-SVM remains an open problem. In CHABADA we

used the default kernel size value, as proposed by Schölkopf [18], which is equal to the

inverse of the feature space dimension. Using the default kernel size, however, does not

take into account the arrangement of data, and it is therefore not optimal. According

to Caputo et al. [19], the optimal value of the inverse kernel size γ lies between the

0.1 and 0.9 quantile of the statistics involving distance from training samples to their

center point. We thus now set γ to the mean of quantiles of this range, and this improves

significantly the results, as we will show in the evaluation.

Section 4 will show how γ influences the classification ability of CHABADA.

4. Evaluation

To evaluate the effectiveness of CHABADA, we investigated the following main

research questions:

RQ1 Can CHABADA effectively identify anomalies (i.e., mismatches between descrip-

tion and behavior) in Android applications? For this purpose, we visualized

how often anomalies occur in each cluster, and we manually analyzed the top

anomalies (Section 4.1).

18

RQ2 Are sensitive and rare APIs the appropriate features to detect anomalies? We

compare the results obtained with the sensitive and rare set of APIs, as described

in Section 3.2, against different sets of features (Section 4.2).

RQ3 Can CHABADA be used to identify malicious Android applications, and how does

the improved technique compare to [1]? For this purpose, we included in our test

set of applications a set of known malware, and we ran OC-SVM as a classifier.

We show how the improvements proposed in this paper lead to more accurate

results (Section 4.3).

4.1. RQ1: Anomaly Detection

To identify anomalies (i.e., mismatches between description and behavior) in An-

droid applications, we ran CHABADA on all 32 clusters, as described in Section 3.

The best way to evaluate whether the outliers that CHABADA identifies are in-

deed anomalous applications, is via manual evaluation. We did this in our conference

paper [1], and we found similar results using the new outlier detection mechanism

described in Section 3. Outliers fall into the following categories: 1) spyware appli-

cations, which mainly collect sensitive information about the user by means of third

party advertisement libraries 2) very unusual applications, i.e., applications that, al-

though benign, behave differently from other similar applications 3) benign applications

that were assigned to the wrong topic cluster, and thus behave differently from other

applications in the cluster. The third category shows that we should improve the first

step of the CHABADA approach (Section 2), but the other two categories show that the

outliers reported by CHABADA indeed have suspicious behavior, and should therefore

be further analyzed. We now list few examples of applications that appeared as top

outliers in the corresponding clusters. We list the cluster number, as reported in Table 3,

the package identified of the application, the anomaly score, a brief description (which

is a one line summary of the original one), the list of the top anomalous features, and a

brief comment:

19

7th cluster (language): com.edicon.video.free Score: 29112.7

All-In-One multi language video player.
android.media.AudioManager.stopBluetoothSco() 3025.00

android.media.AudioManager.startBluetoothSco() 3025.00

android.media.AudioManager.setBluetoothScoOn(boolean) 3025.00

android.media.AudioManager.isWiredHeadsetOn() 3025.00

android.media.AudioManager.isBluetoothA2dpOn() 3025.00

android.bluetooth.BluetoothAdapter.getState() 3025.00

android.bluetooth.BluetoothAdapter.enable() 3025.00

The app has been associated with the “language” cluster because the description emphasizes the multi-language support.

The main reason why this app was tagged as an outlier is because of the heavy bluetooth support, which is highly

uncommon both for video and for language applications. The bluetooth connection is likely required to support external

headsets.

10th cluster (sports game): com.mobage.ww.a987.PocketPlanes.Android Score: 21765.2

Flight simulator.
android.provider.Contacts.People.createPersonInMyContactsGroup(ContentResolver, ContentValues) 6595.00

android.provider.ContactsContract.RawContacts.getContactLookupUri(android.content.ContentResolver,android.net.Uri) 6595.00

android.provider.ContactsContract.Contacts.getLookupUri(android.content.ContentResolver, android.net.Uri) 6595.00

android.app.NotificationManager.notify(java.lang.String, int, android.app.Notification) 661.00

android.app.ActivityManager.getRunningTasks(int) 249.17

android.hardware.Camera.open() 191.33

android.location.LocationManager.getProvider(java.lang.String) 149.50

This application shows suspicious behavior. It can access the list of existing contacts, and it can add a new one. Moreover,

it can look at what tasks are currently running, and it can access the photo camera.

22nd cluster (advertisements): com.em.lwp.strippergirl Score: 3799.35

Erotic wallpaper.
android.provider.Browser.getAllBookmarks(android.content.ContentResolver) 1900.00

android.location.LocationManager.getLastKnownLocation(java.lang.String) 952.51

android.location.LocationManager.isProviderEnabled(java.lang.String) 275.79

android.location.LocationManager.requestLocationUpdates(java.lang.String) 241.97

android.location.LocationManager.getBestProvider(android.location.Criteria, boolean) 241.97

android.net.wifi.WifiManager.isWifiEnabled() 65.23

android.net.wifi.WifiManager.getConnectionInfo() 65.23

This application is clearly spyware, since it can access sensitive information of the user, such as the browser bookmarks

and the location. This app has been removed from the play store.

Beside a qualitative analysis of the results, we tried to estimate the ability of

CHABADA to detect anomalies by plotting the anomaly scores of the outliers of each

cluster. Intuitively, a good result would be to have few outliers with high anomaly scores

within each cluster. A worse result, instead, would be to have lots of outliers whose

anomaly score is not too high. In the second case, in fact, it would mean that there is no

clear border between the outliers and the normal applications. Figure 3 shows such plot.

We report the anomaly scores (on the y axis) of all the apps grouped per cluster (on the

x axis) scaled such that all clusters have the same width, in order to ease the comparison.

The cluster ids correspond to the ones listed in Table 3).

20

c(
0,

 1
)

0

0.1
0.15

1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 3: Apps grouped per cluster (x axis) according to their anomaly score (y axis).

As expected, the results vary depending on the cluster. There are clusters in which

the outliers are clear anomalies, as for instance clusters 5 or 29, and others for which

there are lots of outliers with high anomaly scores, for instance clusters 6 and 20. When

clusters have too many outliers, they lack a proper model of “normal” behavior, and as

a consequence our technique might be less effective in in such clusters.

4.2. RQ2: Feature Selection

Section 3.2 describes how we select the list of features to detect anomalous applica-

tions within a cluster. In [1] we considered the sensitive API usage as binary features

(i.e., 1 if the app used the API at least once, 0 otherwise), while we now use IDF to

weigh APIs. To evaluate whether the feature selection is reasonable, we ran the anomaly

detection process on each cluster with three different sets of features:

1. We considered binary values for sensitive API usage. These are the features used

in our conference paper [1] We refer to this setting as api-binary.

2. We weighed sensitive API according to IDF. This is, in our opinion, the optimal

set. We refer to this setting as api-idf.

21

0 5 10

0
5

10
15

Dimension 1

D
im

en
si

on
 2

API-binary features - Cluster 29

●
●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

● ●

●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●
●●●

●

●●
●

●

●●●

●●

●●
●

●

● ●

●

●

●
●

●

●●

●
●

●

● ●
●

●

●●●●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●● ●

●

●

●

●

●

●

●

●

●

●●

●● ●●
● ●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●●
●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●●● ●● ●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●
● ●
●●
●●●

●
●

●

●

●●
●

●
●

●●

●
●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●
●● ●

●
●

●

● ●

●

● ●● ●
●●

●

●

●●

●

●

●

●●

●

●

●●
●

●
●●●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●

●●

●●●●●

●●●●

●●●●

●●

●●●
●

●●●●

● ●●●
●●

●●●●

●●●

●●●●

●●

●

●●●●

●●

●

●●●●
●

●●

●●●

●●

●
●●●

●

●●
●

●

●
●●●●●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●
●●●● ●

●
●

●●●
●

●●●●●
●●

●

●●

●

●

●● ●●●●

●●●●●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

0 5 10

0
5

10
15

Dimension 1
D

im
en

si
on

 2

API-IDF features - Cluster 29
0 5 10

0
5

10
15

Dimension 1

D
im

en
si

on
 2

Permission-IDF features - Cluster 29

Figure 4: Plots of the distances among apps in clusters 29. From left to right, these plots show the distance

between apps when using api-binary features, as in [1], api-idf, as described in Section 3.2, and permission-idf.

3. We used permissions instead of APIs, and we weighed permissions with IDF. With

this, we wanted to evaluate whether using permissions could be considered a valid

alternative to using APIs. We refer to this setting as permission-idf.

Comparing different settings is not trivial, as it would require an extensive manual

inspection. We instead visually compare the distance-based plots of several clusters.

Figure 4 shows the plots of cluster 29, which is one of the clusters for which we have

better results. From left to right, the plots show the three different settings described

above: api-binary, api-idf, and permission-idf.

We used multi-dimensional scaling, which is a statistical technique used to visualize

dissimilarity of multi-dimensional data. This allowed us to plot data in two dimensions,

and at the same time preserve the original distances in the multi-dimensional space as

accurately as possible [20].

As we can see, by using permissions or APIs with IDF it is possible to differentiate

the anomalies better, since the distance between the outliers and the rest of the cluster

is emphasized. Among the two options, though, it is better to use APIs instead of

permissions. In the next Section we provide more evidence that using IDF can lead to

better results.

4.3. RQ3: Malware Detection

Let us now turn to RQ3: Can CHABADA be used to identify malicious Android

applications? And do the improvements proposed in this paper lead to better results

22

that the ones presented in [1]? For this purpose, we used the dataset of Zhou et al. [21]

containing more than 1,200 known malicious apps for Android. This is the same dataset

that we used in the original CHABADA paper [1]. In their raw form, these apps lack

metadata such as title or description. Since many of these apps are repackaged versions

of original apps, we were able to collect the appropriate description from the Google

Play Store. We used the title of the application and the package identifier to search

for the right match in the Store. For 72 cases we could find exactly the same package

identifier, and for 116 applications we found applications whose package identifiers

were very similar. We manually checked that the match was correct. As with our original

set of “benign” apps (Section 2.1), we only kept those applications with an English

description in the set, reducing it to 172 apps.

As a malware detector, we used the OC-SVM classifier, as described in Section 3.4.

Within each cluster, we trained the model using only the applications that were not

tagged as outliers by the distance-based algorithm. Following K-fold validation, we

partitioned the entire set of non outlier benign applications in 10 subsets, and we used

9 subsets for training the model and 1 for testing. We then included the malicious

applications in the test set, and we ran this 10 times, each time considering a different

subset for testing. What we thus simulated is a situation in which the malware attack

is entirely novel, and CHABADA must correctly identify the malware as such without

knowing previous malware patterns. The number of malicious applications are not be

equally distributed across clusters, as malicious applications are assigned to clusters

depending on their descriptions. In our evaluation setting, with our data set, the number

of malicious applications per cluster spans from 0 to 39.

To evaluate the performance of a classifier we use the standard approach of the

Receiver Operating Characteristic (ROC) [22]. A ROC curve depicts the relative tradeoffs

between benefits (True Positives) and costs (False Positives). Figure 5 shows the results

of our experiments in the form of this ROC curve, which plots the true positives rate

against the false positive rate considering different thresholds.

Figure 5 shows the ROC curves of the worst and best clusters (cluster 16 and 7

respectively), and the average performance on all clusters. To obtain these numbers,

we computed the average over 10 different runs. We also report the Area Under the

23

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7th cluster
average
16st cluster

Figure 5: ROC curves, representing the fraction of true positives out of the total actual positives vs. the

fraction of false positives out of the total actual negatives. We report the average performance of the classifier

across all clusters, for which the Area Under Curve (AUC) is equal to 0.87. We also plot the performance for

the worst (16st cluster) and best clusters (7th cluster).

ROC curve (AUC) [22] metric, which can expose the predictive accuracy obtained by

the classifier. When AUC is equal to 1.0, it means that the classification was perfect,

while an area of 0.5 represents a worthless test. CHABADA as a classifier has a very

good performance, as the AUC is 0.87 on the considered dataset, and thus we can claim

that it is effective at detecting malware, reporting only limited false positives.

In our first paper, CHABADA used the set of sensitive Android APIs as binary

features. Moreover, we did not filter anomalous applications when training the model

for classification, and we used the default (and therefore not optimal) values for the

kernel size and marginal error for OC-SVM. Section 3 described all the improvements

that we implemented in the new release of CHABADA. To evaluate the effectiveness

of our technique as a malware detector, we evaluate how such improvements had an

impact on the final result.

24

Table 5: Evaluation of the malware detection ability of CHABADA with different settings

Filter γ ν

True Positive Rate

(Malware

recognized as such)

True Negative Rate

(Benignware

recognized as such)

Geometric

accuracy
.

IDF Binary IDF Binary IDF Binary

– default 0.15 0.610 0.564 0.845 0.841 0.718 0.689

– optimal 0.05 0.592 0.484 0.889 0.915 0.726 0.666

– optimal 0.1 0.609 0.539 0.870 0.869 0.728 0.684

+ default 0.02 0.633 0.535 0.962 0.96 0.780 0.716

+ default 0.1 0.726 0.637 0.890 0.885 0.804 0.750

+ optimal 0.02 0.737 0.695 0.890 0.902 0.810 0.791

+ optimal 0.05 0.738 0.752 0.884 0.887 0.808 0.791

+ optimal 0.1 0.752 0.738 0.850 0.856 0.799 0.795

+ optimal 0.15 0.810 0.771 0.814 0.813 0.812 0.792

Table 5 shows the detailed results of the evaluation considering different parameters.

The first column (Filter) lists whether malware detection ran on filtered data. The +

sign means that we ran the anomaly detection first, and we removed the outliers from

the training set. The – sign means that we considered all the applications, as we did

in [1]. The second column lists whether the γ parameter of OC-SVM was automatically

selected to have optimal results, or whether the default value was selected, as in [1].

γ is related to the kernel size, as explained in Section 3.3. The third column lists the

value assigned to the ν parameter, which can be specified in OC-SVM. The parameter ν

is an upper bound on the fraction of margin errors in training data and a lower bound

of the fraction of support vectors relative to the total number of training examples.

Assigning a small value to ν will produce less false positives and likely more false

negatives, while assigning greater values to ν would have the opposite effects. In [1]

we used the default value. The last six columns report the results obtained with the

corresponding settings using APIs as binary features (as in [1]) or weighing them using

IDF (as explained in Section 3.2). We report the True Positive Rate (TPR) (i.e. the

fraction of malicious Android apps that were recognized as such), the True Negative

Rate (TNR) (i.e. the fraction of benign Android apps that were recognized as such),

and the Geometric Accuracy. We report the geometric accuracy because we have

highly unbalanced datasets (malicious vs. benign applications), and therefore common

25

accuracy metrics would have distorting effects [23]. The geometric accuracy can be

computed with the following formula:

g =
√

TPR× TNR

Just as we did for the plot in Figure 5, we report the average values of 10 runs. The

first highlighted row reports the results and the setting used in the original CHABADA

paper. This, in essence, represents the baseline for our malware detector. This row also

reports how only applying IDF to the used features would have changed the results. As

highlighted in bold, without any of the improvements that we described in this paper we

could detect 56.4% of malware as such, and 84.1% of benignware as such.

The other two highlighted rows in Table 5 show the results of the using the improve-

ments described in this paper. In essence, we propose two possible settings, which both

achieve an accuracy of over 79% (instead of 69% as in [1]). Using a small ν value

would report a limited number of false positives (11%), and at the same time would

detect a high number of malicious apps (73.7%). Using a bigger ν value, instead, would

increase the number of detected malicious apps up to 81%, but at the cost of reporting

more false positives (19%).

With the improvements proposed in this paper, CHABADA correctly recognizes 73.7%

of malware as such, with only 11% of false positives.

The results in Table 5 clearly highlight the following facts:

• Training the OC-SVM model without the identified outliers clearly improves the

classifier results. This is obvious, as removing outliers helps creating a model that

better represents the core features of the cluster.

• Tuning the γ value, which relates to the kernel size of the OC-SVM model, can

also lead to significantly better results.

• Assigning weights to APIs with IDF produces consistently better results than using

APIs as binary features.

Thus, the three main improvements that we propose in this paper (filtering outliers,

optimal selection of the OC-SVM kernel size, and using IDF to assign weights to APIs)

can produce results that are significantly better than the ones we presented in [1].

26

Choosing parameter ν is a matter of taste, as it depends whether it is more important

to have as little false positives as possible (and consequently choose a smaller value for

ν) or to have as little false negatives as possible (and consequently choose a higher value

for ν). In this context it is probably better to detect as many malicious applications as

possible, and consequently a higher value of ν should be chosen (last highlighted row in

Table 5). However, if it is desirable to lower the number of false positives, a lower value

of ν can be selected, and still have comparable effectiveness (second highlighted row in

Table 5). This tradeoff can be tuned using the ROC curve of Figure 5.

4.4. Limitations and Threats to Validity

We inherit most of the limitations of the original CHABADA paper, and we include a

new one that comes with the filtering phase. The most important threats and limitations

are listed below.

Grey area in classification. Filtering outliers when building the model to classify new

applications leads to significant improvements in malware detection. The conse-

quence of this gain, however, is that the outlier apps that are filtered out in first

place cannot be classified. More precisely, these apps are reported in a “grey

area”, that is, they are suspicious since they are not as the majority of the apps in

the same cluster, but CHABADA does not report them as clearly malicious.

External validity. CHABADA relies on establishing a relationship between description

topics and program features from existing, assumed mostly benign, applications.

We cannot claim that said relationships could be applied in other app ecosystems,

or be transferable to these. We have documented our steps to allow easy replication

of our approach.

Free apps only. Our sample of 22,521 apps is based on free applications only; i.e.

applications that need to generate income through ads, purchases, or donations.

Not considering paid applications makes our dataset biased. However, the bias

would shift “normality” more towards apps supported by ads and other income

methods, which are closer to undesired behavior exposed by malware. Our results

27

thus are conservative and would rather be improved through a greater fraction of

paid applications, which can be expected to be benign.

App and malware bias. Our sample also only reflects the top 150 downloads from

each category in the Google Play Store. This sample is biased towards frequently

used applications, and towards lesser used categories; likewise, our selection of

malware (Section 4) may or may not be representative for current threats. Not

knowing which actual apps are being used, and how, by Android users, these

samples may be biased. Again, we allow for easy reproduction of our approach.

Native code and obfuscation. We limit our analyses to the Dalvik bytecode. We do

not analyze native code. Hence, an application might rely on native code or

use obfuscation to perform covert behavior; but then, such features may again

characterize outliers; also, neither of these would change the set of APIs that must

be called.

Static analysis. As we rely on static API usage, we suffer from limitations that are

typical for static analysis. In particular, we may miss behavior induced through

reflection, i.e. code generated at runtime. Although there exist techniques to

statically analyze Java code using reflection, such techniques are not directly

applicable with Android apps [24]; in the long run, dynamic analysis paired with

test generation may be a better option.

Static API declarations. Since we extract API calls statically, we may consider API

calls that are never executed by the app. Checking statically whether an API is

reached is an instance of the (undecidable) halting problem. As a workaround, we

decided to consider an API only if the corresponding permission is also declared

in the manifest.

Sensitive APIs. Our detection of sensitive APIs (Section 3.2) relies on the mapping by

Felt et al. [7], which now, two years later, may be partially outdated. Incorrect

or missing entries in the mapping would make CHABADA miss or misclassify

relevant behavior of the app.

28

5. Related Work

While this work may be the first to generally check app descriptions against app

behavior, it builds on a history of previous work combining natural language processing

and software development.

5.1. Mining App Descriptions

Most related to our work is the AsDroid prototype, which can detect malicious

behavior by identifying mismatches between the program behavior and the user inter-

face [25]. CHABADA and AsDroid share the same final intent, but AsDroid checks the

text in GUI components, while we use the program description. AsDroid, though, fo-

cuses on few permissions, and works only if the GUI elements contain textual keywords.

CHABADA, instead, uses the application description, which is always available, and

works with any permission or API call.

Also very related to our work is the WHYPER framework of Pandita et al. [26].

Just like our approach, WHYPER attempts to automate the risk assessment of Android

apps, and applies natural language processing to app descriptions. The aim of WHYPER

is to tell whether the need for sensitive permissions (such as accesses to contacts or

calendar) is motivated in the application description. In contrast to CHABADA, which

fully automatically learns which topics are associated with which APIs (and by extension,

which permissions), WHYPER requires manual annotation of sentences describing the

need for permissions. Also, CHABADA goes beyond permissions in two ways: first, it

focuses on APIs, which provide a more detailed view, and it aims for general mismatches

between expectations and implementations.

The very idea of app store mining was introduced one year earlier when Harman et

al. mined the Blackberry app store [27]. They focused on app meta-data to find patterns

such as a correlation consumer rating and the rank of app downloads, but would not

download or analyze the apps themselves.

Our characterization of “normal” behavior comes from mining related applications;

in general, we assume what most applications in a well-maintained store do is also what

most users would expect to be legitimate. In contrast, recent work by Lin et al. [28]

29

suggests crowdsourcing to infer what users expect from specific privacy settings; just

like we found, Lin et al. also highlight that privacy expectations vary between app

categories. Such information from users can well complement what we infer from app

descriptions.

5.2. Behavior/Description Mismatches

Our approach is also related to techniques that apply natural language processing

to infer specifications from comments and documentation. Lin Tan et al. [29] extract

implicit program rules from program corpora and use these rules to automatically

detect inconsistencies between comments and source code, indicating either bugs or bad

comments. Rules apply to ordering and nesting of calls and resource accesses (“fa must

not be called from fb”).

Høst and Østvold [30] learn from program corpora which verbs and phrases would

normally be associated with specific method calls, and used these to identify misnamed

methods.

Pandita et al. [31] identify sentences that describe code contracts from more than

2,500 sentences of API documents; these contracts can be checked either through tests

or static analysis.

All these approaches compare program code against formal program documentation,

whose semi-formal nature makes it easier to extract requirements. In contrast, CHABADA

works on end-user documentation, which is decoupled from the program structure.

5.3. Detecting Malicious Apps

There is a large body of industrial products and research prototypes that focus on

identifying known malicious behavior. Most influential for our work was the paper by

Zhou and Jiang [21], who use the permissions requested by applications as a filter to

identify potentially malicious applications; the actual detection uses static analysis to

compare sequences of API calls against those of known malware. In contrast to all these

approaches, CHABADA identifies outliers even without knowing what makes malicious

behavior.

30

The TAINTDROID system [32] tracks dynamic information flow within Android

apps and thus can detect usages of sensitive information. Using such dynamic flow infor-

mation would yield far more precise behavior insights than static API usage; similarly,

profilers such as ProfileDroid [33] would provide better information; however, both

TAINTDROID and ProfileDroid require a representative set of executions. Integrating

such techniques in CHABADA, combined with automated test generation [34, 35, 36, 37],

would allow to learn normal and abnormal patterns of information flow; this is part of

our future work (Section 6).

6. Conclusion and Future Work

By clustering apps according to description topics, and identifying outliers by API

usage within each cluster, our CHABADA approach effectively identifies applications

whose behavior would be unexpected given their description. In [1] we have identified

several examples of false and misleading advertising; and as a side effect, obtained

a novel effective detector for yet unknown malware. This paper presented several

improvements on the original technique, and thus allows to have a more powerful

malware detector.

In future we plan to provide better techniques to cluster applications according to

their descriptions. This should improve the ability of CHABADA to identify relevant

abnormal behaviors. Furthermore, we plan to integrate dynamic information in the

approach, thus overcoming the known limitations of static analysis.

The dataset that we used for our evaluation, as well as a list of more detailed results

are available on the CHABADA web site:

http://www.st.cs.uni-saarland.de/appmining/chabada/

Acknowledgments.

This work was funded by the European Research Council (ERC) Advanced Grant

“SPECMATE – Specification Mining and Testing”.

31

http://www.st.cs.uni-saarland.de/appmining/chabada/

References

[1] A. Gorla, I. Tavecchia, F. Gross, A. Zeller, Checking app behavior against app

descriptions, in: ACM/IEEE International Conference on Software Engineering

(ICSE), 2014, pp. 1025–1035. doi:10.1145/2568225.2568276.

[2] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,

Cambridge University Press, 2008.

[3] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent Dirichlet allocation, Journal of Machine

Learning Research 3 (2003) 993–1022.

[4] A. K. McCallum, Mallet: A machine learning for language toolkit,

http://mallet.cs.umass.edu (2002).

[5] J. B. MacQueen, Some methods for classification and analysis of multivariate

observations, in: L. M. L. Cam, J. Neyman (Eds.), Berkeley Symposium on

Mathematical Statistics and Probability, Vol. 1, University of California Press,

1967, pp. 281–297.

[6] P. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis, Journal of Computational and Applied Mathematics 20 (1) (1987)

53–65. doi:10.1016/0377-0427(87)90125-7.

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions demys-

tified, in: ACM Conference on Computer and Communications Security (CCS),

ACM, New York, NY, USA, 2011, pp. 627–638. doi:10.1145/2046707.

2046779.

[8] G. Salton, M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill

Book Company, 1983.

[9] E. M. Knorr, R. T. Ng, Algorithms for mining distance-based outliers in large

datasets, in: Proceedings of the 24rd International Conference on Very Large Data

Bases (VLDB), Morgan Kaufmann Publishers Inc., 1998, pp. 392–403.

32

http://dx.doi.org/10.1145/2568225.2568276
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779

[10] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers

from large data sets, in: Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD), ACM, 2000, pp. 427–438. doi:

10.1145/342009.335437.

[11] F. Angiulli, C. Pizzuti, Fast outlier detection in high dimensional spaces, in:

Proceedings of the 6th European Conference on Principles of Data Mining and

Knowledge Discovery (PKDD), Springer-Verlag, 2002, pp. 15–26.

[12] S. D. Bay, M. Schwabacher, Mining distance-based outliers in near linear time

with randomization and a simple pruning rule, in: 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2003, pp.

29–38. doi:10.1145/956750.956758.

[13] E. S. Hans-Peter Kriegel, Peer Kröger, A. Zimek, Interpreting and unifying outlier

scores, in: 11th SIAM International Conference on Data Mining (SDM), 2011,

SIAM, 2011, pp. 13–24. doi:10.1137/1.9781611972818.

[14] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, R. C. Williamson,

Estimating the support of a high-dimensional distribution, Neural Computation

13 (7) (2001) 1443–1471. doi:10.1162/089976601750264965.

[15] L. M. Manevitz, M. Yousef, One-class SVMs for document classification, Journal

of Machine Learning Research 2 (2002) 139–154.

[16] K. A. Heller, K. M. Svore, A. D. Keromytis, S. J. Stolfo, One class support vector

machines for detecting anomalous windows registry accesses, in: ICDM Workshop

on Data Mining for Computer Security (DMSEC), 2003.

[17] D. Tax, P. Juszczak, Kernel whitening for one-class classification, in: S.-W. Lee,

A. Verri (Eds.), Pattern Recognition with Support Vector Machines, Vol. 2388 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2002, pp. 40–52.

doi:10.1007/3-540-45665-1_4.

33

http://dx.doi.org/10.1145/342009.335437
http://dx.doi.org/10.1145/342009.335437
http://dx.doi.org/10.1145/956750.956758
http://dx.doi.org/10.1137/1.9781611972818
http://dx.doi.org/10.1162/089976601750264965
http://dx.doi.org/10.1007/3-540-45665-1_4

[18] B. Schölkopf, A. J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, USA,

2001.

[19] B. Caputo, K. Sim, F. Furesjo, A. Smola, Appearance-based object recognition

using svms: Which kernel should i use?, in: NIPS workshop on Statistical methods

for computational experiments in visual processing and computer vision, 2002.

[20] T. Cox, M. Cox, Multidimensional Scaling, Chapman & Hall, 2001.

[21] Y. Zhou, X. Jiang, Dissecting Android malware: Characterization and evolution,

in: IEEE Symposium on Security and Privacy (SP), IEEE Computer Society,

Washington, DC, USA, 2012, pp. 95–109. doi:10.1109/SP.2012.16.

[22] T. Fawcett, An introduction to roc analysis, Pattern Recogn. Lett. 27 (8) (2006)

861–874. doi:10.1016/j.patrec.2005.10.010.

[23] M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-

sided selection, in: In Proceedings of the Fourteenth International Conference on

Machine Learning, Morgan Kaufmann, 1997, pp. 179–186.

[24] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, M. Mezini, Taming reflection:

Aiding static analysis in the presence of reflection and custom class loaders, in:

ACM/IEEE International Conference on Software Engineering (ICSE), ACM,

2011, pp. 241–250. doi:10.1145/1985793.1985827.

[25] J. Huang, X. Zhang, L. Tan, P. Wang, B. Liang, Asdroid: Detecting stelthy behav-

iors in android applications by user interface and program behavior contradiction,

in: ACM/IEEE International Conference on Software Engineering (ICSE), 2014,

pp. 1036–1046. doi:10.1145/2568225.2568301.

[26] R. Pandita, X. Xiao, W. Yang, W. Enck, T. Xie, WHYPER: Towards automating

risk assessment of mobile applications, in: USENIX Security Symposium, 2013,

pp. 527–542.

34

http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/2568225.2568301

[27] M. Harman, Y. Jia, Y. Zhang, App store mining and analysis: MSR for app stores,

in: IEEE Working Conference on Mining Software Repositories (MSR), 2012, pp.

108–111. doi:10.1109/MSR.2012.6224306.

[28] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, J. Zhang, Expectation and

purpose: understanding users’ mental models of mobile app privacy through

crowdsourcing, in: ACM Conference on Ubiquitous Computing (UbiComp),

ACM, 2012, pp. 501–510. doi:10.1145/2370216.2370290.

[29] L. Tan, D. Yuan, G. Krishna, Y. Zhou, /* iComment: Bugs or bad comments? */,

in: ACM SIGOPS Symposium on Operating Systems Principles (SOSP), 2007, pp.

145–158.

[30] E. W. Høst, B. M. Østvold, Debugging method names, in: European Conference

on Object-Oriented Programming (ECOOP), Springer, 2009, pp. 294–317.

[31] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, A. Paradkar, Inferring method

specifications from natural language API descriptions, in: ACM/IEEE International

Conference on Software Engineering (ICSE), 2012.

[32] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth,

TaintDroid: an information-flow tracking system for realtime privacy monitoring

on smartphones, in: USENIX conference on Operating Systems Design and

Implementation (OSDI), USENIX Association, 2010, pp. 1–6.

[33] X. Wei, L. Gomez, I. Neamtiu, M. Faloutsos, ProfileDroid: multi-layer profiling

of Android applications, in: ACM Annual International Conference on Mobile

Computing and networking (MobiCom), ACM, New York, NY, USA, 2012, pp.

137–148. doi:10.1145/2348543.2348563.

[34] C. Hu, I. Neamtiu, Automating GUI testing for Android applications, in: Interna-

tional Workshop on Automation of Software Test (AST), ACM, New York, NY,

USA, 2011, pp. 77–83. doi:10.1145/1982595.1982612.

[35] W. Yang, M. R. Prasad, T. Xie, A grey-box approach for automated GUI-model

generation of mobile applications, in: International Conference on Fundamental

35

http://dx.doi.org/10.1109/MSR.2012.6224306
http://dx.doi.org/10.1145/2370216.2370290
http://dx.doi.org/10.1145/2348543.2348563
http://dx.doi.org/10.1145/1982595.1982612

Approaches to Software Engineering (FASE), Springer-Verlag, Berlin, Heidelberg,

2013, pp. 250–265. doi:10.1007/978-3-642-37057-1_19.

[36] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for

Android apps, in: European Software Engineering Conference held jointly with

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE), ACM, New York, NY, USA, 2013, pp. 224–234. doi:http:

//dx.doi.org/10.1145/2491411.2491450.

[37] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, A. M. Memon,

Using GUI ripping for automated testing of Android applications, in: IEEE/ACM

International Conference on Automated Software Engineering (ASE), ACM, New

York, NY, USA, 2012, pp. 258–261. doi:10.1145/2351676.2351717.

36

http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://dx.doi.org/http://dx.doi.org/10.1145/2491411.2491450
http://dx.doi.org/http://dx.doi.org/10.1145/2491411.2491450
http://dx.doi.org/10.1145/2351676.2351717

	Introduction
	Clustering Apps by Description
	Collecting Applications
	Preprocessing Descriptions with NLP
	Identifying Topics with LDA
	Clustering Apps with K-means
	Finding the Best Number of Clusters
	Resulting App Clusters

	Identifying Anomalies by APIs
	Extracting API Usage
	Sensitive and Rare APIs
	Distance-based Outlier Detection
	CHABADA as a Malware Detector

	Evaluation
	RQ1: Anomaly Detection
	RQ2: Feature Selection
	RQ3: Malware Detection
	Limitations and Threats to Validity

	Related Work
	Mining App Descriptions
	Behavior/Description Mismatches
	Detecting Malicious Apps

	Conclusion and Future Work

