
FairTest: Discovering Unwarranted Associations in Data-Driven Applications

Florian Tramèr1, Vaggelis Atlidakis2, Roxana Geambasu2, Daniel Hsu2,
Jean-Pierre Hubaux3, Mathias Humbert4, Ari Juels5, Huang Lin3

1Stanford, 2Columbia University, 3EPFL, 4Saarland University, 5Cornell Tech, Jacobs Institute

Abstract—In a world where traditional notions of privacy are
increasingly challenged by the myriad companies that collect
and analyze our data, it is important that decision-making
entities are held accountable for unfair treatments arising from
irresponsible data usage. Unfortunately, a lack of appropriate
methodologies and tools means that even identifying unfair or
discriminatory effects can be a challenge in practice.

We introduce the unwarranted associations (UA) framework,
a principled methodology for the discovery of unfair, discrimi-
natory, or offensive user treatment in data-driven applications.
The UA framework unifies and rationalizes a number of prior
attempts at formalizing algorithmic fairness. It uniquely com-
bines multiple investigative primitives and fairness metrics with
broad applicability, granular exploration of unfair treatment
in user subgroups, and incorporation of natural notions of
utility that may account for observed disparities.

We instantiate the UA framework in FairTest, the first
comprehensive tool that helps developers check data-driven
applications for unfair user treatment. It enables scalable and
statistically rigorous investigation of associations between ap-
plication outcomes (such as prices or premiums) and sensitive
user attributes (such as race or gender). Furthermore, FairTest
provides debugging capabilities that let programmers rule out
potential confounders for observed unfair effects.

We report on use of FairTest to investigate and in some
cases address disparate impact, offensive labeling, and uneven
rates of algorithmic error in four data-driven applications.
As examples, our results reveal subtle biases against older
populations in the distribution of error in a predictive health
application and offensive racial labeling in an image tagger.

1. Introduction

Today’s applications collect and mine vast quantities
of personal information. Such data can boost applications’
utility by personalizing content and recommendations, in-
crease business revenue via targeted product placement, and
improve a wide range of socially beneficial services, such
as healthcare, disaster response, and crime prevention.

The collection and use of such data raise two important
challenges. First, massive data collection is perceived by
many as a major threat to traditional notions of individual
privacy. Second, the use of personal data for algorithmic

Work done while the first author was at EPFL.

decision-making can have unintended and harmful conse-
quences, such as unfair or discriminatory treatment of users.

In this paper, we deal with the latter challenge. Despite
the personal and societal benefits of today’s data-driven
world, we argue that companies that collect and use our
data have a responsibility to ensure equitable user treatment.
Indeed, European and U.S. regulators, as well as various
policy and legal scholars, have recently called for increased
algorithmic accountability, and in particular for decision-
making tools to be audited and “tested for fairness” [1], [2].

There have been many recent reports of unfair or
discriminatory effects in data-driven applications, mostly
qualified as unintended consequences of data heuristics or
overlooked bugs. For example, Google’s image tagger was
found to associate racially offensive labels with images
of black people [3]; the developers called the situation a
bug and promised to remedy it as soon as possible. In
another case [4], Wall Street Journal investigators showed
that Staples’ online pricing algorithm discriminated against
lower-income people. They referred to the situation as an
“unintended consequence” of Staples’s seemingly rational
decision to adjust online prices based on user proximity to
competitors’ stores. This led to higher prices for low-income
customers, who generally live farther from these stores.

Staples’ intentions aside, it is evidently difficult for
programmers to foresee all the subtle implications and risks
of data-driven heuristics. Moreover, these risks will only
increase as data is passed through increasingly complex
machine learning (ML) algorithms whose associations and
inferences may be impossible to anticipate.

We argue that such algorithmic biases are new kinds
of bugs, specific to modern, data-driven applications, that
programmers should proactively check for, debug, and fix
with the same rigor as they apply to other security and
privacy bugs. Such bugs can offend and even harm users, and
cause programmers and businesses embarrassment, mistrust,
and potentially loss of revenue. They may also be symptoms
of a malfunction of a data-driven algorithm, such as a ML
algorithm exhibiting poor accuracy for minority groups that
are underrepresented in its training set [5].

We refer to such bugs generically as unwarranted as-
sociations. Understanding and identifying unwarranted as-
sociations is an important step towards holding automated
decision-making entities accountable for unfair practices,
thus also providing incentive for the adoption of corrective
measures [1], [2], [6], [7].
The Unwarranted Associations Framework. In order to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249325231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reason about this new class of bugs, and propose prelim-
inary means to fixing them, we first need an appropriate
definitional framework in which to express them.

Substantial prior work exists on algorithmic fairness [8]–
[20]. The general approach is to characterize as “fairness
bugs” any sufficiently strong statistical dependency between
an algorithm’s outputs (e.g., prices or labels) and protected
user groups (e.g., those defined by race or gender). While the
overall approach is sound, and partially underlies our own
definitional framework, we find previously proposed defini-
tions and metrics for fairness to be systematically lacking
in at least one dimension of interest: (1) Applicability to
a broad range of settings, applications or data types, with
rigorous statistical assessments; (2) Efficient and scalable
assessment of disparate effects on a granular level, such as
to discover biases affecting specific user subpopulations; and
(3) Inclusion of natural explanatory factors (e.g., application
or user “utility”) that account for apparent unfair effects.

To unify and rationalize the substantial list of prior work,
and extend it to broader settings, we introduce the unwar-
ranted associations (UA) framework. Informally, we define
an unwarranted association, also called an association bug,
as any strong association between the outputs of an algo-
rithm and features defining a protected user group, where
the association arises in a meaningful subset of users and
has no explanatory factors. (We give more details below.)

The UA framework proposes a principled methodology
for testing for—and possibly debugging—unwarranted as-
sociations in a series of five steps: (1) Data collection,
and identification of user features and algorithmic outputs
of interest; (2) Integration of explanatory factors, typically
special user or application requirements that justify osten-
sible unwarranted associations; (3) Selection of appropriate
statistical metrics for assessing the strength of unfair asso-
ciations; (4) Testing for association bugs over semantically
meaningful user subpopulations, while ensuring statistical
validity and interpretability of results; and finally (5) All or
part of steps 1-4 may be repeated for debugging purposes,
e.g., through the addition of explanatory factors.

The UA framework specifically addresses three pressing
needs noted by Kroll et al. in their recent survey article on
accountable algorithms [2]: (1) “Expanding the repertoire of
definitions of group fairness that can be usefully applied in
practice”; (2) “providing better exploratory and explanatory
tools for comparing different notions of fairness” and (3)
enabling “system designers to have a set of rules, standards,
or best practices that explain what notions of fairness are
best used in specific real-world applications.”
The FairTest Testing Toolkit. We instantiate our UA frame-
work in FairTest, the first system that helps developers test
for and to some extent debug unwarranted associations in
data-driven applications. Designed for ease of use, FairTest
aggregates significant unwarranted associations in an easily
interpretable bug report, filtered and ranked by association
strength, while accounting for known explanatory factors.

FairTest integrates a set of carefully chosen metrics, each
suitable for testing for associations in particular applications
and data types. FairTest further offers debugging primitives

that let a developer rule out potential confounders for ob-
served unfair effects. Our experience with four data-driven
applications suggests that FairTest is effective at revealing
and diagnosing subtle association bugs, such as skewed error
against older patients in a predictive healthcare system and
offensive racial labeling in an image tagger.

To efficiently identify semantically meaningful subpopu-
lations affected by association bugs (step 4 in the UA frame-
work), FairTest uses a novel heuristic we call association-
guided tree construction. Inspired by decision-tree classi-
fiers, our algorithm recursively splits the user space into
smaller subsets so as to maximize some metric of asso-
ciation between algorithm outputs and protected user at-
tributes. Each step yields subpopulations of decreasing size
and increasingly strong disparate effects. We experimentally
show that our tree-based algorithm finds highly affected
subpopulations by searching through up to 8 times fewer
candidates than previous “unguided” approaches [9]–[11].
Contributions. Our work offers the following contributions:
(1) The UA framework, and its principled methodology

for discovering and analyzing association bugs in data-
driven applications. Our framework uniquely combines:
Multiple primitives and metrics with broad applicability,
explanatory factors, and fine-grained testing over user
subpopulations, with rigorous statistical assessments,
even for multiple adaptively chosen experiments.

(2) The association-guided tree construction algorithm, for
efficiently finding meaningful and interpretable user sub-
sets strongly affected by algorithmic bias.

(3) The design, implementation, and evaluation of FairTest,
a system that instantiates the UA framework, and the first
testing and debugging tool for unwarranted associations.
The source code and datasets used in our experiments
are available at https://github.com/columbia/fairtest.

(4) Thorough experimentation with FairTest across four
data-driven applications, revealing the widespread oc-
currence of association bugs, as well as FairTest’s effec-
tiveness in detecting them.

2. Preliminaries

Developers routinely test and debug their programs for
functionality, security, and privacy bugs. Many supporting
tools exist exist for these purposes. Unfortunately, unwar-
ranted associations constitute a newly emerging class of
bugs in modern, data-driven applications, and no good test-
ing tools for them currently exist. Our aim is to demonstrate
the importance of proactively testing for unwarranted associ-
ations in data-driven applications, and to provide appropriate
definitional foundations and tools for investigating them.

2.1. Motivating Examples
We present three examples that underscore the diverse

contexts in which unwarranted associations can arise, and
illustrate the testing capabilities needed to detect them:
• Google Photos. Google’s recently released Photos ap-

plication includes an ML-based image tagging sys-

2

https://github.com/columbia/fairtest

tem. Users found that Photos produced offensive labels,
tagging black people in photos as “gorillas”. Google
promptly apologized for the bug, saying that “This is
100% not OK,” and promised to fix it [3].

• Staples’ differential pricing scheme. The office retailer
Staples implemented a seemingly rational differential
pricing scheme for online purchases: users located
within about 20 miles of a rival store (e.g., Office
Depot) were often offered discounted prices. The Wall
Street Journal (WSJ) found that the pricing scheme had
a negative disparate impact on low-income customers,
with results varying widely between states. WSJ called
the situation an “unintended side-effect” [4].

• Healthcare prediction. Machine learning algorithms may
tend to favor (i.e., provide higher prediction accuracy
to) statistically dominant groups, at the expense of var-
ious minority groups. Indeed, a classifier may exhibit
high overall accuracy, while performing poorly for cer-
tain demographics. Disparity in classification accuracy
among groups has a high potential for unfair treatment
in automated decision-making pipelines [5].

To illustrate this issue, we used real-world data and
a winning approach from the Heritage Health Competi-
tion [21] to build a model using past healthcare claims
to predict a user’s number of hospital visits in a year.
Using FairTest, we found that while the model has high
accuracy overall, its errors are unevenly concentrated on
elderly users, especially in subpopulations with certain
pre-existing conditions. An insurance company that uses
this algorithm to tune insurance premiums might invol-
untarily discriminate against these elderly patients.
These examples show the wide variety of unwarranted

associations, and the importance of proactively testing for
and remedying them before they can harm users. These
settings also illustrate specific, significant advances needed
to address such concerns. Google’s Photos case shows that
unwarranted associations can be difficult to anticipate, for
algorithms with large output spaces, and therefore that we
need sound methodologies and tools for Discovery of such
bugs. Staples’ mishap illustrates the need, given a suspected
discriminatory effect, for methods that enable rigorous Test-
ing of its presence, extent, and impact, across different
meaningful user subpopulations. Finally, the healthcare pre-
diction example shows that rather than yielding outcomes
that are discriminatory in their content, an application can
provide disparate levels of utility to certain subpopulations,
such as uneven error rates [5]. This scenario highlights the
necessity to account for differences in the utility perceived
by users, when assessing unwarranted associations in algo-
rithmic decision making. In particular, the healthcare exam-
ple calls for principled Error Profiling of ML algorithms.

2.2. Candidate Approaches and Related Work

A number of intuitive approaches may appear to allow
discovery or prevention of association bugs. We review
potential solutions and highlight some common limitations.

Information Removal and Tracking. It is well known that
explicit omission of protected user attributes (e.g., gender,
race) from an application’s inputs is insufficient to avoid
discrimination along these axes. Indeed, subtle associations
between protected attributes and other program inputs (e.g.,
location) may result in indirect biases. For example, Staples’
algorithm did not explicitly ingest information about its cus-
tomers’ incomes; yet location surfaced as an unanticipated
proxy for this sensitive information. For the same reason,
traditional information-flow tracking [22] is also insufficient
to detect proxy-based discriminatory effects.
Algorithmic Fairness. The literature on algorithmic fair-
ness has proposed valuable techniques for both prevent-
ing and detecting unfairness in data-driven applications.
However, our review of them reveals a fragmented set of
definitions and concepts lacking unifying definitional foun-
dations, and little work on development and evaluation of
usable tools for data-driven programmers. We have carefully
studied 13 representative works on algorithmic fairness: [8]–
[20]. We observe four deficiencies in the field’s current state:
• No generic, broadly-applicable criteria or metrics:

The range of fairness criteria proposed in the literature is
large and fragmented. Most works [9]–[17] use ratio and
difference metrics, introduced by Pedreschi et al. [8]. Other
criteria include a-protection [9], [10], [16], e-fairness [17],
statistical parity [19], [20] and mutual information [18].
All of these criteria measure some form of association of
program outputs (e.g., prices) on protected user attributes
(e.g., race, gender). Our review suggests that each of these
metrics is relevant to specific situations and data types, yet
none is universally applicable. Proposed mechanisms typi-
cally apply only to specific chosen metrics, and thus cover a
limited range of cases. For instance, most prior works only
consider binary protected features and outputs [8]–[17].

Our UA framework unifies this fragmented landscape,
by proposing a principled mapping from scenarios and data
types of interest to appropriate statistical metrics.
• Limited consideration of fine-grained discrimination

contexts: Most prior works [12]–[15], [17], [18] consider
algorithmic fairness solely at full user population level. Yet,
effects in a population may differ from, and even contra-
dict, those exhibited in smaller subsets, an effect known as
Simpson’s paradox [23]. The 1973 Berkeley admissions [24]
are a famous example: admission rates seemed to disfavor
women, yet individual departments showed either no bias
or a reverse bias. Some works [9]–[11] recognized the need
to proactively search for biases in user subsets, but do so
through exhaustive enumeration of meaningful population
subsets, leading to a number of contexts that is exponential
in the feature space [9], [10] or linear in the user space [11].

Fine-grained bias discovery is a core component of the
UA framework, and we propose a novel algorithm, called
association-guided tree construction, to efficiently search for
user subpopulations exhibiting strong unfair effects.
• Disregard for utility and plausible explanations for

observed biases: Biases observed in a population may dis-
appear when accounting for specific differences between

3

groups of individuals. In many situations, apparent discrim-
ination can be explained by inherent differences in utility,
such as naturally opposing inclinations between protected
groups, or fundamental application requirements that favor
certain user demographics. Some prior works do account
for genuine application requirements [9]–[11], [15], [19].
Yet all without exception explicitly define fairness as a
difference in outcome proportions between protected groups,
thus rejecting the possibility that users may receive varying
levels of utility from the same algorithmic outcomes.

For instance, when profiling the error of an ML al-
gorithm (one of our motivating examples), it is implicitly
understood that an algorithm can be unfair, even if it pro-
vides all of its users with the same outcome, if this outcome
happens to be the “correct” one for only a fraction of them.
• Limited experimentation: Prior works describe limited

experimental results, usually over two or fewer datasets [9],
[10], [12]–[16], [18], [19], and omit system design issues
such as scalability and usability. We believe that extensive
experience with many applications and datasets is crucial for
developing a robust and flexible system, such as FairTest,
that can address real-world algorithmic fairness issues.
Web Transparency. Our work also relates to the field of
web transparency [7], [25]–[32]. While some works touch
on discrimination and fairness (e.g., [7], [26], [27], [30]),
their setting is different: These works rely on controlled,
randomized experiments that probe a service with different
inputs (generally fake user profiles) and observe the effects
on outputs, so as to quantify Web services’ use of personal
data to target, personalize, and tune prices. Detection of
unwarranted associations, as in FairTest, requires making
inferences from application behavior on real user profiles,
which may contain attribute correlations that do not manifest
in fabricated user profiles. For instance, a controlled ex-
periment of Staples’ algorithm (i.e., with fabricated profiles
of low-income and high-income users) would not uncover
associations between prices and location, unless correlations
between location and income are explicitly accounted for.
Debugging of Machine Learning Applications. A number
of methods exist in ML to understand data features and
modeling errors [33]–[36]. These mechanisms are insuffi-
cient to identify and investigate unwarranted associations:
It remains a challenge to systematically inspect the large
number of combinations of features that may define mean-
ingful subpopulations. Existing tools for deriving subpopu-
lations (e.g., clustering algorithms [35]) are not guided by
measures that define discriminatory effects, and may hence
miss important effects.

2.3. Goals and Assumptions
Our Goals. In defining unwarranted associations and the
UA framework (see §3), our goal is not only to unify and
rationalize the various definitions and metrics introduced in
prior works, but also to extend algorithmic accountability
and fairness to a broader range of applications. For instance,
by including the Discovery and Error Profiling primitives,
consideration of utility, and support for adaptive debug-

ging, we aim to cover scenarios that have received little
attention in the literature. In designing FairTest, our goal
is to instantiate our proposed methodology in an efficient,
broadly applicable, and easy-to-use system. FairTest should
help developers test for—and to some extent debug—the
types of bugs or unintended effects motivated in §2.1.
Assumptions and Limitations. FairTest is intended for use
by honest developers, willing to find unwarranted associa-
tions in their applications, e.g., for accountability purposes.
We do not consider detection of unfair effects in applications
that intentionally seek to conceal them.

When debugging uncovered association bugs, we restrict
ourselves to the identification of confounding factors that
might explain (and maybe justify) a bug’s presence (e.g., in
the Berkeley admissions [24], the department to which a
person applied to was a confounder). While this is valuable,
confounders are not the only possible “explanation” for
association bugs. Other potential causes, such as insufficient
training data for an ML algorithm, are out of scope. While
our framework and FairTest offer methodologies and tools
for association bug detection and to some extent debug-
ging, remediation is not explicitly covered. In practice, with
FairTest—as with other testing tools—fixes often become
apparent once a developer understands a bug. In §5.3 we
show cases where debugging yields clear remediation paths.

A key assumption in our framework is that a developer
has at her disposal a set of protected attributes (e.g., gender
or race) for her users. In some cases, this information may
be available from user profiles. Alternatively, public datasets
(e.g., census data) can be leveraged to test for unwarranted
associations on attributes that a developer lacks (see §4.1).
Finally, one could imagine a deployment where a trusted
auditor (e.g., the EFF) collects protected attributes from a
user population and runs FairTest on developers’ behalf.

3. The UA Framework

We now give a more detailed definition of unwarranted
associations, inspired by legal and statistical practices. We
then define a generic methodology for the discovery of such
bugs in data-driven applications, and show how the inves-
tigative primitives motivated in §2.1 fit into this framework.

3.1. Unwarranted Associations
Unwarranted associations are, as noted above, a new

type of bug that encompasses a broad class of unfair effects
of data-driven applications. To be able to test for such a bug,
we need to define it. In doing so, our goal is not to give
a new mathematical specification of algorithmic discrimina-
tion; many characterizations are possible and useful, as we
show. Instead, we propose a definition flexible enough to
encompass and extend a number of existing definitions and
metrics, yet underpin a principled framework for identifying
and ultimately resolving unwarranted associations.

We define an unwarranted association as any statisti-
cally significant association, in a semantically meaningful
user subpopulation, between a protected attribute and an

4

algorithmic output, where the association has no accom-
panying explanatory factor.

This definition is broadly applicable, and rooted in legal
discrimination practice. For example, in U.S. law, a ratio of
4/5 for hiring rates of two groups is generally considered
discriminatory, but lower effects may qualify if statistically
significant (and higher effects may be ignored if statistically
insignificant) [37]. Furthermore, the notion of explanatory
factors reflects, e.g., the legal notion of business necessity,
which stipulates that differential treatment of two groups
may be acceptable if that difference can be shown to arise
as a consequence of fundamental business needs. Whether
factors that account for observed effects are deemed as
acceptable or not remains foremost a matter of context and
policy, which we do not attempt to objectify here.

Statistical association is a broad notion: it encompasses
any relationship between two measured quantities that ren-
ders them statistically dependent [38]. This captures direct
(causal) dependencies, indirect dependencies via proxies,
and relationships between any types of variables. For each
variable type, there are specific metrics known in the statis-
tics literature that can be applied to measure the degree of
dependency. For each metric, there are also known statistical
tests to quantify the statistical significance of an association.

In the following, we propose a principled methodology
for the discovery and analysis of association bugs, which
formally specifies the various components that make up
the above definition (i.e., protected features and outputs,
statistical associations, user subsets, explanatory factors).

3.2. The Methodology
Our methodology consists of five generic steps for dis-

covering and investigating unwarranted associations. We
detail these steps below, and highlight design considerations
for the FairTest system that implements this methodology.
1) Data Collection and Pre-Processing. We consider ap-
plications that take inputs on users, such as location or age,
and return user-specific outputs. To check an application for
unwarranted associations, one begins by collecting a dataset
containing attributes from application users, along with the
outputs (or some derived quantity) for those users.

The output to be tested for associations is denoted O.
The choice of O may reflect notions of user utility, a point
we expand on below. To ensure broad applicability, we
require that our methodology and FairTest remain agnostic
to the semantics of the quantity O to be investigated. Fol-
lowing [8]–[10], we consider three types of user attributes:
(1) Protected attributes, S, are discrimination-sensitive fea-

tures (e.g., race or gender) on which to look for associ-
ations with O. What constitutes a protected attribute is
foremost a matter of context, policy and law [37].

(2) Contextual attributes, X , are dimensions along which
the user population can be split into semantically mean-
ingful subpopulations (e.g., location, profession, etc.), in
which to search for associations O and S. These include
user attributes that are knowingly used in an application
and may also include protected attributes.

Metric Description When to Use
Binary Ratio
& Difference
[8]–[17]

compare probability
of an output for
groups

binary S,O; of-
ten for Testing

Mutual
Information
(MI) [18]

dependence measure
for discrete variables

categorical S,O;
often for Testing

Pearson
Correlation
(CORR)

linear dependence
measure for scalar
variables

scalar S,O; often
for Error Profil-
ing

Regression
for labeled outputs,
measure each label’s
association

high dimensional
O; always for
Discovery

TABLE 1. Association Metrics for the UA Framework.

(3) Explanatory attributes, E, are user properties on which
it is deemed acceptable to differentiate, even if that
leads to apparent discrimination on protected attributes.
Explanatory attributes play a critical role in expressing
fundamental application requirements and in the debug-
ging of previously found association bugs.
The distinction between protected, contextual and ex-

planatory attributes ultimately depends on the social norms,
policies, or legal guidelines governing the application at
hand. For instance, a genuine explanatory attribute in one
setting may not be acceptable in another. Therefore, the
UA framework makes no attempts at objectifying how this
distinction should be made. Rather, our aim is to propose
principled techniques for analyzing associations, given an
established categorization of available user attributes.

2) Integration of Explanatory Factors. Associations be-
tween protected features and application outputs may not
always be indications of a bug, but rather natural conse-
quences of utility requirements. As noted above, the outputs
of interest O can (and should) be chosen so as to reflect the
utility perceived by application users. On the one hand, all
users may perceive similar utility from receiving a discount
price or a positive hiring decision. On the other, a health
prediction may only be useful to a user if it is accurate.

Some associations may also be deemed acceptable or
necessary if they are induced by fundamental application
requirements, e.g., a hiring decision based on a person’s
qualifications, which could be an inadvertent proxy for
gender or age. Such explanatory factors can be expressed
through explanatory attributes E on which the statistical
association between S and O can be conditioned.

3) Selection of Appropriate Metrics. Given a chosen
quantity O to be tested for associations against a protected
attribute S, the next step is to select a statistical metric that
is appropriate for measuring the strength or extent of the
association between O and S in a given context.

As noted in §2.2, prior work has identified a number
of metrics for measuring associations between certain types
of quantities O and S. Table 1 shows a set of four rep-
resentative metrics that we selected, two of which are new
to the algorithmic fairness space. This small set of metrics
appears sufficient to cover a vast variety of applications and
data types, as we illustrate in §5. Organized based on S and

5

O types, the metrics can be classified in three categories:
• Frequency Distribution Metrics: Association between

nominal S and O (with few possible values) can be rep-
resented as a contingency table that displays the variables’
frequency distribution. Prior work used such tables to define
ratio and difference metrics for binary variables [8]–[17].
For O = {o1,o2} and S = {s1, s2}, the ratio metric
is Pr(o1|s1)/Pr(o1|s2) − 1, and the difference metric is
Pr(o1|s1)−Pr(o1|s2). These are difficult to extend to non-
binary protected attributes [19], such as race.

In general cases, we measure association with mutual
information (MI), given by

∑
o,s Pr(o, s) ln

(Pr(o,s)
Pr(o) Pr(s)

)
.

MI is well-defined for arbitrary output and protected feature
spaces, and thus more widely applicable than binary metrics.
A natural normalization of MI (NMI) divides the measure by
the minimum of the Shannon entropies of S and O. MI can
be defined for continuous O and S but is more expensive to
estimate, especially in high dimensions [39], [40]. In these
cases, we instead opt for a different metric: correlation.
• Correlation: Pearson’s correlation measures the

strength of a linear relationship between continuous O and
S, which may exist even if O and S are non-linearly related;
such linear relationships are typically robust and broadly
interpretable [41]. Unlike MI (and some non-linear depen-
dence measures [42], [43]), a finding of zero correlation does
not imply that O and S are independent. However, because
our aim is not to verify independence, and because we prefer
interpretable findings of dependence, Pearson’s correlation
is a natural fit in many applications. We can use correlation,
for instance, to test for associations between a patient’s age
and the error incurred by a healthcare predictor.
• Regression: High-dimensional output spaces occur in

many use-cases, such as for applications that assign tags
or labels to users, where it is not known a priori which
specific tag/label to test for associations (see the Discovery
investigation examples in §2.1). For these, we introduce
a metric based on regression. We model the relationship
between the protected attribute S and a large number of
dependent output labels O with a regression model (logistic
or linear). This yields a regression coefficient for each label,
with which we can estimate that label’s association with S.

We detail our approach for binary S and applications
that output t labels, each in L = {l1, . . . , ld} (O takes values
in Lt). Let b1, . . . , bd be indicator variables for each label
(bi = 1 ⇔ li ∈ O). We model the distribution of S given
O by Pr[S = 1 | b1, . . . , bd] = logistic(β0 +

∑d
i=1 βibi),

where the βi are regression coefficients that measure the
association between the labels and the protected feature [44].

If an explanatory attribute E is specified, the metrics are
adapted to measure the conditional association of S and
O, given E. Conditional metrics quantify the association
between S and O that remains after controlling for E. Given
some association metric M(S;O), the conditional associa-
tion between S and O, given E, is EE(M(S;O) | E).
4) Granular and Statistically Rigorous Testing across
User Subpopulations. As argued in §2.2, testing for as-
sociations solely in the full user population is insufficient,

as strong unfair effects may manifest only in specific user
subsets. The core testing step in our framework consists in
finding strong associations between protected features and
outputs, in specific subpopulations of application users.

How should a “subpopulation” be defined? If we con-
sider arbitrary subsets of users, it is trivial to group users
so as to obtain maximal associations between a protected
feature and output. To ensure that subpopulations are seman-
tically meaningful and interpretable, we restrict ourselves to
subsets obtained by partitioning users based on the value of
a few contextual features X (e.g., the subset of users with
‘Job = Researcher’ and ‘Age ≤ 50’). Such “associ-
ation contexts” enable an analysis of algorithmic fairness
among users that share similar characteristics.

Efficiently searching for subpopulations with high asso-
ciations is non-trivial: Any user subset may exhibit very dif-
ferent effects, a consequence of Simpson’s paradox. Where
prior work has considered unguided, exhaustive search of
potential contexts [9]–[11], FairTest uses a novel heuristic
algorithm, called association-guided tree construction, to
successively split users into smaller subsets with increas-
ingly strong associations (§4.2.2). We experimentally com-
pare our algorithm to prior work in §5.2.

When assessing associations in multiple subpopulations,
care has to be taken to ensure the results remain statistically
valid. To this end, FairTest applies well-known techniques,
such as hypothesis testing, cross-validation and rigorously
correcting for multiple statistical inferences (§4.2.3).
5) Adaptive Debugging. Following the previous steps, a
developer may find evidence of association bugs affecting
certain application users. The question remains on how such
bugs may be debugged or fixed. Maybe the presence of
the bug itself is sufficient to alert a developer to a specific
issue in her application, allowing her to correct the flaw.
Alternatively, a discovered bug could hint to an overlooked
explanatory feature that accounts for its presence. In any
case, a new investigation would have to be run (following the
above methodology) to verify that the bug was effectively
removed. As these debugging investigations are inherently
informed by results from previous investigations, ensuring
statistical validity of discoveries requires extra care. We
discuss the system design implications for FairTest, as well
as our preliminary solution to this problem in §4.2.4.

3.3. Three Core Investigation Primitives
We show how the core investigative primitives identified

in §2.1 map onto the UA framework methodology:
Testing. This is the simplest investigative primitive in the
UA framework. It tests for suspected associations (under a
suitable metric such as MI or correlation) between appli-
cation outputs O and protected user features S, possibly
conditioned on an appropriate explanatory feature E.
Discovery. This primitive applies to scenarios in which a
developer may not know the specific association bugs to
test for. An example are applications that tag users with
labels from a large space. None of the metrics proposed
in prior work are appropriate for extracting biases between

6

protected features and a large set of candidate outputs. We
thus propose a new regression-based metric that efficiently
estimates the strength of the association between protected
attributes and each output label and allows the identification
of the most highly associated labels. In this sense, Discovery
requires little a priori knowledge of what could constitute
an association bug or what subpopulations it might affect.
Error Profiling. The relationship between Error Profiling
and fairness is best seen under the lens of user utility: For
many applications where fairness is commonly a concern
(e.g., hiring), the outcomes O (the hiring decision) provide
similar utility to all users (the candidates). Testing for unfair-
ness can thus be reduced to testing for associations between
O and S. In contrast, an output from a predictive classifier
is often only as useful to a user as it is reasonably correct.
Thus, a classifier may unfairly impact a given subpopulation
by consistently providing users with wrong predictions.

Error Profiling can be seen as an instance of a more
general form of Testing, where the quantity tested for as-
sociations is not the algorithm’s output, but each user’s
utility. This primitive illustrates how the UA framework can
be applied to a varied range of fairness issues, simply by
adapting the semantics of the values tested for associations.

4. The FairTest Design

We describe the design of FairTest, a system that realizes
the UA framework methodology. Fig.1 shows the FairTest
architecture. To test her application for unwarranted associa-
tions, a developer supplies FairTest with a dataset consisting
of attributes from application users, along with the outputs
(or derived quantities) for those users. This corresponds to
the first step of the UA methodology. FairTest analyzes
this data and returns an association report that lists strong
associations that FairTest has found between protected at-
tributes S and outputs O. The developer inspects the report
and determines which reported associations are real bugs
that require fixing and which are admissible effects in her
context. After giving a concrete example of association
report, we detail FairTest’s architecture and illustrate how
it realizes the remaining steps of the UA methodology.

4.1. Association Report Example
Suppose that Staples’ developers wished to inspect their

pricing scheme’s impact on users before deploying it (e.g.,
to avoid bad publicity or for accountability purposes). To
do so, they could use U.S. census statistics [45] to emu-
late users with realistic demographics visiting their website
from various locations. They would run their location-based
pricing scheme for those users and use FairTest’s Testing
investigation to test for disparate impact on race or income.

We ran an investigation on a simulated pricing scheme
akin to Staples’, which gives discounts to users located
within 20 miles of competing OfficeDepot stores. Fig.2
shows part of FairTest’s bug report, generated by testing for
suspected differential pricing based on income. The report
lists statistically significant associations discovered between

Report of associations of O=Price on Si=Income:
Assoc. metric: norm. mutual information (NMI).

Global Population of size 494,436
p-value=3.34e-10 ; NMI=[0.0001, 0.0005]

Price Income <$50K Income >=$50K Total
High 15301 (6%) 13867 (6%) 29168 (6%)
Low 234167(94%) 231101(94%) 465268 (94%)
Total 249468(50%) 244968(50%) 494436(100%)

1. Subpopulation of size 23,532
Context={State: CA, Race: White}
p-value=2.31e-24 ; NMI=[0.0051, 0.0203]

Price Income <$50K Income >=$50K Total
High 606 (8%) 691 (4%) 1297 (6%)
Low 7116(92%) 15119(96%) 22235 (94%)
Total 7722(33%) 15810(67%) 23532(100%)

2. Subpopulation of size 2,198
Context={State: NY, Race: Black, Gender: Male}
p-value=7.72e-05 ; NMI=[0.0040, 0.0975]

Price Income <$50K Income >=$50K Total
High 52 (4%) 8 (1%) 60 (3%)
Low 1201(96%) 937(99%) 2138 (97%)
Total 1253(57%) 945(43%) 2198(100%)

...more entries (sorted by decreasing NMI)...

Figure 2. Sample Association Bug Report. Testing investigation of
disparate impact in Staples pricing simulation.

protected attribute ‘income’ and output ‘price’ in vari-
ous subpopulations. Association strength is measured with
normalized mutual information (NMI), one of the canonical
measures of statistical dependence implemented in FairTest.

The report shows three populations: the global popula-
tion is first, followed by the two subpopulations exhibiting
the strongest disparities (highest NMI). Subpopulations are
defined by user attributes: white people in California (first
subpopulation) and black men in New York (second subpop-
ulation). For each (sub)population, FairTest reports varied
statistical information: a p-value (a measure of statistical
significance, with a value below 5% generally considered
statistically significant), a confidence interval for the NMI
metric, and a contingency table that summarizes the fre-
quency distribution of the outputs over the (sub)population.

Results can be read from these tables as follows. For
the first subpopulation: among California’s white population
(23,532 people in our test set), 7,722 (or 33%) have an
income below $50K. Out of these 7,222 users, 606 (or 8%)
got the high price and the rest (92%) got a discount.

The report can be interpreted as follows: “At global
U.S. population level, the disparate impact of the pricing
scheme against lower-income users is nearly zero (NMI is
close to zero for the global population; low-income and
high-income users receive high prices in similar proportion,
6%). Yet, disparities are much stronger among white people
in California (first subpopulation), where 8% of lower-
income people get higher prices vs. only 4% of higher-
income people. Strong disparities also exist for black men
in New York (second subpopulation): 4% of lower-income
black men get higher prices vs. 1% for higher-income black
men.” As remediation, a programmer may decide to alter
her pricing scheme, e.g., to disable price tuning in affected

7

FairTest

Data-driven
Application

user inputs
(location, clicks...)

outputs to users (O)
(prices, labels, recommendations...)

protected
attributes (S)
(race, gender...)

association
bug report

to programmer
(see Figure 2)

context
attributes (X)
(ZIP code, job...)

explanatory
attributes (E)

(qualifications,
constraints...)

(a) Architecture (b) Basic Algorithm

~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~
~~~~

MI correlation regressionratio,diff

Association Metrics

exact stats filter & rankapprox.stats

Statistical Validation and Ranking

holdout datatraining data

Dataset Management

Association Context Discovery
guided decision tree

properties of the outputs
(e.g., prediction error, utility)

Input: Data D = (S, X, E, O);
Output: Association bug report.

1. Split D into Dtrain and Dtest.
2. for each protected attribute Si in S:
    2.1  Choose an association metric M, given O, Si, E
    2.2. Using Dtrain, derive association contexts by  
           building a decision tree on X guided by the     
           value of the metric M between Si and O.
    2.3. for each context:
           Using Dtest, compute confidence interval (CI) 
           and statistical significance (p-value) for M
3. Correct CIs, p-values for multiple testing 
    across all protected attributes and contexts.
4. for each protected attribute Si in S: 
    4.1. Filter results on p-value.
    4.2. Rank results on CIs.
5. return association bugs for each Si.

Figure 1. FairTest Architecture. (a) Grey boxes denote FairTest components. Rounded boxes denote specific mechanisms. White rounded boxes denote
extensibility points; transparent rounded boxes denote core, generic mechanisms. (b) FairTest’s basic algorithm, realizing the UA framework methodology.
S, X , E denote protected, context, and explanatory attributes, respectively; O denotes the output quantity of interest.

regions, or to take into account public statistics for various
areas when deciding prices for people in those areas.

4.2. Architectural Components
Fig.1(a) shows FairTest’s inputs and architectural com-

ponents, which map onto the UA framework methodology
introduced previously. FairTest’s core consists of four com-
ponents (Association Metrics, Association Context Discov-
ery, Statistical Validation and Ranking, and Dataset Man-
agement), detailed in forthcoming sections. At a high level,
FairTest generates reports using the algorithm in Fig.1(b),
which makes use of these four components as follows.
• The dataset D = {(S,X,E,O)} is first split into a

training set, Dtrain and a testing set, Dtest (Step 1).
• The Association Metric module, which incorporates the

association metrics from Table 1, chooses a metric that
will be used to quantify the dependency of the output
on a protected attribute (Step 2.1).

• For each protected attribute Si in S, the Association
Context Discovery module uses Dtrain to split the user
population into meaningful subpopulations based on
contextual attributes, X (Step 2.2). Its goal is to maxi-
mize the association between Si and O in the discovered
subpopulations. For that, it uses our new association-
guided decision tree construction heuristic (§4.2.2).

• For each discovered subpopulation, the Statistical Vali-
dation and Ranking module assesses the bug’s validity
on Dtest by applying an appropriate test statistic (Steps
2.3 and 3). To prioritize developers’ efforts, the module
also filters and ranks bugs according to the strength of
the measured associations (Steps 4-5).

• The Dataset Management module manages the testing
sets to guarantee statistical validity of FairTest’s results
across multiple investigations that follow Steps 1-5.

4.2.1. Association Metrics
This module incorporates a canonical (yet extensible) set

of statistical association metrics (Table 1) and selects the
appropriate metric for each investigation, as prescribed by
the third step of the UA methodology. Unless specified by

Algorithm 1: Association-Guided Decision-Tree Construction We build
increasingly specific contexts (subpopulations) with increasingly stronger
associations, by recursively splitting the data D upon the user attribute Xi

that maximizes the average association over derived contexts D. Contexts
are defined by predicates P over attributes X (tree paths).

Params : MIN_SIZE // Minimum size of a context

MAX_DEPTH // Maximum tree depth

Metric // Association metric

Function findContexts(D = {S,X,E,O}, P = ∅)
Create a subpopulation defined by predicates P
if |D| < MIN_SIZE or |P| ≥ MAX_DEPTH then return
for Xi ∈X do

D = {D1, D2, . . . } ← partition of D based on Xi

if ∃Dk ∈ D : Metric(Dk) > Metric(D) then
// Avg. association for this split

Scorei←
∑

Dk∈D Metric(Dk)/|D|
else Scorei ← 0

if ∀i : Scorei = 0 then
return // No split yields higher assoc.

Xbest,Dbest ← partition with highest score
for Dk ∈ Dbest do

V ← values taken by Xbest in Dk

findContexts(Dk , P ∪ {Xbest ∈ V })

the user, a metric is chosen automatically based on the data
types of protected attributes S and outputs O, the presence
of explanatory attributes E, and the investigation type.

4.2.2. Association Context Discovery
This module efficiently “zooms into” a user population,

to discover subpopulations (a.k.a. contexts) strongly affected
by association bugs. In prior work, finding such bugs has
required exhaustive enumeration of user subsets, leading
to a number of contexts either exponential in the feature
space [9], [10] or linear in the user space [11]. These
methods raise two concerns: (1) They require making a large
number of statistical inferences, thus providing only weak
guarantees on the false discovery rate. (2) They sacrifice the
ability to discover small subpopulations (e.g., a few hundred
users), even if these exhibit the highest associations.

8



To efficiently identify strong hidden associations (the
fourth step in the UA methodology), we develop a novel
heuristic partitioning scheme, called guided decision-tree
construction. In contrast to prior work, our method generates
only a constant number of contexts, while actively searching
for smaller, highly affected populations. Alg.1 shows our
algorithm. Similarly to how decision-tree learning greedily
optimizes some measure of target homogeneity (e.g., Gini
impurity) [46], our algorithm actively maximizes some as-
sociation metric between protected attributes and outputs.

The algorithm works by selecting a splitting rule, based
on an attribute Xi ∈ X , so as to split the dataset D into
subsets D = {D1, D2, . . . } with highest average association
between S and O. The types of splits we consider are
inspired by the C4.5 algorithm [46]: If Xi is categorical, the
data is split into one subset per value of Xi. For continuous
Xi, we consider binary splits of D based on some threshold
t, i.e., D = {D1, D2} where D1 contains all elements in D
for which Xi ≤ t. To chose the threshold t, we sort D
according to the value of Xi and test each unique value
taken by Xi in D as the potential threshold. We retain the
value that maximizes the average association in D1 and D2.

We say a split is valid if at least one of the resulting sub-
contexts Di exhibits a higher association than the one mea-
sured over the current population D. We ultimately choose
the valid split (if one exists) for which the average asso-
ciation between S and O is maximal. We then recursively
apply this process on each subset derived from the highest
scoring split. The advantages of this approach are that it: (1)
permits use of any association metric; (2) produces simply-
defined and interpretable subpopulations; and (3) aggres-
sively searches for subpopulations with strong associations
using just scalable/distributable computations [47].

We additionally employ well-known techniques for pre-
venting this tree construction from overfitting the training
data [46], such as bounding the tree’s depth and pruning
very small subpopulations (< 100 members).

4.2.3. Statistical Validation and Ranking
After discovering contexts that exhibit potential associa-

tion bugs, we validate and rank them before reporting them
to developers. Validation is needed because the contexts
were explicitly built so as to maximize associations over a
finite user sample (Dtrain). We validate bugs on an indepen-
dent test sample (Dtest). We suggest setting |Dtrain| = |Dtest|,
to maximize the likelihood that effects discovered during
training have similar magnitude over the testing set.

We use distinct notions of significance for bug validation
and ranking. For validation, we use statistical significance
based on hypothesis testing: a bug is significant if its
manifestation in the test set is unlikely under the “null
hypothesis” (i.e., the association between S and O is null).
This is quantified by the p-value for a test. For ranking, we
use effect size, i.e., the actual value of the association metric,
estimated by means of a confidence interval (CI). FairTest
incorporates statistical methods for computing p-values and
CIs for all metrics in §4.2.1; for small samples, we use
generic permutation tests [48] and bootstraps [49] instead of

� �
class DataSource(D, budget) # hold out 1 test set per budget unit� �� �
class Investigation(DataSource,S,X,E,O,M={}) # base investigation class

# M stands for association metrics
class Testing(DS,S,X,E,O,M) # Investigation subclass for testing
class Discovery(DS,S,X,E,O,M,top k) # Subclass for discovery

# Takes in number of outputs to consider in each context.
class ErrorProfiling(DS,S,X,E,O,M,truth) # Subclass for error profile

# Takes ground truth for a predictive output� �� �
# Derive putative contexts for one/more investigations
train(Investigations,maxDepth=5,minLeafSize=100)
test(Investigations,conf=0.95) # Test and correct associations
report(Investigations,conf=0.95,outDir) # Filter, rank, save reports� �� �
class Metric # Abstract class for association metrics
Metric.computeStats(data, conf) # Calculate p−value and CI� �

Figure 3. FairTest API. Data holdout (1st), investigation types (2nd),
methods to run investigations (3rd), API to implement for metrics (4th).

approximations. We apply Holm-Bonferroni corrections [50]
to the p-values and CIs to ensure their simultaneous validity.

A bug report is generated as follows: We filter out con-
texts with corrected p-values >0.05 (the choice of signifi-
cance level α is a matter of policy. The default level of 5% is
configurable). We rank the remaining contexts by the lower
bounds of their corrected effect-size CIs. We only include
a context (e.g., white males in NY) if it exhibits a stronger
effect than the larger populations (e.g., males in NY) that
contain it. The report prioritizes debugging efforts by (1)
listing only statistically significant associations and (2) first
displaying the most strongly affected subpopulations.

4.2.4. Dataset Management
To debug an association bug, developers may run mul-

tiple investigations, each informed by previous ones: A bug
is detected in a first investigation, after which a series of
other analyses (e.g., with explanatory attributes) are run to
narrow down its source. Yet, while the test set Dtest is inde-
pendent from hypotheses formed in the first investigation,
it is not independent from hypotheses formed in subsequent
adaptively-chosen ones. Such adaptive debugging is the
challenge raised by the final step of the UA methodology.

The system-design implications are significant: FairTest
cannot be a stateless library; it must manage the dataset it
is given across multiple investigations. We achieve this by
having developers specify a budget B (number of adaptive
investigations they plan to run) upfront, when they supply a
dataset; FairTest then splits the dataset into B testing sets,
each used for a single investigation. Only B investigations
are allowed on the same dataset. The DataSource abstrac-
tion in Fig.3 implements this functionality. More efficient
approaches have been proposed [51], but they all lead to
similar systems implications, restrictions, and interfaces.

4.3. Testing and Debugging Primitives

To test and debug unwarranted associations, FairTest
provides the three core investigative primitives defined in
§3.3. §5.3 shows how these primitives can be combined
together to support quite powerful analyses of unwarranted
associations, from discovery to diagnosis and remediation.

9



4.3.1. Investigation API
Fig. 3 shows FairTest’s API. A core Investigation class

is subclassed by three specific investigation types. To run
these, a developer first collects user attributes and applica-
tion outputs. This data is enclosed in a DataSource, which
holds out test sets for successive experiments (see §4.2.4).

Testing. This investigation type was used in §4.1 to test for
disparate impact in Staples’ pricing scheme. A developer
provides a dataset D = {(S,X,E,O)}, and FairTest first
finds contexts with potential associations between S and O
(possibly conditioned on E), using the association-guided
tree construction. The developer calls the train method to
initiate context discovery, optionally tuning the size and
complexity of the resulting contexts. She calls test and
report to validate discovered bugs and produce reports.

Discovery. This lets developers search for associations over
a large number of output labels, using the regression metric
from §3.2 to efficiently estimate the strength of the asso-
ciation between protected attributes and each output label.
We then select the top k labels that exhibit the strongest
associations, and test each label individually using an ap-
propriately chosen metric. These regressions are executed at
every step of the guided decision-tree recursion. In the end,
Discovery finds subpopulations in which a particular label
is disproportionately associated with a protected group.

Error Profiling. This searches for populations strongly
affected by algorithmic mistakes. This may help improve
both the algorithm’s accuracy and fairness, as we show for
our healthcare predictor (§5.3.1). Error Profiling takes as
inputs algorithm predictions and ground truth, and computes
a suitable measure of prediction error, to be tested for as-
sociations. Note that in our implementation, Error Profiling
computes a new outputs O′ representing the prediction error
and then simply calls the Testing procedure over O′.

4.3.2. Explanatory Attributes
Following the use-cases detailed in §3.2, FairTest lets

developers use explanatory attributes in two ways: (1) After
an initial investigation that reveals apparent unfair effects,
she may debug these associations by specifying explanatory
attributes that she believes are responsible (i.e., confounders)
for the observed behavior. FairTest then recomputes condi-
tional association metrics over the same contexts discovered
in the first investigation. (2) The developer can define user
properties E that are necessary for an application. FairTest
then explicitly avoids deriving associations that are ac-
counted for by these attributes, by measuring the dependence
of protected attributes S and outputs O conditioned on E.

To illustrate the first use-case of explanatory attributes,
we examine the Berkeley graduate admissions dataset,
which contains admission decisions and gender for 4,425
applicants [24]. As mentioned in §2.2, this data exhibits
a paradoxical effect: at full university level, admissions
appear to disfavor women, yet this bias is not reflected
in any department. We show how an analyst could use
FairTest to measure gender-disparities in admission rates,

Report of assoc. of O=Admitted on Si=Gender,
conditioned on attribute E=Department:

Global Population of size 2,213
p-value=7.98e-01 ; COND-DIFF=[-0.0382, 0.1055]

Admitted Female Male Total
No 615(68%) 680(52%) 1295 (59%)
Yes 295(32%) 623(48%) 918 (41%)
Total 910(41%) 1303(59%) 2213(100%)

* Department A: Population of size 490:
p-value=4.34e-03 ; DIFF=[0.0649, 0.3464]

Admitted Female Male Total
No 9(15%) 161(37%) 170 (35%)
Yes 51(85%) 269(63%) 320 (65%)
Total 60(12%) 430(88%) 490(100%)

* Department B: Population of size 279:
p-value=1.00e+00 ; DIFF=[-0.4172, 0.3704]

Admitted Female Male Total
No 3(30%) 93(35%) 96 (34%)
Yes 7(70%) 176(65%) 183 (66%)
Total 10 (4%) 269(96%) 279(100%)

* ... Departments C-F, with high p-values ...

Figure 4. Disparate Admission Rates in the Berkeley Dataset. Shows a
Testing investigation with explanatory attribute E = Department. COND-
DIFF is the binary difference metric (DIFF), conditioned on E.

while allowing that each department may have different
gender demographics and admission rates.

The analyst defines ‘department’ as an explanatory
attribute, to instruct FairTest to look for associations only
among applicants of a same department. She then runs a
Testing investigation. The report (Fig.4) clearly highlights
the paradox: Over the full population, only 32% of female
applicants are admitted versus 48% for males. Yet, the only
department with a significant disparity in admission rates
(department ‘A’) actually favors women! Incidentally, the
difference in admission rates conditioned on an applicant’s
department is not statistically significant (p-value of 0.798).

4.4. Summary
With this design, FairTest realizes the UA framework

methodology as follows: 1) By keeping our design aware of
the different types of user features (S,X,E), yet agnostic
to the semantics of these features and of the algorithm’s
outcomes, we ensure FairTest’s compatibility with the data-
collection stage proscribed by the UA framework. 2) By pro-
viding debugging primitives based on the use of explanatory
features as confounders, FairTest instantiates the second step
of the UA methodology. 3) By making our design extensible
with multiple metrics, we ensure FairTest’s applicability to
a broad range of applications and scenarios. 4) FairTest’s
novel association-guided tree construction algorithm enables
efficient, scalable, and statistically rigorous detection of
strongly affected subpopulations. 5) By keeping state of the
data used in successive debugging investigations, FairTest
provides basic support for adaptive data analysis.

5. Evaluation

We implemented FairTest in Python, to be used either
as a standalone library or as an online service. As a library,

10



0

2

4

6

8

10

100 500 1000 2000 5000 10000 

#
 o

f 
D

is
co

v
er

ed
S

u
b

p
o

p
u

la
ti

o
n

s 
(o

f 
1

0
)

Subpopulation Size

∆=15%

∆=10% ∆=5%
∆=2.5%

Figure 5. FairTest Effectiveness with Affected Subpopulation Size and
Effect Strength (∆). Number of contexts discovered out of the ten we
artificially inserted in 1M-user population. Average over 10 trials. Note
that the x-axis is log-scale.

FairTest is designed to integrate with Pandas, SciPy’s data
analysis library. Our online service prototype enables multi-
ple users to asynchronously conduct Fairtest investigations.
Users post Fairtest investigations through a web interface
and access the respective bug reports once the experiments
are completed. Our implementation is based on python job
queues and scales beyond a single machine. Each Fairtest
investigation is abstracted into a job and is dispatched for
asynchronous execution into a poll of workers. Once a
job is complete, the respective bug report is placed into
a shared directory and is available online. We focus our
evaluation on the standalone library, the more mature of our
two prototypes. We aim to address three questions: (Q1) Is
FairTest effective at detecting association bugs? (Q2) Is it
fast enough to be practical? and (Q3) Is it useful to identify
and to some extent debug association bugs in a variety of
applications? We use seven workloads:
• One tightly controlled microbenchmark, which we use to

evaluate FairTest’s bug detection abilities with a priori
known ground truth for the associations.

• Four data-driven applications fed by public datasets: (1)
a simulator of Staples’ pricing scheme (described in [4])
fed by U.S. census data; (2) a predictive healthcare app,
based on a winning method and data from the Heritage
Health Competition [21]; and (3) an image tagger based
on Caffe [52], fed by ImageNet [53]. and (4) a movie
recommender trained on MovieLens data [54].

• Two social datasets – the Adult Census dataset [55] and
the 1973 Berkeley Admissions dataset [24].

Table 2 shows workload information: number of users/at-
tributes, investigations we ran, and metrics we used.

5.1. Detection Effectiveness (Q1)
Microbenchmark. Inspired by the Staples case, we create a
microbenchmark that lets us control the strength and span of
association bugs. We use U.S. Census [45] data for gender,
race, and income to generate ≈ 1M synthetic users. We start
from a “fair” algorithm that randomly provides users with
{0, 1}-output, independent of income. We then plant dispar-
ities in certain subpopulations (determined by location and
race), so that income level (high or low) implies a difference
in output proportions of size 2∆. E.g., for ∆ = 10%, we
might give output “1” to 60% of high-income users and 40%
of low-income users, in the subpopulation of white users in
California. For various subpopulation sizes and effect sizes,

0
25
50
75

100

Adult Berkeley Staples Health Tagger MovieRec

P
er

ce
n
ta

g
e 

o
f

 T
o

ta
l 

T
im

e

train test

37s 1s 61s 25s 4s 5s

Figure 6. FairTest Performance. Total analysis time (labels above bars)
broken down into training and testing times (bars).

we inject 10 randomly chosen discrimination contexts into
our data and measure how many are discovered by FairTest.

Fig.5 shows FairTest’s discovery rate as we increase
population size and ∆. FairTest reliably detects strong dis-
parities that affect a few hundred users, as well as effects
as low as 2.5% in larger contexts. Low effects in small
contexts often go undetected due to the limited statistical
power. This issue is not unique to FairTest, but rather an
inherent limitation of any statistical inference procedure in
the absence of sufficient data. In all cases, FairTest made
zero false discoveries (finding a disparity that we did not
introduce). Statistical testing lets us tightly control the false
discovery rate: at a confidence level of 95%, we expect at
most 5% false discoveries.

Real-World Apps and Datasets. Table 2 reports the number
of association contexts found by FairTest in each applica-
tion. We show the number of potential bugs found by the
guided decision-tree mechanism, the number of associations
that are statistically significant after correcting for multiple
testing, and the number of bugs reported to the developer
(recall that we only report a context if it exhibits a higher
unfair effect than the larger subpopulations that contain it).
The size of the smallest reported context is also shown (the
largest reported context is the full test set). We do not have
ground truth for these workloads, but our experience in-
specting the reports (detailed in §5.3) suggests that FairTest
detects discrimination contexts of a variety of sizes, which
appear accurate and revelatory for an investigator.

Results for the predictive healthcare application are for
an experiment with a follow-up debugging investigation (see
§5.3.1). FairTest thus splits the dataset in three: a train
set and two test sets. We found that FairTest would have
reported the same bugs, had we used all the data for a single
investigation (i.e., with no debugging). We further analyzed
the effect of the debugging budget B on the number of
discovered bugs for the Staples application. For budgets B
of 2 and 3, we discover 168 and 125 contexts, respectively;
of these, we report 15 and 13 contexts, respectively. In both
cases, the most affected subpopulation is the same as the
one found for a budget B = 1. Thus, for this application,
FairTest can allow at least one or two follow-up analyses,
while preserving the main results reported to developers.

5.2. Performance (Q2)
Timing. Although its building blocks (decision trees, statis-
tical tests) admit efficient and scalable implementations, our
prototype does not incorporate all available optimizations.
Still, FairTest appears fast enough for practical use. Fig.6

11



shows the analysis time for each application (top numbers),
broken down into: (1) the time spent on training to form
association hypotheses, and (2) the time spent on testing
and correcting these hypotheses. On a commodity laptop (4-
core Intel CPU @1.7GHz, 8GB RAM), the total execution
time ranges from 1-5 seconds for the smallest datasets to 60
seconds for the largest (Staples, with 1M users). For small
datasets (Adult, Berkeley, Movies) we often use bootstraps
and permutation tests to compute CIs and p-values in small
contexts (≤1000 users); these are expensive and subsume
the training cost. For datasets that yield larger contexts, we
use faster, approximate methods, making the testing phase
fast and the training phase proportionally more expensive.

Subpopulation Discovery. To discover subpopulations with
high associations, Ruggieri et al. [9], [10] use a simple
data mining approach: They list all frequent itemsets over
contextual features, and consider each itemset as a potential
discrimination context. As this enumeration of contexts is
not informed by any association metric, it can be viewed
as a brute-force analog to the guided tree mechanism used
in FairTest. Their approach suffers from two main caveats.
First, it requires that all features be discretized. Second, it
leads to an exponential increase in the number of contexts to
consider, unless subpopulations of small size are neglected.

For a fair comparison between our guided-tree mecha-
nism and the data mining approach, we analyze their perfor-
mance when processing the same number of contexts. We
proceed as follows: We run FairTest, and record the number
Ntrain of contexts examined in the training phase (i.e., the
number of metric computations in Alg.1) and the number
Ntest retained for testing. FairTest considers contexts with
at least MIN_SIZE users (e.g., 100 or 500), and defined
by at most MAX_DEPTH features (e.g., 5). For the data-
mining approach, we list all itemsets with support at least
MIN_SIZE and at most MAX_DEPTH items. We choose
Ntrain such itemsets at random, compute the association
metric in those contexts over the training set, and retain the
Ntest contexts with highest effect for testing. We compare
effect-sizes of the associations found by FairTest, to the
ones found with the “brute-force” approach, over the testing
set. Limiting the unguided approach to only Ntrain random
contexts may appear arbitrary. We thus further compare the
two methods for larger numbers of considered contexts,
by simply repeating the above process with fresh random
choices. Both FairTest and the unguided approach then con-
sider the same total number � Ntrain of potential contexts.

We use the Adult Census data, with protected feature
“Gender”, target ”Income”, and the binary difference metric.
We add random permutations of the remaining features to
obtain a dataset with either 15 or 40 contextual features (to
see how the two methods scale with the number of features).
The number of itemsets with at least 100 users, and defined
by at most 5 features, grows from 84,000 (for 15 features)
to over 200 million for 40 features. For efficiency reasons,
we thus limit our search to subpopulations of at least 500
users, of which there are roughly 3 million (for 40 features).

In Fig.7, we plot the average association (as per the

 0.27

 0.29

 0.31

 0.33

 0  1000 2000 3000 4000

A
v

er
ag

e 
sc

o
re

 f
o
r 

to
p
−

3
 c

o
n

te
x
ts

# of Contexts Considered

15 Contextual Features

 0  3000  6000  9000 12000

# of Contexts Considered

40 Contextual Features

Guided Tree
Naïve Sampling

Figure 7. Comparison between FairTest’s guided tree mechanism
and naı̈ve subpopulation sampling. Shows the average of the 3 highest
associations scores uncovered in the testing phase, for an increasing number
of candidates considered in the training phase.

difference metric) for the 3 most affected subpopulations
discovered by FairTest, compared to those found by the
unguided approach. The process is repeated 2, 4, 8 and 16
times, resulting in both methods observing more poten-
tial contexts (x-axis) and discovering increasingly strong
associations (y-axis). In summary, FairTest finds similarly
high associations as with the itemset mining approach, by
considering 4× to 8× fewer potential contexts. Furthermore,
it is always more optimal to simply re-run FairTest than it is
to search for more potential contexts in an unguided fashion.

5.3. Investigation Experience (Q3)
To assess FairTest’s usefulness, we searched for unwar-

ranted associations in all real-world applications in Table 2.
The Staples scheme was described in §4.1. The others are
detailed below. Our experience shows that FairTest: (1)
discovers meaningful bugs; (2) it lets developers include
acceptable explanations for associations; and (3) it assists
in debugging and even remedying discovered bugs.

More specifically, we find insightful association bugs in
three of the four applications and showcase how to debug
and remedy them in the case of the predictive healthcare ap-
plication. For the movie recommender application, we show
how apparent bugs discovered in a preliminary investigation
can be explained by natural notions of user utility.

5.3.1. Predictive Healthcare
Our predictive health application uses methods and data

from winners of the Heritage Health Prize Competition [21],
[56]. The random-forest based algorithm uses past health-
care claims to predict a user’s number of hospital visits in
the next year (predictions are for log(1+number of visits)).
The algorithm has low error overall (the average difference
between the true and predicted number of visits is 0.42), but
we want to study the error’s distribution among users.

Our study gives an end-to-end view of how FairTest can
be used to detect and debug unwarranted associations, but
also obtain hints for potential fixes. (1) We first discover an
association bug: the application has much higher error rates
for older than for younger users. (2) We investigate the bug’s
source: the bias can be explained by lower prediction confi-
dence for older people. (3) From there, we suggest potential
fixes, such as only using high-confidence predictions.
Detection. We first use FairTest’s Error Profiling to examine
associations between the algorithm’s prediction error and a

12



Association Contexts
Application Invest. Users Attr. Metric(s) Discovered Validated Reported Smallest Reported
Microbenchmark T 988871 4 NMI n/a n/a n/a n/a
Staples Pricing T 988871 4 NMI 224 100 21 211
Predictive Healthcare EP 86359 128 CORR 33 33 2 91
Image Tagger D,T 2648 1 REG,DIFF 1 1 1 1324
Movie Recommender T 6040 3 CORR 15 10 7 511
Adult Census T 48842 13 NMI 108 57 10 104
Berkeley Admission T 4425 2 DIFF 1 0 1 2213

TABLE 2. Workloads. Investigations: Discovery (D), Testing (T), ErrorProfiling (EP). Metrics: normalized mutual information (NMI), correlation
(CORR), binary difference (DIFF), regression (REG). For each application, we report the number of potential association contexts found by FairTest’s

guided-tree construction, the number that were found to be statistically significant (p-value < 5%), and the number of reported bugs.

Report of assoc. of O=Abs. Error on Si=Age:

Global Population of size 28,930
p-value=3.30e-179 ; CORR=[0.2057, 0.2432]

1. Subpopulation of size 6,252
Context = {Urgent Care Treatments >= 1}
p-value=1.85e-141 ; CORR=[0.2724, 0.3492]

Figure 8. Error Profile for Health Predictions. Shows the global
population and the subpopulation with highest effect (correlation). Plots
display correlation between age and prediction error, for predictions of
log(1 + number of visits). For each age-decade, we display standard box
plots (box from the 1st to 3rd quantile, line at median, whiskers at 1.5
IQRs). The straight green line depicts the best linear fit over the data.

user’s age (scalar quantities, hence we use correlation). The
report (Fig.8) shows the error/age correlations for the full
user population and one subpopulation with higher effect.
We visualize correlation with plots instead of contingency
tables. Globally, prediction error grows with age (correlation
is positive and the data shows a clear positive linear trend).
This effect is strongest for patients with prior urgent-care
treatments. In that context, the average error for patients of
age 61-99 is 1.07, compared to 0.33 for younger patients.

This finding is alarming, as such disparities could cause
quantifiable harms if, e.g., the algorithm is used to ad-
just insurance premiums (one of the competition’s motiva-
tions [21]). Hence we wish to further investigate the causes
of this accuracy loss for older patients, and get insights into
how to fix this fairness (and accuracy) bug.

Debugging. We use FairTest’s debugging abilities (explana-
tory attributes) to verify a plausible cause for the observed
bias: Higher errors for older users could be due to a higher

Report of assoc. of O=Abs. Error on Si=Age,
conditioned on E=Confidence:

Global Population of size 28,930
p-value=1.26e-13 ; COND-CORR=[0.1050, 0.1597]

* Low Confidence: Population of size 14,481
p-value=2.27e-128 ; CORR=[0.1722, 0.2259]

* High Confidence: Population of size 14,449
p-value=2.44e-13 ; CORR=[0.0377, 0.0934]

Figure 9. Error Profile for Health Predictions using prediction confi-
dence as an explanatory attribute. Shows correlations between prediction
error and user age, broken down by prediction confidence.

variance of the prediction target (the number of hospital
visits). To estimate the variance in a patient’s target value,
we train multiple predictors over random data subsets, and
infer prediction intervals for our algorithm’s outputs [57].
The width of this interval is our estimate of the target’s
variance. Low variance means high prediction confidence.

We run a new Error Profiling, with prediction confidence
as an explanatory attribute (Fig.9). Conditioning on predic-
tion confidence reduces the correlation in the full population.
For low confidence predictions, the correlation of error on
age remains positive and significant, but for high confidence
users, the effect is close to zero. Similar results (omitted
here) are obtained for users with an urgent-care history.

Remediation. These results imply an immediate remedia-
tion strategy: when using this algorithm to, say, tune insur-
ance premiums, one should consider the predictions’ confi-
dence. For example, one might decide to automatically tune
premiums only for high-confidence predictions. This would

13



result in about half of the users in our dataset receiving
customized premiums. One could also develop a scheme
that weighs any price increase by prediction confidence.
FairTest can then be used to test either of these approaches
for disparate impact on the population.

5.3.2. Movie Recommender
This application highlights another interesting aspect

about FairTest: not all associations it discovers are true bugs
that need remediation. Some may simply be due to variations
in utility perceived by different users for some outcomes.

We train a movie recommender using the ALS algo-
rithm [58] and MovieLens data [54] (1M ratings provided
by 6,040 users on a total of 3,900 movies). The ratings take
values in [1, 5], and each user has rated at least 20 movies.
The dataset includes user demographics (e.g., age, gender)
and movie metadata (e.g., release date, genre). The system
is trained to model the kinds of movies users generally like,
and it is configured to recommend 50 new movies that a
user has not yet seen, but is likely to rate highly.
Detection. We test for disparities in the “quality” of movies
recommended to users. Let a movie’s score be the average
rating given to that movie by all users. We view a movie’s
score as an indicator of movie quality. We then use a Testing
investigation to find associations between the average score
of a user’s 50 new recommended movies, and that user’s
age or gender. FairTest’s report (omitted for lack of space)
shows that men and older users receive recommendations for
“better” movies than women and younger users respectively
(correlation of 0.02 for the gender disparity and of 0.10 for
the age disparity). This suggests that the recommendation
system might provide higher utility to certain user demo-
graphics, by recommending movies with higher scores.
Debugging. Although a low score indicates that a movie is
generally disliked, it may be that certain users actually enjoy
movies regarded as “bad” by others. Indeed, certain movie
genres (e.g., horror movies or comedies) are consistently
rated lower than others (e.g., documentaries or dramas).
As we do not know the ratings that a user would give
to the 50 movies recommended by our system, we cannot
directly assess the “utility” provided to each user. However,
we can test whether users that get recommendations for
“bad” (low-scoring) movies are the ones that also watched
“bad” movies in the past. In other words, we want to use
FairTest’s debugging capabilities to investigate whether the
discovered associations can be explained by some users’
natural inclinations towards low-rated movies.

For each user, we compute the average score of all
movies rated by that user. We then add a new attribute that
splits users into two groups: those that watched movies with
below (respectively above) average scores in the past. When
added to E, i.e., treated as an explanatory attribute, we find
that a user’s taste for low- or high-scoring movies accounts
for the disparities found previously: After controlling for
the scores of previously-rated movies, the difference in
quality of recommended movies across gender is no longer
significant. Slight age-disparities remain, but the disparate
effect is much lower than before (correlation of 0.04).

Report of associations of O=Labels on Si=Race:

Global Population of size 1,324

* Labels associated with Race=Black:
Label Black White DIFF p-value
Cart 4% 0% [0.014,0.065] 3.31e-05
Drum 4% 0% [0.010,0.060] 3.83e-04
Helmet 8% 3% [0.010,0.089] 2.34e-03
Cattle 2% 0% [0.0037,0.0432] 4.73e-03

* Labels associated with Race=White:
Label Black White DIFF p-value
Face Powder 1% 10% [-0.134,-0.053] 5.60e-12
Maillot 4% 15% [-0.159,-0.058] 3.46e-10
Person 96% 99% [-0.056,-0.004] 6.06e-03
Lipstick 1% 4% [-0.062,-0.003] 1.03e-02

Figure 10. Racial Label Associations in the Image Tagger. Shows partial
report of a Discovery (top k=35); the four most strongly associated labels
(for the binary difference metric DIFF) are shown for each race.

Remediation. To conclude, we highlighted a situation in
which apparent association bugs can be explained by simple
and natural differences in user inclinations. We showed a
successful use of FairTest’s debugging features, in dismiss-
ing associations found by a previous Testing investigation.

5.3.3. Image Tagger
We next show FairTest’s Discovery capability from the

perspective of the developer of an image tagging system,
who is willing to search for offensive labeling in racial
groups. To illustrate, we inspect the labels produced by
Caffe’s [52] implementation of R-CNN [59], a ready-to-
use image tagger, when applied to photos of people from
ImageNet [53]. The tagger was trained on images from
ImageNet with 200 tags, including images of people. We
tag 1,405 images of black people and 1,243 images of white
people with 5 labels each, and run a Discovery to find the
35 (top k) labels most strongly associated with each race.

Fig.10 shows FairTest’s report. It lists the labels most
disparately applied to images of black people (first table)
and white people (second table); we show only 4 (of 35)
labels per race. A developer could inspect all top k labels
and judge which ones deserve further scrutiny. In Fig.10, the
‘cattle’ label might draw attention due to its potentially neg-
ative connotation; upon inspection, we find that none of the
tagged images depict farm animals. Moreover, black people
receive the ‘person’ tag less often, implying that the model
is less accurate at detecting them. Further work is needed to
understand these errors. While such analyses currently fall
outside FairTest’s scope, this example shows that FairTest is
effective at providing “leads” for investigations. It will also
help test the effectiveness of a remediation.

5.3.4. Adult Income Census Dataset
A second use case for FairTest is studying discrimination

in social datasets: We use the Adult dataset [55], which
reports census data and income (under or over $50K) for
48,842 U.S. citizens. Some disparate effects were found in
prior algorithmic fairness works [11], [15]–[18], [20].

Fig.11 shows partial bug reports for Testing for income
biases on race (top) and gender (bottom). We make three
observations. First, FairTest confirms previously known bi-

14



Report of associations of O=Income on Si=Race:

Global Population of size 24,421
p-value=1.39e-53 ; NMI=[0.0063, 0.0139]

Income Asian Black White Total
<=50K 556(73%) 2061(88%) 15647(75%) 18640 (76%)
>50K 206(27%) 287(12%) 5238(25%) 5781 (24%)
Total 762 (3%) 2348(10%) 20885(86%) 24421(100%)

1. Subpopulation of size 341
Context={Age <= 42, Hours <= 55, Job: Fed-gov}
p-value=3.24e-03 ; NMI=[0.0085, 0.1310]

Income Asian Black White Total
<=50K 10(71%) 62(91%) 153(63%) 239 (70%)
>50K 4(29%) 6 (9%) 91(37%) 102 (30%)
Total 14 (4%) 68(20%) 244(72%) 341(100%)

2. Subpopulation of size 14,477
Context={Age <= 42, Hours <= 55}
p-value=7.50e-31 ; NMI=[0.0070, 0.0187]

Income Asian Black White Total
<=50K 362(79%) 1408(93%) 10113(83%) 12157 (84%)
>50K 97(21%) 101 (7%) 2098(17%) 2320 (16%)
Total 459 (3%) 1509(10%) 12211(84%) 14477(100%)

Report of associations of O=Income on Si=Gender:

Global Population of size 24,421
p-value=1.44e-178 ; NMI=[0.0381, 0.0540]

Income Female Male Total
<=50K 7218(89%) 11422(70%) 18640 (76%)
>50K 876(11%) 4905(30%) 5781 (24%)
Total 8094(33%) 16327(67%) 24421(100%)

1. Subpopulation of size 1,371
Context={9 <= Education <= 11, Age >= 47}
p-value = 2.23e-35 ; NMI = [0.0529, 0.1442]

Income Female Male Total
<=50K 423(88%) 497(56%) 920 (67%)
>50K 57(12%) 394(44%) 451 (33%)
Total 480(35%) 891(65%) 1371(100%)

2. Subpopulation of size 6,791
Context={Education >= 12}
p-value=3.71e-124 ; NMI=[0.0517, 0.0883]

Income Female Male Total
<=50K 1594(76%) 2156(46%) 3750 (55%)
>50K 492(24%) 2549(54%) 3041 (45%)
Total 2086(31%) 4705(69%) 6791(100%)

Figure 11. Disparate Impact Reports on Race (top) and Gender
(bottom) in the Adult Income Dataset. Shows the full population and
two subpopulations with higher disparate effects. Additional races were
omitted for clarity.

ases in the full dataset: 88% of blacks have <$50K-income
compared to 75% of whites and 73% of Asians. Similarly,
89% of women have low income compared to 70% of men.

Second, FairTest reveals new insights into these biases.
For race (top), black people are strongly disfavored among
people younger than 42 working fewer than 55 hours a week
– especially for federal government employees. For gender
(bottom), the groups where women are most disadvantaged
are: (1) older people with 9-11 years of education and (2)
(perhaps surprisingly) people with a higher education (≥12
years of education). We are unaware of any prior works
in the algorithmic fairness area that have reported these
particularly strong biases upon inspecting this dataset.

Third, as shown by the first context in Fig.11, FairTest

is capable of revealing even small contexts that show par-
ticularly strong disparate effects.

6. Conclusion

In an effort to rationalize and unify prior definitional
foundations for algorithmic fairness, we have introduced
unwarranted associations, a generic type of bug that charac-
terizes disparate user treatment in data-driven applications.
To reason about these bugs, we have proposed the UA frame-
work and methodology which uniquely combine multiple
primitives and metrics with broad applicability, fine-grained
exploration of biases in user subsets, incorporation of natural
utility notions, and rigorous statistical assessments.

As an instantiation of our UA framework, we have de-
signed and presented FairTest, a tool that helps responsible
developers to thoroughly check data-driven applications for
unfair, discriminatory, or offensive user treatment. Designed
for ease-of-use, FairTest enables scalable, statistically rig-
orous investigation of unwarranted associations between
application outcomes and protected user groups. Our study
of four applications shows the broad utility of FairTest’s
three investigation types: Discovery of association bugs,
Testing of suspected bugs, and Error Profiling.

We hope that our proposed tools will help developers
answer recent calls from regulatory bodies, asking for data-
driven algorithms to be tested and audited for fairness, in
an effort to promote algorithmic accountability [1].

References

[1] J. Angwin, “Make algorithms accountable,” http://www.nytimes.com/
2016/08/01/opinion/make-algorithms-accountable.html, Aug 2016.

[2] J. A. Kroll, J. Huey, S. Baroas, E. W. Felten, J. R. Reidenberg,
D. G. Robinson, and H. Yu, “Accountable algorithms,” University
of Pennsylvania Law Review, vol. 165, 2017, forthcoming.

[3] J. Guynn, “Google photos labeled black people ’gorillas’,”
http://www.usatoday.com/story/tech/2015/07/01/google-apologizes-
after-photos-identify-black-people-as-gorillas/29567465/, July 2015.

[4] J. Valentino-Devries, J. Singer-Vine, and A. Soltani, “Websites vary
prices, deals based on users’ information,” http://www.wsj.com/
articles/SB10001424127887323777204578189391813881534, Dec
2012.

[5] M. Hardt, “How big data is unfair. Understanding sources of un-
fairness in data driven decision making,” https://medium.com/@mrtz/
how-big-data-is-unfair-9aa544d739de, Sep 2014.

[6] F. Pasquale, The Black Box Society: The Secret Algorithms That
Control Money and Information. Harvard University Press, 2015.

[7] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quanti-
tative input influence,” in S&P. IEEE, 2016.

[8] D. Pedreschi, S. Ruggieri, and F. Turini, “Discrimination-aware data
mining,” in KDD. ACM, 2008, pp. 560–568.

[9] S. Ruggieri, D. Pedreschi, and F. Turini, “Integrating induction and
deduction for finding evidence of discrimination,” Artificial Intelli-
gence and Law, vol. 18, no. 1, pp. 1–43, 2010.

[10] ——, “Data mining for discrimination discovery,” TKDD, vol. 4,
no. 2, 2010.

[11] B. T. Luong, S. Ruggieri, and F. Turini, “k-NN as an implementation
of situation testing for discrimination discovery and prevention,” in
KDD. ACM, 2011, pp. 502–510.

15

http://www.nytimes.com/2016/08/01/opinion/make-algorithms-accountable.html
http://www.nytimes.com/2016/08/01/opinion/make-algorithms-accountable.html
http://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-as-gorillas/29567465/
http://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-black-people-as-gorillas/29567465/
http://www.wsj.com/articles/SB10001424127887323777204578189391813881534
http://www.wsj.com/articles/SB10001424127887323777204578189391813881534
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de


[12] F. Kamiran and T. Calders, “Classifying without discriminating,” in
IC4. IEEE, 2009, pp. 1–6.

[13] F. Kamiran, T. Calders, and M. Pechenizkiy, “Discrimination aware
decision tree learning,” in ICDM. IEEE, 2010, pp. 869–874.

[14] T. Calders and S. Verwer, “Three naive Bayes approaches for
discrimination-free classification,” Data Min. Knowl. Discov., vol. 21,
no. 2, pp. 277–292, 2010.

[15] I. Zliobaite, F. Kamiran, and T. Calders, “Handling conditional dis-
crimination,” in ICDM. IEEE, 2011, pp. 992–1001.

[16] S. Hajian and J. Domingo-Ferrer, “A methodology for direct and
indirect discrimination prevention in data mining,” TKDE, vol. 25,
no. 7, pp. 1445–1459, 2013.

[17] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian, “Certifying and removing disparate impact,”
in KDD. ACM, 2015, pp. 259–268.

[18] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-aware
classifier with prejudice remover regularizer,” in ECML PKDD.
Springer, 2012, pp. 35–50.

[19] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in ITCS. ACM, 2012, pp. 214–226.

[20] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning
fair representations,” in ICML, 2013, pp. 325–333.

[21] Heritage Provider Network, “Heritage Health Prize Competition,”
http://www.heritagehealthprize.com/c/hhp, 2012.

[22] S. Sen, S. Guha, A. Datta, S. Rajamani, J. Tsai, and J. Wing,
“Bootstrapping privacy compliance in big data systems,” in S&P.
IEEE, 2014, pp. 327–342.

[23] E. H. Simpson, “The interpretation of interaction in contingency
tables,” J. R. Stat. Soc. Series B, pp. 238–241, 1951.

[24] P. Bickel, E. Hammel, and J. O’Connell, “Sex bias in graduate
admissions: Data from Berkeley,” Science, vol. 187, no. 4175, pp.
398–404, 1975.

[25] A. Hannak, P. Sapiezynski, A. M. Kakhki, B. Krishnamurthy,
D. Lazer, A. Mislove, and C. Wilson, “Measuring personalization
of web search,” in WWW. IW3C2, May 2013.

[26] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson, “Mea-
suring Price Discrimination and Steering on E-commerce Web Sites,”
in IMC. ACM, 2014.

[27] T. Vissers, N. Nikiforakis, N. Bielova, and W. Joosen, “Crying Wolf?
On the Price Discrimination of Online Airline Tickets,” HotPETs, pp.
1–12, Jun. 2014.

[28] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan,
“Adscape: Harvesting and Analyzing Online Display Ads,” in WWW.
IW3C2, Apr. 2014.

[29] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govindan,
“AdReveal: improving transparency into online targeted advertising,”
in HotNets-XII. ACM, Nov. 2013.

[30] A. Datta, M. C. Tschantz, and A. Datta, “Automated experiments on
ad privacy settings: A tale of opacity, choice, and discrimination,” in
PETS, 2015.

[31] M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu, “XRay: Enhancing the Web’s
Transparency with Differential Correlation,” in USENIX Sec, 2014.

[32] M. Lecuyer, R. Spahn, Y. Spiliopoulos, A. Chaintreau, R. Geambasu,
and D. Hsu, “Sunlight: fine-grained targeting detection at scale with
statistical confidence,” in CCS. ACM, 2015.

[33] A. Ng, “Advice for applying machine learning,” http:
//cs229.stanford.edu/materials/ML-advice.pdf, 2011.

[34] ——, “Machine learning system design,” https://
d396qusza40orc.cloudfront.net/ml/docs/slides/Lecture11.pdf, 2013.

[35] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. Springer, 2009.

[36] M. Kabra, A. Robie, and K. Branson, “Understanding classifier errors
by examining influential neighbors,” in CVPR, 2015.

[37] EEOC, “Information on impact (§ 1607.4), Uniform Guidelines on
Employee Selection Procedure,” 1978.

[38] G. Upton and I. Cook, “A dictionary of statistics,” 2008.

[39] L. Paninski, “Estimation of entropy and mutual information,” Neural
computation, vol. 15, no. 6, pp. 1191–1253, 2003.

[40] B. Poczos, L. Xiong, and J. Schneider, “Nonparametric divergence
estimation with applications to machine learning on distributions,” in
Uncertainty in Artificial Intelligence, 2011.

[41] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” Am. Stat, vol. 42, no. 1, pp. 59–66, 1988.

[42] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring
and testing dependence by correlation of distances,” The Annals
of Statistics, vol. 35, no. 6, pp. pp. 2769–2794, 2007. [Online].
Available: http://www.jstor.org/stable/25464608

[43] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in Algorithmic
Learning Theory, ser. Lecture Notes in Computer Science,
S. Jain, H. Simon, and E. Tomita, Eds. Springer Berlin
Heidelberg, 2005, vol. 3734, pp. 63–77. [Online]. Available:
http://dx.doi.org/10.1007/11564089 7

[44] D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John
Wiley & Sons, 2004.

[45] U.S. Census Bureau, http://www.census.gov/easystats/, Sep 2015.

[46] R. Quinlan, C4.5: programs for machine learning. Elsevier, 2014.

[47] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine
learning in apache spark,” arXiv preprint arXiv:1505.06807, 2015.

[48] M. D. Ernst, “Permutation methods: A basis for exact inference,”
Statistical Science, vol. 19, no. 4, pp. 676–685, 2004.

[49] B. Efron, “Bootstrap methods: Another look at the jackknife,” The
Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[50] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[51] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “The reusable holdout: Preserving validity in adaptive data
analysis,” Science, vol. 349, no. 6248, pp. 636–638, 2015.

[52] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in CVPR.
IEEE, 2009, pp. 248–255.

[54] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History
and context,” TiiS, vol. 5, no. 4, p. 19, 2016.

[55] M. Lichman, “UCI machine learning repository,” http:
//archive.ics.uci.edu/ml, 2013.

[56] P. Brierley, D. Vogel, and R. Axelrod, “Round 1 mile-
stone prize,” https://www.kaggle.com/wiki/HeritageMilestonePapers/
file/Market%20Makers-Milestone1DescriptionV21.pdf.

[57] S. Wager, T. Hastie, and B. Efron, “Confidence intervals for random
forests: The jackknife and the infinitesimal jackknife,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1625–1651, 2014.

[58] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[59] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR. IEEE, 2014.

16

http://www.heritagehealthprize.com/c/hhp
http://cs229.stanford.edu/materials/ML-advice.pdf
http://cs229.stanford.edu/materials/ML-advice.pdf
https://d396qusza40orc.cloudfront.net/ml/docs/slides/Lecture11.pdf
https://d396qusza40orc.cloudfront.net/ml/docs/slides/Lecture11.pdf
http://www.jstor.org/stable/25464608
http://dx.doi.org/10.1007/11564089_7
http://www.census.gov/easystats/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kaggle.com/wiki/HeritageMilestonePapers/file/Market%20Makers - Milestone 1 Description V2 1.pdf
https://www.kaggle.com/wiki/HeritageMilestonePapers/file/Market%20Makers - Milestone 1 Description V2 1.pdf

	Introduction
	Preliminaries
	Motivating Examples
	Candidate Approaches and Related Work
	Goals and Assumptions

	The UA Framework
	Unwarranted Associations
	The Methodology
	Three Core Investigation Primitives

	The FairTest Design
	Association Report Example
	Architectural Components
	Association Metrics
	Association Context Discovery
	Statistical Validation and Ranking
	Dataset Management

	Testing and Debugging Primitives
	Investigation API
	Explanatory Attributes

	Summary

	Evaluation
	Detection Effectiveness (Q1)
	Performance (Q2)
	Investigation Experience (Q3)
	Predictive Healthcare
	Movie Recommender
	Image Tagger
	Adult Income Census Dataset


	Conclusion
	References

