
Implementation-level Analysis of the JavaScript Helios
Voting Client

Michael Backes∗†, Christian Hammer∗, David Pfaff∗, Malte Skoruppa∗
∗ CISPA, Saarland University

† Max Planck Institute for Software Systems, Saarland University
{backes,hammer,pfaff,skoruppa}@cs.uni-saarland.de

ABSTRACT
We perform the first automated security analysis of the actual Java-
Script implementation of the Helios voting client, a state-of-the-art,
web-based, open-audit voting system that is continuously being
deployed for real-life elections. While its concept has been exhaus-
tively analyzed by the security community, we actively analyze
its actual JavaScript implementation. Automatically ascertaining
the security of a large-scale JavaScript implementation comes with
major technical challenges. By creating a sequence of program
transformations, we overcome these challenges, thereby making
the Helios JavaScript client accessible to existing static analysis
techniques. We then automatically analyze the transformed client
using graph slicing, reducing an approximately 7 million node graph
representing the information flow of the client’s implementation to a
handful of potentially harmful flows, each individually consisting of
less than 40 nodes. Our interpretation of this analysis results in the
exposure of two thus far undiscovered vulnerabilities affecting the
live version of Helios: a serious cross-site scripting attack leading to
arbitrary script execution and a browser-dependent execution path
that results in ballots being sent in plaintext. These attacks can be
mitigated with minor adaptations to Helios. Moreover, our program
transformations result in a version of Helios with fewer external
dependencies and, accordingly, a reduced attack surface.

CCS Concepts
•Security and privacy→ Information flow control; Vulnerability
scanners; Web application security;

Keywords
Information flow analysis; JavaScript; remote electronic voting

1. INTRODUCTION
Electronic voting protocols have received tremendous attention

by the scientific community in the last few years. Their appeal and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04 - 08, 2016, Pisa, Italy
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3739-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2851613.2851800

their increased acceptance even for real-life elections are fueled
by their ability to offer efficient, sound tallying while providing
users the convenience of voting remotely. One of the most widely
deployed electronic voting protocols is Helios [9, 10]: a state-of-
the-art, web-based, open-audit voting system that has seen real-life
deployment in a variety of different settings, such as for the election
of a university president [10], student elections [14, 5], as well as
for the election of the IACR committee [3].

From a security perspective, remote electronic voting protocols
such as Helios typically exhibit a highly complex design that uses ad-
vanced cryptographic primitives such as homomorphic encryptions,
mixnets, and zero-knowledge proofs, that involves many interactions
between different parties, and that intends to achieve a wide range of
sophisticated security properties. Consequently, securely designing
such protocols constitutes a highly challenging and intriguing task.
A multitude of approaches have been recently proposed to automati-
cally ascertain central security properties for electronic voting, such
as vote privacy or vote verifiability. In particular the security of the
Helios protocol has been thoroughly investigated and its security
rigorously proven for many of its intended security properties. As
of now, Helios constitutes one of the most widely examined voting
protocols in the scientific literature.

Virtually all existing approaches for conforming the security of
voting protocols focus on identifying conceptual (logical) or al-
gorithmic (cryptographic) attacks against the protocol considered,
i.e., they consider a protocol’s symbolic abstraction or algorithmic
description, and are therefore agnostic to security violations that
arise in the actually deployed implementation. However, history has
shown that even security protocols long deemed and even formally
proven secure can exhibit severe implementation-level vulnerabili-
ties. Particularly illustrative examples are the recently discovered
Heartbleed in the OpenSSL cryptography library, or Apple’s goto
fail in its own SSL/TLS implementation. An implementation-level
analysis is thus of the utmost importance for every security protocol
that should see widespread real-life deployment while intending to
offer strong security requirements. Electronic voting protocols, with
their strong dependency on societal acceptance, clearly cannot af-
ford severe implementation-level vulnerabilities, and thus naturally
call for corresponding analyses.

1.1 Our contribution
We are the first to perform an analysis of the expected security

properties of the Helios voting client at the implementation level.
This goal encompasses several major points.

Security reification through code transformation and static analysis
We provide code transformations and static analysis to track poten-
tially harmful information flows that harm the confidentiality and
integrity properties in a JavaScript implementation. The transforma-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2851613.2851800

tions involve the replacement of specific features, whose presence
makes reliable static analysis impossible. By replacing these fea-
tures with functionally equivalent code, we enable existing static
analysis techniques and are able to faithfully model the information
flow within a complex JavaScript program by a static dependency
graph. By phrasing integrity and privacy properties as an informa-
tion flow problem, we can use graph slicing to significantly reduce
the number of nodes under consideration from roughly 7 million
to a handful of potentially threatening flows, of which two can be
leveraged into real-world exploits. Our approach describes a general
means to enable and conduct a security reification through static
analysis in real-world JavaScript programs.

Vulnerabilities We report the presence of two vulnerabilities in the
JavaScript Helios voting booth client, that, despite years of manual
and conceptual analysis, have not yet been revealed: 1) a cross-site
scripting (XSS) attack resulting in arbitrary script execution; and
2) an undocumented feature, which causes the client to send unen-
crypted plaintext votes without the prior consent of or notification
to the user.

Availability of a hardened client The aforementioned code transfor-
mations yield two independent benefits. First, they make the voting
client amenable to static analysis. Second, they yield an implicitly
hardened version of the Helios voting client with fewer external
dependencies and thus a reduced attack surface. We make this
hardened version publicly and freely available [1]. For the sake of
exposition and reproducibility of the individual steps, this version in-
tentionally does not yet integrate the fixes to the vulnerabilities that
we report on. We stress that while our analysis was performed on
the transformed code, the found vulnerabilities are equally present
in the original code.

1.2 Related work

Conceptual attacks on Helios A multitude of approaches have been
recently proposed to formalize central security properties for elec-
tronic voting (e.g., [11, 18]). The analysis of Helios in particular
has received a tremendous attention from the scientific community.

Several publications investigate privacy of ballots in Helios, and
the notion of vote independence has given rise to considerable de-
bate: Vote independence means that by seeing a voter’s encrypted
ballot, another voter should not be able to cast a meaningfully re-
lated ballot. The authors of [16] show that Helios does not satisfy
vote independence and exploit this fact in order to compromise vote
privacy. They discuss a countermeasure known as ballot weeding,
and show that their revised scheme offers vote privacy in a symbolic
model. The authors of [12] define vote privacy in a computational
model and prove that this revised version of Helios fulfills their
definition, though only under non-standard assumptions. In parallel,
[13] studies pitfalls of the Fiat-Shamir heuristic for non-interactive
zero-knowledge proofs used in Helios, and shows that a stronger
variant of the heuristic leads to ballot independence.

Helios puts an even greater concern on verifiability (both indi-
vidual and universal) than on privacy, and thus, the extent to which
Helios fulfills this expectation has also been thoroughly investigated
in the literature. [25] puts forth a formal definition of verifiability in
a symbolic model and uses it to analyze the Helios protocol. A more
fine-grained model to assess the verifiability of eVoting protocols
such as Helios is presented in [26]. They show that Helios is vul-
nerable to so-called clash attacks, wherein malicious administrators
could surreptitiously replace a voter’s ballot, and discuss counter-
measures. In [13], the authors also show how the aforementioned
pitfalls of the Fiat-Shamir heuristic may be exploited by colluding

election administrators to break universal verifiability in Helios. Fi-
nally, [15] defines the notions of weak and strong verifiability in
a computational model. They provide a generic way to transform
weakly verifiable election schemes into strongly verifiable ones.

Practical attacks on Helios There is only scant work that considers
actual attacks against the implementation of Helios. Instead of
exposing flaws in the implementation of Helios itself, some related
work has demonstrated exploits in incidental components using
Helios as a case study. [19] shows how vulnerabilities in Adobe
Reader can be exploited in order to install a malicious browser
rootkit that subverts the integrity of a user’s vote in Helios. Their
attack does not identify a vulnerability in Helios; it is only used
as a case study. Similarly, [30] highlights logical web application
flaws that arise from using TLS in an insecure manner, and also uses
Helios as a case study in order to show how this can be exploited to
surreptitiously cast votes on behalf of honest voters. Like our work,
[20] focuses on the analysis of the client-side implementation of
Helios. However, their code inspection is done purely by hand, and
the vulnerabilities they find are different from those that we exhibit.

Static analysis of JavaScript During the last decade, there has been
extensive research into information flow violations, which can break
the integrity or confidentiality of programs. Early approaches fo-
cused on type systems [27], but they tend to be excessively complex
and conservative. Jensen et al. model the HTML DOM and Browser
API [23] as an extension of earlier work on type analysis [24].
Richards et al. [29] dispel common myths on the use of eval in a
large-scale study. In turn, [22] shows how eval can, in certain cases,
be safely removed to aid static analysis. Andromeda [31] delivers
demand-driven tracking of potentially vulnerable information flows
in JavaScript.

2. THE HELIOS VOTING SYSTEM
The Helios voting system is available in well-documented open

source form [2], and a public server is running on http://heliosvoting.
org, allowing anyone to create and run their own election. In this
paper we focus on the current version (Helios 3.1) in its latest
revision (f977ea6586) available at the time of this writing.

The server-side code is mostly implemented in Python (with
Django), while the client-side code (which runs in the user’s browser)
is written in HTML and JavaScript. Our analysis focuses exclusively
on the client-side code implementing the voting booth.

2.1 A short review of the Helios protocol
In Helios, any registered user may create a new election. In the

initial setup phase, the user who created the election, considered
as the administrator, can set up the ballot and other election data
and specify a list of eligible voters. A key pair is generated by the
Helios server, or a set of trustees, for each new election.

Once the administrator is ready, they can freeze the election and
move on to the submission phase, in which eligible voters may
submit ballots. On a high level, the submission phase is very simple:
First, a voter requests a specific election from the Helios server,
which sends back the browser voting application, called the voting
booth, as well as the corresponding election data. The voter uses
the voting booth to record and encrypt her answers and to submit
her encrypted ballot to the Helios server. It is only at this point that
the Helios server asks the voter to authenticate herself: By doing
so, the voter confirms her wish to actually cast her ballot. Finally,
the voting server records her encrypted ballot, along with the voter’s
identity (or an alias) on a public bulletin board.

In the tallying phase, an encrypted tally is computed from all
published ballots using homomorphic properties of the encryption

http://heliosvoting.org
http://heliosvoting.org

scheme (see [17, 10]), which is then jointly and verifiably decrypted
by the trustees. This can be publicly audited by anyone.

In Helios 3.x, authentication in the submission phase can leverage
third-party web services such as Google, Facebook or Twitter.

2.2 The Helios voting booth
The most complex element during the submission phase is the

voting booth. Its behavior is depicted in Fig. 1. It guides the voter
through the questions and records her answers. After her choices
have been recorded, the voting booth encrypts the ballot. The voter
may then choose to either submit the encrypted ballot to the server
or to audit the ballot. In the latter case, she may later submit her
ballot after encrypting it with new randomness.

Designed with security in mind, the voting booth is written as a
single-page web application: After initially pre-loading the election
data and page templates, the voting booth makes no further network
requests until the ballot is sealed and submitted to the voting server.
JavaScript functions implement the entire functionality of the voting
booth and take care of updating the rendered HTML user interface
during the interaction with the voter. Our aim is to verify that the
voting booth fulfills the expected security requirements and that
neither its integrity nor its privacy can be compromised. We stress
that the threat model here is not a corrupt voter (who could use
another application in the first place), but rather a (passive or active)
attacker trying to exploit vulnerabilities in the actual voting booth
implementation interacting with a honest voter in order to learn, or
even surreptitiously modify, a voter’s vote. To this end, we analyze
the behavior of the actual voting booth’s implementation using
automated tools in order to find potentially hidden flaws. The code
analysis is complicated by the fact that it depends on a multitude of
complex dependencies and third-party libraries, such as jQuery. We
discuss these challenges in depth in the next section.

3. CHALLENGES IN THE ANALYSIS OF
THE JAVASCRIPT IMPLEMENTATION

3.1 Implementation-level security properties
Existing approaches that verify security properties for Helios

focus on the security protocol on a symbolic or algorithmic level.
Thus, they are agnostic to security violations that happen on the
application layer. The symbolic primitives are too coarse-grained
to capture the minute details of the JavaScript language semantics.
Conversely, note that the client merely implements one part of the
entire protocol. Therefore, our aim is not to prove the entire protocol
secure by formulating some implementation-level properties that
the client must uphold. Rather, we want to identify necessary condi-
tions that the implementation must fulfill so that symbolic security
properties are not violated by the implementation. We phrase these
conditions as information-flow properties: A breach of confiden-
tiality and the associated loss of privacy is perceived as the flow of
secret data, e.g., a vote, without proper sanitization (e.g., encryption)
to a public channel, such as a network request. A breach of integrity
is perceived as the flow of untrusted input to critical data stored on
the client side that can force the client to behave in an unintended
manner. To analyze the security of the implementation w.r.t. such
properties, we leverage static analysis, which derives a semantics-
preserving abstraction of the program, such that its (in-)security
according to a formal model can be automatically inferred.

3.2 JavaScript is highly dynamic
JavaScript uses higher-order functions and closures, extensive

type coercion rules, and a flexible object model where objects can

be changed at runtime by adding or removing fields and methods.
These dynamic and abstract features encumber static analysis. On
top of these language features, ECMAScript consists of 161 func-
tions and objects that need to be modeled. In particular the function
eval and its variants allow dynamic construction of program code
from strings. Reasoning about the behavior of such code requires
a-priori knowledge of the strings that can appear and their analysis is
therefore not amenable to static analysis. Therefore, highly dynamic
features like eval need to be removed or their effects conservatively
approximated. Fortunately, the core Helios client does not make
use of eval. Third party libraries, however, do. We consider the
difficulties arising in this context in Section 3.4.

3.3 JavaScript cannot be separated from the
HTML DOM and browser API

JavaScript programs are usually executed in a rich environment.
Web applications execute in a browser environment that interacts
with the Document Object Model (DOM) representing the page’s
HTML, as well as sophisticated libraries such as jQuery. Unfortu-
nately, some of those interfaces (e.g. DOM) are implemented in
C++, which prevents fully automatic analysis. Typical client-side
programs are thus specified in a combination of scripting, speci-
fication and low-level programming languages, for all of which a
specification is required.

Execution in JavaScript is event-driven; hence the analysis must
model the event system, including dynamic registration of event han-
dlers, event bubbling and capturing (recursive triggering of events in
nested DOM components) and event-specific object properties. Fur-
ther, all event handlers are callback functions, i.e., they are queued
when a specific event triggers. This leads to asynchronous execution,
which results in fragmented code and unstructured execution paths
that static analysis must somehow resolve.

The HTML document structure also interferes when resolving
variable names defined in HTML attributes. If an event handler is
triggered, the scope chain includes all DOM objects in the lookup
path from the HTML element containing the trigger up to the root
of the document. Consider the following example:
<script>var src="foo.png";</script>

The onclick-event handler references the variable src. However, it
is not the variable src previously defined in the script tag, but the
src variable in the img tag. Hence the onclick action will trigger
an alert containing bar.png rather than foo.png. Furthermore,
the HTML API features a number of non-trivial interactions. For
example, setting the onclick property of an HTML element at
runtime causes a string to be interpreted as event handler code.

3.4 Included libraries
To compound the problems above, many applications build on

libraries that alleviate browser incompatibility problems or simplify
common tasks such as HTML DOM navigation and AJAX commu-
nication. Among others, the Helios voting client uses jQuery, Un-
derscore and class.js, which simulates classical object-oriented pro-
gramming paradigms including inheritance. From a static analysis
perspective, these libraries—while convenient for a programmer—
complicate the analysis process severely. By providing their own
abstraction on top of very abstract features such as event handling
and DOM objects, a highly precise modeling of heap structures and
a high degree of context- and flow-sensitivity is required in order to
produce helpful results with a low number of false alarms. jQuery
in particular includes the $ function that has completely different
semantics based on its argument, which can be anything ranging
from an HTML string to a DOM element.

Voting booth API
Dependencies and third-party libraries

Different JavaScript engines: . . .

Initialization

• Displays Loading...
message
• Loads election parame-

ters
• Loads templates

Template: Election

• Displays voting instruc-
tions
• Button: Start

Template:Question

• Displays a question
• Clickable checkboxes
• Button: Previous
• Button: Next
• Button: Proceed

Template: Seal

• Displays filled ballot
• Edit answers
• Print
• Button: Verify
• Button: Submit

Template: Audit

• Displays audit trail
• Select audit info
• Ballot verifier
• Button: Back to voting
• Button: Post

Helios Helios

Helios

jsbn2jsbnbigint.dummyclass sjcl underscore jquery jquery.query

randombigintjquery.jsonjquery.jtemplates elgamal sha1 sha2 helios

VOTING BOOTH

Request

Data

Start

Next / Previous

Prcd

Edit

Send

Post

Verify Back

Figure 1: User interaction and implementation of the voting booth

4. IMPLEMENTATION-LEVEL ANALYSIS
In this paper, we focus exclusively on the client-side code im-

plementing the voting booth. The phases of our analysis reflect
the challenges explained in the previous section. We present code
transformations that resolve the majority of the problems caused by
included libraries (see Section 3.4). We then process the results of
our transformations with WALA to provide a unified program rep-
resentation and a number of analyses tackling problems caused by
the JavaScript and the HTML/Browser components (see Section 3.2
and Section 3.3). Finally, we automatically look for potentially
dangerous paths between manually specified sources and sinks (see
Section 3.1). Our findings as well as the applicability of our findings
to the original code will be discussed in Section 5.

WALA [7] is a Java library originally designed to provide static
analysis capabilities for Java bytecode. It has been used in sev-
eral research projects as well as further analysis tools, such as
Andromeda [31]. Most of the WALA API internally leverages the
WALA IR (intermediate representation) instead of source code. The
IR is general enough to represent and to analyze other languages as
well: Currently there are frontends for Java and JavaScript. Among
other analyses, WALA supports call graph construction and pointer
analysis, interprocedural dataflow analysis and context-sensitive
tabulation-based program slicing [33].

4.1 Code transformations
The implementation of the Helios voting booth heavily relies on

the third-party libraries such as jQuery, Underscore and others.1 Due
to the highly reflective nature of these libraries, it is extremely hard
to perform automated static analysis on the Helios voting booth’s
code. Their size is another problem: The uncompressed version of
jQuery 1.2.2 (as used by Helios) amounts to 100 KB (its compressed
version 60 KB) as compared to about 50 KB for the Helios voting
booth (excluding smaller dependencies). While jQuery and other
libraries make developing Web applications easier, they typically
prevent automated static analysis, as current tools, including WALA,
can only cope with some of the dynamic features that are present in
these libraries, and even for these only in a very limited way (this
is subject to active research as discussed in Section 1.2.) To enable
static analysis, we hence refactored the Helios implementation so
as to use native JavaScript equivalents. These code transformations
yield a client that is independent of the aforementioned libraries. The
changes were canonical and could even be refactored automatically.

In this section, we exemplarily describe some of these code trans-
formations. Our complete modified code is publicly available [1].

1http://jquery.com, http://underscorejs.org

The modified code is functionally identical to the original code, i.e.,
the voting booth works in exactly the same way and any changes
can be applied to the current version of the complete Helios system.

The jQuery library for JavaScript provides facilities for accessing
and updating the DOM, handling events or writing Ajax applications,
in a convenient and portable manner. One of its key benefits is that
it avoids the need for developers to deal with JavaScript DOM API
idiosyncrasies across browsers, and allows them to write concise
and legible code. However, newer standards for the browser, like the
DOM API, CSS and HTML5, provide equivalent functionality for
most of jQuery’s APIs, which yields a straightforward refactoring.

Among the core jQuery functions used by Helios are those for
performing asynchronous HTTP requests. Namely, Helios uses the
.get(), .getJSON() and .post() methods (all of which are
wrapper functions for jQuery’s .ajax()method that sets up a Java-
Script XMLHttpRequest object). These functions are particularly
interesting for our analysis, since they constitute information sinks
that may potentially lead to confidential information being sent over
the network, as discussed later. The following jQuery call performs
an asynchronous HTTP request to url and calls the given success
handler function upon receiving the server’s reply.

$.get(url, function(response) { /* process answer */ });

In pure JavaScript, this functionality is somewhat more boilerplate:

var request = new XMLHttpRequest();
request.open('GET', url, true);
request.onload = function() {
if (request.status>=200 && request.status<400) {
var response = request.responseText;
/* process answer */ }};

request.send();

The code for the .getJSON() and .post() functions is similar.

4.2 Intermediate representation
As noted previously, the intermixing of JavaScript and HTML

is commonplace, but unduly hinders static analysis. In order to
faithfully process all aspects of such programs, WALA integrates
the HTML components into a unified JavaScript model. After con-
version, WALA leverages Rhino [6] to parse the JavaScript program,
creating an intermediate representation (IR). The IR represents a
method’s instructions in a Java bytecode-like, static single assign-
ment (SSA) form that eliminates stack abstraction and instead maps
variables to symbolic registers. As is typical in compilers, the IR
organizes instructions in a control-flow graph.

http://jquery.com
http://underscorejs.org

4.3 System dependency graphs
As a next step, WALA converts the IR to another program repre-

sentation more suited to information flow analysis: system depen-
dency graphs (SDG). SDGs are used to conservatively approximate
all possible information flow within a program. Formally, an SDG
G = (N,E) for a program p is a directed graph where the nodes
in N represent p’s statements and predicates and the edges in E
represent the dependencies between them [21]. The SDG is parti-
tioned into procedure dependence graphs (PDG) that model single
procedures. In a PDG, a node n is control dependent on a node m,
if m’s evaluation controls the execution of n. n is data dependent
on a node m, if n may use a value computed at m. The PDGs are
connected at call sites, consisting of a call node c (i.e., a node con-
taining an invoke or dispatch statement) that is connected with
the entry node e of the called function. Parameter passing and result
returning, as well as side effects of the called function, are modeled
via formal parameter and return nodes and edges. For passed pa-
rameters there exists an appropriate formal node at caller and callee
sites, called PARAM_CALLER and PARAM_CALLEE respectively.
Likewise, there exist RETURN_CALLER and RETURN_CALLEE
nodes for return value passing. The PARAM_CALLER nodes (re-
ferred to as formal-out nodes) are control dependent on the calling
statement c, whereas the PARAM_CALLEE nodes (called formal-in
nodes) are control dependent on the function entry node e. Likewise
for the return nodes. This parameter passing model guarantees that
all inter-procedural effects of a function are propagated via call sites.
A machine-checked proof [32] shows that the SDG is a conservative
approximation to the real data and control flows in a program, i.e.,
it contains all actual flows. For the running example in Fig. 2, the
formal-in and out nodes are constructed as described in the previous
paragraph. For the sake of exposition, we append v1, highlighting
the argument z, to the graph.

4.4 Slicing
Slicing [28] is used to find all nodes in the SDG reachable from

a specific seed node. In the example in Fig. 2, we are interested
in which statements can influence the value passed as a parameter
to the function iszero at a specific call site. We thus compute
a backwards slice containing only nodes reachable by traversing
dependencies backwards, be they control, call or data dependencies.
Starting at v1, the data dependency can be followed backwards
to PARAM_CALLEE, from where it passes out of iszero back
into the calling function to the PARAM_CALLER node, and from
there to the statement a = 3. By also including control depen-
dencies (indirect flow) we can similarly include iszero (from
PARAM_CALLEE), v3 = invoke iszero a (from iszero
and PARAM_CALLER) and foo.

4.5 Information flow analysis
Conventionally, information flow analysis distinguishes between

explicit and implicit flows. Explicit flows correspond to directly
copying secret (high) information to a public (low) variable for
confidentiality, and vice-versa for integrity. Implicit flows appear
when the control flow of the program, i.e., the sequence of statements
that are executed, is dependent on high variables.

Numerically, the full SDG of the Helios client consists of roughly
7 million nodes and is therefore impossible to analyze manually.
Computing appropriate slices w.r.t. a given information flow concern
yields subgraphs of at most 6000 nodes. Only considering paths
between high and low statements leaves us with only a handful of
different paths containing less than 40 nodes each and therefore
suitable for manual inspection.
Confidentiality We state our confidentiality problem as a declassi-

fication problem: Sending high, confidential data over a low, public
channel without declassifying first constitutes a compromise of con-
fidentiality. In the SDG this corresponds to a path from a high
input (e.g., a secret vote) to a low output (e.g., an XMLHttpRequest)
without a declassification mechanism (e.g., encryption). Note that
there is no automatic decision procedure whether a function is an
appropriate means of declassification.

Fig. 3 shows parts of a slice resulting from slicing backwards from
an XMLHttpRequest send. The node dispatch send v50
represents a call to the function send, its argument is stored in
v50. The value v50 is computed from the previous statement
invoke v52 v4. Following the data dependencies backwards,
one eventually crosses from the callee ajax_post into the calling
function request_ballot_encryption. In this function, we
reach the statement v46 = getfield answers. This state-
ment retrieves the highly confidential votes. Since this data depen-
dency path contains no declassification, we have to consider it as
potentially dangerous. Upon manual inspection, we find that none
of the functions constitute an appropriate means of declassification.

request_ballot_encryption

v46 = getfield answers dispatch stringify v46 invoke ajax_post 25

PARAM_CALLER

ajax_post

PARAM_CALLEE

v4

invoke v52 v4 dispatch send v50

Figure 3: Relevant parts of a backwards slice with
XMLHttpRequest.send() as the seed.

Integrity Conversely, integrity is formulated as an endorsment
problem: Public, low input that reaches high-integrity data without
prior endorsment compromises integrity. In terms of information
flow, we can thus phrase this problem as a forward flow from calls
that retrieve low input (e.g., GET parameter values) and eventually
lead to a high variable (e.g., internal data used to display possible
answers or cast a vote) without passing through an endorsement
function (realized by sanitizing these parameters). As with declassi-
fication, there is no automatic way to ascertain that a function is an
appropriate means of endorsement. Hence we again require human
insight to confirm the functions called on a path are sufficient.

5. VULNERABILITIES
Our automatic analysis found two flaws in the client’s code: one

breach of integrity, and one breach of confidentiality. We verified
that these flows can be exploited in practice in the live version of
Helios by successfully deploying corresponding exploits in a mock
election. The breach of integrity results in a browser-independent
vulnerability leading to arbitrary script execution, while the breach
of confidentiality is only evident in a subset of browsers.

var foo = function(){
a = 3;
b = iszero(a);

};

var iszero = function (z){
return z == 0;

};

//foo
a = 3;
v3 = invoke iszero a;
b = v3;

//iszero
v3 = binaryop(eq) v1, 0;
ret v3;

foo

a = 3 v3 = invoke iszero a b = v3

PARAM_CALLER RET_CALLER

iszero

v3 = binop(eq) v1 0 RET_CALLEEPARAM_CALLEE

v1

Control Dependency

Data Dependency

Function Call

Figure 2: Two functions with their SDG and a backwards slice (blue) of v1.

5.1 Arbitrary script execution
The first flaw we discovered is a cross-site scripting (XSS) at-

tack. We notified the authors of Helios of this vulnerability and
they acknowledged that it is a severe problem that they intend to
fix. Cross-site scripting is considered one of the most critical and
most prevalent security vulnerabilities in web applications [4]. XSS
occurs when poorly validated user input sent to the browser is exe-
cuted by the browser’s interpreter, instead of, e.g., being displayed
as text. The execution of this exploit depends on the attacker being
able to deceive the victim into clicking a specially crafted link that
directs her to the Helios server.

Reflected client-side XSS exploit In our case, an XSS vulnerability
arises from a specially crafted GET parameter. The Helios voting
booth is generally loaded via a URL such as

http://heliosvoting.org/booth/vote.html?election_url=
/helios/elections/<UUID>

where <UUID> is an election-specific identifier. The GET param-
eter election_url is processed by the client-side code.2 The
client parses this parameter in order to load election data, election
metadata, and additional entropy from the server:

var election_url = $.query.get('election_url');
...
$.get(election_url, function(resp) {

/* set up election data */ });
$.getJSON(election_url+"/meta", function(resp){

/* set up election metadata */ });
$.get(election_url+"/get-rand", function(resp){

/* add server randomness */ });

With a proper parameter election_url, these requests invoke
the Helios server API to return JSON objects containing data to
initialize the booth. Unfortunately, the parameter election_url
is not sanitized on the client side. Hence an attacker can point it
towards an external resource, e.g., an attacker-controlled server:

http://heliosvoting.org/booth/vote.html?election_url=
http://evil.com/get-bad-data

The server at evil.com is set up to return corrupted JSON strings.

Circumventing the same-origin policy Note that this will not
work if done naively, as the browser’s same-origin policy would
prevent processing the retrieved JSON strings: The requests will be
sent, but the response will be undefined in the JavaScript code.
However, web servers may allow their replies to be processed by
2The parameter is presented in URL-decoded form for readability.

client-side scripts running on other domains using the cross-origin
resource sharing (CORS) mechanism. That is, the attacker can set
up her server so as to attach the following HTTP headers to the
replies containg the corrupted JSON strings:

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: X-Requested-With, Origin,

Content-Type, Accept
Content-Type: application/json

The responses will then be successfully passed to and processed
by the corresponding handler functions. Using this approach, the
attacker can manipulate the election data contained in returned JSON
strings, with severe consequences: The attacker can compromise
the integrity of the vote by intentionally mislabeling the answers
(e.g., switching the displayed order of names) in a vote, deceiving
the user into voting for the wrong person. Likewise, the attacker
can violate vote privacy by modifying the encryption key used to
submit the encrypted ballot. The attack even deceives the ballot
auditing process: The verification link generated by the voting booth
contains the same GET parameter as the URL of the voting booth.
Still, while the attacker can alter JSON object-specific values to her
liking, she is still unable to execute arbitrary code on her own.

Arbitrary script execution The attack can be escalated even fur-
ther in the original client by setting up an external server that sends
JavaScript instead of the expected JSON object. This leads to
the script being loaded and executed by the Helios voting booth
client. This behavior is a consequence of how jQuery evaluates the
$.getJSON function when it is called with an external URL as
its argument: It tries to circumvent the same-origin policy by itself.
Instead of issuing an XMLHttpRequest for the resource, jQuery
creates a <script> tag inside the DOM’s header and sets its src
attribute to the remote URL. Since remote scripts included in this
manner are intentionally exempt from the same-origin policy, this
causes the browser to load and execute the retrieved content. Nor-
mally, $.getJSON would expect to retrieve a JSON object, which
does not hold executable content. By sending a JavaScript instead of
a JSON object from the remote server, the attacker gains the ability
to execute arbitrary code.

5.2 Leaking the vote
Additionally, we found a flaw in a program path that leads to

an unencrypted ballot being openly sent over the network. Specif-
ically, when the voting booth’s DOM is loaded, the Helios client
confirms that the client supports web workers (scripts running in
background threads). Web workers are used in Helios to perform

encryption of a voter’s choice and generation of zero-knowledge
proofs. Surprisingly, if the browser does not support web workers,
Helios simply requests the server to encrypt the ballot, and sends it
the unencrypted ballot:

$.post(BOOTH.election_url + "/encrypt-ballot", {'answers'
: $.toJSON(BOOTH.ballot.answers)}, function(result)
{ /* process encrypted ballot */ });

Clearly, this code was included on purpose, yet this comes as a
complete surprise, as the voting booth does perform a network
request while interacting with the voter, contradicting the premise of
a single-page web application and the claim of the original paper [9].
Sending the plaintext ballot violates all assumptions. It could be
argued that using a secured HTTPS connection, a passive attacker
cannot read the secret ballot; however: This also means that an
additional layer of encryption on top of Helios’ own encryption is
needed to guarantee privacy. This is not mentioned in the original
paper [9], leading one to believe the Helios protocol by itself already
guarantees privacy. Furthermore, the version of Helios downloaded
from the original Github repository contains installation instructions
that lead to the Helios client running over plain HTTP by default.
While it is possible to run the Helios server-side implementation
on top of a TLS terminator, this requires additional knowledge and
expertise. The documentation neither explains the procedure nor
mentions its necessity. Lastly, even when run over HTTPS, the key
pair used for TLS is a different one than the key pair generated by
Helios for each election. In particular, an administrator with access
to the server’s private HTTPS key can compromise vote privacy of
voters who use older browsers—even in an election set up with an
election key pair generated by a set of trustees.

In summary, running the Helios client in browsers that do not sup-
port web workers leads to a clear violation of vote privacy. Browsers
that do no support web workers, yet see a non-trivial deployment
in practice include Internet Explorer 9 and earlier, as well as all
available versions of Opera Mini.3 Depending on the actual statis-
tics used, the combined worldwide percentage of people using these
browsers lies between 12% and 36%.4 A secure way to deal with
these browsers would be to simply disallow them completely and
prompt the voter to select a different browser. At the very least,
this unexpected behavior should be clearly documented and plainly
pointed out to election administrators. Currently, neither is the case.
When we notified the Helios authors of this vulnerability, they stated
that they were not concerned, since in Helios, some inherent trust
is placed in the server anyway. While they acknowledged that the
claim of a “single-page web application” from the first paper is no
longer true, they argued that the alternative of not supporting old
browsers is unacceptable. They also pointed out that, even though
the election server may indeed see a large portion of plaintext ballots
during the election process, there is no single-owner long-term stor-
age of plaintext ballots. In summary, their point of view is that the
need for usability and the support of a wide range of versions of all
major browsers outweighs the threat to voter privacy by a possibly
malicious server administrator.

6. DISCUSSION AND TAKEAWAYS
Although our analysis was performed on a modified version of

the Helios client, the attacks also apply to the original client. We
confirmed these vulnerabilities in an unmodified Helios client. The
converse does not hold in general: We saw in Section 5.1 how an
attack that allowed arbitrary modification of a set of variables could
be amplified to arbitrary script execution in the original client. This
3http://caniuse.com/#feat=webworkers
4http://gs.statcounter.com, http://netmarketshare.com

was possible due to jQuery’s internal behavior, and does not apply to
the transformed code. Hence, our analysis on the transformed code
is mostly useful to uncover previously unknown vulnerabilities, but
not as a constructive proof of security.

The original Helios paper [9] expected auditors to closely investi-
gate the client-side JavaScript code, and that using the jQuery library
would make it easier to understand and analyze the implementation
due to its abstraction layer on top of low-level JavaScript functional-
ities, which makes the code more concise and easier to follow. As
actual auditors of the code, we found that this is not necessarily the
case. From a developer’s perspective, modern browsers are more
compatible than ever: Standardized and well-documented APIs for
DOM traversal and manipulation, event handling or server commu-
nication have been adopted by all major browsers, decreasing the
demand for jQuery [8]. While it might be argued that jQuery eases
support for older web browsers such as Internet Explorer 9 or earlier,
we saw in Section 5.2 that supporting such browsers may induce
additional vulnerabilities jQuery cannot prevent. From an analyst’s
perspective, automated analysis becomes much harder in the pres-
ence of libraries, while manual analysis implies putting blind trust
in the security and behavior of a third-party library.

We conclude that a voting booth that does not rely on jQuery
is easier to inspect and trust. Most of the functionality provided
by jQuery can be implemented in native JavaScript code that runs
in all modern browsers, removing a highly complex library. The
same applies for the Underscore library and the implementation of
class inheritance in JavaScript. This also significantly reduced the
program size: With all uncompressed libraries included, the original
version of the Helios client code amounts to almost 500 KB and
over 9000 LOC in total. Without these libraries, the client has less
than 250 KB and under 4000 LOC. Keeping dependencies low is
a good idea both for security reasons and conciseness of the entire
codebase. Note that the code transformations that we implemented
to simulate the functionality of third-party libraries used by Helios
can easily be exported into an external lightweight library. This
allows our analysis to be easily reproduced in future versions of
Helios. We note that at the time of publication of the Helios paper
at USENIX 2008, compatibility between browsers was a greater
issue and that these libraries made a lot more sense. Due to the
rapid development of browsers, performance of modern JavaScript
engines and the availability of standardized, cross-platform Java-
Script APIs, the client codebase could be drastically reduced, easing
code review processes and increasing trust in its implementation.

Finally, we point out that the vulnerabilities that we found are eas-
ily fixed. The confidentiality problem (Section 5.2) is a purposefully
built (though questionable) feature that can be removed. For the
integrity problem (Section 5.1), it suffices to sanitize the parameter
obtained from the URL query string. We stress the fact that although
these attacks are simple, no manual code review has unveiled them
so far, which highlights the benefits of an automated analysis. In
fact, a very similar bug had already been reported,5 yet has not led
to the discovery of the XSS vulnerability described in this paper.

7. CONCLUSION
We performed the first implementation-level analysis of the He-

lios JavaScript voting client—one of the most widely deployed and
analyzed remote electronic voting protocols—and showed how to
overcome the intricate technical challenges associated with analyz-
ing a real-world JavaScript web application. By faithfully modeling
and subsequently reducing a 7 million node dependency graph to a
handful of potentially harmful information flows, we discovered two

5https://github.com/benadida/helios-server/issues/41

http://caniuse.com/#feat=webworkers
http://gs.statcounter.com
http://netmarketshare.com
https://github.com/benadida/helios-server/issues/41

new, heretofore unknown, vulnerabilities: a major XSS vulnerability
that was escalated to arbitrary script execution, and a minor flaw
that led to leaking the plaintext ballot.

Our methodology addressed the gap between real-world and stati-
cally analyzable code, and we expect approaches in the same vein
can be applied in a variety of related settings to find vulnerabilities in
client implementations that were overlooked during manual audits.

Acknowledgments
We thank the anonymous reviewers for their comments. This work
was supported by the German Ministry for Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy
and Accountability (CISPA) and the initiative for excellence of the
German federal government.

8. REFERENCES
[1] Hardened Helios Javascript client. https://infsec.cs.

uni-saarland.de/~skoruppa/sac2016/heliosbooth_sac.zip
[2] Helios Github. https://github.com/benadida/helios-server.
[3] Should the IACR use e-voting for its elections?

http://iacr.org/elections/eVoting/.
[4] The open web application security project. https://owasp.org.
[5] Princeton Helios voting. https://princeton.heliosvoting.org/.
[6] Rhino. https://developer.mozilla.org/en/docs/Rhino.
[7] T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net.
[8] You might not need jQuery.

http://youmightnotneedjquery.com.
[9] B. Adida. Helios: Web-based open-audit voting. In Proc. 17th

USENIX Security Symposium, pages 335–348. USENIX
Association, 2008.

[10] B. Adida, O. de Marneffe, O. Pereira, and J. Quisquater.
Electing a university president using open-audit voting:
Analysis of real-world use of Helios. In Electronic Voting
Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’09. USENIX Association, 2009.

[11] M. Backes, C. Hritcu, and M. Maffei. Automated verification
of remote electronic voting protocols in the applied
pi-calculus. In Proc. 21st IEEE Computer Security
Foundations Symposium, CSF 2008, pages 195–209. IEEE
Computer Society, 2008.

[12] D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and
B. Warinschi. Adapting Helios for provable ballot privacy. In
Proc. 16th European Symposium on Research in Computer
Security, pages 335–354. Springer, 2011.

[13] D. Bernhard, O. Pereira, and B. Warinschi. How not to prove
yourself: Pitfalls of the fiat-shamir heuristic and applications
to Helios. In Proc. 18th International Conference on the
Theory and Application of Cryptology and Information
Security, ASIACRYPT 2012, pages 626–643. Springer, 2012.

[14] P. Bulens, D. Giry, and O. Pereira. Running mixnet-based
elections with Helios. In Electronic Voting Technology
Workshop / Workshop on Trustworthy Elections, EVT/WOTE
’11. USENIX Association, 2011.

[15] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène.
Election verifiability for Helios under weaker trust
assumptions. In Proc. 19th European Symposium on Research
in Computer Security, pages 327–344. Springer, 2014.

[16] V. Cortier and B. Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. In Proc. 24th IEEE Computer
Security Foundations Symposium, CSF 2011, pages 297–311.
IEEE Computer Society, 2011.

[17] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In Proc.
International Conference on the Theory and Application of
Cryptographic Techniques, pages 103–118. Springer, 1997.

[18] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer
Security, 17(4):435–487, 2009.

[19] S. Estehghari and Y. Desmedt. Exploiting the client
vulnerabilities in internet e-voting systems: Hacking Helios
2.0 as an example. In Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, EVT/WOTE ’10.
USENIX Association, 2010.

[20] M. Heiderich, T. Frosch, M. Niemietz, and J. Schwenk. The
bug that made me president a browser- and web-security case
study on Helios voting. In E-Voting and Identity - Third
International Conference, pages 89–103. Springer, 2011.

[21] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(1):26–60, 1990.

[22] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the
eval that men do. In International Symposium on Software
Testing and Analysis, ISSTA 2012, pages 34–44. ACM, 2012.

[23] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML
DOM and browser API in static analysis of JavaScript web
applications. In Proc. 8th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 59–69. ACM, 2011.

[24] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In Static Analysis, pages 238–255. Springer, 2009.

[25] S. Kremer, M. Ryan, and B. Smyth. Election verifiability in
electronic voting protocols. In Proc. 15th European
Symposium on Research in Computer Security, ESORICS
2010, pages 389–404. Springer, 2010.

[26] R. Küsters, T. Truderung, and A. Vogt. Clash attacks on the
verifiability of e-voting systems. In IEEE Symposium on
Security and Privacy, SP 2012, pages 395–409. IEEE
Computer Society, 2012.

[27] A. C. Myers. jFlow: Practical mostly-static information flow
control. In Proc. 26th ACM Symposium on Principles of
Programming Languages, pages 228–241. ACM, 1999.

[28] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing, volume 19. ACM, 1994.

[29] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that
men do - A large-scale study of the use of eval in JavaScript
applications. In 25th European Conference on Object
Oriented Programming, pages 52–78. Springer, 2011.

[30] B. Smyth and A. Pironti. Truncating TLS connections to
violate beliefs in web applications. In 7th USENIX Workshop
on Offensive Technologies. USENIX Association, 2013.

[31] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri.
Andromeda: Accurate and scalable security analysis of web
applications. In Proc. FASE 2013, pages 210–225. Springer,
2013.

[32] D. Wasserrab and D. Lohner. Proving information flow
noninterference by reusing a machine-checked correctness
proof for slicing. In 6th International Verification Workshop,
VERIFY 2010, pages 141–155, 2010.

[33] M. D. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstraction
method. 1979.

https://infsec.cs.uni-saarland.de/~skoruppa/sac2016/heliosbooth_sac.zip
https://infsec.cs.uni-saarland.de/~skoruppa/sac2016/heliosbooth_sac.zip
https://github.com/benadida/helios-server
http://iacr.org/elections/eVoting/
https://owasp.org
https://princeton.heliosvoting.org/
https://developer.mozilla.org/en/docs/Rhino
http://wala.sf.net
http://youmightnotneedjquery.com

	Introduction
	Our contribution
	Related work

	The Helios voting system
	A short review of the Helios protocol
	The Helios voting booth

	Challenges in the analysis of the JavaScript implementation
	Implementation-level security properties
	JavaScript is highly dynamic
	JavaScript cannot be separated from the HTML DOM and browser API
	Included libraries

	Implementation-level analysis
	Code transformations
	Intermediate representation
	System dependency graphs
	Slicing
	Information flow analysis

	Vulnerabilities
	Arbitrary script execution
	Leaking the vote

	Discussion and takeaways
	Conclusion
	Acknowledgments
	References

