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Abstract. We present the first idealized cryptographic library that can be used
like the Dolev-Yao model for automated proofs of cryptographic protocols that
use nested cryptographic operations, while coming with a cryptographic imple-
mentation that is provably secure under active attacks.
To illustrate the usefulness of the cryptographic library,we present a cryptograph-
ically sound security proof of the well-known Needham-Schroeder-Lowe public-
key protocol for entity authentication. This protocol was previously only proved
over unfounded abstractions from cryptography. We show that the protocol is se-
cure against arbitrary active attacks if it is implemented using standard provably
secure cryptographic primitives. Conducting the proof by means of the idealized
cryptographic library does not require us to deal with the probabilistic aspects of
cryptography, hence the proof is in the scope of current automated proof tools.
Besides establishing the cryptographic security of the Needham-Schroeder-Lowe
protocol, this exemplifies the potential of this cryptographic library and paves the
way for the cryptographically sound verification of security protocols by auto-
mated proof tools.

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or
SET use cryptographic primitives like signature schemes orencryption in a black-box
way, while adding many non-cryptographic features. Vulnerabilities have accompanied
the design of such protocols ever since early authentication protocols like Needham-
Schroeder [4, 5], over carefully designed de-facto standards like SSL and PKCS [6, 7],
up to current widely deployed products like Microsoft Passport [8]. However, proving
the security of such protocols has been a very unsatisfactory task for a long time.

One possibility was to take the cryptographic approach. This means reduction
proofs between the security of the overall system and the security of the cryptographic
primitives, i.e., one shows that if one could break the overall system, one could also
break one of the underlying cryptographic primitives with respect to their cryptographic
definitions, e.g., adaptive chosen-message security for signature schemes. For authenti-
cation protocols, this approach was first used in [9]. In principle, proofs in this approach
are as rigorous as typical proofs in mathematics. In practice, however, human beings are
extremely fallible with this type of proofs. This is not due to the cryptography, but to the

⋆ Parts of this work appeared in [1–3].
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distributed-systems aspects of the protocols. It is well-known from non-cryptographic
distributed systems that many wrong protocols have been published even for very small
problems. Hand-made proofs are highly error-prone becausefollowing all the different
cases how actions of different machines interleave is extremely tedious. Humans tend
to take wrong shortcuts and do not want to proof-read such details in proofs by others.
If the protocol contains cryptography, this obstacle is even much worse: Already a rig-
orous definition of the goals gets more complicated, and often not only trace properties
(integrity) have to be proven but also secrecy. Further, in principle the complexity-
theoretic reduction has to be carried out across all these cases, and it is not at all trivial
to do this rigorously. In consequence, there is almost no real cryptographic proof of
a larger protocol, and several times supposedly proven, relatively small systems were
later broken, e.g., [10, 11].

The other possibility was to use formal methods. There one leaves the tedious parts
of proofs to machines, i.e., model checkers or automatic theorem provers. This means
to code the cryptographic protocols into the language of such tools, which may need
more or less start-up work depending on whether the tool already supports distributed
systems or whether interaction models have to be encoded first. None of these tools,
however, is currently able to deal with reduction proofs. Nobody even thought about
this for a long time, because one felt that protocol proofs could be based on simpler,
idealized abstractions from cryptographic primitives. Almost all these abstractions are
variants of the Dolev-Yao model [12], which represents all cryptographic primitives as
operators of a term algebra with cancellation rules. For instance, public-key encryption
is represented by operatorsE for encryption andD for decryption with one cancellation
rule,D(E(m)) = m for all m. Encrypting a messagem twice in this model does not
yield another message from the basic message space but the termE(E(m)). Further, the
model assumes that two terms whose equality cannot be derived with the cancellation
rules are not equal, and every term that cannot be derived is completely secret. However,
originally there was no foundation at all for such assumptions about real cryptographic
primitives, and thus no guarantee that protocols proved with these tools were still secure
when implemented with real cryptography. Although no previously proved protocol has
been broken when implemented with standard provably securecryptosystems, this was
clearly an unsatisfactory situation, and artificial counterexamples can be constructed.

1.1 A Dolev-Yao Model that is Cryptographically Sound underActive Attacks

Three years ago, efforts started to get the best of both worlds. Essentially, [13, 14]
started to define general cryptographic models that supportidealization that is secure in
arbitrary environments and under arbitrary active attacks, while [15] started to justify
the Dolev-Yao model as far as one could without such a model. Both directions were
significantly extended in subsequent papers, in particular[16–22].

The conference version [1, 23] underlying this paper is the first one that offers
a provably secure variant of the Dolev-Yao model for proofs that people typically
make with the Dolev-Yao model, because for the first time we cover both active at-
tacks and nested cryptographic operations. While [1] addressed the soundness of asym-
metric cryptographic primitives such as public-key encryption and digital signatures,
subsequent papers extended the soundness result to symmetric authentication [24] and
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symmetric encryption [25]. Moreover, tailored tool support for this library was subse-
quently added [26, 27].1 Combining security against active attacks and nesting crypto-
graphic operations arbitrarily is essential: First, most cryptographic protocols are bro-
ken by active attacks, e.g., man-in-the-middle attacks or attacks where an adversary
reuses a message from one protocol step in a different protocol step where it sud-
denly gets a different semantics. Such attacks are not covered by [30, 16]. Secondly,
the main use of the Dolev-Yao model is to represent nested protocol messages like
Epkev (signsksu(m,N1), N2), wherem denotes an arbitrary message andN1, N2 two
nonces. No previous idealization proved in the reactive cryptographic models contains
abstractions from cryptographic primitives (here mainly encryption and signatures, but
also the nonces and the list operation) that can be used in such nested terms. Exist-
ing abstractions are either too high-level, e.g., the secure channels in [17, 19] combine
encryption and signatures in a fixed way. Or they need immediate interaction with the
adversary [18, 31], i.e., the adversary learns the structure of every term any honest party
ever builds, and even every signed message. This abstraction is not usable for a term as
above because one may want to show thatm is secret because of the outer encryption,
but the abstraction givesm to the adversary. (A similar immediate application of the
model of [17] to such primitives would avoid this problem, but instead keep all signa-
tures and ciphertexts in the system, so that nesting is also not possible.) Finally, there
exist some semi-abstractions which still depend on cryptographic details [32, 17]. Thus
they are not suitable for abstract protocol representations and proof tools, but we use
such a semi-abstraction of public-key encryption as a submodule below.

The first decision in the design of an ideal library that supports both nesting and gen-
eral active attacks was how we can represent an idealized cryptographic term and the
corresponding real message in thesameway to a higher protocol. This is necessary for
using the reactive cryptographic models and their composition theorems. We do this by
handles, i.e., local names. In the ideal system, these handles essentially point to Dolev-
Yao-like terms, while in the real system they point to real cryptographic messages. Our
model for storing the terms belonging to the handles is stateful and in the ideal system
comprises the knowledge of who knows which terms. Thus our overall ideal crypto-
graphic library corresponds more to “the CSP Dolev-Yao model” or “the Strand-space
Dolev-Yao model” than the pure algebraic Dolev-Yao model. Once one has the idea of
handles, one has to consider whether one can put the exact Dolev-Yao terms under them
or how one has to or wants to deviate from them in order to allowa provably secure
cryptographic realization, based on a more or less general class of underlying primi-
tives. An overview of these deviations is given in Section 1.4, and Section 1.5 surveys
how the cryptographic primitives are augmented to give a secure implementation of the
ideal library.

The vast majority of the work was to make a credible proof thatthe real crypto-
graphic library securely implements the ideal one. This is ahand-made proof based
on cryptographic primitives and with many distributed-systems aspects, and thus with

1 In more recent work, drawing upon insides gained from the proof of the cryptographic library,
we showed that widely considered symbolic abstractions of hash functions and of the XOR op-
eration cannot be proven computationally sound in general,hence indicating that their current
symbolic representations might be overly simplistic [28, 29].

3



all the problems mentioned above for cryptographic proofs of large protocols. Indeed
we needed a novel proof technique consisting of a probabilistic, imperfect bisimulation
with an embedded static information-flow analysis, followed by cryptographic reduc-
tions proofs for so-called error sets of traces where the bisimulation did not work. As
this proof needs to be made only once, and is intended to be thejustification for later
basing many protocol proofs on the ideal cryptographic library and proving them with
higher assurance using automatic tools, we carefully worked out all the tedious de-
tails, and we encourage some readers to double-check the 68-page full version of this
paper [23] and the extension to symmetric cryptographic operations [24, 25]. Based on
our experience with making this proof and the errors we foundby making it, we strongly
discourage the reader against accepting idealizations of cryptographic primitives where
a similar security property, simulatability, is claimed but only the first step of the proof,
the definition of a simulator, is made. In the following, we sketch the ideal cryptographic
library in Section 3, the concrete cryptographic realization in Section 4, and the proof
of soundness in Section 5. We restrict our attention to asymmetric cryptographic opera-
tions in this paper and refer the reader to [24, 25] for the cases of symmetric encryption
and message authentication.

1.2 An Illustrating Example – A Cryptographically Sound Proof of the
Needham-Schroeder-Lowe Protocol

To illustrate the usefulness of the ideal cryptographic library, we investigate the well-
known Needham-Schroeder public-key authentication protocol [4, 33], which arguably
constitutes the most prominent example demonstrating the usefulness of the formal-
methods approach after Lowe used the FDR model checker to discover a man-in-the-
middle attack against the protocol. Lowe later proposed a repaired version of the pro-
tocol [34] and used the model checker to prove that this modified protocol (henceforth
known as the Needham-Schroeder-Lowe protocol) is secure inthe Dolev-Yao model.
The original and the repaired Needham-Schroeder public-key protocols are two of the
most often investigated security protocols, e.g., [35–38]. Various new approaches and
proof tools for the analysis of security protocols were validated by rediscovering the
known flaw or proving the fixed protocol in the Dolev-Yao model.

It is well-known and easy to show that the security flaw of the original protocol
in the Dolev-Yao model can be used to mount a successful attack against any crypto-
graphic implementation of the protocol. However, all previous security proofs of the
repaired protocol are in the Dolev-Yao model, and no theoremcarried these results over
to the cryptographic approach with its much more comprehensive adversary. We close
this gap, i.e., we show that the Needham-Schroeder-Lowe protocol is secure in the cryp-
tographic approach. More precisely, we show that it is secure against arbitrary active
attacks, including arbitrary concurrent protocol runs andarbitrary manipulation of bit-
strings within polynomial time. The underlying assumptionis that the Dolev-Yao-style
abstraction of public-key encryption is implemented usinga chosen-ciphertext secure
public-key encryption scheme with small additions like ciphertext tagging. Chosen-
ciphertext security was introduced in [39] and formulated as IND-CCA2 in [40]. Effi-
cient encryption systems secure in this sense exist under reasonable assumptions [41].
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Our proof is built upon the ideal cryptographic library, anda composition theo-
rem for the underlying security notion implies that protocol proofs can be made using
the ideal library, and security then carries over automatically to the cryptographic re-
alization. However, because of the extension to the Dolev-Yao model, no prior formal-
methods proof carries over directly. Our paper therefore validates this approach by the
first protocol proof over the new ideal cryptographic library, and cryptographic security
follows as a corollary. Besides its value for the Needham-Schroeder-Lowe protocol, the
proof shows that in spite of the extensions and differences in presentation with respect
to prior Dolev-Yao models, a proof can be made over the new library that seems eas-
ily accessible to current automated proof tools. In particular, the proof contains neither
probabilism nor computational restrictions. In the following, we express the Needham-
Schroeder-Lowe protocol based on the ideal cryptographic library in Section 6 and 7.
We formally capture the entity authentication requirementin Section 8, and we prove
in Section 9 that entity authentication based on the ideal library implies (the crypto-
graphic definition of) entity authentication based on the concrete realization of the li-
brary. Finally, we prove the entity authentication property based on the ideal library in
Section 10.

1.3 Further Related Literature

Both the cryptographic and the idealizing approach at proving cryptographic systems
started in the early 80s. Early examples of cryptographic definitions and reduction
proofs are [42, 43]. Applied to protocols, these techniquesare at their best for rela-
tively small protocols where there is still a certain interaction between cryptographic
primitives, e.g., [44, 45]. The early methods of automatingproofs based on the Dolev-
Yao model are summarized in [46]. More recently, such work concentrated on using
existing general-purpose model checkers [34, 47, 48] and theorem provers [49, 50], and
on treating larger protocols, e.g., [51].

Work intended to bridge the gap between the cryptographic approach and the use
of automated tools started independently with [13, 14] and [30]. In [30], Dolev-Yao
terms, i.e., with nested operations, are considered specifically for symmetric encryption.
However, the adversary is restricted to passive eavesdropping. Consequently, it was not
necessary to define a reactive model of a system, its honest users, and an adversary,
and the security goals were all formulated as indistinguishability of terms. This was
extended in [16] from terms to more general programs, but therestriction to passive
adversaries remains, which is not realistic in most practical applications. Further, there
are no theorems about composition or property preservationfrom the abstract to the real
system. Several papers extended this work for specific models or specific properties. For
instance, [52] specifically considers strand spaces and information-theoretically secure
authentication only. In [53] a deduction system for information flow is based on the
same operations as in [30], still under passive attacks only.

The approach in [13, 14] was from the other end: It starts witha general reactive
system model, a general definition of cryptographically secure implementation by sim-
ulatability, and a composition theorem for this notion of secure implementation. This
work is based on definitions of securefunctionevaluation, i.e., the computation of one
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set of outputs from one set of inputs [54–57]; earlier extensions towards reactive sys-
tems were either without real abstraction [32] or for quite special cases [58]. The ap-
proach was extended from synchronous to asynchronous systems in [17, 18]. All the
reactive works come with more or less worked-out examples ofabstractions of crypto-
graphic systems, and first tool-supported proofs were made based on such an abstrac-
tion [19, 59] using the theorem prover PVS [60]. However, even with a composition the-
orem this does not automatically give a cryptographic library in the Dolev-Yao sense,
i.e., with the possibility to nest abstract operations, as explained above. Our crypto-
graphic library overcomes these problems. It supports nested operations in the intuitive
sense; operations that are performed locally are not visible to the adversary. It is se-
cure against arbitrary active attacks, and works in the context of arbitrary surrounding
interactive protocols. This holds independently of the goals that one wants to prove
about the surrounding protocols; in particular, property preservation theorems for the
simulatability definition we use have been proved for integrity, secrecy, liveness, and
non-interference [59, 61–65].

Concurrently to [1], an extension to asymmetric encryption, but still under passive
attacks only, has been presented in [66]. The underlying masters thesis [67] considers
asymmetric encryption under active attacks, but in the random oracle model, which is it-
self an idealization of cryptography and not justifiable [68]. Laud [69] has subsequently
presented a cryptographic underpinning for a Dolev-Yao model of symmetric encryp-
tion under active attacks. His work enjoys a direct connection with a formal proof tool,
but it is specific to certain confidentiality properties, restricts the surrounding protocols
to straight-line programs in a specific language, and does not address a connection to
the remaining primitives of the Dolev-Yao model. Herzog et al. [66] and Micciancio and
Warinschi [70] have subsequently also given a cryptographic underpinning under active
attacks. Their results are narrower than that in [1] since they are specific for public-key
encryption, but consider slightly simpler real implementations; moreover, the former
relies on a stronger assumption whereas the latter severelyrestricts the classes of proto-
cols and protocol properties that can be analyzed using thisprimitive. Section 6 of [70]
further points out several possible extensions of their work which all already exist in the
earlier work of [1]. Recently, Canetti and Herzog [71] have linked ideal functionalities
for mutual authentication and key exchange protocols to corresponding representations
in a formal language. They apply their techniques to the Needham-Schroeder-Lowepro-
tocol by considering the exchanged nonces as secret keys. Their work is restricted to
the mentioned functionalities and in contrast to the universally composable library [1]
hence does not address soundness of Dolev-Yao models in their usual generality. The
considered language does not allow loops and offers public-key encryption as the only
cryptographic operation. Moreover, their approach to define a mapping between ideal
and real traces following the ideas of [70] only captures trace-based properties (i.e., in-
tegrity properties); reasoning about secrecy properties additionally requires ad-hoc and
functionality-specific arguments.

Efforts are also under way to formulate syntactic calculi for dealing with probabil-
ism and polynomial-time considerations, in particular [72, 32, 73, 74] and, as a second
step, to encode them into proof tools. This approach can not yet handle protocols with
any degree of automation. It is complementary to the approach of proving simple deter-
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ministic abstractions of cryptography and working with those wherever cryptography is
only used in a blackbox way.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe
protocol have been presented concurrently and independently in [2] and [75]. While the
first paper conducts the proof by means of the ideal cryptographic library and hence
within a deterministic framework that is accessible for machine-assisted verification,
the proof in the second paper is done from scratch in the cryptographic approach and is
hence vulnerable to the aforementioned problems. On the other hand, the second paper
proves stronger properties; we discuss this in Section 8. Itfurther shows that chosen-
plaintext-secure encryption is insufficient for the security of the protocol. While cer-
tainly no full Dolev-Yao model would be needed to model just the Needham-Schroeder-
Lowe protocol, there was no prior attempt to prove this or a similar cryptographic pro-
tocol based on a sound abstraction from cryptography in a wayaccessible to automated
proof tools. After the Needham-Schroeder-Loweprotocol was soundly analyzed, a vari-
ety of additional protocols were proven to be secure in a computationally sound manner,
e.g., [76–80]

1.4 Overview of the Ideal Cryptographic Library

The ideal cryptographic library offers its users abstract cryptographic operations, such
as commands to encrypt or decrypt a message, to make or test a signature, and to gen-
erate a nonce. All these commands have a simple, deterministic semantics. In a reactive
scenario, this semantics is based on state, e.g., of who already knows which terms. We
store state in a “database”. Each entry has a type, e.g., “signature”, and pointers to its
arguments, e.g., a key and a message. This corresponds to thetop level of a Dolev-
Yao term; an entire term can be found by following the pointers. Further, each entry
contains handles for those participants who already know it. Thus the database index
and these handles serve as an infinite, but efficiently constructible supply of global and
local names for cryptographic objects. However, most libraries have export operations
and leave message transport to their users (“token-based”). An actual implementation
of the simulatable library might internally also be structured like this, but higher proto-
cols are only automatically secure if they do not use this export function except via the
special send operations.

The ideal cryptographic library does not allow cheating. For instance, if it receives a
command to encrypt a messagem with a certain key, it simply makes an abstract entry
in a database for the ciphertext. Each entry further contains handles for those partici-
pants who already know it. Another user can only ask for decryption of this ciphertext
if he has handles to both the ciphertext and the secret key. Similarly, if a user issues a
command to sign a message, the ideal system looks up whether this user should have
the secret key. If yes, it stores that this message has been signed with this key. Later
tests are simply look-ups in this database. A send operationmakes an entry known to
other participants, i.e., it adds handles to the entry. Recall that our ideal library is an
entire reactive system and therefore contains an abstract network model. We offer three
types of send commands, corresponding to three channel types {s, r, i}, meaning se-
cure, authentic (but not private), and insecure. The types could be extended. Currently,
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our library contains public-key encryption and signatures, nonces, lists, and applica-
tion data. We have subsequently added symmetric authentication [24] and symmetric
encryption [25]).

The main differences between our ideal cryptographic library and the standard
Dolev-Yao model are the following. Some of them already exist in prior extensions
of the Dolev-Yao model.

– Signature schemes are not “inverses” of encryption schemes.
– Secure encryption schemes are necessarily probabilistic,and so are most secure

signature schemes. Hence if the same message is signed or encrypted several times,
we distinguish the versions by making different database entries.

– Secure signature schemes often have memory. The standard definition [43] does
not even exclude that one signature divulges the entire history of messages signed
before. We have to restrict this definition, but we allow a signature to divulge the
number of previously signed messages, so that we include themost efficient prov-
ably secure schemes under classical assumptions like the hardness of factoring [43,
81, 82].2

– We cannot (easily) allow participants to send secret keys over the network because
then the simulation is not always possible.3 Fortunately, for public-key cryptosys-
tems this is not needed in typical protocols.

– Encryption schemes cannot keep the length of arbitrary cleartexts entirely secret.
Typically one can even see the length quite precisely because message expansion
is minimized. Hence we also allow this in the ideal system. A fixed-length version
would be an easy addition to the library, or can be implemented on top of the library
by padding to a fixed length.

– Adversaries may include incorrect messages in encrypted parts of a message which
the current recipient cannot decrypt, but may possibly forward to another recipient
who can, and will thus notice the incorrect format. Hence we also allow certain
“garbage” terms in the ideal system.

1.5 Overview of the Real Cryptographic Library

The real cryptographic library offers its users the same commands as the ideal one, i.e.,
honest users operate on cryptographic objects via handles.This is quite close to standard
APIs for existing implementations of cryptographic libraries that include key storage.
The database of the real system contains real cryptographickeys, ciphertexts, etc., and
the commands are implemented by real cryptographic algorithms. Sending a term on an
insecure channel releases the actual bitstring to the adversary, who can do with it what
he likes. The adversary can also insert arbitrary bitstrings on non-authentic channels.
The simulatability proof will show that nevertheless, everything a real adversary can
achieve can also be achieved by an adversary in the ideal system, or otherwise the
underlying cryptography can be broken.

2 Memory-less schemes exist with either lower efficiency or based on stronger assumptions (e.g.,
[83–85]). We could add them to the library as an additional primitive.

3 The primitives become “committing”. This is well-known from individual simulation proofs.
It also explains why [30] is restricted to passive attacks.

8



We base the implementation of the commands on arbitrary secure encryption and
signature systems according to standard cryptographic definitions. However, we “ide-
alize” the cryptographic objects and operations by measures similar to robust protocol
design [86].

– All objects are tagged with a type field so that, e.g., signatures cannot also be ac-
ceptable ciphertexts or keys.

– Several objects are also tagged with their parameters, e.g., signatures with the pub-
lic key used.

– Randomized operations are randomized completely. For instance, as the ideal sys-
tem represents several signatures under the same message with the same key as dif-
ferent, the real system has to guarantee that theywill be different, except for small
error probabilities. Even probabilistic encryptions are randomized additionally be-
cause they are not always sufficiently random for keys chosenby the adversary.

The reason to tag signatures with the public key needed to verify them is that the
usual definition of a secure signature scheme does not exclude “signature stealing:” Let
(sksh , pksh) denote the key pair of a correct participant. With ordinary signatures an
adversary might be able to compute a valid key pair(sksa , pksa ) such that signatures
that pass the test withpksh also pass the test withpksa . Thus, if a correct participant re-
ceives an encrypted signature onm, it might acceptm as being signed by the adversary,
although the adversary never sawm. It is easy to see that this would result in protocols
that could not be simulated. Our modification prevents this anomaly.

For the additional randomization of signatures, we includea random stringr in the
message to be signed. Alternatively we could replacer by a counter, and if a signature
scheme is strongly randomized already we could omitr. Ciphertexts are randomized by
including the same random stringr in the message to be encrypted and in the ciphertext.
The outerr prevents collisions among ciphertexts from honest participants, the innerr
ensures continued non-malleability.

2 Preliminary Definitions

We briefly sketch the definitions from [17]. Asystemconsists of several possiblestruc-
tures. A structure consists of a set̂M of connected correct machines and a subsetS of
free ports, calledspecified ports. A machine is a probabilistic IO automaton (extended
finite-state machine) in a slightly refined model to allow complexity considerations. For
these machines Turing-machine realizations are defined, and the complexity of those is
measured in terms of a common security parameterk, given as the initial work-tape
content of every machine. Readers only interested in using the ideal cryptographic li-
brary in larger protocols only need normal, deterministic IO automata.

In a standard real cryptographic system, the structures are derived from one in-
tended structure and a trust model consisting of an access structureACC and a channel
modelχ. HereACC contains the possible setsH of indices of uncorrupted machines
among the intended ones, andχ designates whether each channel is secure, authentic
(but not private) or insecure. In a typical ideal system, each structure contains only one
machineTH calledtrusted host.
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Each structure is complemented to aconfigurationby an arbitraryusermachineH
andadversarymachineA. H connects only to ports inS andA to the rest, and they may
interact. The set of configurations of a systemSys is calledConf(Sys). The general
scheduling model in [17] gives each connectionc (from an output portc! to an input
portc?) a buffer, and the machine with the corresponding clock portc⊳! can schedule a
message there when it makes a transition. In real asynchronous cryptographic systems,
network connections are typically scheduled byA. A configuration is a runnable system,
i.e., for eachk one gets a well-defined probability space ofruns. Theviewof a machine
in a run is the restriction to all in- and outputs this machinesees and its internal states.
Formally, the viewview conf (M) of a machineM in a configurationconf is a family of
random variableswith one element for each security parameter valuek.

2.1 Simulatability

Simulatability is the cryptographic notion of secure implementation. For reactive sys-
tems, it means that whatever might happen to an honest user ina real systemSys real
can also happen in the given ideal systemSys id: For every structure(M̂1, S ) ∈ Sys real,
every polynomial-time userH, and every polynomial-time adversaryA1, there exists
a polynomial-time adversaryA2 on a corresponding ideal structure(M̂2, S ) ∈ Sys id
such that the view ofH is computationally indistinguishable in the two configurations.
This is illustrated in Figure 1. Indistinguishability is a well-known cryptographic notion
from [87].

Definition 1. (Computational Indistinguishability) Two families(vark)k∈N and
(var′k)k∈N of random variables on common domainsDk are computationally indis-
tinguishable(“≈”) iff for every algorithmDis (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL,

whereNEGL denotes the set of allnegligible functions, i.e.,g : N→ R≥0 ∈ NEGL iff
for all positive polynomialsQ, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). ✸

Intuitively, given the security parameter and an element chosen according to eithervark
or var′k, Dis tries to guess which distribution the element came from.

Definition 2. (Simulatability) Let systemsSys real andSys id be given. We saySys real ≥
Sys id (at least as secure as) iff for every polynomial-time configurationconf 1 = (M̂1, S ,
H,A1) ∈ Conf(Sys real), there exists a polynomial-time configurationconf 2 = (M̂2, S ,
H,A2) ∈ Conf(Sys id) (with the sameH) such thatview conf

1
(H) ≈ view conf

2
(H). ✸

For the cryptographic library, we even show blackbox simulatability, i.e.,A2 consists of
a simulatorSim that depends only on(M̂1, S ) and usesA1 as a blackbox submachine.
An essential feature of this definition of simulatability isa composition theorem [17],
which essentially says that one can design and prove a largersystem based on the ideal
systemSys id, and then securely replaceSys id by the real systemSys real.
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Fig. 1. Simulatability: The two views ofH must be indistinguishable.

2.2 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “R←” for
uniform random choice from a set. Byx := y++ for integer variablesx, y we mean
y := y + 1;x := y. The length of a messagem is denoted aslen(m), and↓ is an
error element available as an addition to the domains and ranges of all functions and
algorithms. The list operation is denoted asl := (x1, . . . , xj), and the arguments are
unambiguously retrievable asl[i], with l[i] = ↓ if i > j. A databaseD is a set of
functions, called entries, each over a finite domain called attributes. For an entryx ∈ D,
the value at an attributeatt is writtenx.att . For a predicatepred involving attributes,
D[pred ] means the subset of entries whose attributes fulfillpred . If D[pred ] contains
only one element, we use the same notation for this element. Adding an entryx toD is
abbreviatedD :⇐ x.

3 Ideal Cryptographic Library

The ideal cryptographic library consists of a trusted hostTHH for every subsetH of a
set{1, . . . , n} of users. It has a portinu? for inputs from and a portoutu ! for outputs to
each useru ∈ H and foru = a, denoting the adversary.

As mentioned in Section 1.4, we do not assume encryption systems to hide the
length of the message. Furthermore, higher protocols may need to know the length of
certain terms even for honest participants. Thus the trusted host is parameterized with
certain length functions denoting the length of a corresponding value in the real system.
The tuple of these functions is contained in a system parameterL.

For simulatability by a polynomial-time real system, the ideal cryptographic library
has to be polynomial-time. It therefore contains explicit bounds on the message lengths,
the number of signatures per key, and the number of accepted inputs at each port. They
are also contained in the system parameterL. The underlying IO automata model guar-
antees that a machine can enforce such bounds without additional Turing steps even if
an adversary tries to send more data. For all details, we refer to [23].

3.1 States

The main data structure ofTHH is a databaseD. The entries ofD are abstract repre-
sentations of the data produced during a system run, together with the information on
who knows these data. Each entryx ∈ D is of the form

(ind , type, arg , hndu1
, . . . , hndum

, hnda, len)
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whereH = {u1, . . . , um} and:

– ind ∈ N0 is called theindexof x. We writeD[i] instead ofD[ind = i].
– type ∈ typeset := {data, list, nonce, ske, pke, enc, sks, pks, sig, garbage} identi-

fies thetypeof x. Future extensions of the library can extend this set.
– arg = (a1, a2, . . . , aj) is a possibly emptylist of arguments.
– hndu ∈ N0 ∪ {↓} for u ∈ H ∪ {a} identifies howu knows this entry. The valuea

represents the adversary, andhndu = ↓ indicates thatu does not know this entry. A
valuehndu 6= ↓ is called thehandlefor u to entryx. We always use a superscript
“hnd” for handles and usually denote a handle to an entryD[i] by ihnd.

– len ∈ N0 denotes thelengthof the abstract entry. It is computed byTHH using the
given length functions from the system parameterL.

Initially, D is empty.THH keeps a variablesize denoting the current number of el-
ements inD. New entriesx always receive the indexind := size++, andx.ind is
never changed. For eachu ∈ H ∪ {a}, THH maintains a countercurhndu (cur-
rent handle) overN0 initialized with 0, and each new handle foru will be chosen as
ihnd := curhndu++.

3.2 Inputs and their Evaluation

Each inputc at a portinu? with u ∈ H ∪ {a} should be a list(cmd , x1, . . . , xj). We
usually write ity ← cmd(x1, . . . , xj) with a variabley designating the result thatTHH

returns atoutu !. The valuecmd should be a command string, contained in one of the
following four command sets. Commands in the first two sets are available for both the
user and the adversary, while the last two sets model specialadversary capabilities and
are only accepted foru = a. The command sets can be enlarged by future extensions of
the library.

Basic Commands First, we have a setbasic cmds of basic commands. Each basic
command represents one cryptographic operation; arbitrary terms similar to the Dolev-
Yao model are built up or decomposed by a sequence of commands. For instance there
is a commandgen nonce to create a nonce,encrypt to encrypt a message, andlist to
combine several messages into a list. Moreover, there are commandsstore andretrieve
to store real-world messages (bitstrings) in the library and to retrieve them by a handle.
Thus other commands can assume that everything is addressedby handles. We only
allow lists to be signed and transferred, because the list-operation is a convenient place
to concentrate all verifications that no secret items are putinto messages. Altogether,
we have

basic cmds := {get type, get len, store, retrieve, list, list proj, gen nonce,
gen sig keypair, sign, verify, pk of sig,msg of sig, gen enc keypair, encrypt, decrypt,

pk of enc}.

The commands not yet mentioned have the following meaning:get type andget len
retrieve the type and abstract length of a message;list proj retrieves a handle to the
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i-th element of a list;gen sig keypair andgen enc keypair generate key pairs for sig-
natures and encryption, respectively, initially with handles for only the useru who in-
put the command;sign, verify, anddecrypt have the obvious purpose, andpk of sig,
msg of sig; andpk of enc retrieve a public key or message, respectively, from a sig-
nature or ciphertext. (Retrieving public keys will be possible in the real cryptographic
library because we tag signatures and ciphertexts with public keys as explained above.)

We only present the details of howTHH evaluates such basic commands based
on its abstract state for two examples, nonce generation andencryption; see the full
version [23] for the complete definition. We assume that the command is entered at a
port inu? with u ∈ H ∪ {a}. Basic commands arelocal, i.e., they produce a result
at portoutu ! and possibly update the databaseD, but do not produce outputs at other
ports. They also do not touch handles for participantsv 6= u. The functionsnonce len∗,
enc len∗, andmax len are length functions and the message-length bound from the
system parameterL.

For nonces,THH just creates a new entry with typenonce, no arguments, a handle
for useru, and the abstract nonce length. This models that in the real system nonces
are randomly chosen bitstrings of a certain length, which should be all different and not
guessable by anyone else thanu initially. It outputs the handle tou.

– Nonce Generation:nhnd ← gen nonce().
Setnhnd := curhndu++ and

D :⇐ (ind := size++, type := nonce, arg := (),

hndu := nhnd, len := nonce len∗(k)).

The inputs for public-key encryption are handles to the public key and the plaintext
list. THH verifies the types (recall the notationD[pred ]) and verifies that the ciphertext
will not exceed the maximum length. If everything is ok, it makes a new entry of type
enc, with the indices of the public key and the plaintext as arguments, a handle for user
u, and the computed length. The fact that each such entry is newmodels probabilistic
encryption, and the arguments model the highest layer of thecorresponding Dolev-Yao
term.

– Public-Key Encryption:chnd ← encrypt(pkhnd, lhnd).
Let pk := D[hndu = pkhnd ∧ type = pke].ind andl := D[hndu = lhnd ∧ type =
list].ind andlength := enc len∗(k,D[l].len). If length > max len(k) or pk = ↓
or l = ↓, then return↓. Else setchnd := curhndu++ and

D :⇐ (ind := size++, type := enc, arg := (pk , l),

hndu := chnd, len := length).

Honest Send CommandsSecondly, we have a setsend cmds := {send s, send r,
send i} of honest send commandsfor sending messages on channels of different degrees
of security. As an example we present the details of the most important case, insecure
channels.
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– send i(v, lhnd), for v ∈ {1, . . . , n}.
Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind 6= ↓, output
(u, v, i, ind2hnda(l

ind)) atouta!.

The used algorithmind2hndu retrieves the handle for useru to the entry with the
given index if there is one, otherwise it assigns a new such handle ascurhndu++. Thus
this command means that the databaseD now stores that this message is known to the
adversary, and that the adversary learns by the output that useru wanted to send this
message to userv.

Most protocols should only use the other two send commands, i.e., secret or au-
thentic channels, for key distribution at the beginning. Asthe channel type is part of
the send-command name, syntactic checks can ensure that a protocol designed with the
ideal cryptographic library fulfills such requirements.

Local Adversary Commands Thirdly, we have a setadv local cmds :=
{adv garbage, adv invalid ciph, adv transform sig, adv parse} of local adversary
commands. They model tolerable imperfections of the real system, i.e., actions that
may be possible in real systems but that are not required. First, an adversary may cre-
ate invalid entriesof a certain length; they obtain the typegarbage. Secondly,invalid
ciphertextsare a special case because participants not knowing the secret key can rea-
sonably ask for their type and query their public key, hence they cannot be of type
garbage. Thirdly, the security definition of signature schemes doesnot exclude that the
adversarytransforms signaturesby honest participants into other valid signatures on
the same message with the same public key. Finally, we allow the adversary to retrieve
all information that we do not explicitly require to be hidden, which is denoted by a
commandadv parse. This command returns the type and usually all the abstract argu-
ments of a value (with indices replaced by handles), e.g., parsing a signature yields the
public key for testing this signature, the signed message, and the value of the signature
counter used for this message. Only for ciphertexts where the adversary does not know
the secret key, parsing only returns the length of the cleartext instead of the cleartext
itself.

Adversary Send Commands Fourthly, we have a setadv send cmds :=
{adv send s, adv send r, adv send i} of adversary send commands, again modeling
different degrees of security of the channels used. In contrast to honest send commands,
the sender of a message is an additional input parameter. Thus for insecure channels the
adversary can pretend that a message is sent by an arbitrary honest user.

3.3 A Small Example

Assume that a cryptographic protocol has to perform the step

u→ v : encpkev (signsksu(m,N1), N2),

wherem is an input message andN1,N2 are two fresh nonces. Given our library, this is
represented by the following sequence of commands input at port inu?. We assume that
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u has already received a handlepkehndv to the public encryption key ofv, and created
signature keys, which gave him a handleskshndu .

1. mhnd ← store(m).
2. Nhnd

1 ← gen nonce().
3. lhnd1 ← list(mhnd, Nhnd

1 ).
4. sighnd ← sign(skshndu , lhnd1 ).
5. Nhnd

2 ← gen nonce().

6. lhnd2 ← list(sighnd, Nhnd
2 ).

7. enchnd ← encrypt(pkehndv , lhnd2 ).
8.mhnd ← list(enchnd).
9. send i(v,mhnd)

Note that the entire term is constructed by a local interaction of useru and the ideal
library, i.e., the adversary does not learn anything about this interaction until Step 8. In
Step 9, the adversary gets an output(u, v, i,mhnd

a ) with a handlemhnd
a for him to the re-

sulting entry. In the real system described below, the sequence of inputs for constructing
and sending this term is identical, but real cryptographic operations are used to build up
a bitstringm until Step 8, andm is sent tov via a real insecure channel in Step 9.

4 Real Cryptographic Library

The real system is parameterized by a digital signature schemeS and a public-key en-
cryption schemeE . The ranges of all functions are{0, 1}+∪{↓}. The signature scheme
has to be secure against existential forgery under adaptivechosen-message attacks [43].
This is the accepted security definition for general-purpose signing. The encryption
scheme has to fulfill that two equal-length messages are indistinguishable even in adap-
tive chosen-ciphertext attacks. Chosen-ciphertext security has been introduced in [39]
and formalized as “IND-CCA2” in [40]. It is the accepted definition for general-purpose
encryption. An efficient encryption system secure in this sense is [41]. Just like the ideal
system, the real system is parameterized by a tupleL′ of length functions and bounds.

4.1 Structures

The intended structure of the real cryptographic library consists of n machines
{M1, . . . ,Mn}. EachMu has portsinu? andoutu !, so that the same honest users can
connect to the ideal and the real library. EachMu has three connectionsnetu,v,x to each
Mv for x ∈ {s, r, i}. They are called network connections and the correspondingports
network ports. Network connections are scheduled by the adversary.

The actual system is a standard cryptographic system as defined in [17] and sketched
in Section 2. Any subset of the machines may be corrupted, i.e., any setH ⊆ {1, . . . , n}
can denote the indices of correct machines. The channel model means that in an actual
structure, an honest intended recipient gets all messages output at network ports of type
s (secret) anda (authentic) and the adversary gets all messages output at ports of typea
andi (insecure). Furthermore, the adversary makes all inputs toa network port of type
i. This is shown in Figure 2.
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Fig. 2. Connections from a correct machine to another in the real system.

4.2 States of a Machine

The main data structure ofMu is a databaseDu that contains implementation-specific
data such as ciphertexts and signatures produced during a system run, together with
the handles foru and the type as in the ideal system, and possibly additional internal
attributes. Thus each entryx ∈ Du is of the form

(hndu ,word , type, add arg).

– hndu ∈ N0 is thehandleof x and consecutively numbers all entries inDu.
– word ∈ {0, 1}+, calledword, is the real cryptographic representation ofx.
– type ∈ typeset ∪ {null} is thetypeof x, wherenull denotes that the entry has not

yet been parsed.
– add arg is a list ofadditional arguments. Typically it is (), only for signing keys it

contains the signature counter.

Similar to the ideal system,Mu maintains a countercurhndu overN0 denoting the
current number of elements inDu. New entriesx always receivehndu := curhndu++,
andx.hndu is never changed.

4.3 Inputs and their Evaluation

Now we describe howMu evaluates individual inputs. Inputs at portinu? should be
basic commands and honest send commands as in the ideal system, while network in-
puts can be arbitrary bitstrings. Often a bitstrings has to be parsed. This is captured by
a functional algorithmparse, which outputs a pair(type, arg) of a type∈typeset and a
list of real arguments, i.e., of bitstrings. This corresponds to the top level of a term, sim-
ilar to the abstract arguments in the ideal databaseD. By “parsemhnd” we abbreviate
thatMu calls(type, arg)← parse(Du[m

hnd].word), assignsDu[m
hnd].type := type if

it was stillnull, and may then usearg .

Basic CommandsBasic commands are againlocal, i.e., they do not produce outputs at
network ports. The basic commands are implemented by the underlying cryptographic
operations with the modifications motivated in Section 1.5.For general unambiguous-
ness, not only all cryptographic objects are tagged, but also data and lists. Similar to
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the ideal system, we only show two examples of the evaluationof basic commands, and
additionally how ciphertexts are parsed. All other commands can be found in the full
version [23].

In nonce generation, a real noncen is generated by tagging a random bitstringn′

of a given length with its typenonce. Further, a new handle foru is assigned and the
handle, the wordn, and the type are stored without additional arguments.

– Nonce Generation:nhnd ← gen nonce().
Let n′ R← {0, 1}nonce len(k), n := (nonce, n′), nhnd := curhndu++ andDu :⇐
(nhnd, n, nonce, ()).

For the encryption command, letEpk (m) denote probabilistic encryption of a string
mwith the public keypk in the underlying encryption systemE . The parameters are first
parsed in case they have been received over the network, and their types are verified.
Then the second component of the (tagged) public-key word isthe actual public key
pk , while the messagel is used as it is. Further, a fresh random valuer is generated for
additional randomization as explained in Section 1.5.

Recall thatr has to be included both inside the encryption and in the final tagged
ciphertextc∗.

– Encryption:chnd ← encrypt(pkhnd, lhnd).
Parsepkhnd andlhnd. If Du[pk

hnd].type 6= pke or Du[l
hnd].type 6= list, return↓.

Else setpk := Du[pk
hnd].word [2], l := Du[l

hnd].word , r R← {0, 1}nonce len(k),
encrypt c ← Epk ((r, l)), and set c∗ := (enc, pk , c, r). If c∗ = ↓ or
len(c∗) > max len(k) then return↓, else setchnd := curhndu++ andDu :⇐
(chnd, c∗, enc, ()).

Parsing a ciphertext verifies that the components and lengths are as inc∗ above, and
outputs the corresponding tagged public key, whereas the message is only retrieved by
a decryption command.

Send Commands and Network InputsSend commands simply output real messages
at the appropriate network ports. We show this for an insecure channel.

– send i(v, lhnd) for v ∈ {1, . . . , n}.
Parselhnd if necessary. IfDu[l

hnd].type = list, outputDu[l
hnd].word at port

netu,v ,i!.

Upon receiving a bitstringl at a network portnetw,u,x?, machineMu parses it and
verifies that it is a list. If yes, and ifl is new,Mu stores it inDu using a new handlelhnd,
else it retrieves the existing handlelhnd. Then it outputs(w, x, lhnd) at portoutu !.

5 Security Proof

The security claim is that the real cryptographic library isas secure as the ideal cryp-
tographic library, so that protocols proved on the basis of the deterministic, Dolev-
Yao-like ideal library can be safely implemented with the real cryptographic library.
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To formulate the theorem, we need additional notation: LetSys
cry,id
n,L denote the ideal

cryptographic library forn participants and with length functions and boundsL, and
Sys

cry,real
n,S,E,L′ the real cryptographic library forn participants, based on a secure signa-

ture schemeS and a secure encryption schemeE , and with length functions and bounds
L′. Let RPar be the set of valid parameter tuples for the real system, consisting of
the numbern ∈ N of participants, secure signature and encryption schemesS andE ,
and length functions and boundsL′. For (n,S, E , L′) ∈ RPar , let Syscry,realn,S,E,L′ be the
resulting real cryptographic library. Further, let the corresponding length functions and
bounds of the ideal system be formalized by a functionL := R2Ipar(S, E , L′), and let
Sys

cry,id
n,L be the ideal cryptographic library with parametersn andL. Using the notation

of Definition 2, we then have

Theorem 1. (Security of Cryptographic Library) For all parameters(n,S, E , L′) ∈
RPar , we have

Sys
cry,real
n,S,E,L′ ≥ Sys

cry,id
n,L ,

whereL := R2Ipar(S, E , L′). ✷

For proving this theorem, we define a simulatorSimH such that even the combina-
tion of arbitrary polynomial-time usersH and an arbitrary polynomial-time adversary
A cannot distinguish the combination of the real machinesMu from the combination
THH andSimH (for all setsH indicating the correct machines). We first sketch the
simulator and then the proof of correct simulation.

5.1 Simulator

BasicallySimH has to translate real messages from the real adversaryA into handles
asTHH expects them at its adversary input portina? and vice versa; see Figure 3. In
both directions,SimH has to parse an incoming messages completely because it can
only construct the other version (abstract or real) bottom-up. This is done by recursive
algorithms. In some cases, the simulator cannot produce anycorresponding message.
We collect these cases in so-callederror setsand show later that they cannot occur at
all or only with negligible probability.
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Fig. 3. Ports and in- and output types of the simulator.
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The state ofSimH mainly consists of a databaseDa, similar to the databasesDu , but
storing the knowledge of the adversary. The behavior ofSimH is sketched as follows.

– Inputs fromTHH. Assume thatSimH receives an input(u, v, x, lhnd) from THH.
If a bitstring l for lhnd already exists inDa, i.e., this message is already known to
the adversary, the simulator immediately outputsl at portnetu,v ,x !. Otherwise, it
first constructs such a bitstringl with a recursive algorithmid2real. This algorithm
decomposes the abstract term using basic commands and the adversary command
adv parse. At the same time,id2real builds up a corresponding real bitstring using
real cryptographic operations and enters all new message parts intoDa to recognize
them when they are reused, both byTHH and byA.
Mostly, the simulator can construct subterms exactly like the correct machines
would do in the real system. Only for encryptions with a public key of a correct
machine,adv parse does not yield the plaintext; thus there the simulator encrypts
a fixed message of equal length. This simulation presupposesthat all new message
parts are of the standard formats, not those resulting from local adversary com-
mands; this is proven correct in the bisimulation.

– Inputs fromA. Now assume thatSimH receives a bitstringl from A at a port
netu,v ,x?. If l is not a valid list,SimH aborts the transition. Otherwise it trans-
latesl into a corresponding handlelhnd by an algorithmreal2id, and outputs the
abstract sending commandadv send x(w, u, lhnd) at portina!.
If a handlelhnd for l already exists inDa, then real2id reuses that. Otherwise it
recursively parses a real bitstring using the functional parsing algorithm. At the
same time, it builds up a corresponding abstract term in the database ofTHH. This
finally yields the handlelhnd. Furthermore,real2id enters all new subterms into
Da. For building up the abstract term,real2id makes extensive use of the special
capabilities of the adversary modeled inTHH. In the real system, the bitstring may,
e.g., contain a transformed signature, i.e., a new signature for a message for which
the correct user has already created another signature. Such a transformation of a
signature is not excluded by the definition of secure signature schemes, hence it
might occur in the real system. Therefore the simulator alsohas to be able to insert
such a transformed signature into the database ofTHH, which explains the need for
the commandadv transform signature. Similarly, the adversary might send invalid
ciphertexts or simply bitstrings that do not yield a valid type when being parsed.
All these cases can be covered by using the special capabilities.
The only case for which no command exists is a forged signature under a new
message. This leads the simulator to abort. (Such runs fall into an error set which
is later shown to be negligible.)

As all the commands used byid2real and real2id are local, these algorithms give
uninterrupted dialogues betweenSimH andTHH, which do not show up in the views
of A andH.

Two important properties have to be shown about the simulator before the bisim-
ulation. First, the simulator has to be polynomial-time. Otherwise, the joint machine
SimH(A) of SimH andA might not be a valid polynomial-time adversary on the ideal
system. Secondly, it has to be shown that the interaction betweenTHH andSimH in the
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recursive algorithms cannot fail because one of the machines reaches its runtime bound.
The proof of both properties is quite involved, using an analysis of possible recursion
depths depending on the number of existing handles (see [23]).

5.2 Proof of Correct Simulation

Given the simulator, we show that arbitrary polynomial-time usersH and an arbi-
trary polynomial-time adversaryA cannot distinguish the combination of the real ma-
chineMu from the combination ofTHH andSimH. The standard technique in non-
cryptographic distributed systems for rigorously provingthat two systems have identical
visible behaviors is a bisimulation, i.e., one defines a mapping between the respective
states and shows that identical inputs in mapped states retain the mapping and produce
identical outputs. We need a probabilistic bisimulation because the real system and the
simulator are probabilistic, i.e., identical inputs should yield mapped states with the
correct probabilities and identically distributed outputs. (For the former, we indeed use
mappings, not arbitrary relations for the bisimulation.) In the presence of cryptography
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and active attacks however, a normal probabilistic bisimulation is still insufficient for
three crucial reasons. First, the adversary might succeed in attacking the real system
with a very small probability, while this is impossible in the ideal system. This means
that we have to cope witherror probabilities. Secondly, encryption only gives compu-
tational indistinguishability, which cannot be captured by a bisimulation, because the
actual values in the two systems may be quite different. Thirdly, the adversary might
guess a random value, e.g., a nonce that has already been created by some machine but
that the adversary has ideally not yet seen. (Formally, “ideally not yet seen” just means
that the bisimulation fails if the adversary sends a certainvalue which already exists
in the databases but for which there is no command to give the adversary a handle.) In
order to perform a rigorous reduction proof in this case, we have to show that nopartial
informationabout this value has already leaked to the adversary becausethe value was
contained in a nested term, or because certain operations would leak partial informa-
tion. For instance, here the proof would fail if we allowed arbitrary signatures according
to the definition of [43], which might divulge previously signed messages, or if we did
not additionally randomize probabilistic ciphertexts made with keys of the adversary.

We meet these challenges by first factoring out the computational aspects by a spe-
cial treatment of ciphertexts. Then we use a new bisimulation technique that includes
a static information-flow analysis, and is followed by the remaining cryptographic re-
ductions. The rigorous proof takes 30 pages [23]; hence we can only give a very brief
overview here, see also Figure 4.

– Introducing encryption machines.We use the two encryption machinesEncH and
Encsim,H from [17] to handle the encryption and decryption needs of the system.
Roughly, the first machine calculates the correct encryption of every messagem,
whereas the second one always encrypts the fixed messagemsim len(m) and an-
swers decryption requests for the resulting ciphertexts bytable look-up. By [17],
EncH is at least as secure asEncsim,H. We rewrite the machinesMu such that they
useEncH (Step 1 in Figure 4); this yields modified machinesM′

u. We then replace
EncH by its idealized counterpartEncsim,H (Step 2 in Figure 4) and use the compo-
sition theorem to show that the original system is at least assecure as the resulting
system.

– Combined system.We now want to compare the combinationMH of the machines
M′

u andEncsim,H with the combinationTHSimH of the machinesTHH andSimH.
However, there is no direct invariant mapping between the states of these two joint
machines. Hence we defining an intermediate systemĈH with a state space com-
bined from both these systems (Step 3 in Figure 4).

– Bisimulations with error sets and information-flow analysis.We show that the joint
view ofH andA is equal in interaction with the combined machineĈH and the two
machinesTHSimH andMH, except for certain runs, which we collect inerror sets.
We show this by performing two bisimulations simultaneously (Step 4 in Figure 4).
Transitivity and symmetry of indistinguishability then yield the desired result for
THSimH andMH. Besides several normal state invariants ofĈH, we also define
and prove an information-flow invariant on the variables ofĈH.

– Reduction proofs.We show that the aggregated probability of the runs in error sets
is negligible, as we could otherwise break the underlying cryptography. I.e., we
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perform reduction proofs against the security definitions of the primitives. For sig-
nature forgeries and collisions of nonces or ciphertexts, these are relatively straight-
forward proofs. For the fact that the adversary cannot guess“official” nonces as
well as additional randomizers in signatures and ciphertext, we use the information-
flow invariant on the variables of̂CH to show that the adversary has no partial in-
formation about such values in situations where correct guessing would put the run
in an error set. This proves thatMH is computationally at least as secure as the ideal
system (Step 5 in Figure 4).

Finally, simulatability is transitive [17]. Hence the original real system is also as secure
as the ideal system (Step 6 in Figure 4).

6 The Needham-Schroeder-Lowe Protocol

The original Needham-Schroeder public-key protocol and Lowe’s variant consist of
seven steps. Four steps deal with key generation and public-key distribution. They are
usually omitted in a security analysis, and it is simply assumed that keys have already
been generated and distributed. We do this as well to keep theproof short. However,
the underlying cryptographic library offers commands for modeling these steps as well.
The main part of the Needham-Schroeder-Lowe public-key protocol consists of the
following three steps, expressed in the typical protocol notation, as in, e.g., [33].

1. u→ v : Epkv
(Nu, u)

2. v → u : Epku
(Nu, Nv, v)

3. u→ v : Epkv
(Nv).

Here, useru seeks to establish a session with userv. He generates a nonceNu and sends
it to v together with his identity, encrypted withv’s public key (first message). Upon
receiving this message,v decrypts it to obtain the nonceNu. Thenv generates a new
nonceNv and sends both nonces and her identity back tou, encrypted withu’s public
key (second message). Upon receiving this message,u decrypts it and tests whether the
contained identityv equals the sender of the message and whetheru earlier sent the first
contained nonce to userv. If yes,u sends the second nonce back tov, encrypted with
v’s public key (third message). Finally,v decrypts this message; and ifv had earlier
sent the contained nonce tou, thenv believes to speak withu.

7 The Needham-Schroeder-Lowe Protocol Using the
Dolev-Yao-style Cryptographic Library

Almost all formal proof techniques for protocols such as Needham-Schroeder-Lowe
first need a reformulation of the protocol into a more detailed version than the three
steps above. These details include necessary tests on received messages, the types and
generation rules for values likeu andNu, and a surrounding framework specifying the
number of participants, the possibilities of multiple protocol runs, and the adversary
capabilities. The same is true when using the Dolev-Yao-style cryptographic library
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from [1], i.e., it plays a similar role in our proof as “the CSPDolev-Yao model” or “the
inductive-approach Dolev-Yao model” in other proofs. Our protocol formulation in this
framework is given in Algorithms 1 and 2.4 We first explain this formulation, and then
consider general aspects of the surrounding framework as far as needed in our proofs.

7.1 Detailed Protocol Descriptions

Recall that the underlying framework is automata-based, i.e., protocols are executed by
interacting machines, and event-based, i.e., machines react on received inputs. ByMNS

i

we denote the Needham-Schroeder machine for a participanti; it can act in the roles of
bothu andv above.

The first type of input thatMNS
i can receive is a start message(new prot, v) from

its user denoting that it should start a protocol run with user v. The number of users
is calledn. User inputs are distinguished from network inputs by arriving at a port
EA inu?. The “EA” stands for entity authentication because the userinterface is the
same for all entity authentication protocols. The reactionon this input, i.e., the sending
of the first message, is described in Algorithm 1.

Algorithm 1 Evaluation of User Inputs inMNS
u

Input: (new prot, v) atEA inu? with v ∈ {1, . . . , n} \ {u}.
1: nhnd

u ← gen nonce().
2: Nonceu,v := Nonceu,v ∪ {n

hnd
u }.

3: uhnd ← store(u).
4: lhnd1 ← list(nhnd

u , uhnd).
5: chnd1 ← encrypt(pkehndv,u, l

hnd
1 ).

6: mhnd
1 ← list(chnd1 ).

7: send i(v,mhnd
1 ).

The commandgen nonce generates the nonce.MNS
u adds the resultnhnd

u to a set
Nonceu,v for future comparison. The commandstore inputs arbitrary application data
into the cryptographic library, here the user identityu. The commandlist forms a list and
encrypt is encryption. The final commandsend i means thatMNS

u attempts to send the
resulting term tov over an insecure channel. Thelist operation directly before sending
is a technicality: recall that only lists are allowed to be sent in this library because the
list operation concentrates verifications that no secret items are put into messages.

The behavior of the Needham-Schroeder machine of participant u upon receiving a
network input is defined similarly in Algorithm 2. The input arrives at portoutu? and is
of the form(v, u, i,mhnd) wherev is the supposed sender,i denotes that the channel is
insecure, andmhnd is a handle to a list. The portoutu? is connected to the cryptographic
library, whose two implementations represent the obtainedDolev-Yao-style term or real
bitstring, respectively, to the protocol in a unified way by ahandle.

4 For some frameworks there are compilers to generate these detailed protocol descriptions, e.g.,
[88]. This should be possible for this framework in a similarway.
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Algorithm 2 Evaluation of Network Inputs inMNS
u

Input: (v, u, i, mhnd) atoutu? with v ∈ {1, . . . , n} \ {u}.
1: chnd ← list proj(mhnd, 1)
2: lhnd ← decrypt(skehndu , chnd)
3: xhnd

i ← list proj(lhnd, i) for i = 1, 2, 3.
4: if xhnd

1 6= ↓ ∧ xhnd
2 6= ↓ ∧ xhnd

3 = ↓ then {First Message is input}
5: x2 ← retrieve(xhnd

2 ).
6: if x2 6= v then
7: Abort
8: end if
9: nhnd

u ← gen nonce().
10: Nonceu,v := Nonceu,v ∪ {n

hnd
u }.

11: uhnd ← store(u).
12: lhnd2 ← list(xhnd

1 , nhnd
u , uhnd).

13: chnd2 ← encrypt(pkehndv,u, l
hnd
2 ).

14: mhnd
2 ← list(chnd2 ).

15: send i(v,mhnd
2 ).

16: else ifxhnd
1 6= ↓ ∧ xhnd

2 6= ↓ ∧ xhnd
3 6= ↓ then {Second Message is input}

17: x3 ← retrieve(xhnd
3 ).

18: if x3 6= v ∨ xhnd
1 6∈ Nonceu,v then

19: Abort
20: end if
21: lhnd3 ← list(xhnd

2 ).
22: chnd3 ← encrypt(pkehndv,u, l

hnd
3 ).

23: mhnd
3 ← list(chnd3 ).

24: send i(v,mhnd
3 ).

25: else ifxhnd
1 ∈ Nonceu,v ∧ xhnd

2 = xhnd
3 = ↓ then {Third Message is input}

26: Output(ok, v) atEA outu !.
27: end if
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In this algorithm, the protocol machine first decrypts the list content using its secret
key; this yields a handlelhnd to an inner list. This list is parsed into at most three
components using the commandlist proj. If the list has two elements, i.e., it could
correspond to the first message of the protocol, and if it contains the correct identity,
the machine generates a new nonce and stores its handle in thesetNonceu,v. Then it
builds up a new list according to the protocol description, encrypts it and sends it to
userv. If the list has three elements, i.e., it could correspond tothe second message
of the protocol, the machine tests whether the third list element equalsv and the first
list element is contained in the setNonceu,v. If one of these tests does not succeed,
MNS

u aborts. Otherwise, it again builds up a term according to theprotocol description
and sends it to userv. Finally, if the list has only one element, i.e., it could correspond
to the third message of the protocol, the machine tests if thehandle of this element is
contained inNonceu,v. If so,MNS

u outputs(ok, v) at EA outu !. This signals to useru
that the protocol with userv has terminated successfully, i.e.,u believes to speak with
v.

Both algorithms should immediately abort the handling of the current input if a
cryptographic command does not yield the desired result, e.g., if a decryption fails.
For readability we omitted this in the algorithm descriptions; instead we impose the
following convention on both algorithms.

Convention 1 If MNS
u receives↓ as the answer of the cryptographic library to a com-

mand, thenMNS
u aborts the execution of the current algorithm, except for the command

typeslist proj or send i.

We refer to Stepi of Algorithm j as Stepj.i.

7.2 Overall Framework and Adversary Model

When protocol machines such asMNS
u for certain usersu ∈ {1, . . . , n} are defined,

there is no guarantee that all these machines are correct. A trust model determines for
what subsetsH of {1, . . . , n} we want to guarantee anything; in our case this is es-
sentially for all subsets: We aim at entity authentication betweenu andv whenever
u, v ∈ H and thus wheneverMNS

u andMNS
v are correct. Incorrect machines disappear

and are replaced by the adversary. Each set of potential correct machines together with
its user interface constitute a structure, and the set of these structures is called the sys-
tem, cf. Section 2.2. Recall further that when considering the security of a structure,
an arbitrary probabilistic machineH is connected to the user interface to represent all
users, and an arbitrary machineA is connected to the remaining free ports (typically the
network) and toH to represent the adversary, see Fig. 5. In polynomial-time security
proofs,H andA are polynomial-time.

This setting implies that any number of concurrent protocolruns with both honest
participants and the adversary are considered becauseH andA can arbitrarily interleave
protocol start inputs(new prot, v) with the delivery of network messages.

For a setH of honest participants, the user interface of the ideal and real cryp-
tographic library is the port setS cry

H := {inu?, outu ! | u ∈ H}. This is where the
Needham-Schroeder machines input their cryptographic commands and obtain results
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Fig. 5.Overview of the Needham-Schroeder-Lowe Ideal System

and received messages. In the ideal case this interface is served by just one machine
THH called trusted host which essentially administrates Dolev-Yao-style terms un-
der the handles. In the real case, the same interface is served by a setM̂ cry

H :=
{Mcry

u,H | u ∈ H} of real cryptographic machines. The corresponding systemsare called

Syscry,id := {({THH}, S
cry
H ) | H ⊆ {1, . . . , n}} andSyscry,real := {(M̂ cry

H , S cry
H ) | H ⊆

{1, . . . , n}}.
The user interface of the Needham-Schroeder machines or anyother entity authenti-

cation protocol isSEA
H := {EA inu?,EA outu ! | u ∈ H}. The ideal and real Needham-

Schroeder-Lowe systems serving this interface differ onlyin the cryptographic library.
With M̂ NS

H := {MNS
u | u ∈ H}, they areSysNS,id := {(M̂ NS

H ∪ {THH}, SEA
H ) | H ⊆

{1, . . . , n}} andSysNS,real := {(M̂ NS
H ∪ M̂

cry
H , SEA

H ) | H ⊆ {1, . . . , n}}.

7.3 Initial State

We have assumed in the algorithms that each Needham-Schroeder machineMNS
u al-

ready has a handleskehndu to its own secret encryption key and handlespkehndv,u to the
corresponding public keys of every participantv. The cryptographic library can also
represent key generation and distribution by normal commands. Formally, this assump-
tion means that for each participantu two entries of the following form are added toD
whereH = {u1, . . . , um}:

(skeu , type := ske, arg := (), hndu := skehndu , len := 0);

(pkeu , type := pke, arg := (), hndu1
:= pkehndu,u1

, . . . ,

hndum
:= pkehndu,um

, hnda := pkehndu,a , len := pke len∗(k)).

Hereskeu andpkeu are two consecutive natural numbers andpke len∗ is the length
function for public keys. Treating the secret key length as0 is a technicality in [1] and
will not matter here. Further, each machineMNS

u contains the bitstringu denoting its
identity, and the family(Nonceu,v)v∈{1,...,n} of initially empty sets of (nonce) handles.
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7.4 On Polynomial Runtime

In order to be valid users of the real cryptographic library,the machinesMNS
u have

to be polynomial-time. We therefore define that each machineMNS
u maintains explicit

polynomial bounds on the accepted message lengths and the number of inputs accepted
at each port. As this is done exactly as in the cryptographic library, we omit the rigorous
write-up.

8 The Security Property

Our security property states that an honest participantv only successfully terminates a
protocol with an honest participantu if u has indeed started a protocol withv, i.e., an
output(ok, u) atEA outv ! can only happen if there was a prior input(new prot, v) at
EA inu?. This property and also the actual protocol does not consider replay attacks,
i.e., a userv could successfully terminate a protocol withu multiple times whileu
started a protocol withv only once. However, this can easily be avoided as follows: If
MNS

u receives a message fromv containing one of its own nonces, it additionally re-
moves this nonce from the corresponding set, i.e., it removesxhnd

1 fromNonceu,v after
Steps2.20 and2.25. Proving freshness given this change and mutual authentication is
useful future work, but better done once the proof has been automated. Warinschi proves
these properties [75]. The even stronger property of matching conversations from [9]
that he also proves makes constraints on events within the system, not only at the inter-
face. We thus regard it as an overspecification in an approachbased on abstraction.

Integrity properties in the underlying model are formally sets of traces at the user
interfaces of a system, i.e., here at the port setsSEA

H . Intuitively, an integrity property
Req contains the “good” traces at these ports. A trace is a sequence of sets of events.
We write an eventp?m or p!m, meaning that messagem occurs at in- or output port
p. Thet-th step of a tracer is writtenrt; we speak of the step at timet. The integrity
requirementReqEA for the Needham-Schroeder-Lowe protocol is defined as follows,
meaning that ifv believes to speak withu at timet1, then there exists a past timet0
whereu started a protocol withv:

Definition 3. (Entity Authentication Requirement) A tracer is contained inReqEA if
for all u, v ∈ H:

∀t1 ∈ N : EA outv !(ok, u) ∈ rt1

⇒ ∃t0 < t1 : EA inu?(new prot, v) ∈ rt0 .

✸

The notion of a systemSys fulfilling an integrity propertyReq essentially comes in
two flavors [59].Perfect fulfillment, Sys |=perf Req, means that the integrity property
holds for all traces arising in runs ofSys (a well-defined notion from the underlying
model [17]).Computational fulfillment, Sys |=poly Req, means that the property only
holds for polynomially bounded users and adversaries, and that a negligible error prob-
ability is permitted. Perfect fulfillment implies computational fulfillment.

The following theorem captures the security of the Needham-Schroeder-Lowe pro-
tocol; we prove it in the rest of the paper.
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Theorem 2. (Security of the Needham-Schroeder-Lowe Protocol) For theNeedham-
Schroeder-Lowe systems from Section 7.2 and the integrity property of Definition 3, we
haveSysNS,id |=perf ReqEA andSysNS,real |=poly ReqEA. ✷

9 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approach isto prove Theorem 2 for
the protocol using the ideal Dolev-Yao-style cryptographic library. Then the result for
the real system follows automatically. As this paper is the first instantiation of this
argument, we describe it in detail.

The notion that a systemSys1 securely implements another systemSys2 reactive
simulatability (recall the introduction), is writtenSys1 ≥

poly
sec Sys2 (in the computational

case). The main result of [1] is therefore

Syscry,real ≥poly
sec Syscry,id. (1)

SinceSysNS,real andSysNS,id are compositions of the same protocol withSyscry,real and
Syscry,id, respectively, the composition theorem of [17] and (1) imply

SysNS,real ≥poly
sec SysNS,id. (2)

Showing the theorem’s preconditions is easy since the machinesMNS
u are polynomial-

time (see Section 7.4). Finally, the integrity preservation theorem from [59] and (2)
imply for every integrity requirementReq that

(SysNS,id |=poly Req) ⇒ (SysNS,real |=poly Req). (3)

Hence if we proveSysNS,id |=perf ReqEA, we immediately obtainSysNS,real |=poly

ReqEA.

10 Proof in the Ideal Setting

This section contains the proof of the ideal part of Theorem 2: We prove that the
Needham-Schroeder-Lowe protocol implemented with the ideal, Dolev-Yao-style cryp-
tographic library perfectly fulfills the integrity requirementReqEA. The proof idea is to
go backwards in the protocol step by step, and to show that a specific output always
requires a specific prior input. For instance, when userv successfully terminates a pro-
tocol with useru, thenu has sent the third protocol message tov; thusv has sent the
second protocol message tou; and so on. The main challenge in this proof was to find
suitable invariants on the state of the ideal Needham-Schroeder-Lowe system.

We start by formulating the invariants and then prove the overall entity authentica-
tion requirement from the invariants. Finally we prove the invariants, after describing
detailed state transitions of the ideal cryptographic library as needed in that proof.
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10.1 Invariants

This section contains invariants of the systemSysNS,id, which are used in the proof of
Theorem 2. The first invariants,correct nonce ownerandunique nonce use, are easily
proved and essentially state that handles contained in a setNonceu,v indeed point to
entries of typenonce, and that no nonce is in two such sets. The next two invariants,
nonce secrecyandnonce-list secrecy, deal with the secrecy of certain terms. They are
mainly needed to prove the last invariant,correct list owner, which establishes who
created certain terms.

– Correct Nonce Owner.For all u ∈ H, v ∈ {1, . . . , n} andxhnd ∈ Nonceu,v, we
haveD[hndu = xhnd].type = nonce.

– Unique Nonce Use.For all u, v ∈ H, all w,w′ ∈ {1, . . . , n}, and allj ≤ size: If
D[j].hndu ∈ Nonceu,w andD[j].hndv ∈ Noncev,w′ , then(u,w) = (v, w′).

Nonce secrecystates that the nonces exchanged between honest usersu andv remain
secret from all other users and from the adversary, i.e., that the other users and the
adversary have no handles to such a nonce:

– Nonce Secrecy.For allu, v ∈ H and allj ≤ size: If D[j].hndu ∈ Nonceu,v then
D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.

Similarly, the invariantnonce-list secrecystates that a list containing such a nonce can
only be known tou andv. Further, it states that the identity fields in such lists are
correct for Needham-Schroeder-Lowe messages. Moreover, if such a list is an argument
of another entry, then this entry is an encryption with the public key ofu or v.

– Nonce-List Secrecy.For all u, v ∈ H and allj ≤ size with D[j].type = list: Let
x ind
i := D[j].arg [i] for i = 1, 2, 3. If D[x ind

i ].hndu ∈ Nonceu,v then:
a) D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.
b) If D[x ind

i+1].type = data, thenD[x ind
i+1].arg = (u).

c) For all k ≤ size we havej ∈ D[k].arg only if D[k].type = enc and
D[k].arg [1] ∈ {pkeu, pkev}.

The invariantcorrect list ownerstates that certain protocol messages can only be con-
structed by the “intended” users. For instance, if a database entry is structured like the
cleartext of a first protocol message, i.e., it is of typelist, its first argument belongs to
the setNonceu,v, and its second argument is non-cryptographic, i.e., of typedata, then
it has been created by useru. Similar statements exist for the second and third protocol
message.

– Correct List Owner.For all u, v ∈ H and allj ≤ size with D[j].type = list: Let
x ind
i := D[j].arg [i] andxhnd

i,u := D[x ind
i ].hndu for i = 1, 2.

a) If xhnd
1,u ∈ Nonceu,v andD[x ind

2 ].type = data, thenD[j] was created byMNS
u

in Step 1.4.
b) If D[x ind

1 ].type = nonce andxhnd
2,u ∈ Nonceu,v, thenD[j] was created byMNS

u

in Step 2.12.
c) If xhnd

1,u ∈ Nonceu,v andx ind
2 = ↓, thenD[j] was created byMNS

v in Step 2.21.
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This invariant is key for proceeding backwards in the protocol. For instance, ifv ter-
minates a protocol with useru, thenv must have received a third protocol message.
Correct list ownerimplies that this message has been generated byu. Nowu only con-
structs such a message if it received a second protocol message. Applying the invariant
two more times shows thatu indeed started a protocol withv. The proof described be-
low will take care of the details. Formally, the invariance of the above statements is
captured in the following lemma.

Lemma 1. The statementscorrect nonce owner, unique nonce use, nonce secrecy,
nonce-list secrecy, andcorrect list ownerare invariants ofSysNS,id, i.e., they hold at all
times in all runs of{MNS

u | u ∈ H} ∪ {THH} for all H ⊆ {1, . . . , n}. ✷

The proof is postponed to Section 10.4.

10.2 Entity Authentication Proof

To increase readability, we partition the proof into several steps with explanations in
between. Assume thatu, v ∈ H and thatMNS

v outputs(ok, u) to its user, i.e., a protocol
betweenu andv has terminated successfully. We first show that this impliesthatMNS

v

has received a message corresponding to the third protocol step, i.e., of the form that
allows us to applycorrect list ownerto show that it was created byMNS

v . The following
property ofTHH proven in [1] will be useful in this proof to show that properties proven
for one time also hold at another time.

Lemma 2. In the ideal cryptographic librarySyscry,id, the only modifications to exist-
ing entriesx in D are assignments to previously undefined attributesx.hndu (except for
counter updates in entries for signature keys, which we do not have to consider here).
✷

Proof. (Ideal part of Theorem 2) Assume thatMNS
v outputs(ok, u) at EA outv ! for

u, v ∈ H at timet4. By definition of Algorithms 1 and 2, this can only happen if there
was an input(u, v, i,m3 hnd

v ) atoutv? at a timet3 < t4. Here and in the sequel we use the
notation of Algorithm 2, but we distinguish the variables from its different executions
by a superscript indicating the number of the (claimed) received protocol message, here
3, and give handles an additional subscript for their owner, herev.

The execution of Algorithm 2 for this input must have givenl3
hnd

v 6= ↓ in Step
2.2, since it would otherwise abort by Convention 1 without creating an output. Let
l3

ind
:= D[hndv = l3

hnd

v ].ind . The algorithm further impliesD[l3
ind
].type = list. Let

x3
i

ind
:= D[l3

ind
].arg[i] for i = 1, 2 at the time of Step2.3. By definition of list proj

and since the condition of Step2.25 is true immediately after Step2.3, we have

x3 hnd

1,v = D[x3
1
ind
].hndv at timet4 (4)

and
x3 hnd

1,v ∈ Noncev,u ∧ x3
2
ind

= ↓ at timet4, (5)

sincex3 hnd

2,v = ↓ after Step2.3 impliesx3
2
ind

= ↓.
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This first part of the proof shows thatMNS
v has received a list corresponding to a third

protocol message. Now we applycorrect list ownerto the list entryD[l3
ind
] to show

that this entry was created byMNS
u . Then we show thatMNS

u only generates such an
entry if it has received a second protocol message. To show that this message contains
a nonce fromv, as needed for the next application ofcorrect list owner, we exploit the
fact thatv accepts the same value as its nonce in the third message, which we know
from the first part of the proof.

Proof (cont’d with 3rd message).Equations (4) and (5) are the preconditions for Part
c) of correct list owner. Hence the entryD[l3

ind
] was created byMNS

u in Step 2.21.
This algorithm execution must have started with an input(w, u, i,m2 hnd

u ) at outu?

at a timet2 < t3 with w 6= u. As above, we concludel2
hnd

u 6= ↓ in Step2.2, setl2
ind

:=

D[hndu = l2
hnd

u ].ind , and obtainD[l2
ind
].type = list. Let x2

i

ind
:= D[l2

ind
].arg [i] for

i = 1, 2, 3 at the time of Step2.3. As the condition of Step2.16 is true immediately af-
terwards, we obtainx2 hnd

i,u 6= ↓ for i ∈ {1, 2, 3}. The definition oflist proj and Lemma 2
imply

x2 hnd

i,u = D[x2
i

ind
].hndu for i ∈ {1, 2, 3} at timet4. (6)

Step2.18 ensuresx2
3 = w andx2 hnd

1,u ∈ Nonceu,w. Thuscorrect nonce ownerimplies

D[x2
1
ind
].type = nonce. (7)

Now we exploit thatMNS
u creates the entryD[l3

ind
] in Step 2.21 with the input

list(x2 hnd

2,u ). With the definitions oflist and list proj this impliesx2
2
ind

= x3
1
ind

. Thus
Equations (4) and (5) imply

D[x2
2
ind
].hndv ∈ Noncev,u at timet4. (8)

We have now shown thatMNS
u has received a list corresponding to the second protocol

message. We applycorrect list ownerto show thatMNS
v created this list, and again we

can show that this can only happen ifMNS
v received a suitable first protocol message.

Further, the next part of the proof shows thatw = v and thusMNS
u got the second

protocol message fromMNS
v , which remained open in the previous proof part.

Proof (cont’d with 2nd message).Equations (6) to (8) are the preconditions for Part b)
of correct list owner. Thus the entryD[l2

ind
] was created byMNS

v in Step 2.12. The
construction of this entry in Steps2.11 and2.12 impliesx2

3 = v and hencew = v
(using the definitions ofstore andretrieve, andlist andlist proj). With the results from
before Equation (7) and Lemma 2 we therefore obtain

x2
3 = v ∧ x2 hnd

1,u ∈ Nonceu,v at timet4. (9)

The algorithm execution whereMNS
v creates the entryD[l2

ind
] must have started

with an input(w′, v, i,m1 hnd

v ) at outv? at a timet1 < t2 with w′ 6= v. As above,

we concludel1
hnd

v 6= ↓ in Step2.2, set l1
ind

:= D[hndv = l1
hnd

v ].ind , and obtain
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D[l1
ind
].type = list. Let x1

i

ind
:= D[l1

ind
].arg [i] for i = 1, 2, 3 at the time of Step

2.3. As the condition of Step2.4 is true, we obtainx1 hnd

i,v 6= ↓ for i ∈ {1, 2}. Then the
definition of list proj and Lemma 2 yield

x1 hnd

i,v = D[x1
i

ind
].hndv for i ∈ {1, 2} at timet4. (10)

WhenMNS
v creates the entryD[l2

ind
] in Step 2.12, its input islist(x1 hnd

1,v , nhnd
v , vhnd).

This impliesx1
1
ind

= x2
1
ind

(as above). Thus Equations (6) and (9) imply

D[x1
1
ind
].hndu ∈ Nonceu,v at timet4. (11)

The test in Step2.6 ensures thatx1
2 = w′ 6= ↓. This impliesD[x1

2
ind
].type = data by

the definition ofretrieve, and therefore with Lemma 2,

D[x1
2
ind
].type = data at timet4. (12)

We finally applycorrect list owneragain to show thatMNS
u has generated this list cor-

responding to a first protocol message. We then show that thismessage must have been
intended for userv, and thus useru has indeed started a protocol with userv.

Proof. (cont’d with 1st message) Equations (10) to (12) are the preconditions for Part
a) of correct list owner. Thus the entryD[l1

ind
] was created byMNS

u in Step 1.4. The
construction of this entry in Steps1.3 and1.4 impliesx1

2 = u and hencew′ = u.
The execution of Algorithm 1 must have started with an input(new prot, w′′) at

EA inu? at a timet0 < t1. We have to showw′′ = v. WhenMNS
u creates the entry

D[l1
ind
] in Step 1.4, its input islist(nhnd

u , uhnd) with nhnd
u 6= ↓. Hence the definition of

list proj impliesD[x1
1
ind
].hndu = nhnd

u ∈ Nonceu,w′′ . With Equation (11) andunique
nonce usewe concludew′′ = v.

In a nutshell, we have shown that for all timest4 whereMNS
v outputs(ok, u) at

EA outv !, there exists a timet0 < t4 such thatMNS
u receives an input(new prot, v) at

EA inu? at timet0. This proves Theorem 2.

10.3 Command Evaluation by the Ideal Cryptographic Library

This section contains the definition of the cryptographic commands used for modeling
the Needham-Schroeder-Lowe protocol, and the local adversary commands that model
the extended capabilities of the adversary as far as needed to prove the invariants. Recall
that we deal with top levels of Dolev-Yao-style terms, and that commands typically
create a new term with its index, type, arguments, handles, and length functions, or
parse an existing term. We present the full definitions of thecommands, but the reader
can ignore the length functions, which have namesx len. Note that we already defined
the commands for generating a nonce and for public-key encryption in Section 3.2,
hence we do not repeat them here.

Each inputc at a portinu? with u ∈ H ∪ {a} should be a list(cmd , x1, . . . , xj)
with cmd from a fixed list of commands and certain parameter domains. We usually
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write it y ← cmd(x1, . . . , xj) with a variabley designating the result thatTHH returns
at outu !. The algorithmihnd := ind2hndu(i) (with side effect) denotes thatTHH de-
termines a handleihnd for useru to an entryD[i]: If ihnd := D[i].hndu 6= ↓, it returns
that, else it sets and returnsihnd := D[i].hndu := curhndu++. On non-handles, it is
the identity function. The functionind2hnd∗u appliesind2hndu to each element of a list.

In the following definitions, we assume that a cryptographiccommand is input at
port inu? with u ∈ H∪{a}. First, we describe the commands for storing and retrieving
data via handles.

– Storing:mhnd ← store(m), for m ∈ {0, 1}max len(k).
If i := D[type = data ∧ arg = (m)].ind 6= ↓ then returnmhnd :=
ind2hndu(i). Otherwise ifdata len∗(len(m)) > max len(k) return ↓. Else set
mhnd := curhndu++ and

D :⇐ (ind := size++, type := data, arg := (m),

hndu := mhnd, len := data len∗(len(m))).

– Retrieval:m← retrieve(mhnd).
m := D[hndu = mhnd ∧ type = data].arg [1].

Next we describe list creation and projection. Lists cannotinclude secret keys of the
public-key systems (entries of typeske, sks) because no information about those must
be given away.

– Generate a list:lhnd ← list(xhnd
1 , . . . , xhnd

j ), for 0 ≤ j ≤ max len(k).
Let xi := D[hndu = xhnd

i ].ind for i = 1, . . . , j. If any D[xi].type ∈ {sks, ske},
set lhnd := ↓.If l := D[type = list ∧ arg = (x1, . . . , xj)].ind 6= ↓, then return
lhnd := ind2hndu(l). Otherwise, setlength := list len∗(D[x1].len , . . . , D[xj ].len)
and return↓ if length > max len(k). Else setlhnd := curhndu++ and

D :⇐ (ind := size++, type := list, arg := (x1, . . . ,

xj), hndu := lhnd, len := length).

– i-th projection:xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).
If D[hndu = lhnd ∧ type = list].arg = (x1, . . . , xj) with j ≥ i, thenxhnd :=
ind2hndu(xi), otherwisexhnd := ↓.

Further, we used a command for decrypting a list.

– Decryption:lhnd ← decrypt(skhnd, chnd).
Let sk := D[hndu = skhnd ∧ type = ske].ind and c := D[hndu = chnd ∧
type = enc].ind . Return↓ if c = ↓ or sk = ↓ or pk := D[c].arg [1] 6= sk + 1 or
l := D[c].arg [2] = ↓. Else returnlhnd := ind2hndu(l).

From the set of local adversary commands, which capture additional commands
for the adversary at portina?, we only describe the commandadv parse. It allows the
adversary to retrieve all information that we do not explicitly require to be hidden.
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This command returns the type and usually all the abstract arguments of a value (with
indices replaced by handles), except in the case of ciphertexts. About the remaining
local adversary commands, we only need to know that they do not output handles to
already existing entries of typelist or nonce.

– Parameter retrieval:(type, arg)← adv parse(mhnd).
Let m := D[hnda = mhnd].ind and type := D[m].type. In most cases, set
arg := ind2hnd∗a(D[m].arg). (Recall that this only transforms arguments in
INDS .) The only exception is fortype = enc andD[m].arg of the form(pk , l) (a
valid ciphertext) andD[pk − 1].hnda = ↓ (the adversary does not know the secret
key); thenarg := (ind2hnda(pk), D[l].len).

We finally describe the command that allows an adversary to send messages on
insecure channels. In the command, the adversary sends listl to v, pretending to beu.

– adv send i(u, v, lhnd), for u ∈ {1, . . . , n} andv ∈ H at portina?.
Let l ind := D[hnd a = lhnd ∧ type = list].ind . If l ind 6= ↓, output
(u, v, i, ind2hndv(l

ind)) atoutv !.

10.4 Proof of the Invariants

We start with the proof ofcorrect nonce owner.

Proof (Correct nonce owner). Let xhnd ∈ Nonceu,v for u ∈ H andv ∈ {1, . . . , n}. By
construction,xhnd has been added toNonceu,v byMNS

u in Step 1.2 or Step 2.10. In both
cases,xhnd has been generated by the commandgen nonce() at some timet, input at
port inu? of THH. Convention 1 impliesxhnd 6= ↓, asMNS

u would abort otherwise and
not addxhnd to the setNonceu,v. The definition ofgen nonce then impliesD[hndu =
xhnd] 6= ↓ andD[hndu = xhnd].type = nonce at timet. Because of Lemma 2 this also
holds at all later timest′ > t, which finishes the proof.

The following proof ofunique nonce useis quite similar.

Proof (Unique Nonce Use). Assume for contradiction that bothD[j].hndu ∈
Nonceu,w andD[j].hndv ∈ Noncev,w′ at some timet. Without loss of generality,
let t be the first such time and letD[j].hndv 6∈ Noncev,w′ at timet − 1. By construc-
tion,D[j].hndv is thus added toNoncev,w′ at timet by Step 1.2 or Step 2.10. In both
cases,D[j].hndv has been generated by the commandgen nonce() at timet − 1. The
definition ofgen nonce implies thatD[j] is a new entry andD[j].hndv its only handle
at timet − 1, and thus also at timet. With correct nonce ownerthis impliesu = v.
Further,Noncev,w′ is the only set into which the new handleD[j].hndv is put at times
t− 1 andt. Thus alsow = w′. This is a contradiction.

In the following, we provecorrect list owner, nonce secrecy, andnonce-list secrecy
by induction. Hence we assume that all three invariants holdat a particular timet in a
run of the system, and show that they still hold at timet+ 1.
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Proof (Correct list owner). Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i :=

D[j].arg [i] andxhnd
i,u := D[x ind

i ].hndu for i = 1, 2 and assume thatxhnd
i,u ∈ Nonceu,v

for i = 1 or i = 2 at timet+ 1.
The only possibilities to violate the invariantcorrect list ownerare that (1) the entry

D[j] is created at timet+1 or that (2) the handleD[j].hndu is created at timet+1 for an
entryD[j] that already exists at timet or that (3) the handlexhnd

i,u is added toNonceu,v
at time t + 1. In all other cases the invariant holds by the induction hypothesis and
Lemma 2.

We start with the third case. Assume thatxhnd
i,u is added toNonceu,v at timet + 1.

By construction, this only happens in a transition ofMNS
u in Step 1.2 and Step 2.10.

However, here the entryD[x ind
i ] has been generated by the commandgen nonce input

at inu? at timet, hencex ind
i cannot be contained as an argument of an entryD[j] at time

t. Formally, this corresponds to the fact thatD is well-formed, i.e., index arguments of
an entry are always smaller than the index of the entry itself; this has been shown in [1].
Since a transition ofMNS

u does not modify entries inTHH, this also holds at timet+1.
For proving the remaining two cases, assume thatD[j].hndu is created at timet+1

for an already existing entryD[j] or thatD[j] is generated at timet+ 1. Because both
can only happen in a transition ofTHH, this impliesxhnd

i,u ∈ Nonceu,v already at timet,
since transitions ofTHH cannot modify the setNonceu,v. Because ofu, v ∈ H, nonce
secrecyimpliesD[x ind

i ].hndw 6= ↓ only if w ∈ {u, v}. Lists can only be constructed
by the basic commandlist, which requires handles to all its elements. More precisely,
if w ∈ H ∪ {a} creates an entryD[j′] with D[j′].type = list and (x′

1, . . . , x
′
k) :=

D[j].arg at timet+1 thenD[x′
i].hndw 6= ↓ for i = 1, . . . , k already at timet. Applied

to the entryD[j], this implies that eitheru or v have created the entryD[j].
We now only have to show that the entryD[j] has been created byu in the claimed

steps. This can easily be seen by inspection of Algorithms 1 and 2. We only show it in
detail for the first part of the invariant; it can be proven similarly for the remaining two
parts.

Let xhnd
1,u ∈ Nonceu,v andD[x ind

2 ].type = data. By inspection of Algorithms 1
and 2 and becauseD[j].type = list, we see that the entryD[j] must have been created
by eitherMNS

u orMNS
v in Step 1.4. (The remaining list generation commands eitheronly

have one element, which impliesx ind
2 = ↓ and henceD[x ind

2 ].type 6= data, or we have
D[x ind

2 ].type = nonce by construction.) Now assume for contradiction that the entry
D[j] has been generated byMNS

v . This implies that also the entryD[x ind
1 ] has been

newly generated by the commandgen nonce input atinv?. However, onlyMNS
u can add

a handle to the setNonceu,v (it is the local state ofMNS
u ), but every nonce thatMNS

u adds
to the setNonceu,v is newly generated by the commandgen nonce input byMNS

u by
construction. This impliesxhnd

1,u 6∈ Nonceu,v at all times, which yields a contradiction
to xhnd

1,u ∈ Nonceu,v at timet+ 1. HenceD[j] has been created by useru.

Proof (Nonce secrecy). Let u, v ∈ H, j ≤ size with D[j].hndu ∈ Nonceu,v, and
w ∈ (H ∪ {a}) \ {u, v} be given. Because ofcorrect nonce owner, we know that
D[j].type = nonce. The invariant could only be affected if (1) the handleD[j].hndu is
put into the setNonceu,v at timet+1 or (2) if a handle forw is added to the entryD[j]
at timet+ 1.
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For proving the first case, note that the setNonceu,v is only extended by a handle
nhnd
u by MNS

u in Steps 1.2 and 2.10. In both cases,nhnd
u has been generated byTHH

at timet since the commandgen nonce was input atinu? at timet. The definition of
gen nonce immediately implies thatD[j].hndw = ↓ at timet if w 6= u. Moreover, this
also holds at timet + 1 since a transition ofMNS

u does not modify handles inTHH,
which finishes the claim for this case.

For proving the second case, we only have to consider those commands that add
handles forw to entries of typenonce. These are only the commandslist proj or
adv parse input at inw?, whereadv parse has to be applied to an entry of typelist,
since only entries of typelist can have arguments which are indices to nonce entries.
More precisely, if one of the commands violated the invariant there would exist an entry
D[i] at timet such thatD[i].type = list, D[i].hndw 6= ↓ andj ∈ (x ind

1 , . . . , x ind
m ) :=

D[i].arg . However, both commands do not modify the setNonceu,v, hence we have
D[j].hndu ∈ Nonceu,v already at timet. Now nonce secrecyyieldsD[j].hndw = ↓
at time t and hence also at all times< t because of Lemma 2. This implies that the
entryD[i] must have been created by eitheru or v, since generating a list presupposes
handles for all elements (cf. the previous proof). Assume without loss of generality that
D[i] has been generated byu. By inspection of Algorithms 1 and 2, this immediately
impliesj ∈ (x ind

1 , x ind
2 ), since handles to nonces only occur as first or second element

in a list generation byu. Because ofj ∈ D[i].arg[1, 2] andD[j].hndu ∈ Nonceu,v at
time t, nonce-list secrecyfor the entryD[i] implies thatD[i].hndw = ↓ at timet. This
yields a contradiction.

Proof (Nonce-list secrecy). Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i :=

D[j].arg [i] andxhnd
i,u := D[x ind

i ].hndu for i = 1, 2, andw ∈ (H ∪ {a}) \ {u, v}. Let
xhnd
i,u ∈ Nonceu,v for i = 1 or i = 2.

We first show that the invariant cannot be violated by adding the handlexhnd
i,u to

Nonceu,v at timet+1. This can only happen in a transition ofMNS
u in Step 1.2 or 2.10.

As shown in the proof ofcorrect list owner, the entryD[x ind
i ] has been generated by

THH at timet. SinceD is well-formed, this implies thatx ind
i 6∈ D[j].arg for all entries

D[j] that already exist at timet. This also holds for all entries at timet + 1, since
the transition ofMNS

u does not modify entries ofTHH. This yields a contradiction to
x ind
i = D[j].arg [i]. Hence we now know thatxhnd

i,u ∈ Nonceu,v already holds at timet.
Part a) of the invariant can only be affected if a handle forw is added to an entry

D[j] that already exists at timet. (Creation ofD[j] at time t with a handle forw is
impossible as above because that presupposes handles to allarguments, in contradiction
to nonce secrecy.) The only commands that add new handles forw to existing entries
of type list arelist proj, decrypt, adv parse, send i, andadv send i applied to an entry
D[k] with j ∈ D[k].arg . Nonce-list secrecyfor the entryD[j] at time t then yields
D[k].type = enc. Thus the commandslist proj, send i, andadv send i do not have
to be considered any further. Moreover,nonce-list secrecyalso yieldsD[k].arg[1] ∈
{pkeu, pkev}. The secret keys ofu and v are not known tow 6∈ {u, v}, formally
D[hndw = skehndu ] = D[hndw = skehndv ] = ↓; this corresponds to the invariantkey
secrecyof [1]. Hence the commanddecrypt does not violate the invariant. Finally, the
commandadv parse applied to an entry of typeenc with unknown secret key also does
not give a handle to the cleartext list, i.e., toD[k].arg [2], but only outputs its length.
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Part b) of the invariant can only be affected if the list entryD[j] is created at time
t+ 1. (By well-formedness, the argument entryD[x ind

i+1] cannot be created afterD[j].)
As in Part a), it can only be created by a partyw ∈ {u, v} because other parties have no
handle to the nonce argument. Inspection of Algorithms 1 and2 shows that this can only
happen in Steps 1.4 and 2.12, because all other commandslist have only one argument,
while our preconditions implyx ind

2 6= ↓.

– If the creation is in Step 1.4, the preceding Step 1.2 impliesD[x ind
1 ].hndw ∈

Noncew,w′ for somew′ and Step 1.3 impliesD[x ind
2 ].type = data. Thus the

preconditions of Part b) of the invariant can only hold fori = 1, and thus
D[x ind

1 ].hndu ∈ Nonceu,v. Now unique nonce useimplies u = w. Thus Steps
1.3 and 1.4 yieldD[x ind

2 ].arg = (u).
– If the creation is in Step 2.12, the preceding steps 2.10 and 2.11 imply that the pre-

conditions of Part b) of the invariant can only hold fori = 2. Then the precondition,
Step 2.10, andunique nonce useimply u = w. Finally, Steps 2.11 and 2.12 yield
D[x ind

3 ].arg = (u).

Part c) of the invariant can only be violated if a new entryD[k] is created at time
t + 1 with j ∈ D[k].arg (by Lemma 2 and well-formedness). AsD[j] already exists
at timet, nonce-list secrecyfor D[j] impliesD[j].hndw = ↓ for w 6∈ {u, v} at time
t. We can easily see by inspection of the commands that the new entry D[k] must
have been created by one of the commandslist andencrypt (or by sign, which creates
a signature), since entries newly created by other commandscannot have arguments
that are indices of entries of typelist. Since all these commands entered at a portinz ?
presupposeD[j].hndz 6= ↓, the entryD[k] is created byw ∈ {u, v} at time t + 1.
However, the only steps that can create an entryD[k] with j ∈ D[k].arg (with the
properties demanded for the entryD[j]) are Steps 1.5, 2.13, and 2.22. In all these cases,
we haveD[k].type = enc. Further, we haveD[k].arg[1] = pkew′ wherew′ denotes
w’s current believed partner. We have to show thatw′ ∈ {u, v}.

– Case 1:D[k] is created in Step 1.5. By inspection of Algorithm 1, we see that the
precondition of this proof can only be fulfilled fori = 1. ThenD[x ind

1 ].hndu ∈
Nonceu,v andD[x ind

1 ].hndw ∈ Noncew,w′ andunique nonce useimply w′ = v.
– Case 2:D[k] is created in Step 2.13, andi = 2. ThenD[x ind

2 ].hndu ∈ Nonceu,v
andD[x ind

2 ].hndw ∈ Noncew,w′ andunique nonce useimply w′ = v.
– Case 3:D[k] is created in Step 2.13, andi = 1. This execution of Algorithm 2

must givelhnd 6= ↓ in Step2.2, since it would otherwise abort by Convention 1. Let
lind := D[hndw = lhnd].ind . The algorithm further impliesD[lind].type = list. Let

x0
i

ind
:= D[lind].arg [i] for i = 1, 2, 3 at the time of Step2.3, and letx0 hnd

i,w be the
handles obtained in Step2.3. As the algorithm does not abort in Steps2.5 and2.7,
we haveD[x0

2
ind
].type = data andD[x0

2
ind
].arg = (w′).

Further, the reuse ofx0 hnd

1,w in Step 2.12 impliesx0
1
ind

= x ind
1 . Together with the

preconditionD[x ind
1 ].hndu ∈ Nonceu,v, the entryD[lind] therefore fulfills the con-

ditions of Part b) ofnonce-list secrecywith i = 1. This impliesD[x0
2
ind
].arg = (u),

and thusw′ = u.
– Case 4:D[k] is created in Step 2.22. With Step 2.21, this impliesx ind

2 = ↓ and
thus i = 1. As in Case 3, this execution of Algorithm 2 must givelhnd 6= ↓ in
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Step2.2, we setlind := D[hndw = lhnd].ind , and we haveD[lind].type = list.

Let x0
i

ind
:= D[lind].arg [i] for i = 1, 2, 3 at the time of Step2.3, and letx0 hnd

i,w be
the handles obtained in Step2.3. As the algorithm does not abort in Steps2.17 and
2.19, we haveD[x0

3
ind
].type = data andD[x0

3
ind
].arg = (w′).

Further, the reuse ofx0 hnd

2,w in Step 2.21 impliesx0
2
ind

= x ind
1 . Together with the

preconditionD[x ind
1 ].hndu ∈ Nonceu,v, the entryD[lind] therefore fulfills the con-

dition of Part b) ofnonce-list secrecywith i = 2. This impliesD[x0
3
ind
].arg = (u),

and thusw′ = u.

Hence in all cases we obtainedw′ = u, i.e., the list containing the nonce was indeed
encrypted with the key of an honest participant.

11 Conclusion

We have shown that an ideal cryptographic library, which constitutes a slightly extended
Dolev-Yao model, is sound with respect to the commonly accepted cryptographic def-
initions under arbitrary active attacks and in arbitrary protocol environments. The ab-
straction is deterministic and does not contain any cryptographic objects, hence it is
abstract in the sense needed for theorem provers. Sound means that we can implement
the abstraction securely in the cryptographic sense, so that properties proved for the ab-
straction carry over to the implementation without any further work. We provided one
possible implementation whose security is based on provably secure cryptographic sys-
tems. We already showed that the library can be extended in a modular way by adding
symmetric authentication [24] and symmetric encryption [25].

This soundness of the cryptographic library now allows for ameaningful analysis
of protocol properties on the abstract level. We demonstrated this with a proof of the
well-known Needham-Schroeder-Lowe public-key protocol.Further, the abstractness
of the library makes such an analysis accessible for formal verification techniques. As
many protocols commonly analyzed in the literature can be expressed with our library,
this enables the first formal, machine-aided verification ofthese protocols which is not
only meaningful for Dolev-Yao-like abstractions, but whose security guarantees are
equivalent to the security of the underlying cryptography.This bridges the up-to-now
missing link between cryptography and formal methods for arbitrary attacks.
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