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Abstract. Web application scanners are popular tools to perform black
box testing and are widely used to discover bugs in websites. For them
to work effectively, they either rely on a set of URLs that they can test,
or use their own implementation of a crawler that discovers new parts
of a web application. Traditional crawlers would extract new URLs by
parsing HTML documents and applying static regular expressions. While
this approach can extract URLs in classic web applications, it fails to
explore large parts of modern JavaScript-based applications.
In this paper, we present a novel technique to explore web applications
based on the dynamic analysis of the client-side JavaScript program. We
use dynamic analysis to hook JavaScript APIs, which enables us to detect
the registration of events, the use of network communication APIs, and
dynamically-generated URLs or user forms. We then propose to use a
navigation graph to perform further crawling. Based on this new crawling
technique, we present jÄk, a web application scanner. We compare jÄk

against four existing web-application scanners on 13 web applications.
The experiments show that our approach can explore a surface of the
web applications that is 86% larger than with existing approaches.

1 Introduction

Web application scanners are black box security testing tools that are widely
used to detect software vulnerabilities in web applications. As a very essential
component, the scanners have to explore all parts of the web application un-
der test. Missing functionality during this exploration step results in parts of
the web application remaining untested—leading to potential misses of critical
vulnerabilities. To addres this problems, scanners typically expand their initial
set of seed URLs. That is, they crawl a web application to extract as many
different URLs as possible. URLs are then used to send crafted inputs to the
web application to detect vulnerabilities. Nowadays, crawlers find new URLs by
pattern matching on the HTML content of web sites, e.g., using regular expres-
sions. While this approach can extract URLs in classic web applications, it fails
to explore large parts of modern web applications.
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The advent of JavaScript and client-side communication APIs has increased
the complexity of the client-side of web applications. While in the past the client
side was merely a collection of static HTML resources, in modern web applica-
tions the client side is a full-fledged program written in JavaScript running in
a web browser. In these programs, URLs and forms are no longer only static
objects, but they may also be the result of client-side computations. For exam-
ple, JavaScript functions can be used to generate user login forms, to encode
user inputs using non-standard HTML form encoding (e.g., JSON), and to in-
clude form input values at runtime. Prior work has shown that many URLs in
modern web applications are generated dynamically by JavaScript code [1]. As
web scanners tend to perform checks on the HTML code, they will fail to cover
large parts of web applications. As a result, this leaves a significant fraction of
the attack surface of a web application unknown to the underlying vulnerability
testing methodology, resulting in incomplete tests.

However, crawling modern web applications is challenging. The difficulties
mainly originate from new features introduced by JavaScript. JavaScript pro-
grams use an event-driven paradigm, in which program functions are executed
upon events. To trigger the execution of these functions, and thus the generation
of URLs, a web crawler needs to interact with the JavaScript program. Recently,
Mesbah et al. have proposed to combine web-application crawling with dynamic
program analysis to infer the state changes of the user interface [2]. However,
this approach relies on a number of heuristics which do not cover all the interac-
tion points of the client side. As a result, the largest part of the web application
remains unexplored, which ultimately limits the capability to detect vulnerabil-
ities.

In this paper, we address the shortcomings in terms of poor code coverage of
existing crawling techniques. We propose a novel approach that combines clas-
sic web application crawling and dynamic program analysis. To this end, we
dynamically analyze the web applications by hooking JavaScript API function
and performing runtime DOM analysis. Using a prototype implementation called
jÄk, we show that our methodology outperforms existing web application scan-
ners, especially when it comes to JavaScript-based web applications. Whereas
existing tools find only up to 44% of the URLs, we show that jÄk doubles the
coverage of the WIVET web application [3]. We also tested jÄk against 13 pop-
ular web applications, showing that in eleven cases it has the highest coverage
as compared to existing tools. In summary, we make the following contributions:

• We present a novel dynamic program analysis technique based on JavaScript
API function hooking and runtime DOM analysis;

• We propose a model-based web-application crawling technique which can
infer a navigation graph by interacting with the JavaScript program;

• We implement these ideas in jÄk, a new open-source web application scanner.
We compare jÄk against four existing scanners and show their limitations
when crawling JavaScript client-side programs;



• We assess jÄk and existing tools on 13 case studies. Our results show that
jÄk improves the coverage of web application by about 86%.

2 Background

Before turning to our technique, we will briefly describe two JavaScript concepts
that are often used in modern web applications. These two, events and modern
communication APIs, severely increase the complexity of scans.

2.1 Event Handling Registration

Client-side JavaScript programs use an event-driven programming paradigm in
which (i) browsers generate events when something interesting happens and (ii)
the JavaScript program registers functions to handle these events. JavaScript
supports different event categories: device input events (e.g., mouse move), user
interface events (e.g., focus events), state change events (e.g., onPageLoad), API-
specific events (e.g., Ajax response received), and timing events (e.g., timeouts).
Event handlers can be registered via (i) event handler attributes, (ii) event han-
dler property, (iii) the addEventListener function, or (iv) timing events:

Event Handler Attribute — The registration of an event handler can be done
directly in the HTML code of the web application. For example, when the user
clicks on the HTML link, the browser executes the code in the attribute onclick:

1 <a href="contact.php" onclick="doSomething"></a>

Event Handler Property — Similarly, event handlers can be registered by setting
the property of an HTML element. Below is an equivalent example of the pre-
vious one. The code first defines a JavaScript function called handler. Then, it
searches for the HTML element with the identifier link. Then, it sets the prop-
erty onclick with the function handler. After that, whenever the user clicks on
the link to contact.php, the browser executes the handler function.

1 <a id="link" href="contact.php"></a>
2
3 <script type="text/javascript">
4 function handler () { /* do something */ }
5 var link = document.getElementsById("link");
6 link.onclick = handler;
7 </script>

addEventListener Function — Third, programmers can use addEventListener
to register events, as shown below. Again, this code searches the HTML element
with ID link. Then, it calls addEventListener() with two parameters. The first
parameter is the name of the event, in our case the string "click" (for the user
click event). The second parameter is the name of the function, i.e., handler.



1 <a id="link" href="contact.php"></a>
2
3 <script type="text/javascript">
4 function handler () { /* do something */ }
5 var link = document.getElementsById("link");
6 link.addEventListener("click", handler);
7 </script>

Timing Events — Finally, timing events are fired only once after a specified
amount of time, i.e., timeout event, or at regular time intervals, i.e., interval
event. The handler registration for these events is performed via the setTimeout
and the setInterval functions, respectively.

Modern web applications rely heavily on these events to trigger new behavior.
Web application scanners thus have to support event-based code.

2.2 Network Communication APIs

The communication between the web browser and the server side has shifted from
synchronous and message-based, to asynchronous and stream-oriented. Under-
standing and supporting modern network communication APIs is thus essential
for web application scanners. For example, consider Listing 1.1, which shows
the use of the XMLHttpRequest (XHR) API, in which the JavaScript program
sends an asynchronous HTTP POST request to the server side.

Listing 1.1: XMLHttpRequest API Example

1 var server = "http:// foo.com/";
2 var token = "D3EA0F8FA2"
3 var xhr = new XMLHttpRequest ();
4 xhr.open("POST", server);
5 xhr.addEventListener("load", function () {
6 // process HTTP response
7 });
8 xhr.send("token=" + token);

The JavaScript program first initializes two variables: a URL that identifies
the endpoint to which the HTTP request is sent, and a token that can be an anti-
CSRF token or an API key to allow the client-side JavaScript program to access
third-party web service. Then, the JavaScript program instantiates an XML-
HttpRequest object for an HTTP POST request and registers a handler to pro-
cess the server response. Finally, it sets the POST body as token=D3EA0F8FA2,
and sends the HTTP request to the server.

Classic crawlers statically analyze the HTML and JavaScript code to extract
URLs. This makes it hard for them to extract the correct endpoint. Furthermore,
classic crawlers cannot extract the structure of the HTTP POST request. We find
that four popular crawlers (w3af, skipfish, wget, and crawljax) cannot extract
the POST request structure of this example. Two of these crawlers, w3af and
skipfish, use regular expressions to extract strings that look like URLs, as a result
they may find out URLs when stored in variables such as server, however, they
will miss the POST parameter key. Worse, if the URL would have been generated



dynamically, e.g., “server="http://"+domain+"/";”, then w3af and skipfish
could not detect even the first part. Finally, the two other crawlers, wget and
crawljax, even fail to detect URLs stored in JavaScript variables. Many parts of
modern web applications can only be reached by interpreting such dynamically
generated requests, thus limiting the coverage of existing crawlers (cf. Section 5).

3 Crawling Modern Web Applications

As explained in the previous section, modern web applications can use JavaScript
events to dynamically react to events, and to update the internal and visual
state of the web application in response. Figure 1 gives a graphical represen-
tation of the page flow of an example toy web application. Initially, the user
loads the URL http://foo.com/, which loads the web application’s landing
page into the browser. This page is then loaded into its initial state and dis-
played to the user. The user can then interact with the page, for instance sub-
mit HTML forms or click HTML links, which will invoke further pages such as
http://foo.com/bar/, shown to the right. User events or spontaneuous events
such as timers can also, however, change the page’s internal and visual state,
as denoted by the dotted arrows. Those internal states can inflict significant
changes to the page’s DOM, which is why they should be considered by crawlers
as well. Most current crawlers, however, will focus on HTML only, which restricts
them virtually to discovering only those HTML page’s initial states.

We propose a new concept based on dynamic analysis for crawling web ap-
plications that overcomes the limitations of existing crawlers. The overall idea is
to combine classic web application crawling with program analysis of the client-
side of a web application. The crawler starts from a seed URL, e.g., the landing
page, and it retrieves the resources of the client-side program, e.g., an HTML
page or JavaScript program. Then, it runs the client-side program in a modified
JavaScript execution environment to analyze its behavior. From the analysis, the
crawler can extract events and URLs which are later used to explore both the
client-side program and the server side. Finally, the crawler repeats the analysis
until when no more new behaviors can be discovered. Section 3.1 presents our
dynamic JavaScript program analyses. Section 3.2 presents the logic to expand
the search via crawling.

3.1 Dynamic JavaScript Program Analysis

We deploy dynamic program analysis to monitor the behavior of the JavaScript
program and extract events, dynamically-generated URLs and forms, and end-
points for the communication with the server side.

Dynamic analysis of client-side JavaScript programs can be performed in dif-
ferent ways. One approach is to modify the JavaScript interpreter to inspect
and monitor the execution of the program. In this setting, whenever an instruc-
tion of interest executes, the interpreter executes a hook function instead of or
in addition to the original instruction. However, this approach requires one to
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modify a JavaScript engine, most of which are notoriously complex pieces of soft-
ware. Furthermore, this approach will bind the technique to a specific engine.
Another way to perform dynamic analysis is to insert calls to own JavaScript
functions within the source code of the client-side JavaScript program. This ap-
proach requires one to process and transform the source code of the program.
Unfortunately, the source code of JavaScript programs may not be available as
a whole as it may be streamed to the client side at run-time and one piece at a
time.

jÄk follows a third option, namely monitoring the execution of the program
by hooking functions to APIs inside the JavaScript execution environment. jÄk
first initializes the JavaScript engine. Then it modifies the execution environment
by running own JavaScript code within the engine. This code installs function
hooks to capture calls to JavaScript API functions and object methods, and
schedules the inspection of the DOM tree. After that, it runs the client-side
JavaScript program.

In the remainder of this section, we detail these techniques. First, we present
the basic techniques for performing function hooking in JavaScript. Then we
describe the use of function hooking to capture the registration of event handlers
and the use of network communication APIs, respectively. Finally we describe
how dynamic traces are collected.

Function Hooking Function hooking is a family of techniques that allows one
to intercept function calls to inspect the parameters or alter the behavior of the
program. In this section, we present two features of JavaScript that we use to
hook functions: function redefinition and set functions.

Function redefinition is a technique for overwriting JavaScript functions and
object methods. Consider the example in Listing 1.2, which shows the use of
function redefinition that logs any call to the function alert. This is achieved
first by associating a new name to the function alert (Line 2), and then by
redefining the alert function (Line 3). The redefinition still behaves as the
original alert, however, it adds (i.e., hooks) a call to log its use.

While function redefinition can be used to hook arbitrary functions to func-
tion calls, it cannot be used when functions are set as an object property, i.e.,
obj.prop=function(){[...]}. To hook functions in these cases, we use so-



Listing 1.2: Function hooking via function redefinition

1 alert("Hello world!"); // show a popup window
2 var orig_alert = alert;
3 function alert(s) {
4 console.log("call to alert " + s); // hook
5 return orig_alert(s);
6 }
7 alert("Hello world!"); // message is also shown in the console

called set functions, which are bound to object properties that are called when-
ever the property is changed. For example, one can hook the function myHook to
the property propr of the object obj as follows:

Object.defineProperty(obj,"prop",{set:myHook}).

Event Handlers Registration We now show the use of function hooking
to capture the registration of event handlers in three of the four registration
models: addEventListener function, event handler property, and timing events.
For the fourth registration model, i.e., event handler attribute, we do not use
function hooking. As in this model handlers are registered as HTML attribute,
we captured them by visiting the HTML DOM tree.

Hooking addEventListener — To capture the registration of a new handler,
jÄk injects its own function whenever the addEventListener function is called.
Listing 1.3 shows an example for the hooking code. The function installHook

installs a hook function hook before the execution of a function f of object obj.
installHook first preserves a reference to the original function (Line 2). Then,
jÄk replaces the original function with its own anonymous function (Line 3
to Line 6). The anonymous function first calls the hook (Line 4) and then the
original function (Line 5). Here, the parameters of hook are this and arguments.
Both parameters are JavaScript keywords. The first one is a reference to the
object instance whereas the latter is a list containing the parameters that will
be passed to the function f. Finally, jÄk can use the installHook function to
install its hook handler myHook for every call to the function addEventListener

of any HTML tag element, as shown below:

1 installHook(Element.prototype , "addEventListener", myHook)

Here Element.prototype is a special object that defines the basic behaviors of
all DOM nodes.

Listing 1.3: Function Hooking for the addEventListener function

1 function installHook(obj , f, hook) {
2 var orig = obj[f];
3 obj[f] = function () {
4 hook(this , arguments);
5 return orig.apply(this , arguments);
6 }
7 }



Hooking Event Handler Properties — To capture the registration of event han-
dlers via event properties, one can install a hook function as a set function in
the DOM elements. However, this approach requires further care. First, the reg-
istration of a set function may be overwritten by other set functions installed
by the JavaScript program. As opposed to function redefinition, set functions
do not guarantee that the hook will remain for the entire duration of the anal-
ysis. This can be solved by first redefining the defineProperty function and
then monitoring its use. Then, if the hook detects a set-function registration,
it will create a new set function which chains jÄk’s set function with the one
provided by the program. Second, we observed that the registration of set func-
tions for event properties may prevent the JavaScript engine from firing events.
This can interfere with the operations of a JavaScript program, e.g., it can break
the execution of self-submitting forms3. While jÄk’s set function will still detect
event handler registrations, after the discovery, the JavaScript engine needs to
be reinitialized.

Finally, as opposed to function redefinitions, this technique may not work in
every JavaScript engine. To install set functions, the JavaScript engine needs to
mark the property as configurable. Unfortunately, this is an engine-dependent
feature. For example, the JavaScript engines of Google and Mozilla, i.e., V8 and
SpiderMonkey, support this feature whereas the JavaScript engine of Apple does
not allow it. When function hooking on event properties is not allowed, one can
instead inspect the DOM tree to detect changes in the event properties.

Hooking Timing Event Handlers — To capture the registration of timing event
handlers, it is possible to reuse the installHook function of Listing 1.3 as follows:

1 installHook(window , "setTimeout", myHook)
2 installHook(window , "setInterval", myHook)

where myHook is the hook function.

Network Communication APIs Next, we describe the use of function hook-
ing to dynamically inspect the use of networking communication APIs. We will
illustrate an example hooking the XMLHttpRequest API, but the general ap-
proach can easily be extended to further communication APIs.

As shown in Section 2.2, the XHR API is used in three steps. First, an
XHR object is instantiated. Then, the HTTP request method and the URL of
the server side is passed to the XHR object via the open function. Finally, the
HTTP request is sent with the function send. jÄk can use installHook to inject
its hook handler myHook for both open and send as follows:

1 installHook(XMLHttpRequest , "open", myHook);
2 installHook(XMLHttpRequest , "send", myHook);

Other network communication APIs may require the URL of the endpoint
as a parameter to the constructor. For example, WebSocket accepts the URL

3 A self-submitting form is an HTML form that is submitted by firing submit or mouse
click events within the JavaScript program.



only in the constructor function as follows: var ws = new WebSocket(server).
In general, when one would like to hook a function in the constructor, Line 5
of installHook in Listing 1.3 needs to be modified to return an instance of the
object, i.e., return new orig(arguments[0], ...).

Run-time DOM analysis The DOM tree is a collection of objects each rep-
resenting an element of the HTML document. The DOM tree can be visited to
inspect its current state. Each visit can be scheduled via JavaScript events or it
can be executed on-demand. In this paper, we consider three uses of run-time
DOM analysis. First, it is used to extract the registration of handlers as HTML
attributes. Second, it is used to identify changes in the tree while firing events.
Third, it can be used to discover the registration of event handlers when the
JavaScript engine does not allow to hook code as set functions.

Collection of Dynamic Traces After describing how to install jÄk’s hook
functions, we now turn to the actual behavior of the these functions. In general,
jÄk uses hook functions to collect information from the run-time environment
at the point of their invocation. This information is then sent to the crawler,
which collects them in an execution trace.

For the event handler registration, the hook function depends on the type of
event (see, e.g., Listing 1.4). For example, for DOM events, the hook function
collects the name of the event, the position in the DOM tree of the source and
sends it to the crawler. Instead, for timing events, the hook can collect the
timeout set by the caller. In either case, hook functions send trace entries to the
crawler via a JavaScript object trace, which is mapped to a queue object in the
crawler’s memory. This object acts as a bridge between the JavaScript execution
environment and the crawler’s execution environment.

When collecting trace entries for network communication APIs, one has to
address two issues. First, the APIs typically require multiple steps to set up a
communication channel and to deliver messages to the server side. For example,
the XHR API requires at least three steps (Lines 3-8 in Listing 1.1). These

Listing 1.4: Hook Function for the addEventListener and setTimeout

1 function addEventListenerHook(elem , args) {
2 path = getPath(elem);
3 entry = {
4 "evt_type" : args[0], //1st par of addEventListener
5 "evt_source" : path
6 };
7 trace.push(entry);
8 }

1 function timeoutHook(elem , args) {
2 entry = {
3 "evt_type" : "timeout",
4 "time" : args [1] //1st par of setTimeout
5 };
6 trace.push(entry);
7 }



steps are not necessarily atomic. In fact, a program may open a pool of XHR
connections, and finally call the send function of each object. In this case, a
single hook will result in a trace which contains uncorrelated trace events: at
the beginning a sequence of “open” events with the URL endpoints, and then a
sequence of only “send” events with the body being sent.

For these reasons, jÄk defines a hook for each of the API functions and then
uses the API object to store the current state of the API calls. For example,
Listing 1.5 shows the hook function for the API functions open and send. The
hook function xhrOpenHook creates two new object properties in the object xhr
for the HTTP request method and the URL, respectively. Then, the function
xhrSendHook collects the content of the two object properties and the body of
the HTTP requests, and the sends them to the crawler. Such hooks are thread-
safe, and thus even work correctly when JavaScript programs access the network
communication API concurrently (e.g., within Web Workers [4]).

3.2 Crawling

In the previous section, we presented the dynamic analysis technique in isolation.
In this section, we will integrate the dynamic analysis into our web crawler jÄk.
The crawler is model-based, i.e., it creates and maintains a model of the web
application which is used at each step to decide the next part to explore. First,
we describe how we create the model. Then, we discuss the selection criteria for
the next action, and finally the termination conditions.

Navigation Graph jÄk creates and maintains a navigation graph of the web
application which models both the transitions within a client-side program and
the transitions between web pages. The model is a directed graph similar to
the one shown in Figure 1, in which nodes are clusters of pages and edges can
be events and URLs. Each page p is modeled as a tuple of three elements p =
〈u,E, L, F 〉 where u the web page URL, E is the JavaScript events, L a set of
URLs (e.g., linked URLs, server-side endpoints), and F a set of HTML forms.
jÄk normalizes all URLs by striping out query string values and sorting the query
string parameter lexicographically. Two pages p′ and p′′ are in the same cluster

Listing 1.5: Hook Functions for XHR API

1 function xhrOpenHook(xhr , args) {
2 xhr.method = args [0]; //1st par of HTMLHttpRequest.open , i.e. , HTTP

method
3 xhr.url = args [1]; //2nd par , i.e. , the URL
4 }
5 function xhrSendHook(xhr , args) {
6 entry = {
7 "evt_type" : "xhr",
8 "url" : xhr.url ,
9 "method" : xhr.method ,

10 "body" : args [0] //1st par of XMLHttpRequest.send
11 };
12 trace.push(entry);
13 }



if (i) u′ and u′′ are identical and (ii) the two pages are sufficiently similar. The
similarity is calculated as a proportion between the number of common events,
URLs and forms over the total number of events, URLs and forms. Precisely,
the similarity is defined as follow:

s(p′, p′′) =
|E′ ∩ E′′|+ |L′ ∩ L′′|+ |F ′ ∩ F ′′|
|E′ ∪ E′′|+ |L′ ∪ L′′|+ |F ′ ∪ F ′′|

Through experimental analysis we determined that a similarity threshold of
0.8 generates the best results for our setting.

Navigating The dynamic analysis of the JavaScript program generates a run-
time trace containing event handler registrations and dynamically-generated
URLs. It also includes the result of the DOM-tree analysis such as linked URLs
and forms. This information is then sorted into two lists, a list of events and a
list of URLs. These lists represent the frontier of actions that the crawler can
take to further explore the web application.

Each type of action may have a different result. On the one hand, the request
of a new URL certainly causes to retrieve a new page and, if the page contains a
JavaScript program, then it is executed in a new JavaScript environment. This
is not necessarily the case of events. Firing an event may allow the crawler to
explore more behaviors of the JavaScript program, i.e., to generate new URLs.
However, events may also cause to run a new JavaScript program, for instance
by setting window.location to a new URL. However, we can block this behavior
via function hooking. For these reasons, our crawler gives a higher priority to
events with respect to the URLs. When no more events are left in the list, then
we process the list of URLs. When all the lists are empty, then the crawler exits.

Visiting the Client-side Program — Events such as click, focus, double click, and
mouse movements can be fired within the JavaScript execution environment. To
fire an event e, jÄk first identifies the DOM element and then fires the event via
the DOM Event Interface [5] function dispatchEvent. After that, jÄk observes
the result of the execution of the handler via the dynamic analysis. The event
handler can cause a refresh of the page, a new page to be loaded, a message to be
sent to the server side. To avoid any interference with the server side, when firing
events, the hook functions, e.g., for network communication API, will block the
delivery of the message.

After having fired an event, jÄk can distinguish the following cases. If the
event handler results into a network communication API, then jÄk takes the
URL from the trace, and enqueues it in the list of URLs. Similarly, if the event
handler sets a new URL (i.e., window.location=URL), then jÄk enqueues the
URL into the linked-URLs list. If the event handler adds new linked URL and
forms, then they are inserted into the appropriate list. Finally, if the event han-
dler registers new events, then jÄk prepares the special event which comprises
the sequence of events that lead to this point, e.g., ê = 〈e, e′〉 where e is the last
fired event and e′ is the newly discovered event. Then, ê is added to the list of



events. When the crawler schedules this event to be fired, it fires the events in
the given order, i.e., first e and then e′.

Requesting New Pages — The crawler should aim to find pages that contain
new content rather than pages with known content. To select the next page, jÄk
assigns a priority to each of the URLs in the frontier based on two factors: (i)
how many times jÄk has seen a similar URL in the past, and (ii) how scattered
over the clusters past URLs are. The priority is thus calculated as the number
of similar past URLs over the number of clusters in which the past URLs have
been inserted in. If a URL in the frontier was never seen in the past, i.e., the
priority is 0, then we force its priority to 2. The crawler processes URLs from
the highest to the lower priority.

Termination Without any further control on the behavior of the crawler, the
crawler may enter a loop and never terminate its execution. jÄk thus uses two
techniques to terminate its execution. First, it has a hard limit for the search
depth. Second, the crawler terminates if it cannot find new content anymore.
We describe the termination criteria in the following.

Hard Limits — Crawlers can enter loops in two situations. First, loops can
happen across the different web pages of a web applications. This can be caused
when crawling infinite web applications such as calendars or, for example, when
two pages link to each other. The crawler may visit the first page, then schedule
a visit to the second, which again points to the first page. These problems can
be solved with a limit on the maximum search depth of the crawler. When the
crawler reaches a limit on the number of URLs, it terminates the execution.
Second, loops may also occur within single web pages. For example, the handler
of an event can insert a new HTML element into the DOM tree and register the
same handler to the new element. Similarly as seen for URLs, one can limit the
maximum depth of events that can be explored within a web page. When the
limit is reached, the crawler will no longer fire events on the same page.

Convergence-based Termination — In addition to these limits, the crawler ter-
minates when the discovered pages do not bring any new content. The notion
of new content is defined in terms of number of similar pages that the crawler
visited in the past. To achieve this, the crawler uses the navigation graph and
a limit on the number of pages per cluster. If the cluster has reached this limit,
the crawler marks the cluster as full and any subsequent page is discarded.

4 Implementation of jÄk

This section presents our actual implementation of jÄk, our web-application
scanner which implements the crawler and the program analysis presented in
Section 3. jÄk is written in Python [6] and based on WebKit browser engine [7]



via the Qt Application Framework bindings [8]. We released jÄk at https:

//github.com/ConstantinT/jAEk/.
jÄk comprises four modules: dynamic analysis module, crawler module, at-

tacker module, and analysis module. The dynamic analysis module implements
the techniques presented in Section 3.1. jÄk relies on the default JavaScript
engine of WebKit, i.e., the JavaScriptCore, to perform the dynamic analysis.
Unfortunately, JavaScriptCore sets the event properties as not configurable. As
a result, JavaScriptCore does not allow to use function hooking via set functions.
To solve this, jÄk handles these cases via DOM inspection. However, we verified
that the JavaScript engines of Google and Mozilla, i.e., V8 [9] and SpiderMon-
key [10], allow one to hook set functions. In the future, we plan to replace the
JavaScriptCore engine with V8.

The crawler module implements the crawling logic of Section 3.2. Starting
from a seed URL, jÄk retrieves the client-side program and passes it to the
dynamic analysis module. The dynamic analysis module returns traces which
are used to populate the frontiers of URLs and events. Then, jÄk selects the
next action and provides it to the dynamic analysis module. Throughout this
process, jÄk creates and maintains the navigation graph of the web application
which is used to select the next action. The output of the crawler module is a
list of forms and URLs.

Finally, the attacker and analysis modules test the server side against a
number of vulnerabilities. For each URL, the attacker module prepares URLs
carrying the attack payload. Then, it passes the URL to the dynamic analysis
module to request the URL. The response is then executed within the dynamic
analysis module, which returns an execution trace. The analysis module then
analyzes the trace to decide if the test succeeded.

5 Evaluation

We evaluate the effectiveness of jÄk in a comparative analysis including four ex-
isting web crawlers. Our evaluation consists of two parts. Section 5.1 assesses the
capability of the crawlers based on the standard WIVET web application, high-
lighting the need to integrate dynamic analysis to crawlers. Then, in Section 5.2,
we evaluate jÄk and the other crawlers against 13 popular web applications.

For our experiments, we selected five web crawlers: Skipfish 3.10b [11], W3af
1.6.46 [12], Wget 1.6.13 [13], State-aware crawler [14], and Crawljax 3.5.1 [2]. We
selected Skipfish, W3af, and Wget as they were already used in a comparative
analysis against State-aware crawler by prior work (see Doupé et al. [14]). Then,
we added Crawljax as it is a crawler closest to our approach.

In our experiment, we used the default configuration of these tools. When
needed, we configured them to submit user credentials or session cookies. In
addition, we configured the tools to crawl a web application to a maximum
depth of four. Among our tools, only W3af does not support bounded crawling4.

4 W3af implements a mechanism to terminate which is based on the following two
conditions. First, W3af does not crawl twice the same URL and then it does not

https://github.com/ConstantinT/jAEk/
https://github.com/ConstantinT/jAEk/


5.1 Assessing the Crawlers’ Limitations

First, we use the Web Input Vector Extractor Teaser (WIVET) web applica-
tion [3] to assess the capabilities of existing crawlers and compare these to jÄk.
The WIVET web application is a collection of tests to measure the capability
of crawlers to extract URLs from client-side programs. In each test, WIVET
places unique URLs in a different part of the client-side program including in
the HTML and via JavaScript functions. Then, it waits for the crawler to request
the URLs. WIVET tests can be distinguished in static and dynamic tests. A test
is static if the unique URL is placed in the HTML document without the use
of a client-side script. Otherwise, if the client-side program generates, requests,
or uses URLs, then the test is dynamic. WIVET features 11 static tests and 45
dynamic tests. We focus on the dynamic behavior of client-side programs and
thus limit the evaluation to running the 45 dynamic tests.

As URLs can be placed and used by the JavaScript program in different
ways, we manually reviewed WIVET’s dynamic tests and grouped them into
eight classes. We created these classes by enumerating the technique used by
each test. For example, we considered whether a test dynamically places an
URL in an HTML tag, if the URL is for Ajax requests, or whether the action
is in an event handler. Table 1 shows the eight classes and details the results of
each crawler for each class.

As Table 1 shows, all tested crawlers but jÄk fail in more than half of the
tests. In average, these tools passed only 25% of the tests. With the exception
of Wget, which failed all the dynamic tests, the success rate ranges from 20% of
Crawljax to 44% of W3af. jÄk instead passed 89% of the tests. For the event-
based tests (i.e., C4-7), W3af, Skipfish and Crawljax succeeded in about 16%
of the tests, whereas for the server communication API tests (i.e., C8) they
succeeded in 25% of the tests. By comparison, jÄk achieved 96% and 100% of
success rate for the classes C4-7 and C8, respectively.

We next discuss the details of these experiments per tool. In total, jÄk passed
40 dynamic tests (89%). With reference to the classes C4-7, jÄk discovered the
registration of the events via the hook functions. Then, it fired the events which
resulted in the submission of the URL. In only one case, jÄk could not extract
the URL which is contained in an unattached JavaScript function. As jÄk uses
dynamic analysis, it cannot analyze code that is not executed, and thus it will
not discover URLs in unattached functions. Nevertheless, jÄk could easily be
extended with pattern-matching rules to capture these URLs. In fact, Skipfish
and W3af were the only ones able to discover these URLs. For the class C8,
jÄk discovered the URL of the endpoint via the hook functions and via DOM
tree inspection. In this case, the test requested the URL via the XHR API and
inserted it in the DOM tree.

jÄk failed in other four dynamic tests. First, one test of C2 places a JavaScript
statement javascript: as action form. jÄk correctly extracts the URLs, how-
ever it does not submit to the server side because jÄk does not submit forms

crawl ”similar” URLs more than five times. Two URLs are similar if they differ only
from the content of URL parameters.



Dynamic test categories Total Crawljax W3af Wget Skipfish jÄk

C1 Adobe Flash event 2 0 2 0 0 0
C2 URL in tag 5 5 5 0 5 4
C3 JS in URL, new loc. 2 2 1 0 1 2
C4 URL in tag, tim. evt. 1 0 1 0 1 1
C5 Form subm., UI evt. 2 2 1 0 1 1
C6 New loc., UI evt. 27 0 6 0 6 26
C7 URL in tag, UI evt. 2 0 2 0 1 2
C8 XHR 4 0 2 0 2 4
Total 45 9 20 0 17 40
In % 100 20 44 0 38 89

Table 1: Number and fraction of dynamic test passed by the different crawlers

during the crawling phase. Other two tests are in the class C1. This class con-
tains tests which test the support of ShockWave Flash (SWF) objects. This
feature is not currently supported by jÄk. Then, the last test is in C5. This
test submits user data via a click event handler. jÄk correctly detects the event
registration and it fires the event on the container of the input elements. How-
ever, the handler expects that the event is fired over the submit button element
instead of the container. This causes the handler to access a variable with an
unexpected value. As a result, the handler raises an exception and the execution
is halted. In a web browser, the execution of the handler would have succeeded
as a result of the propagation of the click event from the button to the outer
element, i.e., the container5. The current version of jÄk does not support the
propagation of events, instead it fires an event on the element where the handler
has been detected, in this case the container.

Crawljax succeeded only in 9 out 45 tests (20%). Most of the failed tests store
URLs either in the location property of the window object (i.e., classes C4 and
C6), or as URL of a linked resource (i.e., class C7). The URL is created and
inserted in the DOM tree upon firing an event. While Crawljax can fire events, it
supports only a limited set of target HTML tags to fire events, i.e., buttons and
links. Finally, Crawljax failed in all of the dynamic tests involving Ajax requests
(See C8).

Skipfish and W3af performed better than Crawljax, passing 38% and 44% of
the dynamic tests, respectively. These tools extract URLs via HTML document
parsing and pattern matching via regular expression. When a URL cannot be ex-
tracted from the HTML document, the tools use pattern recognition via regular
expressions. This technique may work well when URLs maintain distinguishable
characteristics such as the URL scheme, e.g., http://, or the URL path separa-
tor, i.e., the character “/”. However, this approach is not sufficiently generic and
cannot extract URLs that are composed dynamically via string concatenation.
This is the case for the class C6 Table 1 in which W3af and Skipfish passed only
six tests out of 27. In these six tests, the URL is placed in a JavaScript variable
and it maintains the URL path separator. With the use of regular expressions,

5 This model is the event bubbling and is the default model. Another model is the event
capturing in which the event are propagated from the outermost to the innermost.



W3af and Skipfish recognized the string as URL and submitted the server side
thus passing the tests. However, in the remaining 21, URLs are created as the
concatenation string variables and a JavaScript arrays. While regular expres-
sions may be extended to include these specific cases, they will likely never be
as complete as dynamic analysis.

5.2 Assessment using Web Applications

Finally, we compare jÄk to the other crawlers by crawling popular web applica-
tions.

We first evaluated how well the crawlers cover a web application. A measure
for the coverage is the code coverage, i.e., the number of lines of code that
have been exercised by the testing tool. While this measure is adequate for
code-based testing tools, it may not be for web application crawlers. As web
crawlers operate in a black-box setting, it has a limited visibility of the web
application. In addition, web crawlers do not fuzz input fields, but they rather
use a user-provided list of inputs. As a result, it may not exercise all the branches,
thus, leaving unvisited significant portion of the web application. An alternative
measure can be the number of URLs a crawler can extract.

A web crawler is a component which provides a web scanner with the URLs
to be tested. As the goal of a web scanner is the detection of web vulnerabilities,
the second aspect to evaluate is the detection power. The detection power can be
measured in terms of the number of reported vulnerabilities. Unfortunately, such
a metric may not be fair. Prior research has shown that this type of evaluation is
not an easy task. Web scanners do not support the same classes of vulnerabilities
and they may differentiate the target vulnerabilities. In result, the number of
discovered vulnerabilities cannot be comparable among the different crawlers.
For this reason, in this paper we limited our comparison to a specific class of
vulnerabilities, i.e., reflected XSS. Second, the number of reported vulnerabilities
may contain false positives. A false positive happens when the scanner reports
the existence of a vulnerability but the vulnerability does not acutally exist.
The number of false positives also measures the accuracy of the web scanner
and indicates whether a scanner adequately verifies if the observed behavior
qualifies as a vulnerability.

Case Studies We performed our assessment using 13 popular web applications.
These applications include three content management systems (i.e., Joomla 3.4.1,
Modx-CMS 2.02.14, and Nibbleblog 4.0.1), a blogging tool with plugins (i.e.,
WordPress 3.7 and 4.0.1, and Tidio 1.1), discussion forum software (i.e., MyBB
1.8.01 and 1.8.04, and phpNN 3.0.12), photo gallery applications (i.e., Gallery
2.7.1 and Piwigo 2.7.1), cloud storage applications (i.e., OwnCloud 4.0.1 and
8.0.3), and wiki web application (i.e., MediaWiki 1.24.2). Among these, the fol-
lowing five web application are already known to be vulnerable to reflected XSS:
Modx-CMS, MyBB 1.8.01, phpBB, Piwigo, and OwnCloud 4. These web applica-
tions vary in size, complexity, and functionality. We set up these web applications



Web Apps. DDI DII UI Chg API Errs. Cust. Total
WP 34 220 156 14 0 0 0 424
Gallery 930 7 1,257 23 0 0 303 2,520
phpBB 636 8 729 0 0 0 0 1,373
Joomla 46 144 232 26 0 0 0 448
Tidios w/ WP 14,041 26 3,715 192 111 12 641 18,738
Nibbleblog 12 42 0 7 0 0 0 61
Owncloud 8 826 905 274 53 44 0 134 2,236
Owncloud 4 126 651 234 68 10 0 36 1,125
Piwigo 1,609 1,323 281 44 0 0 40 3,297
Mediawiki 13,538 24,837 18,102 2,174 791 0 5,204 64,646
ModX 6,772 14,626 4,483 19 0 0 0 25,900
MyBB 1.8.1 947 6,034 532 1,502 27 2 442 9,486
MyBB 1.8.4 891 5,339 725 150 28 2 607 7,742

Table 2: Number of unique event-handler registrations extracted by jÄk, grouped
by event category

on our own servers. Each web application was installed in a virtual machine. We
reset the state of the virtual machines upon each test.

Results We divide the evaluation results into two parts. First, we investigate the
diversity of events that jÄk has found and measure the coverage of the crawlers.
Second, we assess how well jÄk performs in detecting XSS vulnerabilities as
compared to other scanners.

Coverage — Table 2 shows the number of unique event-handler registrations
extracted by jÄk. The number of events are shown for each web application,
grouped by event category, i.e., device-dependent input events (DDI), device-
independent input events (DII), Change events (Chg), API events, Error events,
and custom errors. These events are extracted via the dynamic analysis of the
client-side JavaScript program of the case studies.

Table 2 shows that web applications can rely on JavaScript events in a mod-
erate way, i.e., Nibbleblog, or more heavily, i.e., Mediawiki. Most of the regis-
tered event handlers are of the device input and UI categories. Just these events
amount to 68% of all events, whereas UI events amount to 22%.

Next we show asses whether jÄk outperforms existing crawlers in terms of
coverage. To this end, we measure the number of unique URL structures each
crawler found. The URL structure is a URL without the query string values.
Table 3 shows the results, excluding all URLs for static and external resources.
Numbers in bold mark the tool that extracted the highest number of URL struc-
tures. The symbol ∗ indicates that the results of W3af and Skipfish do not take
into account invalid URLs that have been found via URL forgery (as explained
later). jÄk extracted the highest number of unique URL structures in 10 applica-
tions. In one application, i.e., Nibbleblog, jÄk, W3af, and Skipfish extracted the
same number of URL structures. In the remaining two web applications, W3af
extracted the highest number of web applications. In the case of Joomla, W3af



Web Apps. jÄk Crawljax W3af Wget Skipfish
WP 21 15 17∗ 34 17∗

Gallery 180 7 35 33 24
phpBB 50 11 44 27 27
Joomla 4 5 7∗ 3 5∗

Tidios w/ WP 166 21 251∗ 218 35∗

NibbleBlog 7 6 7∗ 5 7∗

OwnCloud 8 98 2 54∗ 44 14∗

OwnCloud 4 80 – 58 10 61
Piwigo 277 15 58 13 24
Mediawiki 1,258 24 480 265 776∗

ModX 57 2 21 41 34∗

MyBB 1.8.1 152 22 95 131 126
MyBB 1.8.4 152 12 92 135 128
Total 2502 142 1219 959 1278

Table 3: Coverage of the web applications in terms of unique URL structures,
excluding linked and static resources, e.g., CSS documents, external JS files, and
images. The symbol ∗ indicates the numbers which do not count URL forgery
by W3af and Skipfish.

extracted 3 URL structures more than jÄk, whereas in the case of Tidios, W3af
extracted 251 URLs against 166 of jÄk.

To interpret these results qualitatively, we sought to assess to what extent
the surfaces explored by each tool relate to the one explored by jÄk. A way to
measure this is to analyze the URLs extracted by jÄk and each of the other tools,
and to calculate the complement sets. These two sets will contain the following
URLs. The first set contains URLs that are extracted by jÄk and missed by each
of the other crawlers. The second set contains the URLs that are not discovered
by jÄk but are extracted by the other tool. The number of URLs in each of these
sets is shown in Table 4. When compared with the other tools, on average, jÄk
explored a surface of the web applications which is 86% larger than the one of
the other tools. Then, the amount of surface which jÄk did not explore range
from 0.5% of Crawljax to 22% of Skipfish.

To further understand the potential misses by jÄk, we manually inspected a
random sample of 1030 (15%) of the URLs that are not discovered by jÄk. We
were able to identify eight classes of URLs, as shown in Table 5. URL forgery
refers to URLs which are not present in the web application but are forged by
the crawler. The vast majority of the URLs that jÄk “missed”, i.e., 75% of the
URLs, are URLs that were forged by W3af and Skipfish. Forging means that
these tools implement a crawling strategy which attempts to visit hidden parts
of the web application. Starting from a URL, they systematically submit URLs in
which they remove parts of the path. For example, W3af derives from URLs like
http://foo.com/p1/p2/p3, other URLs, i.e., http://foo.com/p1/p2, http:

//foo.com/p1/, and http://foo.com/. It is important to notice that these
URLs are not valid URLs of the web application. For this reason, we corrected
the results in Table 3 by deducting the percentage of forged URLs. Next, the



Groups Crawljax W3af Wget Skipfish
Surf. discovered only by jÄk +98% +85% +70% +90%
Surf. missed by jÄk -0.5% -18% -20% -22%

Table 4: Unique URLs discovered only by jÄk (+) and missed by jÄk (-).

class static resources include style-sheet documents or external JS files with a
different document extension, e.g., .php. This is an error introduced by our URL
analysis which failed in recognizing these documents as static. The third class of
URLs (5.34%) is the one of unsupported actions such as form submission during
crawling. Then, the fourth class contains URLs that were not extracted because
they belong to a user session different from the one used by jÄk. This may be
solved by using jÄk in parallel with multiple user credentials. The fifth class
contains URLs that are due to bugs both in jÄk and in Skipfish. The sixth class
contains URLs that are generated while crawling. We have two types of these
URLs: URLs with timestamps and URLs generated by, for example, creating
new content in the web application. 1,36% of the URLs, we could not find the
origin of the URL nor the root cause. Finally, 1,26% of the URLs are of W3af
that does not implement a depth-bounded crawling and thus might crawl the
applications deeper than other crawlers.

Detection — Finally, we measure how the improved crawling convergence trans-
lates into the detection of XSS vulnerabilities in the 13 web applications. For
these tests, we had to exclude Wget and Crawljax, as they are pure crawlers and
as such cannot discover vulnerabilities.

jÄk discovered XSS vulnerabilities in three of the five web applications, i.e.,
phpBB, Piwigo, and MyBB 1.8.1. However, jÄk could not find known vulnerabil-
ities in OwnCloud 4 and ModX. Manual analysis revealed that the vulnerability
as described in the security note of OwnCloud 4 is not exploitable. For ModX,
jÄk could not discover the URL. The URL is added in the DOM tree by an
event handler. jÄk correctly fires the events, but the code of the handler is not
executed because it verifies that the target is an inner tag. This shortcoming
is the same that cause to fail the test in the C5 class of Table 1. In a regular
browser, due to the implicit rules for the propagation of events, the user will
click on the inner tag and the outer one will be executed. As a future work, we
plan to reproduce the event propagation as implement by regular browsers.

The other tools detected only known vulnerabilities in MyBB, and had issues
with false positives. Both W3af and Skipfish detected the XSS vulnerability in
MyBB 1.8.1. Furthemore, in Mediawiki W3af reported 49 XSS vulnerabilities
and Skipfish one vulnerability, respectively. However, in both cases, these were
false positives. Finally, Skipfish reported 13 false positives in Gallery. In our
experiments, jÄk did not report any false positive. This is the result of using
dynamic analysis for the detection of XSS attacks: if an attack is successful, the
test payload is executed and visible in the dynamic trace.



URL Origin URLs Fraction
URL Forgery 774 75.15%
Static resources 57 5.53%
Unsupp. action 55 5.34%
User session mgmt. 53 5.15%
Bugs 47 4.56%
New content 17 1.65%
Unknown 14 1.36%
Beyond max depth (W3af) 13 1.26%
Total 1030 100,00%

Table 5: Origin of the URLs that were not discovered by jÄk

6 Related Work

In this section we review works closely related to our paper. We focus on two
areas: analysis of existing web application scanners, and novel ideas to improve
the current state of the art of scanners.

Bau et al. [15] and Doupé et al. [16] presented two independent and comple-
mentary studies on the detection power of web application scanners. Both works
concluded that while web scanners are effective in the detection of reflected XSS
and SQLi, they still poorly perform in the detection of other classes of more so-
phisticated vulnerabilities. According to these works, one of the reason of these
results is the lack of support of client-side technology. Furthermore, Doupé et al.
explored in a limited way the problem of web application coverage focusing on
the capability of scanners to perform multi-step operations. As opposed to these
works, in this paper we mainly focused on the problem of the coverage of web
applications and detailed the shortcomings of four web application scanners.

Recently, there have been new ideas to improve the state of the art of web
application scanner. These works included the support of client-side features and
explored the use of reasoning techniques together with black-box testing. The
most notable of these works are the state-aware-crawler by Doupé et al. [14],
Crawljax by Mesbah et al. [2], AUTHSCAN by Guangdong et al. [17], and
SSOScan by Zhou et al. [18]. State-aware-crawler proposed a model inference
algorithm based on page clustering to improve the detection of higher-order
XSS and SQLi. However, this technique focus mainly on the detection of state-
changing operations and it does not take into account the dynamic features of
client-side programs. Similarly, Crawljax proposed a model inference technique
based on ”user-clickable areas” in order to crawl hidden parts of AJAX-based
web applications. However, Crawljax uses static heuristics that do not satisfac-
torily cover the dynamic interaction points between the user and the UI. As
opposed to Crawljax, jÄk does not rely on these heuristics and uses a technique
which can detect the registration of event handlers via function hooking. Fi-
nally, AUTHSCAN and SSOScan are black-box testing tools that focus on the
Web-based Single Sign-On functionalities integrated in web applications. AUTH-
SCAN extends the classical design verification via model checking with the au-
tomatic extraction of formal specifications from HTTP conversations. SSOScan



is a vulnerability scanner that targets only Facebook SSO integration in third-
party web applications. Neither of the two tools is a web application scanner,
and they do not support crawling web applications. As opposed to jÄk, the focus
of these tools is on improving the detection power of security testing tools. Nev-
ertheless, the proposed testing technique may be integrated into jÄk to detect
other classes of vulnerabilities.

A work closely related to our approach is Artemis [19]. Artemis is a JavaScript
web application testing framework which supports the generation and execution
of test cases to increase the client-side code coverage. Starting from an initial
input (e.g., event), Artemis explores the state space of the web application by
probing the program with new inputs. Inputs are generated and selected by
using different strategies in order to maximize, e.g., code branches or number
of read/write access of object properties. At each step, Artemis resets the state
of the client and server side to a known state and continues the exploration.
From the angle of input generation, Artemis and our approach shares common
points. For example, both approaches explore the client side by firing events
and observing state changes. However, Artemis and our approach differ on the
assumption of the availability of the server side. While Artemis assumes complete
control of the state space of the server side, our approach does not make this
assumption and targets the exploration of a live instance of the server side.

7 Conclusion

This paper presented a novel technique to crawl web applications based on the
dynamic analysis of the client-side JavaScript program. The dynamic analysis
hooks functions of JavaScript APIs to detect the registration of events, the use
of network communication APIs, and find dynamically-generated URLs and user
forms. This is then used by a crawler to perform the next action. The crawler
creates and builds a navigation graph which is used to chose the next action. We
presented a tool jÄk, which implements the presented approach. We assessed
jÄk and four other web-application scanners using 13 web applications. Our
experimental results show that jÄk can explore a surface of the web applications
which is about 86% larger than the other tools.
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