
Kizzle: A Signature Compiler for Detecting Exploit Kits

Ben Stock
CISPA, Saarland University

Benjamin Livshits
Microsoft Research

Benjamin Zorn
Microsoft Research

Abstract—In recent years, the drive-by malware
space has undergone significant consolidation. Today,
the most common source of drive-by downloads are so-
called exploit kits (EKs). This paper presents Kizzle,
the first prevention technique specifically designed for
finding exploit kits.

Our analysis shows that while the JavaScript deliv-
ered by kits varies greatly, the unpacked code varies
much less, due to the kits authors’ code reuse between
versions. Ironically, this well-regarded software engi-
neering practice allows us to build a scalable and precise
detector that is able to quickly respond to superficial
but frequent changes in EKs.

Kizzle is able to generate anti-virus signatures for
detecting EKs, which compare favorably to manually
created ones. Kizzle is highly responsive and can gener-
ate new signatures within hours. Our experiments show
that Kizzle produces high-accuracy signatures. When
evaluated over a four-week period, false-positive rates
for Kizzle are under 0.03%, while the false-negative
rates are under 5%.

I. Introduction

The landscape of drive-by download malware has
changed significantly in recent years. There has been a
great deal of consolidation in malware production and a
shift from attackers writing custom malware to almost
exclusively basing drive-by download attacks on exploit
kits (EKs) [19]. This approach gives attackers an advan-
tage by allowing them to share and quickly reuse malware
components in line with the best software engineering
guidelines. It is the natural evolution of the malware
ecosystem [12] to specialize in individual tasks such as
CVE discovery, packer creation, and malware delivery. We
observe that this consolidation, while benefiting attackers,
also allows defenders significant opportunities.

Signature
creation

Signature
deployment

Malware
deployed

Initial
detection

Attacker
detects

Malware
variant

manual
work

small
mutation

Fig. 1: Adversarial cycle illustrated. There is a built-in asymmetry that
Kizzle aims to remedy: the response time for the attacker is only a
fraction of that of the defender.

From ad-hoc to structural diversity: The prevalence
of EKs changes the diversity in deployed malware in signif-
icant ways. While five years ago two deployed variants of
the same JavaScript-driven heap spraying exploit might
have been written by independent hackers, today much
of the time malware variants will come by as a result of
malware individualization performed by an EK as well as
natural changes in the EK over time.

There is virtually no deployed JavaScript malware that
is not obfuscated in some way; at runtime, the obfus-
cated code is unpacked, often multiple times, to get to
the ultimate payload. We observe that in practice, much
EK-generated malware operates like an onion: the outer
layers change fast, often via randomization created by code
packers, while the inner layers change more slowly, for
example because they contain rarely-changing CVEs.

Arresting the malware cycle: Malware development is
chiefly reactive in nature: malware producers create and
test their wares against the current generation of readily
available detection tools such as anti-virus (AV) engines
or EmergingThreats signatures. In a constant arms race
with the AV industry, these kits change part of their code
to avoid detection by signature-based approaches. While
these changes may be distinct between two versions of the
same kit, the underlying structure of the fingerprinting and
exploitation code rarely changes (as we show later).

This attack-defense pattern is the fundamental nature
of the adversarial cycle (Figure 1), as has been noted as
early as 20 years ago [23]. Unfortunately, presently, in the
drive-by malware space the attacker has a considerable
advantage in terms of the amount of work involved. Mal-
ware variants are relatively easy to create, most typically
by changing the unpacker the attacker uses and testing
their variant against AV engines. Indeed, the attacker can
easily automate the process of variant creation and testing.

Achilles heel: While the consolidation of malware distri-
bution via exploit kits makes life simpler for the attacker,
their strength is also their weakness. Our key detection
insight is that code reuse that occurs in EKs over time
is their Achilles heel. The core of the unpacked “onion”
changes little over time and is thus something that can be
“tracked” in a sea of unclassified samples with techniques
that measure differences between programs.

A. Design Choices – Deployment at Scale

This paper proposes Kizzle, a signature compiler that
automates the process of synthesizing signatures from cap-
tured JavaScript malware variants. Kizzle gives defenders

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EK Flash Silverlight Java Adobe Reader Internet Explorer AV check

Sweet Orange 2014-0515 Unknown1 2013-2551, 2014-0322 No
Angler 2014-0507, 2014-0515 2013-0074 2013-0422 2013-2551 Yes
RIG 2014-0497 2013-0074 Unknown 2013-2551 Yes
Nuclear exploit kit (2013-5331), 2014-0497 2013-2423, 2013-2460 2010-0188 2013-2551 Yes

Fig. 2: CVEs used for each malware kit (as of September 2014). The CVEs are broken down into categories.

greater automation in the creation of AV signatures. Our
scalable cloud-based implementation allows defenders to
generate new signatures for malware variants observed the
same day within a matter of hours.

Our design choices are born out of our understanding
of the adversarial cycle (Figure 1) in our desire to tip the
scale in favor of the defender by reducing the manual effort
of the security analyst responsible for writing signatures.
Because Kizzle needs to be ”seeded” with exploit kits, we
are not trying to replace the analyst; we are merely trying
to automate parts of the signature generation process to
reduce their workload.

Deployment channels: We envision the possibilities of
deploying Kizzle in a variety of settings:
● Kizzle signatures may be deployed within a browser,

client-side, to scan all or some of the incoming
JavaScript code;

● Kizzle signatures can be deployed on the desktop to
scan files that are saved to the file system so that if
any browser on the machine caches JavaScript files to
disk, those files will likely trigger a signature match;

● lastly, Kizzle signatures can be deployed server-side,
for instance, a CDN administrator may decide which
JavaScript files to host on a CDN in an effort to avoid
hosting malware.

It is because of these various deployment scenarios that
we choose AV signatures as our distribution format. AV
signatures enjoy a well-established deployment channel
with frequent, automatic updates for signature consumers.

At the same time, just about any signature-based
scheme and most IDS approaches can be used as an oracle
by an attacker trying to evade detection. While we of
course recognize this shortcoming, we focus on tipping the
balance in favor of the defender in the existing, large-scale
signature generation and deployment ecosystem.

Enabling robust deployment at scale: Although we
employ machine learning as a core component of our
signature-creation strategy in Kizzle, machine learning
per se is not our core contribution. We are deliberately us-
ing pre-existing off-the-shelf machine learning techniques
to reduce the engineering cost and limit the fragility
of the end-to-end system. Specifically, we chose to use
the DBSCAN clustering strategy.2. Kizzle uses existing

2Clustering has been used in previous malware and intrusion
detection research (for example, [28, 40]) but previous work has not
identified the opportunity specifically presented by exploit kits for
clustering or defined an effective clustering strategy in the presence
of packing and obfuscation in the delivered JavaScript.

components to create a multi-stage, distributed clustering
system that scales well with the volume of incoming data.
In other words, our system can be built and supported by
security engineers and not machine learning experts.

B. Contributions

This paper makes the following contributions:

Insight: Through detailed examination of existing EKs we
document the evolution of these kits over time, noting how
they grow and evolve. In particular, EKs often evolve by
appending new exploits, the outer packer changes without
major changes to the inner layer, and different EK families
“borrow” exploits from each other. These observations
suggest that there is a great deal of commonality and code
reuse, both across EK versions, and between the different
EKs, which enables EK-focused detection strategies.

Clustering in the cloud: Based on these observations
we built a high-performance processing pipeline for pre-
processing a large number of “grayware” JavaScript sam-
ples into a structured token stream and parallelizing the
process of clustering to be run in the cloud. Lastly, the
clusters are matched with known exploit kits for both
marking them as either benign or malicious, and kit
identification.

Signature generation: Out of the detected code clusters,
we propose a simple algorithm for quickly automatically
generating structural signatures which may be deployed
within an anti-virus engine. Our approach, dubbed Kizzle,
produce signatures which are comparable in quality and
readability to those a human analyst may write. With
these structural signatures, whose accuracy rivals those
written by analysts, we can track EK changes in minutes
rather than days. Kizzle signatures can be also deployed
within the browser, enabling fast detection at JavaScript
execution runtime.

Evaluation: In this paper we primarily focus on detecting
four popular exploit kits. Our focus is supported by a
recent analysis performed by ZScaler ThreatLab that con-
cluded that three out of four kits we analyze are “the top
Exploit Kits that we have seen involved in various Malver-
tising campaigns in 2015 [42].” Similar findings have also
been discussed by TrendMicro [39]. Figure 2 shows a brief
summary of information about these EKs. Our month-
long experimental evaluation shows that automatically-
produced structural signatures are comparable to those
produced manually. We compare Kizzle against a widely
used commercial AV engine and find that it produces
comparable false positive and false negative rates for the

exploit kits we targeted. With respect to our evaluation,
false positive rates for Kizzle are under 0.03%, while the
false negative rates are under 5%.

C. Paper Organization

The rest of this paper is organized as follows. Section II
gives some background on exploit kits and how they are
typically constructed. Section III discusses the technical
details of Kizzle. Section IV contains a detailed experi-
mental evaluation. Section V talks about the limitations
of our approach. Finally, Sections VI and VII summarize
related work and conclude.

II. Background

The last years have witnessed a shift from unique drive-
by downloads to a consolidation into exploit kits, which
incorporate a variety of exploits for known vulnerabilities.
This has several advantages for all malicious parties in-
volved. As mentioned in the Microsoft Security Intelligence
Report V16, “Commercial exploit kits have existed since
at least 2006 in various forms, but early versions required
a considerable amount of technical expertise to use, which
limited their appeal among prospective attackers. This
requirement changed in 2010 with the initial release of the
Blackhole exploit kit, which was designed to be usable by
novice attackers with limited technical skills.”

Exploit kits bring the benefits of specialization to mal-
ware production. A botnet herder can now focus on devel-
opment of his software rather than having to build exploits
that target vulnerabilities in a browser and plugins. On
the other hand, the maintainer of a single exploit kit may
use it to distribute different pieces of malicious software,
optimizing his revenue stream. This trend is also shown
by glimpses security researchers sometimes got into the
backend functionality and operation of such kits, such as
detailed information on the rate of successful infection
from the kits [15, 37]. Interested readers are referred to [19]
for a more comprehensive summary. Note, however, that
most up-to-date information can be found via blogs like
SpiderLabs3 and “Malware don’t need Coffee4”, which are
updated regularly as exploit kit updates emerge.

Focus of this paper: As can be seen from Figure 2,
the EKs under investigation are targeting vulnerabilities
in five browser and plugin components.

An interesting observation in this instance is the fact
that Nuclear contains an exploit targeting a CVE
from 2010 in Adobe Reader, highlighting the fact that
exploitable vulnerabilities are hard to come by. Note that
in September 2014, three of the exploit kits used the exact
same code to check for certain system files belonging to

2Note that for some of the kits, while a Java exploit was present,
no version checking was conducted by the kit, thus determining the
specific CVE is difficult if not impossible.

3http://blog.spiderlabs.com/
4http://malware.dontneedcoffee.com/

AV solutions. To avoid detection, the exploit kits do not
attempt to target a flaw when such files are found.

Our investigation focuses on these four exploit kits
because they were the top kits appearing in our JavaScript
samples and were in active development during our mea-
surement window. Figure 5 shows how one of these kits,
Nuclear, experienced near-constant updates during the
time period of our study, making it a good subject for
studying malware evolution. While other kits exist, rel-
atively few are prominent and in active development at
a given time, and we consider these representative of the
broader population.

A. Exploit Kit Structure

Exploit kits are comprised of several components or-
ganized into layers (Figure 3), that typically include an
unpacker, a plugin and AV detector, an eval/execution
trigger, and, at least one malicious payload.

unpacker
eval

trigger
plugin detector payload

Fig. 3: Structure and components of a typical EK.

An exploit kit usually incorporates a range of CVEs that
it attempts to exploit, which target a variety of operating
systems, plugins, and browsers. In the following, we discuss
these components, showing how they evolve over time.

Unpackers: The outer-most layer of this onion is typically
used to ensure that a security analyst or a web site admin-
istrator cannot effortlessly determine the inner workings
of the exploit kit. This can either be achieved by packing
the underlying pieces or by at least applying obfuscation
techniques such as string encoding.

Figure 4 shows samples of packers from the RIG and
Nuclear explot kits, highlighting the differences between
families. While Nuclear relies on an encryption key that
is used when unpacking the malicious payload, RIG uses a
buffer which is dynamically filled during runtime with the
ASCII codes for the payload, intermixed with a delimiter.
We found that this delimiter is randomized between differ-
ent versions of the kit. In contrast, the encryption key —
and therefore the encrypted payload — for the Nuclear
exploit kit differs in every response, highlighting the fact
that it is difficult to pattern-match on obfuscated code.

Malicious payload: The actual payload typically targets
a set of known vulnerabilities in the browser or plugins. As
can be seen from the Exploit Pack Table5, 5–7 CVEs per
kit is fairly typical. The payload is often interleaved with
plugin detection code, e.g., an HTML element is added to
the DOM pointing to a malicious flash file if a vulnerable
version was detected previously.

Eval trigger: After the malware is fully unfolded, there
is usually a short trigger that starts the EK execution

5http://contagiodump.blogspot.com/2010/06/
overview-of-exploit-packs-update.html

1 var buffer="";

2 var delim="y6";

3

4 function collect(text) {

5 buffer += text;

6 }

7

8 collect("47 y642y6100y6");

9 collect("102 y6103y6104 ..");

10

11 pieces = buffer.split(delim);

12

13 screlem = document.createElement("script");

14

15 for (var i=0; i<pieces.length; i++) {

16 screlem.text += String.fromCharCode(pieces[i]);

17 }

18

19 document.body.appendChild(screlem);

(a) RIG

1 var payload =

2 "691722434526012276437

3 1882152398870382188197

4 6426340570143769276221

5 2757616434526211272.."

6 var cryptkey =

7 "Io^Rg_U8$ \\ ep6kAu.rVvn!’Ti15SQqd -

8 #2@\"{(l4xcbt ?>[3E/sP:O<D7*yz|m+Z;JBf)

9 hX9Gw L0CF%KN},&YaMHj=]W";

10 ...

11

12 getter = function(a){

13 return a;

14 };

15

16 thiscopy = this;

17 doc = thiscopy[thiscopy["getter"]("document")]

18 bgc = doc[thiscopy["getter"]("bgColor")];

19

20 evl = thiscopy["getter"]("ev #333366 al")

21 win = thiscopy["getter"]("win #333366 dow")

22

23 thiscopy

24 [win["replace"](bgc ,"")]

25 [evl["replace"](bgc , "")](payload);

(b) Nuclear exploit kit

Fig. 4: Two typical code unpackers from exploit kits.

process. Examples of these triggers are shown on line 19
of Figure 4(a) and lines 23–25 of Figure 4(b).

B. Evolution of an Exploit Kit

To understand how EK components evolve in the wild,
we captured samples of Nuclear over the course of three
months and tracked changes to the kit. We summarize
some of the mutation approaches below.

Changing the packer: Figure 5 illustrates specific
changes that were made to packer and payload in the kit
to avoid AV detection on a time line. Many of the changes
were very local, changing the way that the kit obscured
calls to eval. For example, between 6/1 and 6/14, the
attacker changed ev#FFFFFFal to e#FFFFFFFval. Over
the course of the three months, we see a total of 13 small
syntactic changes in this category. Only one of these packer
changes (on 8/12) changed the semantics of the packer.

Appending new exploits: We observed changes to the
other components of the kit, i.e., plug-in detection and
payload, occur much less frequently. On 7/29, AV detec-
tion was added to the plug-in detector, and on 8/27 a
new CVE was added. Nothing was removed from either
the plug-in detector or the payload over this period. This
supports our claim that EKs change their outer layer
frequently to avoid AV detection, but typically modify

their inner components by appending to them and even
then only infrequently.

Code borrowing: A noteworthy fact in this instance is
that in June, the Nuclear exploit kit did not utilize
any code aiming at detecting AV software running on the
victim’s machine. We initially observed this behavior in
the RIG exploit kit starting in May. The exact code we
had observed for RIG was used in Nuclear from August,
apparently having been copied from the rivaling kit.

While we use Nuclear exploit kit as a specific ex-
ample here, we observed similar changes in all the exploit
kits we studied. In summary, we observe that kits typically
change in three ways, namely changing the unpacker
(frequent), appending new exploits (infrequent), and
borrowing code from other kits (infrequent).

C. Adversarial Cycle

Exploit kit authors are in a constant arms race with
anti-virus companies as well as rivaling kits’ authors.
While on the one hand, the kits try to avoid detection
by anti-virus engines, their revenue stream is dependent
on the amount of machines they can infect. Therefore,
kit authors always try to include multiple exploits, and
if one kit includes a new exploit, we observed that these
exploits are quickly incorporated into other kits as well.
As we have seen in the example of the Nuclear exploit
kit above, kit authors attempt to avoid detection by anti-
virus engines by modifying the code, whereas in turn
AV analysts try to create new signatures matching the
modified variants. This process can be abstracted to the
adversarial cycle shown in Figure 1.

Initially, an exploit kit is not detected by AV, which
presents a very challenging problem for an analyst. First
they have to find examples of the undetected variant and
then need to create a new signature which matches this
undetected variant, trading off precision and recall – i.e.,
the signature has to be able to catch all occurrences of
the exploit kit while not blocking benign components.
Naturally this takes time and effort and despite this cost,
AV engines update their signatures frequently to keep pace
with the malware writers. After an analyst is satisfied they
have a precise and unique signature, they deploy it.

At this point, the attacker responds, determining that
his kit is now detected by deployed AV signatures. For
the attacker, this can be learned automatically, e.g., by
submitting a URL containing his kit to an AV scanner.
Once this step has occurred (left-hand side of the figure),
he takes measures to counter detection, such as slight mod-
ification to the part of the code that would be suspicious
(e.g., calls to eval), or, in more drastic cases we observed
in the wild, exchanging entire pieces, such as the unpacker.

Depending on the type of change, this task can be easily
accomplished within minutes — and more importantly, an
attacker can scan his code with an AV solution to deter-
mine if it now passes detection, giving him an advantage
over vendors, who need to find ways to detect the new

6/1/2014 8/31/2014
6/8/2014 6/15/2014 6/22/2014 6/29/2014 7/6/2014 7/13/2014 7/20/2014 7/27/2014 8/3/2014 8/10/2014 8/17/2014 8/24/2014

8/19/2014

eher_vam#

6/18/2014

eva#FFFFFFl

7/20/2014

e3fwrwg4#

7/11/2014

e~##...~#v~#a~#l

7/17/2014

e3X@@#v..

8/12/2014

Semantic change

6/24/2014

"ev" + var

8/27/2014

CVE 2013-0074 (SL)

6/1/2014

ev#FFFFFFal

8/22/2014

efber443#

8/17/2014

esa1asv

6/14/2014

e#FFFFFFval

7/29/2014

AV detection

6/30/2014

e~v~#...~a~l

8/26/2014

eUluN#

7/9/2014

e~#...~v~a~l
Packer

changes

Payload
changes

Fig. 5: Evolution of the Nuclear exploit kit over a three-month period in 2014. In this timeline, packer changes are shown above the axis and payload
changes below the axis. The lion’s share of changes are superficial changes to the packer.

signature
released

0%

10%

20%

30%

40%

50%

60%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

AV FN %

Kizzle FN %

Fig. 6: Window of vulnerability for Angler in August, 2014 for a com-
mercial AV engine. The window starts around August 13th and continues
to roughly August 19th.

variant of the kit. This shows the imbalance between the
involved parties, i.e., the effort and reaction time of the
kit author is much lower than that of the AV vendors.

Example 1 Angler in August Figure 6 shows false
negatives for the Angler exploit kit in the month of
August 2014 for a widely used commercial AV engine6.
By observing the changes to the kit over this time, we
understand what happened. Before August, 13th, the
exploit kit contained an HTML snippet that included a
Java exploit with a specific unique string on which the
AV signature matched. On August, 13th, the string on
which the signature matched was incorporated into the
obfuscated body of kit and only written to the document
if a vulnerable version of Java was installed on the system.
This change resulted in a window of time when variants
of the kits were undetected. ◻

III. Techniques

In this section, we describe the implementation of Kiz-

zle, which is illustrated at a high level in Figure 7. For
a more detailed discussion on the algorithms, we refer
the reader to our accompanying technical report [38]. The
input to Kizzle is a set of new samples and a set of existing
unpacked malware samples which correspond to exploit

6We anonymize the exact engine for two reasons: first, we believe
that all engines exhibit the same behavior despite constant efforts
by the analysts to keep them current, and second because EULA
agreements typically prevent disclosing such comparisons.

kits Kizzle is aiming to detect. The algorithmic elements
of Kizzle include abstracting the samples into token se-
quences, clustering the samples, labeling the clusters, and
generating signatures for malicious clusters.

Main driver: The processing starts with a new collection
of samples, whereas a sample consists of a complete HTML
document, including all inline script elements. The main
routine breaks the new samples into a set of clusters,
labels each cluster either as benign or corresponding to
a known kit, and if the cluster is malicious, generates a
new signature for that cluster based on the samples in it.
We consider each of the parts of the task in turn in the
subsections below.

A. Clustering Samples

The process of clustering the input samples is com-
putationally expensive, and as a result, benefits from
parallelization across a set of machines. The first stage
in our process is to randomly partition the samples across
a cluster of machines.

For each partition, the samples are tokenized from the
concrete JavaScript source code represented as Unicode
to a sequence of abstract JavaScript tokens that include
Keyword, Identifier, Punctuation, and String. Fig-
ure 8 gives an example of tokenization in action.

We cluster the samples based on these token strings in
order to eliminate artificial noise created by an attacker in
the form of randomized variable names, etc. We apply a hi-
erarchical clustering algorithm, specifically DBSCAN [11],
using the edit distance between token strings as a means
of determining the distance between any two samples.

We experimentally determined that a threshold of 0.10
is sufficient to generate a reasonably small number of clus-
ters, while not generating clusters that are too generic, i.e.,
contain samples that do not belong to the same family of
malware (or snippets of benign code). In the reduction
phase, the clusters determined by each partition are com-
bined in a final step.

Next, we consider each distinct cluster, selecting a single
prototype sample from the cluster, unpacking it (if it is
packed) and then attempting to label it. This unpacking
step can be conducted by hooking into the eval loop of
the JavaScript engine [7]. For our work, which focuses on

L2 L4
L3

L1

L2 L3

L1

cl
u

st
e

ri
n

g
m

ac
h

in
e

cl
u

st
e

ri
n

g
m

ac
h

in
e

...

cl
u

st
e

ri
n

g
m

ac
h

in
e

cl
u

st
e

ri
n

g
m

ac
h

in
e

Unknown samples

Fig. 7: Architecture of Kizzle.

Token Class

var Keyword
Euur1V Identifier
= Punctuation
this Identifier
[Punctuation
”l9D” String
] Punctuation
(Punctuation
”ev#333399al” String
) Punctuation

Fig. 8: Tokenization in action.

a fixed set of exploit kits, we instead implemented un-
packers for all kits under investigation. With the resulting,
unpacked cluster prototype, we label the cluster.

B. Labeling Clusters

To label clusters with their corresponding EK family
label, we use winnowing [34], a technique originally pro-
posed for detecting plagiarism in code. Using a collection
of known unpacked malware samples (with exploit family
labels), we generate a winnow histogram for the cluster
prototype and compare it against the winnow histograms
for all the known malware samples. If there is sufficient
overlap (based on a threshold that we determined em-
pirically is malware family specific), we then consider the
cluster represented by the prototype to be malicious and
from the corresponding family.

C. Signature Creation

For each cluster that is labeled as malicious, we generate
a signature from the packed samples in that cluster with
the following method.

The first step in signature creation is to find a maximum
value of N such that every sample in a cluster has a
common token string subsequence of length up to N
tokens. We cap this maximum length at 200 tokens. We
find this subsequence with binary search, varying N , and
determining if a common subsequence of length N exists.
An additional constraint, imposed during the search for a

common subsequence, is that it is unique in every sample.

Once the length of the common subsequence is known
and sufficiently long (short sequences are discarded), the
exact sequences of tokens and characters in each of the
samples from the malicious cluster are extracted. In addi-
tion, for each offset in the token sequence, the algorithm
determines the distinct set of concrete strings found in the
different samples at that token offset.

Figure 9 illustrates this step, showing a cluster with
three samples and the process of determining the distinct
values at each offset. Note, that although the original
string contains quotation marks, these are automatically
removed by AV scanners in a normalization step. There-
fore, we omit them in the final signature. Finally, after
gathering all variants of a token at each offset, the algo-
rithm determines a regular expression-based signature, one
token at at time.

If the value is the same across all samples, our algorithm
adds the concrete value to the signature. Otherwise, the
algorithm must generate a regular expression that will
match all elements of this set. While this is a well-studied
problem in general (The L⋆ algorithm [2] can infer a
minimally accepting DFA), we implement an approach
focusing on our expectations of the kinds of diversity
malware writers are likely to put into their code.

We compute an expression that will accept strings of the
observed lengths, and containing the characters observed
by drawing on a predefined set of common patterns such as
[a − z]+, [a − zA − Z0 − 9]+, etc. The current approach uses
brute force to determine a working pattern, but a more
selective approach could build a more efficient decision
procedure from the predefined templates.

Example 2 Kizzle signatures. Figure 10 shows generated
signature for the Nuclear and Sweet orange kits.
For the first signatures, Kizzle picked up on the strings
delimited by Ulun. While such long strings, that do not
naturally occur in benign applications, make the creation
of a signature easy, the kit author can easily change these

Euur1V = this ["l9D“] ("ev#333399al“) ;

jkb0hA = this ["uqA“] ("ev#ccff00al“) ;

QB0Xk = this ["k3LSC“] ("ev#33cc00al“) ;

[A-Za-z0-9]{5,6}=this\[[A-Za-z0-9]{3,5}\]\(.{11}\);

Euur1V
jkb0hA
QB0Xk

= this [] (
l9D
uqA

k3LSC

ev#333399al
ev#ccff00al
ev#33cc00al

) ;

Fig. 9: An example of signature generation in action.

(?<var0 >[0-9a-zA-Z]{3 ,6})=\[\[(? <var1 >

[0-9a-zA-Z]{3 ,6})\[(? <var2 >[0-9a-zA-Z"’]

{5 ,8})]\("cUluNoUluNnUluNcUluNaUluNtUluN"\),

\k<var1 >\[\k<var2 >]\("sUluNuUluNbUluNsUluNtUluNrUluN"\),

\k<var1 >\[\k<var2 >]\("dUluNoUluNcUluNuUluNmUluNeUluNnUluNtUluN"\),

\k<var1 >\[\k<var2 >]\("CUluNoUluNlUluNoUluNrUluN"\),

\k<var1 >\[\k<var2 >]\("lUluNeUluNnUluNgUluNtUluNhUluN"\)],

\[\k<var1 >\[\k<var2 >]\((? <var3 >.{57})\) ,\k<var1 >

\[\k<var2 >]\((? <var4 >.{67})\) ,\k<var1 >

\[\k<var2 >]\("rUluNeUluNpUluNlUluNaUluNcUluNeUluN"\)]]

var(?<var5 >[0-9a-zA-Z]{3 ,7})

(a) Nuclear exploit kit

\)\)\)\{ varaa=xx\.join\(""\)ar\[\(Math\.exp\(1\)- Math\.E\)]

\[\(1\)*2]="l"ar \[\(1\)]\[3]="WWWWWWWbEWsjdhfW"varq=

\(Math\.exp\(1\)- Math\.E\)for

\(qq<ar\[\(Math\.exp\(1\)- Math\.E\)]\. length \+

\+q\)\{aa=aa\. cnvbsdfYTQUWETQWUEASA \(newRegExp \(ar \[\(1\)]

\[q\+\(1\)] ,"g"\),ar\[\(Math\.exp\(1\)- Math\.E\)]\[q]\)\}

returnaa \} return""\} function(?<var0 >[a-zA-Z]{6})\(\)

\{varok =\[(?<var1 >[0-9a-zA-Z" ’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var2 >[0-9a-zA-Z"’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var3 >[0-9a-zA-Z"’]{17})\. charAt \(Math\.sqrt

\(196\)\) ,(? <var4 >[0-9a-zA-Z" ’]{21})\. charAt \(Math\.sqrt

\(324\)\) ,(? <var5 >[0-9a-zA-Z"’]{21})\.

(b) Sweet orange

Fig. 10: Examples of Kizzle-generated signatures.

to circumvent a matching signature. Since, however, Kiz-

zle generates these automatically, this advantage vanishes.

Also, Kizzle picked up on the usage of templatized
variable names, as can be observed by the combination of
var1 and var2 in lines 4 to 9 of Nuclear. While Sweet
orange does not use such delimiters, it uses a simple
obfuscation technique, namely exchanging static integer
values with calls to the Math.sqrt function, allowing it to
simply change this obfuscation by using other mathemat-
ical operations. Again, Kizzle picked up on this property
of the packed payload, generating a precise signature. ◻

IV. Evaluation

To evaluate Kizzle, we gathered potentially mali-
cious samples using a browser instrumented to report
telemetry collected by Internet Explorer from pages that
have ActiveX content. The pages sampled came from a
broad spectrum of URLs representing pages that typi-
cal users might visit. We worked with an anti-malware
vendor to hook into the IExtensionValidation in-
terface (http://msdn.microsoft.com/en-us/library/
dn301826(v=vs.85).aspx) for data extraction. The
Validate method of this interface allows the capture the
underlying HTML and JavaScript. Because we sample
data during a potentially suspicious operation (loading
ActiveX content), the fraction of malware we see is likely

to be substantially higher than a typical browser will see,
hence we consider our data stream “grayware”. In total,
we gathered data for a month (August 2014) and captured
between 80,000 and 500,000 samples per day, i.e., several
gigabytes of JavaScript code for Kizzle to process daily.
Another viable source of likely malicious samples would
be a malware analysis system such as Wepawet [6] or
VirusTotal.com.

Throughout the rest of this section, we focus on the
four exploit kits that are most prevalent in our data:
Nuclear, Sweet orange, Angler, and RIG. These are
the same kits highlighted in recent evaluations performed
by ZSCaler ThreatLab [42] and TrendMicro [39].

All these kits follow the pattern we describe in Sec-
tion II: they are packed on the outside and are rela-
tively similar when unpacked. We compare Kizzle with a
state-of-the-art commercial AV implementation, which we
anonymize to avoid drawing generalizations based on our
limited observations (our position is that all commercial
AV vendors have similar challenges).

Experimental Setup: Figure 11 shows our measure-
ments of how these kits change over the course of a month.
We measure the overlap between the unpacked centroids of
malicious clusters on each day with centroids of the clus-
ters of all previous days based on winnowing (Section III)
and report the maximum overlap. Figure 11 shows that,
for three of the four kits, the amount of change over the
course of the entire month is quite small, often only a few
percent. This contrasts greatly from the external changes
at the level of the packed kits as shown in Figure 5, which
happen every few days.

These observations confirm our hypothesis that most of
the change is external and happens on the packer that
surrounds the logic of the kit. In the case of Nuclear
exploit kit, there is very little change at all. We do note
that RIG (Figure 11(d)) is an outlier, showing changes
of 50% from day over day. This behavior is explained
by noticing that the changes reflect modifications of the
embedded URLs of the kit, and, given the body of the kit
is relatively short, these URLs alone represent a significant
enough part of the code to create a 50% churn.

Cluster-Based Processing Performance: Our imple-
mentation is based on using a cluster of machines and
exploiting the inherent parallelism of our approach. For
the performance numbers found in this section, we used 50
machines for sample clustering and one machine for the
final signature generation.

Our experience shows that clustering takes the majority
of this time, as opposed to signature generation. The re-
duce step described in Section III-A is often the bottleneck
when we needed to reconcile the clusters computed across
the distributed machines. With more effort, we believe that
the reduction step can be parallelized as well in future
work to improve our scalability. In practice, our runs con-
sistently completed in about 90 minutes when processing

96%	

97%	

98%	

99%	

100%	

8/
2/
14
	

8/
4/
14
	

8/
6/
14
	

8/
8/
14
	

8/
10
/1
4	

8/
12
/1
4	

8/
14
/1
4	

8/
16
/1
4	

8/
18
/1
4	

8/
20
/1
4	

8/
22
/1
4	

8/
24
/1
4	

8/
26
/1
4	

8/
28
/1
4	

8/
30
/1
4	

(a) Nuclear

50%	

55%	

60%	

65%	

70%	

75%	

80%	

85%	

90%	

95%	

8/
2/
14
	

8/
4/
14
	

8/
6/
14
	

8/
8/
14
	

8/
10
/1
4	

8/
12
/1
4	

8/
14
/1
4	

8/
16
/1
4	

8/
18
/1
4	

8/
20
/1
4	

8/
22
/1
4	

8/
24
/1
4	

8/
26
/1
4	

8/
28
/1
4	

8/
30
/1
4	

(b) Sweet Orange

99%	

100%	

8/
2/
14
	

8/
4/
14
	

8/
6/
14
	

8/
8/
14
	

8/
10
/1
4	

8/
12
/1
4	

8/
14
/1
4	

8/
16
/1
4	

8/
18
/1
4	

8/
20
/1
4	

8/
22
/1
4	

8/
24
/1
4	

8/
26
/1
4	

8/
28
/1
4	

8/
30
/1
4	

(c) Angler

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

8/
2/
14
	

8/
4/
14
	

8/
6/
14
	

8/
8/
14
	

8/
10
/1
4	

8/
12
/1
4	

8/
14
/1
4	

8/
16
/1
4	

8/
18
/1
4	

8/
20
/1
4	

8/
22
/1
4	

8/
24
/1
4	

8/
26
/1
4	

8/
28
/1
4	

8/
30
/1
4	

(d) RIG

Fig. 11: Similarity over time for a month-long time window. Note that the
y axis is different across the graphs: sometimes, the range of similarities
is very narrow.

the daily data. We find this processing time is adequate
and can be further improved with more machines.

In our experiments, we detected between 280 and 1,200
clusters per day. However, almost all of them correspond to
benign code, while only a handful are detected as malicious
and labeled as one of the exploit kits in question. This
shows that despite the fact that we are analyzing grayware,
much of what we observe is benign code that falls into a
relatively small number of frequently observed clusters.

Figure 10 shows some examples of the signatures pro-
duced by Kizzle. Overall, two things immediately stand
out for the automatically-generated signatures: they are
long and they are very specific. Both of these character-
istics contribute to Kizzle signatures being less prone to

false positives, as we show in Figure 13.

Signature effectiveness: Figure 12 shows the lengths of
Kizzle-generated signatures over the month-long period of
time. We show the length of the signatures, in characters,
on the y axis of the graph. Every time there is a “bump” in
the line for one of the EKs, this means that Kizzle decides
to create a new signature.

To help the reader correlate Kizzle signatures with
manually-generated signatures, we show the labels for
hand-crafted signatures created to address these EKs over
the same period of time. To highlight some of the insights,
consider Nuclear exploit kit (blue line) starting on
August, 17th. As a packing strategy, the Nuclear ex-
ploit kit uses a delimiter, which separates characters ev
and al and win and dow in Figure 4(b). You can also
spot this delimeter-based approach in Figure 10 where
a string like sUluNuUluNbUluNsUluNtUluNrUluN unpacks
into substr. The strategy that Nuclear exploit kit
uses is to change this delimiter frequently because the
malware writer suspects that AV signatures will try to
match this code. The green oval call-outs in the figure show
signature-avoiding changes to the delimiter as part of kit
evolution.

The Kizzle algorithm can immediately react to these
minor changes in the body of the kit, as indicated by daily
changes in Kizzle signatures. To contrast with manually-
produced signatures, the first AV signature that we see
responding to these changes emerges on August 25th. Note
that it may be the case that the AV signature did not need
to be updated to be effective, but the figure illustrates that
Kizzle will automatically respond to kit changes daily.
Figure 10 shows an example of two signatures produced
by Kizzle.

Precision of Kizzle-Generated Signatures: The qual-
ity of any anti-virus solution is based on its ability to find
most viruses with a very low false positive rate. Our goal
for Kizzle is to provide rates comparable to human-written
AV signatures when tested over the month of data we
collected. Figure 13 shows false positive and false negative
rates for Kizzle compared to those for AV. Overall, false
positive rates are lower for Kizzle (except for a period
between August 24 and August 26th). Figure 15 shows a
representative false positive. False positive rates for Kizzle

overall are very small, i.e., under 0.03%.
Figure 14 shows some details of our evaluation. The

kit that gave Kizzle the most challenge was RIG, which
occurred with low frequency in our sample set. RIG also
changed more on a daily basis, as illustrated in Figure 11.

Ground Truth: To approximate the ground truth, we
took the union of samples matched by both AV signatures
and the Kizzle approach and examined the overlap. Sub-
sequently, to confirm false positives and false negatives,
we manually inspected approximately 7,000 files, using
some scripting automation to bucket samples together. In
addition, we analyzed the compliment of that union for

RIG.sig1

RIG.sig2

RIG.sig3

RIG.sig4

RIG.sig5 RIG.sig6 RIG.sig7

ANG.sig1
ANG.sig2 ANG.sig3

NEK.sig1 NEK.sig2 sa1as her_vam
fber443

NEK.sig3

UluN

NEK.sig4

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1
-A
u
g

2
-A
u
g

3
-A
u
g

4
-A
u
g

5
-A
u
g

6
-A
u
g

7
-A
u
g

8
-A
u
g

9
-A
u
g

1
0
-A
u
g

1
1
-A
u
g

1
2
-A
u
g

1
3
-A
u
g

1
4
-A
u
g

1
5-
A
u
g

1
6-
A
u
g

1
7
-A
u
g

1
8
-A
u
g

1
9
-A
u
g

2
0
-A
u
g

2
1
-A
u
g

2
2
-A
u
g

2
3
-A
u
g

2
4-
A
u
g

2
5-
A
u
g

2
6-
A
u
g

2
7
-A
u
g

2
8
-A
u
g

2
9
-A
u
g

3
0
-A
u
g

3
1
-A
u
g

RIG

Angler

Sweet orange

Nuclear

Fig. 12: Signature lengths over time for a month-long time window. Red call-outs are new signatures issued by AV. Green oval call-outs show delimiter
changes in Nuclear exploit kit.

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

False positives for all kits

AV FP %

Kizzle FP %

(a) False positives over time for a month-long time window.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1
-A

u
g

3
-A

u
g

5
-A

u
g

7
-A

u
g

9
-A

u
g

1
1

-A
u

g

1
3

-A
u

g

1
5

-A
u

g

1
7

-A
u

g

1
9

-A
u

g

2
1

-A
u

g

2
3

-A
u

g

2
5

-A
u

g

2
7

-A
u

g

2
9

-A
u

g

3
1

-A
u

g

False negatives for all kits

AV FN %

Kizzle FN %

(b) False negatives over time for a month-long time window.

Fig. 13: False positives and false negatives over time for a month-long
time window: Kizzle vs. AV.

URL patterns matching known exploit kits. In doing so,
we found no cases in which a URL indicated that there
were malicious samples in this compliment. In total, this
tedious manual validation took approximately 15 hours.

Figure 13 shows that false negative rates for Kizzle are
smaller than those for AV as well. This shows that Kizzle

successfully balances false positive and false negative re-
quirements. In particular, there is a spike in false negatives

Ground AV Kizzle
EK truth FP FN FP FN

Nuclear 6,106 1 1,671 25 8
Sweet Orange 11,315 0 2 0 1
Angler 40,026 635 4,213 0 196
RIG 1,409 11 30 241 144

Sum 58,856 647 7,587 266 349

Fig. 14: False positives and false negatives: absolute counts comparing
Kizzle vs. AV.

between August, 13th, and August, 21st, for AV which
Kizzle does not suffer from. The majority of these false
negatives are due to AV’s failure to detect a variant of
Angler (Figure 6).

Overall, the false negative rate for Kizzle is under 5% for
the month of August. A weakness of our approach is that,
if a kit changes drastically overnight, Kizzle may no longer
be able to connect previous samples to subsequent ones. In
practice this did not occur during the period of time we
examined because kit authors reuse either the unpacked
body of the kit (Figure 11), or because they reuse the
packer. When we experience false negatives, it is generally
because of changes in the kit that are not numerous enough
in our grayware stream to warrant a separate cluster. An
example of this is a small bump in false negatives for
Angler on August, 13th, in Figure 6, which produced
some, but not enough new variants of Angler for Kizzle

to produce a new signature.

V. Discussion

Our approach combines automatically building signa-
tures on the packed versions of exploit kits by reasoning
about maliciousness based on comparing the unpacked
versions to previous known attacks.

Choice of EKs: Our results are based on studying the
behavior of four exploit kits over a period of one month.

\},toString:\(\{\}\)\.constructor\.prototype\
.toString,isPlainObject:function\(c\)\{vara=
this,bif\(!c\|\|a\.rgx\.any\.test\(a\.toString\
.call\(c\)\)\|\|c\.window==c\|\|a\.rgx\.num\
.test\(a\.toString\.call\(c\.nodeType\)\)\)\
{return0\}try\{if\(!a\.hasOwn\(c,"constructor"\)
&&!a\.hasOwn\(c\.constructor\.prototype,
"isPrototypeOf"\)\)\{return0\}\}catch\(b\)\
{return0\}return1\},isDefined:function\(b\)\
{returntypeofb!="undefined"\},isArray:
function\(b\)\{returnthis\.rgx\.arr\.test\
(this\.toString\.call\(b\)\)\},isString:
function\(b\)\{returnthis\.rgx\.str\.test\
(this\.toString\.call\(b\)\)\},isNum:function\(b\)

Fig. 15: A false positive for Kizzle extracted from PluginDetect; it
shares a very high (79%) overlap with Nuclear exploit kit.

We have looked at the same kits over a longer period (and
observed consistent behavior) and these kits do represent
a significant fraction of all malware we observe in our
data stream, but our experiments are still limited. Our
choice of kits mostly coincides with the most important
EKs of 2014 and 2015, as identified by a different security
companies [39, 42], and we believe our results will carry
over to other EKs, given that they employ a similar
packing strategy.

Tuning the ML: As with any solution based on clustering
and abstracting streams of data, a number of tuning knobs
control the effectiveness of the approach. For example, how
many samples do we need to define a cluster, how long
should the generated signatures be, etc. Finding the right
values for these parameters and adjusting them due to the
dynamic nature of a malicious opponent makes keeping
such a system well-tuned challenging. Likely, observing
detection accuracy over time as part of operations with
the attacker adjusting to Kizzle is needed.

EK structure: Our approach is based on the fact that
while the effort to change the outer layer of an EK is rela-
tively small, changing the syntax, yet not the semantics, of
the inner layer is non-trivial. However, research by Payer
has highlighted that for binary files, automated rewriting
to achieve just such syntactic changes is feasible [27].
While that work aims specifically at binaries, adoption of
such automated rewriting schemes would impair Kizzle’s
ability to track the kits in their unfolded form, if exploit
kits move closer to a “fully polymorphic” model.

Deployment and avoidance: As shown in Figure 1,
there is an arms race between created signatures and
avoidance by an adversary. Kizzle’s signatures, not un-
like hand-crafted AV signatures, can be circumvented by
simple trial-and-error—the attacker loads a URL contain
his packed kit and checks whether the AV flags it. If the
AV triggers, he can adjust the code to see if that change
allows him to bypass detection. This allows him to produce
a new, undetected variant of his kit. However, the inner-
most layer is not as easy to change, as the code is often
not even originating from the kit author, but taken from
another kit. Therefore, even though the new variant has no
resemblance to the previous versions on the outside, they
will most likely overlap in the inner-most code, allowing

Kizzle to correctly label the resulting clusters as malicious
and, thus, producing a signature to match the new variant.
This process is fully automated and therefore does not
require any manual work on the side of the analyst. In
contrast, the malware author is now faced with a signature
capable of detecting his changed EK variant, requiring him
to change the packer again.

One means for an attacker to bypass detection is to
change the inner-most part of the code to such an extend
that Kizzle is no longer able to correctly classify a mali-
cious cluster. This step, however, cannot be automated as
easily since Kizzle does not provide an attacker with the
means of directly checking a given sample for detection.
Rather, he has to create a new variant with major changes
to the inner core and wait for Kizzle to create (or not
create) a signature. To counter such attacks, Kizzle can
be extended to employ hidden signatures on the server
side. Such signatures can either match on specific strings
contained in the inner layer or even match on execution
behavior. As they never leave the server, the adversary has
no means of learning what they match on and, thus, is
not able to circumvent detection. The current generation
of EKs, however, does not change the unpacked code in
such a manner and, thus, we opted not to implement such
a detection mechanism.

An attacker aware of the signature creation algorithm
can try to modify his packer such that our algorithm fails.
An example for this is the insertion of a random number
of superfluous JavaScript instructions between relevant
operations to beat the structural signatures. We believe,
however, that our approach can be extended to create
signatures which not only match one consecutive token
sequence, but rather consist of multiple, shorter sequences.

VI. Related Work

We cover three most closely related areas of research.

Exploit Kits: Previous work on exploit kits has focused
mainly on examining their server-side components. Ko-
tov et al. analyze the server-side code for 24 (partially inac-
tive) different families and found that 82% of the analyzed
kits use some form of obfuscation [19]. Additional research
into the server-side components has been conducted by
De Maio et al. [8]. The authors conclude that several of
the analyzed kits are based on one another. They are able
to produce combinations of both User-Agents and GET
parameters such that an infection is more likely to occur.

Grier et al. [12] have conducted an analysis into the
effects exploit kits have on the malware ecosystem, finding
that the analyzed kits are used to deliver several different
families of malware. They show that exploit kits are an
integral part of that ecosystem, putting additional empha-
sis of effective countermeasures. Allodi et al. conducted
experiments with the server-side code of exploit kits to
determine how resilient kits are to changes of targeted
systems. In doing so, they found that while some exploit
kits aim for a lower, yet steadier infection rate over time,

other kits are designed to deliver a small number of
the latest exploits, achieving a higher infection rate [1].
Eshete et al. conducted an analysis of the flaws contained
in server-side components of exploit kits, showing that
half of the investigated back-ends contained exploitable
vulnerabilities [10]. Our focus is on more readily observable
client-side components of EKs.

Bilge et al. show that exploits, which were later on also
used in exploit kits, could be found in the wild as zero-days
before the disclosure of the targeted vulnerability by the
vendor [3]. They show that even with AV that can react to
known threats, the window of exposure to zero-days is of-
ten longer than expected. Dan Guido presents a case study
highlighting the fact that exploit kits encountered by his
customers typically incorporated exploits from whitehats
or APTs, rather than using a zero-day [14].

Drive-by attacks: Drive-by downloads or drive-by attack
have received much attention [5, 12, 24, 29]. Many stud-
ies [29, 30, 35, 41] rely on a combination of high- and low-
interaction client honeypots to visit a large number of
sites, detecting suspicious behavior in environment state
after being compromised. Below we mention some of the
more closely related projects. Apart from the work that
specifically investigates issues related to exploit kits, re-
searchers have also focused on drive-by downloads. In Zoz-
zle, Curtsinger et al. develop a solution that can detect
JavaScript malware in the browser using static analysis
techniques [7]. This system uses a näıve Bayes classifier to
finding instances of known, malicious JavaScript. As we
have shown in this paper, exploit kits are changing rapidly.
Thus, continuously finding suitable training samples for
Zozzle is a challenge; additionally, Zozzle did not gen-
erate AV signatures. A similar approach was followed by
Rieck et al. for CUJO, in which the detection and preven-
tion components were deployed in a proxy rather than the
browser [33]. Cova et al. describe JSAND [6] for analyzing
and classifying web content based on static and dynamic
features. Their system provides a framework to emulate
JavaScript code and determine characteristics that are
typically found in malicious code. Ratanaworabhan et al.
describe Nozzle, a dynamic system that uses a global
heap health metric to detect heap-spraying, a common
technique used in modern browser exploits [32].

Researchers have also analyzed ways to mitigate the
effects of drive-by download attacks. Egele et al. check
strings that are allocated during runtime for patterns that
resemble shellcode and ensure that this code is never
executed [9]. Lu et al. propose a system called BLADE, to
ensure that all executable files that are downloaded via the
browser are automatically sandboxed such that they can
only be executed with explicit user consent [22]. Kaprav-
elos et al. present Revolver, a system that leverages the
fact that to avoid detection by emulators or honey clients,
authors of exploits use small syntactic changes to throw of
such detection tools. To find such evasive malware, they

compare the structure of two pieces of JavaScript, allowing
them to determine these minor changes [16].

Signature generation: Automated signature generation
has been used to counter both network-based attacks and
generate AV-like signatures for malicious files. Singh et al.
proposed an automated method to detect previously un-
known worms based on traffic characteristics and subse-
quently create content-based signatures [36]. Two other
research groups present similar works, generating signa-
tures from honeypot [20] and DMZ traffic [18]. Additional
research has focused on improving false positive rates of
such systems [26], enabling privacy-preserving exchange
of signatures to quickly combat detected attacks [40]
and shifting the detection towards commonalities between
attacks against a single vulnerable service [21, 25].

Work by Brumley et al. proposes a deeper analysis of
the vulnerabilities rather than exploits to detect malicious
packets and subsequently create matching signatures [4].
The concept of clustering HTTP traffic was then used
in 2010 by Perdisci et al. to find similar patterns in
different packets to improve the quality of generated signa-
tures [28]. While much focus has been on the detection of
network-based attacks, research into automatic generation
of virus signatures dates back to 1994, when Kephart and
Arnold propose a system that leverages a large base of
benign software to infer which byte sequences in malicious
binaries are unlikely to cause false positives if used a
signature [17]. In recent years, this idea was picked up
when Griffin et al. presented Hancock, which determines
the probability that an arbitrary byte sequence occurs
in a random file and improves the selection of signature
candidates by automatically identifying library code in
malicious files. This allows them to achieve a false positive
rate of 0.1% [13]. FIRMA clusters unlabeled malware
based on captured network traffic, using them to produce
network signatures with a high precision and recall [31].

In summary, although previous research has been con-
ducted both in EK detection and analysis, as well as the
automated generation of signatures, no work has made
the connection between the two fields. In contrast, Kizzle

leverages insights gathered by us as well as previous work
to tailor-make a solution which is allows fully automated
detection of Exploit Kits.

VII. Conclusions

This paper proposes Kizzle, a malware signature com-
piler that targets exploit kits. Kizzle automatically identi-
fies malware clusters as they evolve over time and produces
signatures that can be applied to detect malware with a
lower false negative and similar false positive rates, when
compared to hand-written anti-virus signatures.

While we have seen a great deal of consolidation in
the space of Web malware, which leads to sophisticated
attacks being accessible to a broad range of attackers, we
believe that Kizzle can tip the balance in favor of the
defender as it lowers the required effort for the defender,

while simultaneously increasing the work load for the
attacker. Kizzle is designed to run in the cloud and scale
to large volumes of streaming code samples, allowing for
a quick response time to changes in the detected EKs.

Our longitudinal evaluation shows that Kizzle produces
signatures of high accuracy. When evaluated over a four-
week period in August 2014, false positive rates for Kizzle

are under 0.03%, while the false negative rates are un-
der 5%, rivalling manually-crafted AV signatures in both
categories.

Acknowledgements

We greatly appreciate the cooperation and help we
received from Dennis Batchelder, Edgardo Diaz, Jonathon
Green, and Scott Molenkamp in the course of working on
this project. This work was partially supported by the
German Ministry for Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy
and Accountability (CISPA).

References

[1] L. Allodi, V. Kotov, and F. Massacci. Malwarelab: Experimen-
tation with cybercrime attack tools. In Workshop on Cyber
Security Experimentation and Test, 2013.

[2] D. Angluin. Learning regular sets from queries and counterex-
amples. Information and Computation, 75(2), 1987.

[3] L. Bilge and T. Dumitras. Before we knew it: An empirical study
of zero-day attacks in the real world. In CCS, 2012.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based signatures.
In IEEE S&P, 2006.

[5] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring
pay-per-install: The commoditization of malware distribution.
In USENIX Security, 2011.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious JavaScript code. In
WWW, 2010.

[7] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle:
Low-overhead mostly static JavaScript malware detection. In
USENIX Security, 2011.

[8] G. De Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna. Pexy: The other side of exploit kits. In DIMVA, 2014.

[9] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
browsers against drive-by downloads: Mitigating heap-spraying
code injection attacks. In Detection of Intrusions and Malware,
and Vulnerability Assessment. 2009.

[10] B. Eshete, A. Alhuzali, M. Monshizadeh, P. Porras,
V. Venkatakrishnan, and V. Yegneswaran. Ekhunter: A
counter-offensive toolkit for exploit kit infiltration. In NDSS,
2015.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In International Conference on Knowledge Discovery and
Data Mining, 1996.

[12] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pit-
sillidis, et al. Manufacturing compromise: the emergence of
exploit-as-a-service. In CCS, 2012.

[13] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic
generation of string signatures for malware detection. In RAID,
2009.

[14] D. Guido. A case study of intelligence-driven defense. IEEE
Security and Privacy, 2011.

[15] J. Jones. The state of Web exploit kits. In BlackHat, 2012.
[16] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and

G. Vigna. Revolver: An automated approach to the detection
of evasive web-based malware. In USENIX Security, 2013.

[17] J. O. Kephart and W. C. Arnold. Automatic extraction of
computer virus signatures. In Virus Bulletin International
Conference, 1994.

[18] H.-A. Kim and B. Karp. Autograph: Toward automated, dis-
tributed worm signature detection. In USENIX Security, 2004.

[19] V. Kotov and F. Massacci. Anatomy of exploit kits: Preliminary
analysis of exploit kits as software artefacts. In International
Conference on Engineering Secure Software and Systems, 2013.

[20] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion
detection signatures using honeypots. Workshop on Hot Topics
in Networks, 2003.

[21] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez. Hamsa:
Fast signature generation for zero-day polymorphic worms with
provable attack resilience. In IEEE S&P, 2006.

[22] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an attack-
agnostic approach for preventing drive-by malware infections. In
CCS, 2010.

[23] C. Nachenberg. Computer virus-antivirus coevolution. Com-
munications of the ACM, 40(1):46–51, Jan. 1997.

[24] A. Nappa, M. Z. Rafique, and J. Caballero. Driving in the Cloud:
An Analysis of Drive-by Download Operations and Abuse Re-
porting. In DIMVA, Berlin, Germany, July 2013.

[25] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically
generating signatures for polymorphic worms. In IEEE S&P,
2005.

[26] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software. In NDSS, 2005.

[27] M. Payer. Embracing the new threat: Towards automatically
self-diversifying malware. In The Symposium on Security for
Asia Network, 2014.

[28] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of
http-based malware and signature generation using malicious
network traces. In USENIX NSDI, 2010.

[29] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All
your iFRAMEs point to us. In USENIX Security, 2008.

[30] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser: Analysis of web-based
malware. In Workshop on Hot Topics in Understanding Botnets,
2007.

[31] M. Z. Rafique and J. Caballero. FIRMA: Malware Clustering
and Network Signature Generation with Mixed Network Behav-
iors. In RAID, St. Lucia, October 2013.

[32] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A de-
fense against heap-spraying code injection attacks. In USENIX
Security, 2009.

[33] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection
and prevention of drive-by-download attacks. In ACSAC, 2010.

[34] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. In International
Conference on Management of Data, 2003.

[35] C. Seifert, V. Delwadia, P. Komisarczuk, D. Stirling, and
I. Welch. Measurement study on malicious web servers in the
.nz domain. In Australasian Conference on Information Security
and Privacy, 2009.

[36] S. Singh, C. Estan, G. Varghese, and S. Savage. Earlybird
system for real-time detection of unknown worms. Technical
report, 2003.

[37] SpiderLabs Blog. Rig exploit kit - diving deeper into the
infrastructure. online, https://goo.gl/Ke8t8K.

[38] B. Stock, B. Livshits, and B. Zorn. Kizzle: A signature compiler
for exploit kits. Technical Report MSR-TR-2015-12, February
2015.

[39] TrendLabs Security Intelligence. Exploit kits in 2015: Scale and
distribution. online, http://goo.gl/SlU5sA.

[40] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based
worm detection and signature generation. In RAID, 2006.

[41] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Study-
ing malicious websites and the underground economy on the
Chinese web. Managing Information Risk and the Economics
of Security, 2008.

[42] ZScaler ThreatLab. Malvertising, exploit kits, clickfraud and
ransomware: A thriving underground economy. http://goo.gl/
ozDmZX, 2015.

