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ABSTRACT
We show that equivocation, i.e., making conflicting state-
ments to others in a distributed protocol, can be monetar-
ily disincentivized by the use of crypto-currencies such as
Bitcoin. To this end, we design completely decentralized
non-equivocation contracts, which make it possible to pe-
nalize an equivocating party by the loss of its money. At
the core of these contracts, there is a novel cryptographic
primitive called accountable assertions, which reveals the
party’s Bitcoin credentials if it equivocates.
Non-equivocation contracts are particularly useful for dis-

tributed systems that employ public append-only logs to
protect data integrity, e.g., in cloud storage and social net-
works. Moreover, as double-spending in Bitcoin is a special
case of equivocation, the contracts enable us to design a
payment protocol that allows a payee to receive funds at
several unsynchronized points of sale, while being able to
penalize a double-spending payer after the fact.

Categories and Subject Descriptors
C2.4 [Computer-communication networks]: Distributed
systems; K4.4 [Computers and society]: Electronic com-
merce—cybercash, digital cash, payment schemes, security

Keywords
crypto-currencies; Bitcoin; equivocation; append-only logs;
accountability; double-spending; payment channels

1. INTRODUCTION
Making conflicting statements to others, or equivocation,

is a simple yet remarkably powerful tool of malicious par-
ticipants in distributed systems of all kinds [3, 17, 18, 31].
In distributed computing protocols, equivocation leads to
Byzantine faults and fairness issues. When feasible, equivo-
cation is handled by assuming an honest majority (i.e., larger
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replication factors [25]), synchrony assumptions and digital
signatures [24], or trusted hardware [3, 17, 18, 31]. Moreover,
publicly verifiable append-only logs [20, 21, 22, 32] make it
possible to detect equivocation after the fact but they do not
suffice to stop or penalize equivocation.
Decentralized crypto-currency systems such as Bitcoin [9,

33] and its derivatives follow a novel approach to handle
equivocation. To protect against equivocation in the form
of double-spending, i.e., spending the same funds to differ-
ent parties, Bitcoin employs a special decentralized public
append-only log based on proof of work called the blockchain:
In a decentralized crypto-currency, users transfer their funds
by publishing digitally signed transactions. Transactions are
confirmed only when they are included in the blockchain,
which is generated by currency miners that solve proof-of-
work puzzles. Although a malicious owner can sign over the
same funds to multiple receivers through multiple transac-
tions, eventually only one transaction will be approved and
added to the publicly verifiable blockchain.
As a result, to stop equivocation, it is possible to record all

messages in a distributed system that are vulnerable to equiv-
ocation in a blockchain. Nevertheless, due to proof-of-work
computations and the decentralized nature of blockchain sys-
tems, the process of reaching consensus is not only expensive
but also only slowly converging. In Bitcoin, it takes tens of
minutes to reach consensus on the set of valid transactions.
To enable transactions be performed faster, a contractual

solution in the form of payment channels [42, 45] is emerging
in the Bitcoin community [36, 44]. Here, a payer makes a
time-locked deposit for his predetermined payee such that
double-spending (or equivocation) is excluded even when pay-
ments are performed offline and without waiting. However,
payment channels are not secure against double-spending
when the payee runs several geographically distributed and
unsynchronized points of sale, e.g., a bus company selling
tickets on buses with only sporadic Internet connectivity.
Our goal in this paper is to address these equivocation

issues by a generic solution that disincentives paltering and
is applicable to various distributed systems and scenarios
including the aforementioned payment channels with unsyn-
chronized points of sale.

1.1 Contributions
Our key idea towards preventing equivocation is to use

Bitcoin to prescribe a monetary penalty for equivocation.
Accountable Assertions. As a first step, we establish
a cryptographic connection between equivocation and the
loss of funds by introducing a cryptographic primitive called
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accountable assertions (Section 4). The main idea of this
primitive is to bind statements to contexts in an accountable
way: if the attacker equivocates, i.e., asserts two contradict-
ing statements in the same context, then any observer can
extract the attacker’s Bitcoin secret key and, as a result, use
it to force the loss of the attacker’s funds.
We present a construction of accountable assertions based

on chameleon hash functions [28] and prove it secure in
the random oracle model under the discrete logarithm as-
sumption (Section 5). A performance evaluation of our
construction demonstrates its practicality with respect to
computation, communication, and storage costs.
Non-equivocation Contracts. To ensure that a secret
key obtained through equivocation is indeed associated with
funds, every party that should be prevented from equivo-
cating is required to put aside a certain amount of funds in
a deposit [1, 5, 30, 37]. These funds are time-locked in the
deposit, i.e., the depositor cannot withdraw them during a
predetermined time period. This prevents an attacker from
spending the funds and thus rendering the secret key useless
just before equivocating.
Accountable assertions and deposits together enable us

to design non-equivocation contracts, a generic method to
penalize paltering in distributed systems (Section 6). We
propose several applications of non-equivocation contracts
to ensure the linearity of append-only logs [20, 21, 22, 32].
Asynchronous Payment Channels. Bitcoin payment
channels protocols [42, 45] enable a user to perform pay-
ments to a predetermined party offline and without waiting
for the consensus process.
However, if a payee is a distributed entity (e.g., a bus

service with several buses as points of sale with only spo-
radic Internet connectivity) then even payment channels do
not prevent double-spending. Since double-spending is an
instance of equivocation, non-equivocation contracts enable
us to design asynchronous payment channels, which make it
possible to penalize double-spending payers (Section 7).
Double-Authentication-Preventing Signatures. Of in-
dependent interest, we observe that accountable assertions
are similar to double-authentication-preventing signatures
(DAPS) as proposed by Poettering and Stebila [35]. While
accountable assertions are in general a weaker primitive, cer-
tain accountable assertions are DAPS. It was left as an open
problem to construct DAPS based on trees or chameleon hash
functions [35]. We solve these problems, and our account-
able assertion scheme based on Merkle tress and chameleon
hash functions in the random oracle model yields the first
DAPS scheme secure under the discrete logarithm assump-
tion (Appendix A). For practical parameters, it is two orders
of magnitude faster than the original DAPS construction [35],
and uses one order of magnitude less communication.

2. OVERVIEW
We conceptualize decentralized non-equivocation contracts

and discuss their potential applications.
Problem Statement. Equivocation, i.e., making conflict-
ing statements to different protocol parties, is a universal
problem in malicious fault-tolerant security protocols involv-
ing three or more parties [3, 17, 18, 31]. In all bounded or
partial synchronous communication settings, equivocation
can be detected using digital signatures (together with a
public-key infrastructure) and some interaction among the

parties [18]: two recipients who are expected to receive the
same message from a sender can exchange the received signed
messages to expose and prove equivocation. This principle
underlies many append-only logs [20, 21, 22, 32].
However, it is often not possible to impose a penalty on a

maliciously or carelessly equivocating sender after the fact, as
the sender may be anonymous or pseudonymous. Even when
the sender is not anonymous and may lose her reputation
once a case of equivocation is detected, the effect of such
paltering can be damaging.

Key Idea. Our key idea is to let the sender create a time-
locked Bitcoin deposit [1, 5, 30, 37] that can be opened
by the recipients if the sender equivocates. In case of an
equivocation, the funds will be given either to a predefined
beneficiary or, once the expiry time of the deposit is reached,
to the miners. If the expected loss is high enough, the
attacker has no incentive to make conflicting statements.

Threat Model. The attacker is a malicious sender whose
goal is to equivocate without losing the deposit. To achieve
that goal, the attacker can deviate arbitrarily from the pre-
scribed protocol but she does not risk to lose her deposit if
the expected loss is higher than the expected gain.
We assume that the attacker cannot break the fundamental

security of Bitcoin, e.g., the attacker does not have the
majority of computing power in the Bitcoin network.

Non-equivocation Contracts. We describe the main idea
of non-equivocation contracts, which are a form of smart
contracts [10, 27, 37], in more detail. The sender A creates
a time-locked deposit as a guarantee for her honest behavior.
The deposit is secured by the sender’s secret key skA; the
corresponding public key is pkA. Furthermore, the deposit
expires at some point T in the future. That is, even though
A owns the secret key skA, she cannot access the funds in
the deposit until time T . Before time T , only A together
with a predefined beneficiary P can access the funds. This
beneficiary will be given the funds if A equivocates. (There
is also a variant of deposits for which the beneficiary is a
randomly selected miner. We will explain this later.)
Once the deposit is confirmed by the Bitcoin network,

parties are ready to receive statements from the sender A.
Non-equivocating contracts are built on the idea that it

is possible to learn the key skA if the sender A equivocates.
To enforce this cryptographically, we introduce accountable
assertions, which allow the user A to produce assertions τ of
statements st in contexts ct (where st and ct can be arbitrary
bitstrings) under the public key pkA.
The sender A is held accountable in the following sense:

If A behaves honestly, skA will stay secret, and A can use
it to withdraw the deposit once time T has been reached.
However, if A equivocates to some honest users B and C,
i.e., A asserts two different statements st0 6= st1 in the same
context ct, then B and C can use st0, st1, ct and the two
corresponding assertions τ0 and τ1 to extract the sender’s
secret key skA. Due to the way the deposit is created, the
recipients B and C alone cannot make use of skA. However,
B and C can send skA to the beneficiary P , who can use
skA together with his credentials to withdraw the deposit
and thereby penalize the malicious sender A.
Note that B, C and P could as well be protocol parties

that belong to essentially the same distributed entity but are
just not synchronized when receiving statements from A.
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3. BACKGROUND ON BITCOIN
Bitcoin is an online digital cryptographic currency run

by a decentralized peer-to-peer network. In this section, we
explain the basics of Bitcoin that are relevant to our work.
For a detailed explanation of the mechanics of Bitcoin, we
refer the reader to the Bitcoin developer guide [6].

Users. A user in the Bitcoin network is identified using
one or more public keys pk of the ECDSA signature scheme.
Typically, the owner of the corresponding secret key sk can
use sk to transfer bitcoins (symbol: B) associated with pk
to another address by signing transactions.

Blockchain. Miners include transactions in blocks. By
solving a proof-of-work (POW) puzzle, a block including its
transactions is added to the blockchain. Once added, a block
and its transactions are difficult to modify because blocks are
cryptographically chained together, and modifying a block
involves re-doing the POW for this and all sequential blocks.
A transaction that has been included in the blockchain and
backed up by the POW computations of several blocks is
thus difficult to invalidate. Most users consider a transaction
confirmed if it has has been backed up by least six blocks,
and the Bitcoin network takes 10 min on average to perform
the POW of one block.

Scripts. Bitcoin employs a scripting language to specify
under which conditions an unspent output, i.e., some unspent
funds in the blockchain, can be spent. The language is a
simple stack-based language. It is intentionally not Turing-
complete to avoid complexity and the possibility of creating
scripts that are expensive to execute, and could consequently
lead to denial-of-service attacks, because every node in the
Bitcoin network must execute them.
Each transaction sends funds to a script (called ScriptPub-

Key), i.e., a small program that specifies the conditions that
must be fulfilled to spend the funds. To spend the funds,
the spender must provide an initial execution stack with
input values. The transaction is valid if the script terminates
successfully on this initial stack.
For example, the owner of some funds that are simply as-

sociated with the his address, which is the hash of his public
key pk, can spend these funds by providing an initial execu-
tion stack that contains pk and a signature on the spending
transaction that is valid under pk. The corresponding script
validates that the hash of pk is indeed the expected address
and that the signature is valid.

3.1 Deposits
Using specially-crafted scripts, funds can be locked away

in a so-called deposit, where they can only be accessed under
a set of predetermined conditions. While scripts can express
a variety of such conditions [6], we focus on time-locked
deposits with the property that the depositor cannot access
the funds in the deposit until a specified expiry time.
With non-equivocation contracts in mind, we consider two

types of deposits that differ in the beneficiary, i.e., the party
that receives the funds in case of equivocation. The deposits
of the first type do not specify a beneficiary. In this case, the
beneficiary will be a randomly selected miner. Deposits of
the second type are associated with an explicitly beneficiary
P identified by his public key pkP .

Creating Deposits. To create time-locked deposits, we the
novel Bitcoin script command CHECKLOCKTIMEVERIFY [45].1
This command takes one argument T , the expiry time, from
the execution stack and compares it to the nLockTime data
field of the transaction. If nLockTime < T , the evaluation
fails and the transaction is consequently invalid. Thus, only
transactions with nLockTime ≥ T can spend the funds cov-
ered by such a script. By the semantics of nLockTime, those
transactions are valid only in blocks found after time T , and
consequently, the funds protected by CHECKLOCKTIMEVERIFY
are spendable only after T .
We remark that the value of nLockTime can be specified

either by a UNIX timestamp or a height of a block, which
is the number of blocks that precede it in the blockchain.
Throughout the paper, we use timestamps, and to simplify
presentation, we ignore that miners have some flexibility to
lie about the current time [7]; at least 120 min must be added
to T to account for that issue.
Deposits Without Explicit Beneficiary. Suppose that
some user A wishes to create a deposit with expiration time
T without an explicit beneficiary. Then, A sends the desired
amount B d to the following script:
(T + T impl

conf ) CHECKLOCKTIMEVERIFY DROP
pkA CHECKSIG

The literals (T + T impl
conf ) and pkA in the script denote push

operations that push a constant value on the stack. The
value T impl

conf is a safety margin; we postpone its discussion to
the analysis of non-equivocation contracts (Section 6.1).
The first line of the script ensures that the deposit cannot

be spent before time T as explained. (DROP just drops the
constant value from the stack.) In the second line, CHECKSIG
takes the key pkA and a signature σ from the stack; σ is
supposed to be provided by the spender on the initial stack.
CHECKSIGVERIFY verifies that σ is a valid signature of the
spending transaction under the key pkA, pushing the boolean
result of the verification on the stack. This boolean value
is the output of the script. Thus, if the check succeeds, the
transaction is valid; otherwise it is invalid. In sum, the script
ensures that the funds can only be spent after T and only
by a transaction signed under pkA.
If the corresponding secret key skA is revealed, everybody

can create transactions that try to spend the funds from
time (T + T impl

conf ) on. Whenever this happens, each miner
has a large incentive to include a transaction in a block that
sends the money to him. Consequently, the miner that finds
the next block will claim the funds.
Deposits with Explicit Beneficiary. Suppose that a user
A wishes to create a deposit with an explicit beneficiary P .
Then, A sends the desired amount B d to the following script:
IF

pkP CHECKSIGVERIFY
ELSE

(T + T expl
conf + T expl

net ) CHECKLOCKTIMEVERIFY DROP
ENDIF
pkA CHECKSIG

In this script T expl
conf and T expl

net are safety margins, which will
be discussed below. IF obtains its condition from the stack,
allowing the spender to choose the branch to be executed.
1The command was deployed and fully enabled only after
the time of publication of the official version of this work.
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CHECKSIGVERIFY is like CHECKSIG but causes the whole script
to fail immediately if the signature is not valid (instead of
pushing the result of the signature verification to the stack).
The script ensures that before time T , the funds can be

spent only if the spending transaction is signed under both
pkA and pkP . Thus, if P learns skA before time T , he
can spend the funds. Otherwise, A is refunded after time
(T + T expl

conf + T expl
net ), even if P disappears.

The safety margins are necessary because the closing trans-
action must have been broadcast to the Bitcoin network and
confirmed by it before the deposit can be spent by A alone.
For the broadcast, T expl

net = 10 min is more than sufficient [19].
For the confirmations, we except the network to find 24 blocks
in T expl

conf = 240 min. Since their arrival is Poisson-distributed,
the probability that fewer than six desired blocks have been
found is Pr[X ≤ 5] < 2−18 for X ∼ Pois(24).

3.2 Payment Channels
Payment channels [42, 45] allow a user A to perform many

transactions to a predefined recipient B up to a predefined
amount B d of money. Although establishing a channel be-
tween A and B involves waiting for a transaction to be
confirmed, the advantages of a payment channels are various:
First, no matter how many payments are sent, only two
transactions have to be included in the blockchain, namely
one to establish and one to close the channel. This makes
payment channels a promising method to scale the Bitcoin
network to many more transactions [36, 44]. Second, A can
perform payments to B even if both parties are offline, once
the channel has been established. Third, fast transactions
are possible through the payment channel because B does
not have to wait for the transaction to be confirmed.
Creating a Payment Channel. To create a payment
channel from A to B with maximal payment value B d and
expiry time T , A follows the procedure for creating a deposit
with explicit beneficiary B.
B waits until the deposit is confirmed by the Bitcoin

network. From now on, the funds can only be spent if both
A and B agree because any spending transaction must be
signed by both A and B to be valid. Since B will only endorse
transactions that send funds to him, B is protected from
attempts by A to send funds to another party (or back to
herself), i.e., B is protected from double-spending attempts.
Paying through the Channel. The channel has an asso-
ciated state b that specifies how many of the B d have been
paid so far to B. In the beginning, b = 0, i.e., all money
in the channel belongs to A and none belongs to B. To
pay through the channel, i.e., to raise b to b′, A creates an
ordinary Bitcoin transaction that sends B b′ from the deposit
to B. She signs this transaction with her secret key skA, and
sends the transaction to B, who validates the transaction and
the correctness of the signature. However, the transaction is
not yet signed by B or published to the Bitcoin network.
Closing the Channel. The channel has to be closed before
time T . If B wants to close the channel at some state b̂, he
sends the most recently received transaction, i.e., the one
with the value b̂, to the Bitcoin network. Once the network
confirms the transaction, B has received B b̂.
If B does not close the channel by time T , e.g., as B has

disappeared, A can claim the whole channel of value B d.
Double-Spending through the Channel. Observe that
B needs to maintain state when accepting transactions to

avoid double-spending. We will apply our non-equivocation
functionality to prevent double-spending through payment
channels, even if the recipient B is not a single entity but
a distributed system that is not always able to maintain a
consistent synchronized state (Section 7). For example, B
could be a bus company that runs many buses that have only
sporadic Internet connectivity, and B would like to accept
payments from passengers A. In that case, our protocols
enables the bus company B to penalize double-spending
passengers A after the fact.

4. ACCOUNTABLE ASSERTIONS
In this section we introduce accountable assertions. In-

tuitively, this primitive allows users to assert statements in
contexts such that users can be held accountable for equiv-
ocation: On the one hand, if a user holding a secret key
ask asserts two different statements st0 6= st1 in the same
context ct, then a public algorithm can extract the secret key
ask of the user from the two assertions. On the other hand,
secrecy of the secret key ask remains intact for a well-behaved
non-equivocating user.
Accountable assertions are supposed to be attached to

other public-key primitives, i.e., the key pairs are supposed
to correspond to key pairs of the other primitive. For ex-
ample, the key pairs of our scheme will be valid ECDSA
(discrete logarithm) key pairs as used in Bitcoin. Attach-
ing accountable assertions to other primitives is crucial in
practice because the concrete secret key used in accountable
assertions needs to be worth something, e.g., for redeeming
funds. Otherwise, the user has no incentive to keep it secret
in the first place.

Definition 1 (Accountable Assertions). An ac-
countable assertion scheme Π is a tuple of ppt algorithms
Π = (Gen,Assert,Verify,Extract) as follows:
• (apk, ask, auxsk) ← Gen(1λ): The key generation al-

gorithm outputs a key pair consisting of a public key apk
and a secret key ask, and auxiliary secret information auxsk.
It is required that for each public key, there is exactly one
secret key, i.e., for all λ and all outputs (apk, ask, auxsk)
and (apk′, ask′, auxsk′) of Gen(1λ) with apk = apk′, we have
ask = ask′.
• τ/⊥ ← Assert(ask, auxsk, ct, st): The stateful assertion

algorithm takes as input a secret key ask, auxiliary secret in-
formation auxsk, a context ct, and a statement st. It returns
either an assertion τ or ⊥ to indicate failure.
• b← Verify(apk, ct, st, τ): The verification algorithm out-

puts 1 if and only if τ is a valid assertion of a statement ct
in the context st under the public key apk.
• ask/⊥ ← Extract(apk, ct, st0, st1, τ0, τ1): The extraction

algorithm takes as input a public key apk, a context ct, two
statements st0, st1, and two assertions τ0, τ1. It outputs either
the secret key ask or ⊥ to indicate failure.

The accountable assertion scheme Π is correct if for all se-
curity parameters λ, all keys (apk, ask, auxsk)← Gen(1λ), all
statements st, all contexts ct, and all assertions τ 6= ⊥ result-
ing from a successful assertion τ ← Assert(ask, auxsk, ct, st),
we have Verify(apk, ct, st, τ) = 1.

Note that the secret information is divided into a secret
key ask and auxiliary secret information auxsk. In case of
equivocation, only ask will be guaranteed to be extractable,
but not auxsk.
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Completeness. Our definition of accountable assertions
allows the assertion algorithm to fail. We do not consider
such failure a problem if it happens only with small (but not
necessarily negligible) probability. The reason is that failure
hurts only the liveness of the system that makes use of the
accountable assertions but liveness is typically not guaranteed
anyway due to unreliable networks. As a consequence, we
do not insist generally on accountable assertions fulfilling a
completeness criterion.
At first glance, this might look a bit contrived, but the

purpose of this is to trade off reliability against efficiency.
Accountable assertions are, unlike signatures, not required to
be unforgeable, and it turns out that setting unforgeability
aside will enable a more efficient construction.
To understand how failing and unforgeability are related,

suppose an attacker asks a user to assert a statement st0 in
a context ct0, i.e., to output τ0 ← Assert(ask, auxsk, ct0, st0).
Due to the lack of unforgeability, the attacker might use τ0
to obtain another assertion τ1 that is valid for some related
but different context ct1 6= ct0 and the same statement st0.
So far, this is not a problem: the attacker cannot use the
extraction algorithm to obtain the secret key ask from τ0 and
τ1 because the two assertions are valid in different contexts
ct0 6= ct1. However, the attacker can now ask the user to
assert another statement st1 6= st0 in the context ct1, i.e.,
to output τ ′1 ← Assert(ask, auxsk, ct1, st1). Observe that this
is a valid request: the attacker does not ask the user to
equivocate because the user has not asserted any statement
in the context ct1 so far. But if the user replied to the
request, the attacker could run the extraction algorithm
Extract(apk, ct1, st1, st′1, τ1, τ ′1) to extract the secret key ask.
To avoid this attack, while allowing for a construction

that is “forgeable” as just described, the stateful assertion
algorithm may fail if it detects that the context ct1, for
which an assertion is requested, is related to a previously
used context ct0.
Nevertheless, the ability of the attacker to force failure may

be a problem in certain scenarios, e.g., if it allows the attacker
to perform a denial-of-service attack. In those cases, it is
possible to consider complete accountable assertions, which
are guaranteed to succeed on all honestly chosen inputs.

Definition 2 (Completeness). An accountable asser-
tion scheme Π = (Gen,Assert,Verify,Extract) is complete if
for all security parameters λ, all outputs (apk, ask, auxsk)
of Gen(1λ), all statements st, and all contexts ct, we have
Assert(ask, auxsk, ct, st) 6= ⊥.

Note that the definition of accountable assertions additionally
demands correctness whenever Assert(ask, auxsk, ct, st) 6= ⊥.

4.1 Security of Accountable Assertions
Accountable assertions need to fulfill two security proper-

ties. The first security property is extractability, which states
that whenever two distinct statements have been asserted in
the same context, the secret key can be extracted.

Definition 3 (Extractability). An accountable as-
sertion scheme Π = (Gen,Assert,Verify,Extract) is extractable
if for all ppt attackers A,

Pr[Extract(apk, ct, st0, st1, τ0, τ1) 6= ask
∧ ∀b ∈ {0, 1},Verify(apk, ct, stb, τb) = 1
∧ st0 6= st1 : (apk, ct, st0, st1, τ0, τ1)← A(1λ)]

is negligible in λ. Here, ask is the unique secret key corre-
sponding to apk.

The second security property secrecy is opposed to ex-
tractability. Secrecy prevents the extraction of the secret
key against an attacker who can ask the challenger to assert
chosen statements in chosen contexts. Since accountable
assertions are extractable, the attacker’s success is excluded
after requesting the assertion of two different statements in
the same context.

Definition 4 (Secrecy). An accountable assertion
scheme Π = (Gen,Assert,Verify,Extract) is secret if for all
ppt attackers A, the probability that the experiment SecΠ

A(λ)
returns 1 is negligible in λ, where the experiment SecΠ

A(λ) is
defined as follows.
Experiment SecΠ

A(λ)
(apk, ask, auxsk)← Gen(1λ)
Q := ∅
ask∗ ← AAssert′(ask,auxsk,·,·)(apk)
return 1 iff ask∗ = ask
∧ (@ct, st0, st1. st0 6= st1 ∧ {(ct, st0), (ct, st1)} ⊆ Q)

Oracle Assert′(ask, auxsk, ct, st)
Q := Q ∪ {(ct, st)}
return Assert(ask, auxsk, ct, st)

Limitations of the Secrecy Definition. Recall that a
secret key used with accountable assertions must be worth
something, e.g., a valid ECDSA secret key that protects funds
in Bitcoin. We would like to draw the reader’s attention
to the fact that the definition of secrecy does not take into
account the other usages of the secret key. That is, while
our secrecy definition of accountable assertions is meaningful
in itself, it is only a heuristic for analyzing their security
when combined with other primitives, and it is formally
not guaranteed that the use of secret accountable assertions
keeps the security of the other primitives intact.2 While
we are confident that the combined use of our accountable
assertions construction (Section 5) together with ECDSA
does not render ECDSA insecure in practice, a more formal
treatment of the composability of accountable assertions with
other properties is desirable. We leave this for future work.
Relation to DAPS. Double-authentication-preventing sig-
natures (DAPS) [35] have similar properties as accountable
assertions, but are additionally required to be unforgeable.
We have discussed an informal relation between the unforge-
ability of accountable assertions and their completeness. This
intuition can be formalized, and it turns out that a slightly
modified variant of our accountable assertions construction
(Section 5) is an efficient DAPS scheme. We refer the reader
to Appendix A for a discussion.

5. CONSTRUCTION AND ANALYSIS
In this section, we propose a construction of accountable

assertions based on chameleon hash functions. Our construc-
tion builds upon the idea of chameleon authentication trees
(CATs), as suggested by Schröder and Schröder [39] and
2Indeed, given an unforgeable signature scheme and a secret
accountable assertion scheme, one can construct a pathologi-
cal unforgeable signature scheme that is insecure when f(ask)
is leaked for a one-way function f , and one can construct a
secure accountable assertion scheme that leaks f(ask).
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improved in follow-up schemes [29, 40]. In contrast to these
schemes, the novelty of our construction is the extractability.
Chameleon Hashes. A chameleon hash function is a ran-
domized hash function that is collision-resistant but provides
a trapdoor to efficiently compute collisions [28]. Formally,
a chameleon hash function CH is a tuple of ppt algorithms
(GenCh,Ch,Col). The key generation algorithm GenCh(1λ)
returns a key pair (cpk, csk) consisting of a public key cpk
and a trapdoor csk. The evaluation function Ch(cpk, x; r)
produces a hash value for a message x and a random value
r; we typically write just Ch(x; r) when cpk is clear from the
context. The collision-finding algorithm Col(csk, x0, r0, x1)
takes as input a trapdoor csk and a triple (x0, r0, x1); it
outputs some value r1 such that Ch(x0; r0) = Ch(x1; r1).
Chameleon hash functions need to fulfill collision-resistance

and uniformity as defined by Krawczyk and Rabin [28].

Definition 5 (Collision-Resistance). A chameleon
hash function CH = (GenCh,Ch,Col) is collision-resistant if
for all ppt attackers A,

Pr[Ch(x0; r0) = Ch(x1; r1) ∧ (x0, r0) 6= (x1, r1)
: (cpk, csk)← GenCh(1λ); (x0, r0, x1, r1)← A(cpk)]

is negligible in λ.

Definition 6 (Uniformity). A chameleon hash func-
tion CH = (GenCh,Ch,Col) is uniform if for all messages
x0, x1, and all trapdoors csk output by GenCh, and for a
uniformly random value r0, the value Col(csk, x0, r0, x1) is a
uniformly distributed random value as well.

Note that this definition of uniformity, which is also used
by [39], is slightly stronger than the one in by Krawczyk
and Rabin [28], which mandates only that Ch(cpk, x, r) is
distributed independently of x.
In addition to these standard security properties, we re-

quire the trapdoor to be extractable from a collision. While
this extractability is typically considered a problem [2, 16, 39],
it turns out to be a crucial requirement for our construction.

Definition 7 (Extractability). A chameleon hash
function CH = (GenCh,Ch,Col) with unique keys is ex-
tractable if there exists a deterministic polynomial-time al-
gorithm ExtractCsk with the following property: For all key
pairs (cpk, csk) output by GenCh, and for all collisions, i.e.,
for all input pairs (x0, r0) and (x1, r1) with x0 6= x1 and
Ch(x0; r0) = Ch(x1; r1), we have

ExtractCsk(cpk, x0, r0, x1, r1) = csk.

5.1 Intuition
First Approach. One obvious but flawed approach to con-
struct accountable assertions is to let the assertion algorithm
output a value r such that ct = Ch(st; r). The intuition is
that if the attacker does this for two different statements
st0, st1 in the same context ct, then this would yield a col-
lision Ch(st0; r0) = ct = Ch(st1; r1) in the chameleon hash
function, and one could extract the trapdoor. This simple
idea does not work. The reason is that ct would live in the
output space of the chameleon hash function but in all known
constructions of chameleon hash functions compatible with

A1,1,B1,1, C1,1

A2,1, B2,1, C2,1 A2,2, B2,2,C2,2

A3,4, B3,4, C3,4 A3,5, B3,5, C3,5 A3,6, B3,6,C3,6

A2,3, B2,3, C2,3

Figure 1: A tree as in our construction

ECDSA (discrete logarithm) keys, the trapdoor can only be
used to find collisions efficiently, not to invert the function.3

Full Idea. Observe that the aforementioned approach works,
however, as a scheme that supports only one context, for
which inverting the chameleon hash is not necessary. If the
public key of the accountable assertions scheme includes
Ch(x∗; r∗) for randomly chosen x∗ and r∗, then one can use
the trapdoor to compute r as an assertion for a statement st
such that Ch(x∗; r∗) = Ch(st; r).
The basic idea of our construction is to generalize this ap-

proach to many contexts by applying it recursively, resulting
in a Merkle-style tree based on chameleon hash functions.
The contexts are associated with the leafs of the tree, and a
digest of the root node is part of the public key.
Let n denote the arity and ` denote the depth of the tree.

We explain the main steps with the help of Fig. 1 for n = 3. In
our construction (a digest of) the context defines its position
in the tree. That is, the context with the lowest digest is
stored in the leftmost leaf and the context with the highest
digest in the rightmost node. Since the tree is of exponential
size, storing or computing the entire tree at once is not
possible. Instead, we compute each element Ai,j , Bi,j , Ci,j
as a chameleon hash value of its children, i.e., the element
Ai,j is computed as Ai,j ← Ch((Ai+1,s, Bi+1,s, Ci+1,s); ri,j)
for some integer s. So far, we have described an n-ary
Merkle tree whose nodes are computed via a chameleon hash
function.
Now we explain how to handle an exponential number

of nodes without computing all of them. The basic idea
is to exploit the collision property of the chameleon hash
function. Instead of computing the node Ai,j as Ai,j ←
Ch((Ai+1,s, Bi+1,s, Ci+1,s); ri,j), we replace all elements with
dummy elements, i.e., Ai,j ← Ch(xi,j ; ri,j). These elements
are derived via a pseudo-random function F with key k, i.e.,
xi,j ← Fk(i, j), and can be computed on the fly. That is, to
compute Ai,j , no other tree nodes are necessary. Since all
elements are computed deterministically, this modification
results in an exponential number of nodes without any con-
nection to each other. We re-establish this connection using
the trapdoor of the chameleon hash function whenever we
assert a new element.
We illustrate the assertion operation with Fig. 1. Assume

that we would like to assert a statement in the context (as-
sociated with) C3,6. To do so, we need to compute the
3To the best of our knowledge, the only chameleon hash
function that supports inverting is based on the hardness
of factoring [28]. Poettering and Stebila’s construction of
double-authentication-preventing signatures (DAPS) [35],
which are similar to accountable assertions (see Appendix A),
can be interpreted as an elaboration of the described idea.
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elements A3,6, B3,6, A2,2, B2,2, A1,1, C1,1 and the correspond-
ing randomness for each node. This information will suffice
for the verifier to reconstruct the assertion path from C3,6
to the root as in an ordinary Merkle tree. To compute the
aforementioned elements, we compute all dummy elements
xA3,6, x

B
2,2, x

C
1,1 and we also derive the randomness for each

node via F. Now, to assert the statement st in the context
C3,6, we compute the first collision in C3,6 ← Ch(xC3,6; rC3,6).
We use the trapdoor of the chameleon hash to find a matching
randomness r′ such that Ch(xC3,6; rC3,6) = C3,6 = Ch(S(st); r′),
where S computes a digest of the statement st. Now, to assert
(A3,6, B3,6, C3,6) with respect to the parent C2,2, we need to
find a second collision in C2,2, which is computed as C2,2 ←
Ch(xC2,2; rC2,2). Again, we use the trapdoor to compute some
randomness r′′ such that Ch(xC2,2; rC2,2) = C2,2 = Ch(h; r′′)
where h = (A3,6, B3,6, C3,6). We repeat this procedure up
to the root. Observe that independent of the statements
asserted in the contexts A3,6, B3,6, and C3,6, the value h
will always be the same because the first collision is always
computed in the leaf. This concludes the description of the
underlying asserted data structure.
Now, we will explain how to extract the secret key in the

case that the sender asserts two different statements in the
same context. Let us assume that the sender asserted two
statements st0, st1 in the context associated with C3,6.
In the simplest case, there exist two pairs (st0, r0), (st1, r1)

such that Ch(S(st0); r0) = C3,6 = Ch(S(st1); r1). (This is like
in the “first approach”.)
In a more complicated case, we could have Ch(S(st0); r0) =

C3,6 6= C′3,6 = Ch(S(st1); r1) because the attacker could have
used a collision in C2,2 to associate its rightmost child with
a value C′3,6 6= C3,6. But then, this collision can be used
to extract the trapdoor. Generally speaking, we will find a
collision somewhere on the path from the leaf to the root. An
algorithm implementing this idea always terminates because
a digest of the root is fixed in the public key.

5.2 Construction
We present the full description of our scheme. Let ` and

n be positive integers defining the height and the branching
factor of a tree cwhose number of leafs n`−1 is polynominal in
the security parameter λ. Let Fk be a pseudorandom function,
and let H and S be collision-resistant hash functions. Let G
be a hash function modeled as random oracle.
Furthermore, let L be a (non-cryptographic) hash function

that maps bitstrings (contexts) to leafs {1, . . . , n`−1}. If
collisions in L occur only with low probability, then the
assertion algorithm fails only with low probability. If the
context space is equal to the output space of L, then L can
be the identity function. (Note that we do not and cannot
require L to be collision-resistant in a cryptographic sense,
because its output space is only polynomially large in the
security parameter λ.)
Let CH = (GenCh,Ch,Col,ExtractCsk) be a collision-resis-

tant, uniform, and extractable chameleon hash function. The
accountable assertion scheme is defined as follows:
Key Generation: The key generation algorithm chooses a
key for the pseudo-random function k ← {0, 1}λ, and a key
pair (cpk, csk)← GenCh(1λ) for the chameleon hash function.
Let p be an unique identifier for the position of the root node.
The algorithm computes the entries in the root node as
y0
i := Ch(x1

i ; r1
i ) where x1

i := Fk(p, i, 0), r1
i := Fk(p, i, 1),

and i ∈ {1, . . . , n}. It sets z := H(y1
1 , . . . , y

1
n) and finally

apk := (cpk, z), ask := csk, and auxsk := k.
Assertion: The stateful assertion algorithm maintains an
initially empty set L of used leaf positions. To assert a state-
ment st in a context ct, the algorithm verifies that L(ct) /∈ L
and fails by outputting⊥ otherwise.4 Then, it adds L(ct) to L
and computes the assertion path (Y`, a`, Y`−1, a`−1, . . . , Y1, a1)
from a leaf Y` to the root Y1. Each node Yj = (yj1, . . . , yjn)
stores n entries at positions aj ∈ {1, . . . , n} within the
node. Y` is the leaf that stores the entry with the num-
ber L(ct), counted across all leaves from left to right, and a`
is the position of this entry within Y`. In the following, let
xji := Fk(pj , i, 0) and rji := Fk(pj , i, 1), where pj is a unique
identifier of the position of the node Yj .
Compute Y`: Assert the statement st with respect to Y`

by computing r′`a`
:= Col(csk, x`a`

, r`a`
,S(st)). Compute the

entry y`a`
:= G(Ch(S(st)); r′`a`

), r′`a`
) = G(Ch(x`a`

; r`a`
), r′`a`

).5
Compute the remaining entries in node Y` as y`i := Ch(x`i ; r`i )

for i ∈ {1, . . . , n} \ {a`}. The leaf Y` stores the entries
(y`1, . . . , y`n). Let z` := H(y`1, . . . , y`n) and let further f` :=
(y`1, . . . , y`a`−1, y

`
a`+1, . . . , y

`
n).

Compute the nodes up to the root for h := `− 1, . . . , 1:
• Assert the value zh+1 with respect to Yh by comput-
ing r′ha`

:= Col(csk, xha`
, rha`

, zh+1). Compute the entry
yha`

:= Ch(zh+1; r′ha`
) = Ch(xha`

; rha`
).

• Compute the remaining entries in this node Yh as yhi =
Ch(xpi ; r

p
i ) for i ∈ {1, . . . , n}\{a`}. The node Yh stores

the entries (yh1 , . . . , yhn). Let zh := H(yh1 , . . . , yhn) and
fh := (yh1 , . . . , yha`−1, y

h
a`+1, . . . , y

h
n).

The assertion is τ := ((r′`a`
, f`, a`), . . . , (r′11, f1, a1)).

Verification: The verification algorithm parses the assertion
public key apk as (cpk, z). It verifies that cpk is a valid
chameleon hash public key and outputs 0 otherwise. The,
it parses τ as ((r′`a`

, f`, a`), . . . , (r′11, f1, a1)), and checks the
validity of a statement st in a context ct by reconstructing
the nodes (Y`, Y`−1, . . . , Y1) in a bottom-up order, from the
leaf Y` to the root Y1, which contains the entries y1

1 , , . . . , y
1
n.

The verification algorithm outputs 1 if and only if H(y1
1 ,

. . . , y1
n) = z.

Extraction: The extraction algorithm takes as input (apk,
ct, st0, st1, τ0, τ1). It computes like the verification algorithm
the assertion paths for both st0 and st1 from the bottom up
to the root until a position in the tree is found where the
two assertion paths form a collision in the chameleon hash
function, i.e., a position in the tree where values x0, r0 are
used in the assertion path of st0 and values x1, r1 are used
in the assertion path of st1 such that Ch(x0; r0) = Ch(x1; r1).
Then the extraction algorithm outputs the secret key ask =
csk ← ExtractCsk(x0, r0, x1, r1) computed via the extraction
algorithm of the chameleon hash function. If no such position
is found, the extraction algorithm fails and outputs ⊥.
Stateless and Complete Variant of the Construction.
We can obtain stateless and complete accountable assertions
by slightly modifiying the construction at the cost of de-
creased efficiency as follows. We require the size n`−1 of the
output space of L to be super-polynominal in the security
4The set L can be implemented efficiently by a Bloom filter [8,
43], at the cost of a slightly increased probability of failure.
A Bloom filter is a space-efficient probabilistic data structure.
It may indicate ”x ∈ L“ incorrectly with small probability
but it never indicates ”x /∈ L“ incorrectly.
5G was erroneously omitted in the official proceedings version.
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parameter λ, and additionally we require L to be a cryp-
tographic hash function modeled as a random oracle. We
drop the check ”L(ct) /∈ L“ in the assertion algorithm, which
fails only with negligible probability, because L is collision-
resistant. This eliminates the state from the authentication
algorithm. Furthermore, this modification makes the scheme
complete, i.e., the assertion algorithm always succeeds.

5.3 Analysis
We establish the security of the construction.

Theorem 1. The construction is extractable.

Proof. Assume for contradiction that there is a ppt
attacker A that breaks extractability. That is, with non-
negligible probability, A outputs a public key apk and two as-
sertions τ0, τ1 that are valid for different statements st0 6= st1
in the same context ct, but the extraction algorithm fails to
extract the secret key ask given these values.
By construction of the verification algorithm, the assertion

paths of τ0 and τ1 belong to two Merkle trees T0 and T1
such that i) the roots of T0 and T1 are identical, and ii) the
two leaves of T0 and T1 that belong to the context ct have
different inputs st0 6= st1 for the chameleon hash function;
note that these leaves are at the same position in T0 and T1.
Thus there is a node position on the assertion paths output
by A such that the nodes of T0 and T1 at this position form
a collision either in the random oracle G, which happens only
with negligible probability, or in the chameleon hash function
Ch, or in one of the collision-resistant hash functions H and S.
By construction of the extraction algorithm, this algorithm
would not fail to output ask if the collision was a collision in
the chameleon hash function. Consequently, it is a collision
in one of the hash functions H and S, and the existence of A
contradicts the collision-resistance of H or S.

Theorem 2. The construction is secret in the random
oracle model.

Proof. First, we first give a proof for the stateless and
complete variant of the construction, in which the size of
the output space of L is super-polynomial in the security
parameter λ and L is modeled as a random oracle.
Assume for contradiction that there is a ppt attacker A

that breaks secrecy. That is, with non-negligible probability,
A outputs the secret key ask at the end of SecΠ

A(λ) without
querying the assertion oracle for assertions of two different
statements in the same context. Let q(λ) the maximum
number of unique assertion and random oracle queries of
A(1λ).
We construct a non-uniform reduction Bq(λ) against the

collision-resistance of CH as follows: Given a public key cpk,
Bq(λ)(cpk) chooses a family {QL

i}0≤i<q(λ) of q(λ) bitstrings
in the output space of L and a family {QG

i }0≤i<q(λ) of q(λ)
bitstrings in the output space of G uniformly at random.
Then Bq(λ)(cpk) computes the root of the tree from the
bottom up, assuming that the leaf entry with the number
QL
i , counted across all leaves from left to right, is yi := QG

i .
Entries that are roots of subtrees that do not contain any of
those q entries are computed as random dummy entries, i.e.,
as Ch(x; r) for random x and r. This computation of the root
involves computing incomplete assertions {τ i}0≤i<q(λ), which
are paths from the leaf entry with the number QL

i to the root
of the tree. These are incomplete in the following sense: since
the computation assumed fixed values yi for the leaf entries,

the randomness value for the level ` is not determined in τ i =
((⊥, f i` , ai`), (ri`+1, f

i
`+1, a

i
`+1), . . . , (ri1, f i1, ai1)). (Recall that

an honest assertion contains a randomness value r′`a`
for level

` such that yi = G(Ch(S(st); r′`a`
), r′`a`

).) For a randomness
value r, let τ i(r) be the complete assertion that is obtained
by setting the missing randomness value for level ` in τi to
r, i.e., τ i(r) := ((r, f i` , ai`), (ri`+1, f

i
`+1, a

i
`+1), . . . , (ri1, f i1, ai1)).

Furthermore, let z be the obtained hash value of the root,
and let apk := (cpk, z).
After computing the root of tree, Bq(λ)(cpk) calls ask←
ASimAssert(·,·)(apk). The random oracles L and G and the
assertion oracle SimAssert are implemented as follows, where
G, I, and R are initially empty partial functions.
On query “G(s, r)”: If G(s, r) has not yet been set, Bq(λ)

chooses a random value y in the output space of G and sets
G(s, r) := y. Then, Bq(λ) returns G(s, r).
On query “L(ct)”: If I(ct) has not yet been set, Bq(λ)

chooses an index i that is not yet in the image of I and sets
I(ct) := i. Then, Bq(λ) returns QL

I(ct).
On query “SimAssert(ct, st)”: If I(ct) has not yet been set,

L(ct) chooses an index i that it is not yet in the image of I
and sets I(ct) := i. If R(ct) has not been set, Bq(λ) chooses
a random value r and sets R(ct) := r. Finally, Bq(λ) sets
G(Ch(S(st);R(ct)), R(ct)) := QG

I(ct) and returns the complete
assertion path τ I(ct)(R(ct)).
After having obtained a candidate secret key ask from
ASimAssert(·,·)(apk), the reduction Bq(λ) uses ask = csk to com-
pute and output a collision in Ch.
Observe that Bq(λ) is efficient. In particular, the compu-

tation of the root produces a subset of the parts of the tree
that are required for q(λ) assertions, i.e., only polynomially
many nodes are computed.
Next, we show that the simulation towards A is correct

with overwhelming probability. Let Guess be the event that
for some st and r, A queries G(Ch(S(st);R(ct)), R(ct)) and
later SimAssert(ct, st), which in turn chooses R(ct) = r. Since
R(ct) is chosen uniformly at random, Guess occurs only with
negligible probability. By construction, SimAssert overwrites
a value of the function G that has been set in query to G
if and only if Guess occurs. Observe that as long as this
does not happen, the oracles are consistent. Furthermore,
the outputs of the random oracle are chosen randomly from
the correct output spaces, and the outputs of SimAssert are
equally distributed to honestly generated assertions. In par-
ticular, the distribution of randomness values in the outputs
of SimAssert and honestly generated assertions is equal, be-
cause the chameleon hash function is uniform.
Since A outputs the correct secret key with non-negligible

probability by assumption, and the simulation is correct with
overwhelming probability, the attacker Bq(λ) outputs a colli-
sion in Ch with non-negligible probability. This contradicts
the collision-resistance of Ch and concludes the proof for the
stateless and complete variant of the construction.
The proof for the normal variant of the construction, in

which the size of the output space of L is only polynomial in
the security parameter λ and L is a non-cryptographic hash
function, is analogous. We just describe the three main differ-
ences: First, Bq(λ) fixes the leaf entries (in the output space
of G) of all leaves and uses them to precompute entire tree,
which consists of polynomially many nodes. Second, instead
of choosing fresh indices from the output space of I, Bq(λ)
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choses uniformly random values. Third, Bq(λ) implements
the set L like the assertion algorithm.

Failure Probability of the Assertion Algorithm. If
L is an adequate hash function, the construction allows a
context space of {0, 1}∗. In that case, the probability that
the assertion algorithm fails when given q queries is the
probability that there are two contexts ct0 6= ct1 in the
queries with L(ct0) = L(ct1). Under the assumption that
L : {0, 1}∗ → {1, . . . , n`} has uniform outputs, its (birthday)
collision probability is below (q + 1)2/(2 · (n` + 1− q)) [34].

5.4 Instantiation and Implementation
We have implemented the construction given in the pre-

vious section. In this section, we describe the details of
the implementation, and we evaluate the practicality of the
construction, as it will dominate the computation as well
as communication costs of non-equivocation contracts. Our
implementation is available online [26]. It makes use of
the libsecp256k1 library [46], which has evolved from the
standard Bitcoin client.
Chameleon Hash Function. We use a chameleon hash
function proposed by Krawczyk and Rabin [28], which is
secure if the discrete logarithms assumption holds in the un-
derlying group. In the elliptic curve setting, the chameleon
hash function CH = (GenCh,Ch,Col) with extraction algo-
rithm ExtractCsk is defined as follows.
GenCh(1λ): The key generation algorithm chooses a secure

elliptic curve and a base point g of prime order q where
q is at least 2λ bits long. It chooses a random integer
α ∈ Z∗q and returns (csk, cpk) = (α,X) with X = gα.

Ch(x; r): The input of the hash algorithm is a public key
cpk = X and a message x ∈ Z∗q . It picks a random
value r ∈ Z∗q and outputs gxXr.

Col(csk, x0, r0, x1): The collision finding algorithm returns
r1 = α−1(x0 − x1) + r0 (mod q).

ExtractCsk(cpk, x0, r0, x1, x1): If the inputs are a collision,
we have gx0+αr0 = gx1+αr1 . The extraction algorithm
returns α = (x0 − x1)/(r1 − r0) (mod q).

This chameleon hash function has unique keys. A public
key can be validated by verifying that it is an elliptic curve
point in the correct-prime order group. To be compatible
with Bitcoin keys, we work on the prime-order elliptic curve
secp256k1 [14] at a security level of 128 bits.
Algorithms and Parameters. We use HMAC-SHA256 to
instantiate the pseudorandom function F, SHA256 to instanti-
ate the collision-resistant hash function H, and HMAC-SHA256
with fixed keys to instantiate the hash functions S and G.

The function L is the identity function, and we have chosen
` = 65 as the height and n = 2 as the branching factor of
the tree. As a result, the statement space is {0, 1}∗, the
context space {0, 1}64, and the assertion algorithm never
fails. (Alternatively, we can implement L by a uniform
hash function, allowing for the context space of {0, 1}∗ at
the cost of a rare failure of the assertion algorithm. The
failure probability of the assertion algorithm is below 2−37

for q = 10000 queries.)
Computation Cost. On a 2.10GHz (Intel Core i7-4600U)
machine with DDR3-1600 RAM, a chameleon hash evaluation
takes 66 µs with a secret key, and the computation time
increases to 85 µs if only a public key is available.
Let ` denote the height of the authentication tree. The

assertion algorithm of our accountable assertion scheme in

Section 5.2 requires n` chameleon hash evaluations using a
secret key, while the verification algorithm of our accountable
assertion scheme requires ` chameleon hash evaluations using
a public key.
In our test environment, the assertion algorithm takes

approximately 9 ms, while the verification algorithm takes
approximately 4 ms to complete.
Storage Costs. A chameleon hash value is a point on
the elliptic curve secp256k1 and thus requires 257 bits <
33 bytes in compressed form. A randomness input of the
chameleon hash function is an integer in the underlying
field of the curve, and requires 32 bytes. An assertion is a
sequence of ` = 64 chameleon hash values and chameleon
hash randomness inputs, and thus requires 64 · (33 bytes +
32 bytes) = 4160 bytes. To store q = 10000 assertions, we
need about 42 MB.

6. NON-EQUIVOCATION CONTRACTS
Putting everything together, we explain how to realize non-

equivocation contracts by combining accountable assertions
and deposits. Non-equivocation contracts make it possible
to penalize paltering in distributed protocols monetarily.
Setup. Let A be a user to be penalized by the loss of B p if
she equivocates before time T and let d be a parameter that
depends on p (we will discuss the choice of d in Section 6.1).

1. User A creates a Bitcoin key pair (pk, sk). Also, A sets
up the accountable assertion scheme given in Section 5.2
with the Bitcoin key pair (pk, sk). That is, A predefines
the secret key ask := sk of the accountable assertion
scheme and creates the corresponding public key apk =
(pk, z) and the auxiliary secret information auxsk as
specified in the key generation algorithm.

2. User A creates a deposit of B d with expiry time T (see
Section 3.1) using pk. The deposit may or may not
specify an explicit beneficiary P , who will receive the
funds in case of equivocation.

3. Every recipient B expecting to receive asserted state-
ments from A waits until the transaction that creates
the deposit has been confirmed by the Bitcoin network.

Usage. The distributed protocol is augmented as follows:
1. Whenever A is supposed to send a statement st to differ-

ent protocol parties in a context ct, party A additionally
sends an assertion τ ← Assert(ask, auxsk, ct, st).

2. Each recipient B verifies that Verify(apk, ct, st, τ) = 1
and that T ≤ t for the current time t. Recipient B
ignores the message if any of the checks fail.
Otherwise, B sends the record (apk, ct, st, τ) to the
beneficiary P , who will store it. (If there is no explicit
beneficiary, B publishes the record to the miners, who
have an incentive to store it.)

Penalty.
1. If P (or the miners) detect an equivocation in two

records (apk, ct, st0, τ0) and (apk, ct, st1, τ1), they use
the corresponding assertions to extract A’s secret key
sk ← Extract(apk, ct, st0, st1, τ0, τ1).

2. Using sk, the beneficiary P transfers the funds in the
deposit to an address fully under his control. (If there is
no explicit beneficiary, the miners wait until the expiry
time of the deposit is reached. Then each miner will try
to create a block that includes a transaction transferring
the deposit to an address under his control.)

9



Observe that the user A will re-obtain full control over the
deposit after its expiry time T if she does not equivocate.

6.1 Analysis
We analyze the consequences of an equivocation by A.

With Explicit Beneficiary. If an explicit beneficiary P is
specified in the deposit, then the properties of the deposit
ensure that only P can spend the deposit in case of an
equivocation. In particular, the safety margins as discussed
in Section 3.1 ensure that the transaction created by P will
have been confirmed already and thus the deposit will have
been withdrawn already when its expiry will be reached. The
size B d of the deposit should be equal to the penalty B p.
Without Explicit Beneficiary. If no explicit beneficiary
is given, the analysis is more complicated because a malicious
sender A can participate in the mining process.
The goal of A is to establish the validity of a transaction

tx that withdraws the funds in the deposit to an address
controlled by A, even though her secret key has been pub-
lished. Recall that such a transaction cannot be included in
a block before the expiry of the deposit (Section 3.1). First,
we explain how to choose the safety margin T impl

conf to prevent
A from pre-mining the transaction tx. First observe that,
if T impl

conf is too small (say T impl
conf = 0 for simplicity), A can

pursue the following strategy: Before the expiry time T , she
tries to mine a block B that includes tx and builds upon the
most current block Bcur. If A manages to find such a block
B, she will keep her block B secret at first. If additionally no
other miner finds another block B′ building upon Bcur, the
malicious sender A will equivocate just before T . Then, by
publishing B after time T , A will have a very high chance
not to lose her deposit because the transaction tx in B will
most likely prevail. However, if A does not manage to find a
block B, she will refrain from the equivocation attack.
This strategy is successful because the malicious sender

avoids the risk of losing the deposit by performing the equiv-
ocation only if success is almost guaranteed. This is a variant
of the so-called Finney attack [23].
However, assume that T impl

conf is larger, e.g., T impl
conf = 60 min.

Then 60 min before the expiry time of the deposit, A will
need to have secretly pre-mined several sequential blocks
(one of them containing tx) on top of the current block Bcur
to perform the equivocation. Precisely, she will need to
have pre-mined more blocks than she expects to be found
by honest miners within the next 60 min. This is considered
infeasible if A controls only the minority of the computation
power in the network, which is the one of the underlying
assumptions for security of the Bitcoin network.
Size of Deposit (Without Explicit Beneficiary). While
a safety margin T impl

conf excludes pre-mining attacks, A can try
to mine the first block B after time T . Even if other miners
find a contradicting block B′ (and maybe more sequential
blocks), A can try to catch up with the blockchain, which
may be worthwhile in the case of a large deposit.
We counter such attacks by a careful selection of the

deposit size B d. Assume that the mining power of the whole
network and A’s fraction f of it stay constant. If f < 0.5,
the probability that her block B prevails is f/(1 − f) [38].
Thus the expected penalty E for A is E = d− d · f/(1− f).
At minimum, we require E ≥ p, which yields d ≥ p(f −
1)/(2f − 1). For example, a deposit of d ≥ 3p/2 is required
for a malicious fraction of f = 0.25.

6.2 Application Examples
Many systems require users to trust in a service provider

for data integrity. However, the service provider may choose
to equivocate and show different users different states of
the system. For instance, this has indeed been reported in
the case of online social networks. A user of the Chinese
microblogging service Sina Weibo claims that Sina Weibo
censored his posts by not showing them to other users [41].
However, the server showed the posts to the user himself to
avoid complaints from him.
To detect misbehavior of the service provider, a variety

of systems have been proposed for different scenarios, e.g.,
SUNDR [32] for cloud storage, SPORC [22] for group collab-
oration, Application Transparency [20] for software distribu-
tion, and Frientegrity [21] for social networks.
They basically ensure the following property: If the server

violates the linearity of the system by showing contradicting
states to different users, the server cannot merge these states
again without being detected. Furthermore, if users have
received contradicting states and exchange them via out-of-
band messages, they can detect and prove the wrongdoing of
the server. (The property is called fork consistency [11, 32]).
Observe that a violation of linearity is a case of equivo-

cation. Although clients can cryptographically verify the
append-only property, i.e., that a new system state is a proper
extension of an old known system state, a malicious server
can still provide different extensions to different clients.
Non-equivocation contracts are applicable in these settings.

The context is often a revision number of the state, and the
statement is a digest of the state itself at this revision number.
Depending on the system, the context may be more complex
than a simple increasing revision number. To avoid sacrificing
performance, Frientegrity [21] for instance does not maintain
a total order on all operations in the system but only a total
order per object. In this case, the context is a pair consisting
of an object identifier and a per-object revision number.
As a concrete application, imagine a non-equivocation con-

tract between a cloud storage provider and a client company,
which is willing to pay a slightly higher usage fee as an insur-
ance against accidental or malicious equivocation. The client
company is specified as the beneficiary of the deposit. Then
the resulting contract serves as cryptographically-enforced
insurance. If the service provider equivocates to individual
employees of the company, the company receives the deposit.
In another example scenario, consider a market with two

main providers of app stores. Both providers put down a
global deposit without explicit beneficiary. If one of the
providers becomes malicious and sends different binaries of
the same app (and version) to different users, then it will
lose its deposit. Thus, after the expiry of the deposit, the
malicious provider will have to put down a new second de-
posit to remain in business and competitive with the honest
provider, even if the loss of reputation was small. In com-
parison, the honest service provider can re-use the funds to
put down a second deposit after the first deposit has expired.
Alternatively, the malicious provider could choose not to put
down a second deposit but then the honest provider can do
the same while getting the funds back.

7. ASYNCHRONOUS PAYMENTS
As explained in Section 3.2, payment channels [42, 45]

allow a user A to perform many transactions to a predefined
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recipient B up to a predefined cumulative amount B d. Once
the channel is established, it is possible for A to send funds
to B even when both parties are offline.
However, if the recipient B is a distributed system, i.e., B

actually consists of many unsynchronized entities B1, . . . , Bn,
then offline transactions are not secure. The problem is that
A can double-spend the same funds to Bi and Bj , who
cannot talk to each other because they are offline and thus
not synchronized. When B wants to close its channel and
clear the payment in the Bitcoin network, it can clear these
funds only once.
We can secure offline transaction through payment chan-

nels in cases where a reasonable finite penalty for double-
spending can be found.
Example: Public Transport. For an illustrative example,
assume B is a company offering public transport on buses.
A would like to use B’s services as a passenger. Thus, A
establishes a payment channel to B by sending a transaction
to the Bitcoin network. Once the transaction is confirmed,
the payment channel is open and A can use it to pay for
several single rides when she enters one of B’s buses Bi up
to the limit B d of the channel. It is reasonable to assume
that A and B have at most sporadic Internet connectivity
in this mobile setting, so the payment should be performed
offline. Still, B’s buses are synchronized every night.
This system is flawed: A can double-spend to B’s buses.

Say the current state in the channel is b = 3. Then A can ride
two (or more) buses Bi and Bj on the same day, by presenting
them proof of updating the channel to b = 4. The bus
company will only notice at night during the synchronization
that it has been defrauded by A.
Using accountable assertions, we can secure this protocol.

Then B can penalize the double-spending user A when closing
the channel. A reasonable penalty is at least the fare for a
day ticket (valid for several rides on the same day).
Basic Idea. The idea of the modified protocol is as follows:
Since the points of sale Bi are offline and not synchronized,
we let A keep the state of the payment channel. The state
consists essentially of just the current value of the channel,
and a revision number of the state. To ensure that the
user cannot modify the state, it is signed by the individual
points of sale Bi. However, the user can still show an old
signed state and re-use it. This is exactly where we can
use accountable assertions: Whenever the user A would like
to perform a payment through the channel and claims that
the latest state has revision number k, we require her to
assert the statement “I buy a ticket with serial number r” in
context ct = k, where r is a fresh nonce created by Bi. Thus,
if A reuses an old signed state, her key will be extractable.

7.1 Full Protocol
Our full protocol for asynchronous payment channels con-

sists of three phases. It uses an unforgeable signature scheme
with algorithms Sign and VrfySig, and assumes that B and its
points of sale Bi have corresponding key pairs (spkB , sskB)
and (sskBi , spkBi

), respectively.
Setup. To create an asynchronous payment channel from A
to B with amount B d, penalty B p, and expiry time T , the
parties execute the following steps:

1. A sets up a Bitcoin key pair (pk, sk) and account-
able assertions keys (apk, ask = sk, auxsk) as for non-
equivocation contracts (Section 6).

2. A creates a payment channel with B with amount
B (d+ p) and expiry time T (Section 3.2).

3. After the channel is confirmed by the Bitcoin net-
work, B provides A with a signed statement σ =
Sign(sskB , state), where state = (T, d, k = 0, b = 0, B).

Payment. Whenever A would like to pay Bx offline at some
point of sale Bi, the parties execute the following protocol:

1. Bi creates a fresh nonce r and sends it to A.
2. A sets b := b + x and τ ← Assert(ask, auxsk, k, r). A

creates a transaction tx updating the channel to state
b, and sends (tx, τ, state, σ) to Bi.

3. Bi receives (tx∗, τ∗, state∗, σ∗), parses state∗ as (T ∗, d∗,
k∗, b∗, Bj), and verifies all the following conditions:
• VrfySig(spkBj

, state∗, σ∗) = 1 (valid state)
• Verify(apk, k∗, r, τ∗) = 1 (valid assertion)
• tx∗ is a valid transaction that updates the state
of the channel to b∗ + x
• b∗ + x ≤ d∗ (unexhausted channel)
• A /∈ X (A is not blacklisted)
• t < T ∗ for the current time t (unexpired deposit)

If any of the checks fail, Bi aborts the payment. Oth-
erwise, Bi computes a new state state′ = (T ∗, d∗, k∗ +
1, b∗ + x,Bi), signs it via σ′ ← Sign(sskBi , state′), and
sends (state′, σ′) to A. Bi records tx and τ and provides
service to A.

4. A updates state := state′ and σ := σ′.
Synchronization. At the end of each time period, B syn-
chronizes with each point of sale Bi:

1. B collects all transactions recorded by point of sale Bi,
which can delete the transactions afterwards.

2. B verifies that there are no double-spends among all
transactions collected so far. If B detects that A has
double-spent, B extracts A’s secret key sk and uses it
to sign a transaction that spends the whole payment
channel worth B (d+ p) to an address under the control
of B. B adds A to the blacklist X, and sends updates
of the blacklist X to each point of sale Bi.

3. Before time T , B closes the channel (Section 3.2). B
adds A to the blacklist X, and sends updates of the
blacklist X to each point of sale Bi.

7.2 Analysis
Observe that A can double-spend on at most one day

because she will be blacklisted afterwards.
Assume A has successfully double-spent. Since all states

are different, and the state contains the value b of the payment
channel, she must have shown the same signed state with
some revision number k twice successfully. But then, A has
sent two assertions τ0 and τ1 that are valid in the same
context ct = k. Since the corresponding statements st0 and
st1 are fresh nonces, they differ with overwhelming probability.
Thus B can extract A’s secret key successfully, and close the
payment channel at the maximum value B (d+ p). Since the
points of sale Bi accept payments only up to B b, the penalty
for A in case of double-spending is at least B p.

8. RELATED WORK
Trusted Hardware for Non-equivocation. One way
to prevent equivocation is to relay on trusted hardware
assumptions [3, 17, 18, 31]. In particular, the resilience
of tasks such as reliable broadcast, Byzantine agreement,
and multiparty computation have been improved using a
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non-equivocation functionality based on a trusted hardware
module, such as a trusted, increment-only local counter and
a signature oracle, at each party.
Unlike our approach, which disincentives parties from

equivocation, these systems fully prevent it, but at the same
time they rely on a much stronger hardware assumption.
Smart Contracts. Crypto-currencies with more expres-
sive, e.g., Turing-complete, script languages [10, 27] offer a
simpler way to achieve non-equivocation contracts. In such
systems, it is possible to create a deposit that can be opened
when presented with cryptographic evidence of equivocation.
As digital signatures suffice to provide such evidence and
extractability is not required, they can be used instead of
accountable assertions. The monetary penalty is enforced by
the consensus rules of the currency.
While crypto-currencies with Turing-complete languages

are a very promising direction, they have not yet withstood
the test of time, and their powerful languages might lead
to unforeseen security issues. A main advantage of non-
equivocation contracts based on our construction of account-
able assertions is its full compatibility with the current Bit-
coin system.

Traditional E-cash. Similar to accountable assertions,
Chaumian e-cash systems and one-show anonymous creden-
tial systems [4, 12, 13, 15] allow a secret to be revealed in
case of double-spending. In these settings, the revealed secret
is not used as a key but as the identity of the double-spender,
i.e., her anonymity is revoked upon double-spending.
However, these protocols are not applicable to our scenario

because they work in a fundamentally different setting: They
rely on the property that a central authority (a bank), which
holds a secret, issues coins by generating cryptographic to-
kens. In the decentralized Bitcoin setting, no central bank
exists and cryptographic secrets are generated by the users.

9. CONCLUSION
Cryptographic currencies are useful not only for payments

but also for secure decentralized and distributed systems in
general. In this paper, we introduced non-equivocation con-
tracts in Bitcoin to penalize paltering in distributed systems.
In the process of designing these contracts, we presented a

novel cryptographic primitive called accountable assertions,
which reveals a predefined secret key in case of equivoca-
tion. We analyzed the security as well as the performance of
our accountable assertions construction and found it to be
practical for real-life use.
To prevent double-spending at unsynchronized points of

sale, we introduced ansynchronous payment channels as an
application of non-equivocation contracts to the Bitcoin
network itself.
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APPENDIX
A. COMPARISON TO DAPS
Like accountable assertions, double-authentication-preven-

ting signatures (DAPS) [35] prevent the authentication of
different statements in the same context by providing an
algorithm that extracts the secret key in case of such double-
authentication.6 DAPS are a stronger primitive than account-
able assertions, with two main differences. First, DAPS do
not allow for “auxiliary secret information” in the strongest
security notion, i.e., the full secret key must be extractable
in case of double-authentication. Second, DAPS are unforge-
able like ordinary signatures. Note that despite realizing a
stronger primitive, the DAPS construction by Poettering and
Stebila [35] is based on the hardness of factoring and thus
not suitable for our concrete application to Bitcoin, which
uses ECDSA keys.
Theorem 3 captures that certain accountable assertions

are DAPS.
Theorem 3. A secret and extractable accountable asser-

tion scheme that is additionally complete, has a stateless
assertion algorithm, and has no auxiliary secret information
is a double-signature extractable DAPS scheme.

Proof. An accountable assertion scheme with a stateless
assertion algorithm and without auxiliary information is
syntactically a DAPS scheme. (This allows us to stick to the
terminology of accountable assertions in the following, even
though we are relating accountable assertions and DAPS).
Since there is no auxiliary information by assumption, it

is immediate that extractability of accountable assertions
implies double-signature extractability [35] of DAPS.
For unforgeability, assume towards contradiction that a

ppt attacker A(1λ) breaks existential unforgeability under
chosen message attacks [35]. In other words, the adversary
outputs a valid assertion τ on a pair (ct, st) such that (i) the
pair (ct, st) has not been used as a query for the signing (or
assertion) oracle, and (ii) the attacker has not queried the
assertion oracle to assert two different statements in some
context because unforgeability can be broken trivially in this
case.
We distinguish two cases: In the first case, the attacker

has not queried the oracle to assert any statement in the
context ct. Then, the reduction queries its assertion oracle to
assert some other statement st′ 6= st in ct. The oracle replies
with an assertion τ ′ 6= ⊥ because the accountable assertion
scheme is complete. Then the reduction uses the extraction
algorithm to extract ask from τ and τ ′. This violates the
secrecy of the accountable assertion scheme.
In the second case, the attacker has queried the oracle

to assert some statement st∗ in the context ct. (Observe
that st∗ 6= st: otherwise τ would not be a valid forgery
on (ct, st) because the attacker has queried the oracle for
(ct, st) = (ct, st∗).) The reduction has relayed the answer
τ∗ of the oracle (ct, st∗) query to the attacker, and thus it
knows τ∗. The reduction uses the extraction algorithm to
extract ask from τ and τ∗. This violates the secrecy of the
accountable assertion scheme.

Our Construction Yields Efficient DAPS. It was left as
an open problem to construct DAPS based on Merkle trees or
6The terminology in [35] is different. While we speak of
“asserting a statement st in a context ct”, Poettering and
Stebila [35] speak of “signing a message st for a subject ct.”
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chameleon hash functions [35]. We can solve these problems
in the random oracle model. We modify the stateless and
complete variant of the construction (Section 5.2) as follows.
Instead of choosing a key k for the pseudorandom function
F at random, we set k := K(csk) for a hash function K
modeled as random oracle, where csk is the trapdoor of
the chameleon hash function. This eliminates the auxiliary
secret information. However, this modified construction
achieves only extractability with trusted setup, i.e., if the
key is generated honestly. (We share this limitation with the
basic construction proposed by Poettering and Stebila [35].)
Indeed, only the extractability of csk can be guaranteed.
Suppose the attacker can generate the keys. If the attacker
just choose k uniformly at random, knowing csk does not
help to obtain k. Consequently, signing messages is not
possible with csk alone.
Nevertheless, our modified construction is extractable with

trusted setup, and it is more efficient than the construction
by Poettering and Stebila [35]. On a 2.10GHz (Intel Core i7-
4600U) machine with DDR3-1600 RAM, their construction
takes about 6700 ms for signing and 1500 ms for verification
with asymmetric key size 2048 bits and hash size 160 bits.
Our construction with corresponding parameters (in par-
ticular ` = 160) takes about 23 ms for signing and 11 ms
for verification. Signatures in their construction need about
40 kB, while signatures in our construction need about 4 kB.
In terms of security, our construction and their construc-

tion are only extractable with trusted setup [35]. Their
construction can be made secure against malicious key gener-
ation at the cost of adding rather expensive zero-knowledge
proofs to show that the public key is a well-formed Blum
integer (a product of two primes p, q with p ≡ q ≡ 3 mod 4).
In contrast, we are not aware of any practical approach to
make our construction secure without trusted setup.
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