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Abstract

Web traffic is exposed to potential eavesdroppers, and despite the use of encryption
mechanisms, it has been shown vulnerable to side-channel attacks which reveal
information about its contents. Although various countermeasures against such
attacks have been proposed, the lack of mathematical foundations for reasoning
about information leaks in web traffic has prevented the development of provably
secure countermeasures.

In this thesis, we develop a novel framework for reasoning about information
leakage in web traffic. We propose flexible models of web applications, web browsing
and web traffic, and develop two security models based on different notions of
security: (1) an attacker’s knowledge about the possible secret values contained in
the web traffic, and (2) the probability of an attacker to guess the secret values. In
those models, we formalize countermeasures and network protocols, defining them
as compositions of several basic building blocks.

We use this framework to perform formal analysis of various aspects of informa-
tion leakage in web traffic. We design principles for countermeasure composition
which strengthens security, as well as investigate the utilization of structural prop-
erties of web applications to design countermeasures which provide strong security
guarantees. Additionally, we leverage and extend results from quantitative infor-
mation flow to design algorithms for calculating security guarantees. Furthermore,
we investigate the differences in the proposed security models, as well as the role
of caching to the security of web applications.

Finally, we perform two case studies empirically measuring the performance of
countermeasures to a sample of web applications. We propose a methodology for
dealing with computational challenges arising during practical analysis, and discuss
the results of the case studies.
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1 Introduction

The versatility of the Internet today offers its users the opportunity to pursue their
various interests online, to exchange ideas with other users, and to perform everyday
activities such as shopping, paying bills, or even consulting a doctor, with several
mouse clicks. Performing all those activities online causes a huge amount of traffic
to be transmitted over the Web, and this traffic often contains sensitive information
about users. To limit unauthorized access to private data over the wire, security-
aware users can force their traffic to be encrypted by accessing web applications
which offer TLS encryption, or by sending their data through an encrypted tunnel.
While state-of-the-art encryption mechanisms make data practically unreadable
for unauthorized parties, however they fail to provide sufficient protection from
traffic analysis which inspects patterns in the volume of encrypted data, and many
attacks based on such traffic analysis have been demonstrated [11, 51, 30, 3, 39,
16, 18, 29, 41, 10]. To protect the privacy of users browsing the Internet, various
countermeasures have been proposed [11, 51, 30, 39, 18, 41, 10, 55, 42]. However,
proposed countermeasures are often targeted against specific attacks, and a sound
theoretical foundation for reasoning about the effectiveness of countermeasures is
still lacking. Therefore, a formal analysis of information leaks in web applications,
as well as the development of general-purpose, provably secure countermeasures,
has been an open problem.

1.1 Our contributions

In this thesis, we devise a novel framework for reasoning about information leaks
in web applications. We concentrate on two scenarios: web navigation, where a
user is navigating in the Web by following hyperlinks (see Figure 1.1(a)), and
auto-suggest, where a user is typing a word into an auto-suggest input field (see
Figure 1.1(b)). We assume that the communication between the user’s web browser
and the web server is encrypted, and that a passive attacker has physical access to
encrypted Internet traffic. Whenever a user performs an action such as navigating
to a webpage or typing a letter in the input field, messages (which we call web-
objects), are exchanged between the browser and the server. The attacker then
observes a burst of network packets, and despite encryption is able to distinguish
the size and the direction of each transferred network packet. The attacker uses
this information to uncover certain (secret) information about the encrypted data.

1



2 Chapter 1. Introduction

(a) Web-navigation (b) Auto-suggest input fields

Figure 1.1: The attack scenarios

In the proposed framework, we model a web application as a directed graph,
and a user’s browsing behavior as a path in this graph. Edges correspond to
actions a user can take, and vertices correspond to the web-objects that need to be
transferred in order to display the result of those actions to the user. In this model,
observable patterns in web traffic are modeled as a function from the vertices in
the graph, and the information which is to be kept secret is modeled as a function
from the paths in the graph. To allow reasoning about security properties of web
applications, we devise a possibilistic security model, which considers the secret
values which to an attacker look possible generators of the observed patterns in
traffic. Additionally, we extend this model to a probabilistic security model, which
accommodates potential stochastic behavior of users and stochastic traffic patterns.
In the probabilistic model, we use information theoretic definitions to measure
the probability that an attacker can guess the secret values. Furthermore, we
define network fingerprints, which are mechanisms that change observations, as for
example countermeasures or network protocols. We identify several basic network
fingerprints, which we use as building blocks for more complex network fingerprints,
and this allows modeling of a landscape of countermeasures and network protocols.

We use the proposed framework to perform formal analysis of information leaks
in web applications, where we consider both possibilistic and probabilistic security
guarantees. First, we show that a proper composition of basic network finger-
prints results in a network fingerprint which gives stronger security guarantees. In
particular, this means that applying a countermeasure on top of another counter-
measure can only strengthen security, and if an attacker observes traffic which is
modified by a network protocol, he does not learn additional information about
the secret. Second, we show that a property of the graph structure – the minimal
outdegree of the vertices in the graph G (denoted δ(G)), can be used to design a
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parametrized countermeasure which gives lower bounds on the possibilistic secu-
rity guarantees. These lower bounds grow polynomially in the parameter k and in
δ(G), and exponentially in the length of a path in the graph. Third, we leverage
and extend existing results for quantitative information flow to simplify the cal-
culation of probabilistic security guarantees for deterministic network fingerprints.
Fourth, we analyze the possibilistic and probabilistic security guarantees of network
fingerprints which add more ambiguity (e.g., by randomizing a deterministic net-
work fingerprint), as well as of adding edges to graphs (e.g., by adding hyperlinks
between webpages). This analysis underlines the differences between possibilistic
and probabilistic security guarantees, and indicates that probabilistic security cap-
tures better potential security vulnerabilities. Additionally, we incorporate browser
caching into our models, and discuss its controversial role for security: employing
a cache can both be helpful or harmful to security.

Based on the proposed framework and on our formal results, we present a
methodology for practical evaluation of countermeasures, and develop simulation
approaches for dealing with computational challenges. We demonstrate this method-
ology in two case studies where we analyze the performance of a countermeasure
to a sample of web applications, in terms of security and overhead.

1.2 Related work

In 1997, Wagner and Schneier [53] considered the analysis of the volume of net-
work traffic flow as a possible vulnerability in the SSL 3.0 protocol, and stated
that ignoring such traffic analysis “seems like a reasonable design decision” of the
protocol’s designers. Nevertheless, in the following years an array of attacks which
exploit patterns in the volume of encrypted web traffic to extract user information
was shown.

To the best of our knowledge, the first attacks utilizing the volume of encrypted
web traffic were proposed in 1998 by Cheng and Avnur [11], and since then there
have been more than ten published attacks of this nature [51, 30, 3, 39, 16, 18, 29,
41, 10]. There has been an evolution of the information those attacks are designed
to extract, as well as of the settings of those attacks. While the attack presented
in [11] is targeted at identifying a webpage within a website accessed through
HTTPS, later attacks aim at identifying the website a user is visiting when browsing
through an encrypted tunnel [51, 30, 3, 39, 16, 18, 29, 41], and the assumed setting
of those attacks is an HTTPS connection to an anonymizing proxy [51, 30, 18], an
SSH or a VPN connection to an anonymizing proxy [3, 39, 29, 41], data contained in
anonymized NetFlow records [16], onion routing or web mixes [29]. In 2010, Chen
et al. [10] turn the focus of their attacks to web applications accessed through
HTTPS and WPA, and those attacks aim at extracting information about user’s
health conditions and financial status.
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In [11, 51, 30, 39, 18, 41, 10], along with presenting attacks, the authors dis-
cuss countermeasures for those attacks. Additionally, the main focus of two recent
works [55, 42] is the design of countermeasures for dealing with previous attacks.
An often proposed countermeasure is padding, i.e., adding noise to observations,
as found in [11, 51, 30, 39, 18, 41, 10]. A different approach proposed by [51] and
implemented by [55] changes patterns of observations corresponding to one web-
site to look like patterns corresponding to another website, which allows sensitive
traffic to be camouflaged as traffic coming from certain popular services. Note that
there is confusion in the term used for this technique: while [51] call this approach
mimicking, in [55] it is called morphing. [51] use the term “morphing” to describe a
different approach: techniques which make patterns in observations different from
ones expected by the attacker, e.g. by utilizing features of the HTTP protocol;
features of the TCP and HTTP protocols were utilized in the techniques proposed
by Luo et al. [42] used to build the HTTPOS system which offers browser-side
protection from traffic analysis. In our work, we propose a framework which allows
building previously discussed and novel countermeasures, using basic countermea-
sures as building blocks.

To evaluate the effectiveness of proposed techniques, [11, 51, 39, 55, 42] perform
empirical evaluation, where the performance of certain attacks is compared before
and after the application of the countermeasures. Additionally, [42] inspect the de-
sign of certain attacks, showing that proposed countermeasures make the studied
attacks ineffective. In contrast to those works, we offer a general-purpose frame-
work for formally reasoning about countermeasures. It does not assume the use of
particular attacks, and security is measured in the amount of information leaked
from the produced observations.

Besides attacks and mitigation techniques, recent work also handles the detec-
tion and quantification of information leaks in web traffic. [56] present the first
language-based approach for securing web applications, using a combination of
taint-based analysis and repeated sampling to estimate the information revealed
through traffic patterns. [9] implement an approach which crawls web applications
in order to perform black-box detection of vulnerabilities. They view an attacker
as a classifier and quantify information leaks in terms of classifiability, using an
entropy-based measurement, as well as a measurement based on the Fisher crite-
rion.

Information-theoretic approaches related to the probabilistic security model in
our work were used for modeling and mitigating side-channel attacks against cryp-
tographic functions [36, 37].

Outline

The remainder of this work is organized as follows. Chapter 2 presents technical
aspects of web browsing, as well as mathematical foundations needed in the rest
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of the work. In Chapter 3, we present a formal model of information leaks in web
applications, which we extend with traffic patterns caused by network protocols and
countermeasures in Chapter 4. We perform formal analysis of leakage in web traffic
in Chapter 5. In Chapter 6, we extend our models to capture browser caching.
Chapter 7 performs practical evaluation of countermeasures, and we conclude in
Chapter 8.





2 Preliminaries

This chapter reviews the necessary background information used in the rest of
this work. We introduce the technical properties of web browsing which make
information leaks possible, and introduce necessary mathematical concepts.

2.1 Technical aspects of web browsing

In this section, we discuss technical properties of web browsing. We define the
basic concepts, and discuss the patterns in traffic which enable attackers to perform
analysis on encrypted traffic.

2.1.1 Web browsing

We define web browsing as the process of handling data on the Web, and the user’s
interface for web browsing – a web browser – is an application which resides on a
personal computer or a mobile device. Web browsing usually entails data retrieval,
the process of a user navigating through the Web in order to download data such
as text, images, or video, and is sometimes supplemented by data provision – the
process of uploading data, for example by publishing messages and images in web
forums. The data is stored on web servers and is transported between browsers
and servers through computer networks. The most commonly used protocol for
web browsing is HTTP, although browsers usually support further protocols such
as FTP, Telnet, SSH, or protocols for email transfer (POP, SMTP, IMAP). In the
current work, we concentrate on information leaks in the data retrieval process
through HTTP.

A typical web browser (such as Microsoft Internet Explorer, Mozilla Firefox,
Google Chrome, Safari, Opera) contains a main window which displays the down-
loaded content, as well as navigation functionalities: an address bar for specifying
URLs explicitly, bookmarks, buttons for going back and forward in the naviga-
tion history, and a button for reloading a webpage. A user can interact with the
browser by either using its navigation functionalities, or by performing certain user
actions : usually keyboard or mouse input. A user action either changes the con-
tent displayed to the user (e.g., when typing in text or triggering the execution of
a browser script), or induces an HTTP request to the server. A web server (such
as Apache, IIS, nginx, or GWX) awaits incoming HTTP requests and generates
responses containing the requested resource or error messages. If the requested

7
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resource contains server scripting, the web server makes sure the supported scripts
are executed.

An example of a typical user action is clicking on a hyperlink to load the webpage
index.html hosted on the server example.com, which would incur the following
HTTP messages to be exchanged:

(1) the HTTP request:
GET http://example.com/index.html HTTP/1.1

[request headers]

(2) the HTTP response:
HTTP/1.1 200 OK

[response headers]

[response payload]

Besides GET, further HTTP request methods are possible, e.g. POST for submitting
data to be processed by the server; besides 200 OK, further response codes are
possible, e.g. the 404 Not Found error code. In the example above, the response
payload will consist of the index.html file. After obtaining (a part of) this file,
the browser parses it, displays its (properly formatted) contents on the screen, and
if the file includes additional files, such as images, JavaScript or Stylesheet files,
the browser issues GET requests for them as well, usually in the order in which they
are included in the HTML file.

Throughout this work we use the term web application to denote an application
which has two parts – a client-side, running in the web browser, and a server-
side, running in the web server, where the two sides communicate through HTTP
messages. A web application can be a website containing only static webpages
connected through links, or an interactive web service containing Ajax elements.

2.1.2 Attacker’s view of web traffic

Any party which has physical access to web browsing traffic can perform analysis on
it, and we call such analysis an attack, and a traffic analyst an attacker. In practice,
physical access to our Internet traffic can be easily gained by various parties: the
person sitting next to us in an Internet café, a company’s sysadmin, by the Internet
providers involved in the data transportation, the regulatory authorities in our
country, the regulatory authorities of all other countries where our traffic passes
through.

The browsing traffic observed by an attacker corresponds to a sequence of HTTP
packets exchanged between a web browser and a web server. During transporta-
tion, an HTTP messages passes through the different layers of the Internet protocol
stack: the TCP and IP protocols, and link layer protocols (e.g., Ethernet or PPP).
Those protocols encapsulate the packet with specific headers containing informa-
tion needed for transportation, most importantly the addresses of the sending and
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receiving parties (e.g. a TCP port number, an IP address, a MAC address). Ad-
ditionally, protocols may cause packets to be segmented, i.e., divided into smaller
packets on entering, and reassembled on leaving the scope of the protocol.

Whenever a user performs an action which triggers an HTTP request, an at-
tacker can observe a burst of packets which are exchanged between the browser
and the server. Figure 2.1 sketches an unencrypted Ethernet packet captured by
an attacker. Given such a burst of packets, the attacker can obtain the original
transmitted HTTP messages by reassembling the packets and removing the unnec-
essary headers.

Figure 2.1: Unencrypted Ethernet packet

To prevent attackers from reading the content of the transmitted data, standard
protection mechanisms relying on cryptographic primitives can be deployed. In
our work, we assume that encryption is applied to all messages containing HTTP
requests and responses, and in the following we discuss several state-of-the-art
protection mechanisms and the traffic which an attacker observes when they are
applied.

HTTPS connection to web server

A frequently used protection mechanism consists of setting up an encrypted HTTPS
connection between a browser and a web server. This approach uses the TLS proto-
col (or its predecessor, SSL) to provide the encrypted connection, and allows web
service providers to force the whole communication between browser and server
to be encrypted. Figure 2.2 sketches an Ethernet packet containing an HTTPS
message captured by an attacker: the whole HTTP message is encrypted, how-
ever headers corresponding to lower layers can be read in clear, as they are not
encrypted. In particular, an attacker could read the source and destination IP
addresses and port numbers, and from them infer which website a user is visiting.
The visited website can also be inferred by inspecting unencrypted DNS messages.
From TCP headers, an attacker can additionally gain the information needed to
reassemble packets corresponding to the same HTTP message.
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Figure 2.2: An Ethernet packet with HTTPS encryption

Encrypted connection to proxy server

The second protection mechanism we consider is tunneling the Internet traffic
through an encrypted connection to a proxy server. The encrypted connection
can be established using an SSH tunnel, a VPN connection, or an HTTPS con-
nection to a web proxy. Using this mechanism, the data between the browser and
the proxy server is encrypted. The resulting Ethernet packets are sketched on Fig-
ure 2.3. Here, along with the HTTP messages, TCP and IP headers are encrypted,
as well as DNS messages, and thus information about the website visited by a user
is concealed from the attacker. Additionally, an attacker cannot distinguish which
packets are parts of which HTTP messages, and reassembly of packets is not di-
rectly possible. Furthermore, packets corresponding to background traffic may be
misinterpreted as corresponding to the targeted browsing session.

Figure 2.3: An Ethernet packet with an encrypted tunnel to a proxy server
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Wireless encrypted traffic

The data between a computer and a wireless router can be encrypted using the
WPA2 protocols (or, its predecessors WPA and WEP). The observations an at-
tacker can make are similar to those from an encrypted connection to a proxy server
(see above), and the corresponding Ethernet packet is sketched on Figure 2.4.

Figure 2.4: A WLAN packet with WPA2 encryption

2.1.3 Caching

In order to save bandwidth and to display certain content faster to users, instead of
fetching objects from the web servers, they can be fetched from web caches. Those
caches are usually deployed by a browser or by proxies, and if certain content is
downloaded from a cache instead of from a web server, it will be missing in the
traffic available to an attacker. In the following chapters we assume that caches
are disabled, and we return to browser caching in Chapter 6

2.2 Mathematical background

This section introduces mathematical concepts used in the current work. We
present information theoretic definitions and Markov chains, as well as introduce
the used notation.

2.2.1 Information theoretic definitions

Information theory is a mathematical discipline which allows measuring the amount
of information contained in random variables. It was introduced by Claude Shan-
non in 1948 [47] to reason about data compression and data communication, and
has found a broad usage in various fields, such as physics [32], bioinformatics [50],
cryptography [5]. Information theoretic definitions are standard tools in quanti-
tative information flow analysis (e.g., see [13, 35]) – a method for quantitatively
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reasoning about secrecy properties in a system, e.g. in a computer program. Typ-
ically, the information theoretic approach for quantitative information flow defines
random variables X representing high (or secret) input to the system, and Y rep-
resenting low (or publicly accessible) output, and the system’s behavior is charac-
terized by the conditional probability distribution P [Y |X], i.e., the probability of
the system’s output given a certain input. To measure security in a system, three
measures are defined, which represent (1) the initial uncertainty about the input
X, or how much information is secret; (2) remaining uncertainty about the input
X when the output Y is known, or how much information remains secret if one
inspects the public output; (3) the information leaked from X to Y . For those
measures, the following equality should hold:

initial uncertainty = remaining uncertainty + information leaked,

and both the remaining uncertainty and the information leaked can be used to
measure the security of a system. Here, a system will be considered to guarantee
maximal security if there is no information leaked, and it will be considered with
minimal security if there is no remaining uncertainty. Using this approach, a system
designer should try to design systems which provide as high remaining uncertainty
as possible.

Information theoretic definitions often used to represent the three concepts are
based on Shannon entropy and min-entropy. Smith [48] has demonstrated that the
probability that an attacker can guess the high value in one try after inspecting
the low value is better captured by the more conservative definitions based on
min-entropy1.

In our work we adopt min-entropy-based definitions, which are presented in the
following.

Let X be a random variable with a finite set of possible values X representing
the system’s high input, and Y be a random variable with a finite set of possible
values Y representing the system’s high output. To represent the initial uncertainty
about X, we use the min-entropy of X, written H∞(X), defined in the following.

Definition 1. The min-entropy of a random variable X is defined as

H∞(X) = − log2 max
x∈X

P [X = x].

To represent the remaining uncertainty about X given Y , we use the conditional
min-entropy of X given Y , written H∞(X|Y ), defined in the following.

Definition 2. The conditional min-entropy of X given a random variable Y , is

1semiformally, min-entropy can be seen as more conservative than the Shannon entropy as it is
computed using the maximum probability of X, while Shannon entropy takes an expectation
over the probability of X.
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defined as

H∞(X|Y ) = − log
∑
y∈Y

P [Y = y] max
x∈X

P [X = x|Y = y].

This definition captures the behavior of attackers which are allowed to make
only one guess: such attackers would pick the value of x which maximizes the
probability P [X = x|Y = y]. The conditional min-entropy measures the logarithm
of the expected value over Y of this probability.

To represent the information leaked from X to Y , we use the mutual
(min-)information I∞(X;Y ) 2, defined in the following.

Definition 3. The mutual (min-)information of X and Y is defined as

I∞(X;Y ) = H∞(X)−H∞(X|Y ).

In the following, we consider the case where a third random variable Z is given.
The following definition of conditional mutual (min-)information of X and Y given
Z can be interpreted as the reduction of the uncertainty about the input X when
the output Y is inspected, if the value of Z is previously known.

Definition 4. The conditional mutual (min-)information of X and Y given Z is
defined as I∞(X;Y |Z) = H∞(X|Z)−H∞(X|Y, Z).

The following Lemma establishes the relationship between the different informa-
tion theoretic definitions given three random variables X, Y, Z. This relationship
is sketched on Figure 2.5.

Lemma 1.

I∞(X;Y, Z) = I∞(X;Z) + I∞(X;Y |Z) = I∞(X;Y ) + I∞(X;Z|Y ).

Proof. Applying the definitions of mutual (min-)information and conditional mu-
tual (min-)information, we obtain:

(1) I∞(X;Y, Z) = H∞(X)−H∞(X|Y, Z);

(2) I∞(X,Z) + I∞(X;Y |Z) = H∞(X)−H∞(X|Z) +H∞(X|Z)−H∞(X|Y, Z)
= H∞(X)−H∞(X|Y, Z);

(3) I∞(X, Y ) + I∞(X;Z|Y ) = H∞(X)−H∞(X|Y ) +H∞(X|Y )−H∞(X|Y, Z)
= H∞(X)−H∞(X|Y, Z).

Therefore, the equality holds.

2Note that unlike in the case of Shannon-entropy, the min-entropy definition of mutual infor-
mation is not symmetric, i.e., the following equality must not hold: I∞(X;Y ) = I∞(Y ;X).
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Figure 2.5: Relationship between the information theoretic measures H∞(X),
H∞(X|Y, Z), I∞(X;Y ), I∞(X;Z), I∞(X;Y |Z), I∞(X;Z|Y ), for the
random variables X, Y , Z

2.2.2 Markov chains

Markov chains are a powerful framework for modeling random processes. In the
following, we define Markov chains, and show a well known result for Markov
chains.

Definition 5. The random variables X, Y, Z form a Markov chain, written X →
Y → Z, if for all x, y, z, P [Z = z|X = x, Y = y] = P [Z = z|Y = y] holds.

Lemma 2. If random variables X, Y, Z form a Markov chain X → Y → Z, they
also form a Markov chain Z → Y → X.

Proof.

P [X = x|Y = y, Z = z] = P [X=x,Y=y,Z=z]
P [Y=y,Z=z]

= P [X=x,Y=y,Z=z]
P [Y=y,Z=z]

· P [X=x,Y=y]
P [X=x,Y=y]

= P [Z = z|X = x, Y = y] · P [X=x,Y=y]
P [Y=y,Z=z]

(∗)
= P [Z = z|Y = y] · P [X=x,Y=y]

P [Y=y,Z=z]

= P [Z=z,Y=y]
P [Y=y]

· P [X=x,Y=y]
P [Y=y,Z=z]

= P [X = x|Y = y].

(∗) follows from X → Y → Z. The remaining steps follow from applying the
definition of conditional probability.

2.2.3 Notation

In the following, we introduce some notation used in the remainder of this work:



2.2. Mathematical background 15

• v denotes the subsequence relation – for a set A and x, y ∈ A∗, x v y means
that x can be derived from y by deleting some of the elements in y but still
preserving the order of the remaining elements;

• t denotes the concatenation of sequences – given tuples ~x = (x1, . . . , xm) and
~y = (y1, . . . , yn), ~x t ~y = (x1, . . . , xm, y1, . . . , yn).

• the function set : A∗ → P(A) denotes the set representation of a tuple, and
is defined as set(x1, . . . , xk) = {x1, . . . , xk};

• given a tuple ~x = (x1, . . . , xn), πi(~x) denotes the i-th element xi, and Π(~x)
denotes the set of all permutations over (x1, . . . , xn);

• paths(G, `) denotes the set of all paths in G of length `, and is defined as
paths(G, `) = {(v1, . . . , v`) | ∀i ∈ [`− 1] : (vi, vi+1) ∈ E};

• [n] denotes the set {1, . . . , n}.





3 Modeling leaks in web applctions

In this chapter, we present a framework for reasoning about information leaks in
web applications. First, we define models of web applications and corresponding
traffic patterns. Second, we define a security model encompassing the specification
of secret values, as well as the quantification of leaks in web applications. For this,
we consider both a possibilistic, and a probabilistic view on security.

3.1 Web applications and application fingerprints

We model a web application as a directed graph

G = (V,E),

where an edge represents an action a user can make, and a vertex corresponds to
the sequence of web-objects exchanged between a user and a server. We define the
set of vertices as V ⊂ (W ×{↑, ↓})∗, where W is the set of all possible web objects,
↑ denotes that an object is transmitted from the user to the server, and ↓ denotes
that an object is transmitted from the server to the user.

Throughout our work web-traffic is assumed to be encrypted, with sizes being
the only visible observations. Let the size of a web-object be the function

s : W → N.

We define the applicatin fingerprint

fapp : V → O,

to model the observable part of transmitted web-objects (i.e., size and direction),
where O ⊂ (N × {↑, ↓})∗ is the set of observations. The application fingerprint
preserves the direction of objects, and is defined as

fapp(v) = fapp(w1, d1, . . . , wn, dn) = (s(w1), d1, . . . , s(wn), dn).

In the following we formalize web applications, considering the two scenarios
studied in the current work: (1) web-navigation, and (2) the auto-suggest scenario.

17
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3.1.1 The web-navigation scenario

In the web-navigation scenario, a user is navigating in the Web by following hy-
perlinks, and we assume that every time a user selects a hyperlink, the same
web-objects are exchanged. We will refer to the collection of exchanged objects
induced by clicking on a link as a webpage1. In the web-navigation scenario, the
web-application is modeled by the web-graph G = (V,E), where vertices repre-
sent webpages, and an edge (u, v) indicates that the webpage u contains a link
to webpage v (and thus, a possible user action is following this link). Examples
of web-graphs are the Internet-graph, and the graphs corresponding to particular
websites. Given a web-object w which is downloaded from the server, we model
an HTTP request as the function get : W → W . Thus, if a webpage incurs
the downloading of web-objects w1, . . . , wn, we will have v = [(get(w1), ↑), (w1, ↓
), . . . , (get(wn), ↑), ((wn), ↓)]. For example, we may have a webpage which incurs
the downloading of the objects a.html, style.css, script.js, img.jpg, video.flv, which
will correspond to a vertex

v = [(get(a.html), ↑), (a.html, ↓), (get(style.css), ↑), (style.css, ↓),
(get(script.js), ↑), (script.js, ↓), (get(img.jpg), ↑), (img.jpg, ↓),
(get(video.flv), ↑), (video.flv, ↓)].

Accordingly, the application fingerprint here is

fapp(v) = [(s(get(a.html)), ↑), (s(a.html), ↓), (s(get(style.css)), ↑), (s(style.css), ↓),
(s(get(script.js)), ↑), (s(script.js), ↓), (s(get(img.jpg)), ↑), (s(img.jpg), ↓),
(s(get(video.flv)), ↑), (s(video.flv), ↓)].

3.1.2 The auto-suggest scenario

In the auto-suggest scenario, a user types some input x into an input field, and a
drop-down list of suggestions appears. Let Σ be the input alphabet, let D ⊆ Σ∗

be the dictionary of possible suggestions, let I ⊆ Σ∗ be the dictionary of possible
words a user can type, and let the auto-suggest functionality be implemented by
the function suggest : I → D∗. Typing an input x, a list of suggestions suggest(x)
is either empty, corresponding to the empty word ε, or contains a selection of
words from D: words starting with x, words containing the substring x, words
semantically related to x, or words chosen by some other criterion. We assume
that initially the auto-suggest field is empty, and at this point the input x equals
to ε. Let ci be the i-th character typed in by the user. When the user types in ci,
a query containing x = c1c2 . . . ci is sent to the server, and the list of suggestions
is retrieved.

In this scenario, we define the web-application G = (V,E) as a tree with V = (I×
1In the literature, the term web-request is used for a similar concept, see [12].
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{↑})×(D∗×{↓}), the vertex [(ε, ↑), (suggest(ε), ↓)] as root, and there exists a (u, v)
edge in E if and only if v = [(xσ, ↑), (suggest(xσ), ↓)], for u = [(x, ↑), (suggest(x), ↓)]
and σ ∈ Σ. The edges here correspond to the user action of typing in characters;
thus, we implicitly forbid deleting characters or moving the cursor. Note that if in
the vertices of G we consider only the first components, i.e., the resulting tree is a
prefix tree (or trie, see [15]).

In the auto-suggest scenario, the application fingerprint corresponds to the size
of the list of suggestions. In practice, this list is usually transmitted as a file in
XML, CSV, or some other format. For a certain format, we define the size of an
auto-suggestion list as a function

sa : D∗ → N.

Given a word v = [(x, ↑), (suggest(x), ↓)] ∈ V , we define its application fingerprint
as

fapp(v) = [(s(x), ↑), (sa(suggest(x)), ↓)].

3.1.3 Remarks

Let a user’s navigation path of length ` be a path (v1, . . . , v`) in the graph G
corresponding to visited webpages or typed-in characters. We assume that the
attacker can clearly distinguish which observations correspond to which vertex,
and thus knows the path length ` (e.g. by inspecting the timing of downloaded
objects). Therefore, the attacker’s view of a navigation path (v1, . . . , v`) is the
corresponding sequence of observations (o1, . . . , o`), which we call an observation
path. In the following, we use the notation ~v for (v1, . . . , v`), ~o for (o1, . . . , o`), and
[`] for the set {1, . . . , `}.

In the remainder of this chapter, we develop the model of leaks in web-traffic
under the assumption that we have a powerful attacker who has access to the appli-
cation fingerprint of vertices, i.e., observes the sizes of web-objects. In Chapter 4,
we extend our definitions to more realistic attackers who do not know the exact
sizes of web objects, but can only observe sizes of network packets.

3.2 Security model

Given a web application G and an application fingerprint fapp, in this section we
build the theory towards answering the question “How vulnerable is G to attacks?”.
This question should be answered with care: a too liberal approach may put up with
too many privacy leaks, while a too conservative approach may prove impractical.
We start by allowing the specification of the secret, which is the information a
user wants to keep private. Afterwards, we present two models for quantifying
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information leakage in web browsing traffic: a possibilistic one and a probabilistic
one.

3.2.1 Specifying the secret

If an attacker inspects a sequence of observations (o1, . . . , o`) = (fapp(v1), . . . , fapp(v`)),
the most he can extract from those observations is the exact navigation path
(v1, . . . , v`). However, the whole path may not consist of sensitive information,
for example only the answer to the question “Has v been visited?” may be con-
sidered secret. To capture this, we define the secret specification as a function sec
which takes a user’s navigation path (v1, . . . , v`) and returns the secret information
contained in this path. Informally, the secret specification is a question about the
navigation path whose answer consists of the information one wants to protect.
From the perspective of information-flow security, this corresponds to the high
parts of a path. In the following, we define several example secret specifications.

Specifying parts of the navigation path as secret

1. Which is the exact path?

The exact path is the maximal amount of information the attacker may ex-
tract from a sequence of observations in our model. This secret specification
is defined as the identity function:

sec1(v1, . . . , v`) = (v1, . . . , v`).

2. Which pages has the user visited?

The order in which pages were visited may be irrelevant to the attacker. Then
we obtain the secret specification

sec2(v1, . . . , v`) = {v1, . . . , v`}.

3. Which are the last `− x visited pages?

The attacker may not be interested in the first x pages visited by the user,
for example in a highly interlinked web portal. Then we obtain the secret
specification

sec3(v1, . . . , v`) = {vx+1, . . . , v`}.

4. Which is the i-th visited page?

sec4(v1, . . . , v`) = vi
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5. How many times have we visited page v?

sec5(v1, . . . , v`) = |{i | vi = v}|

6. Binary questions

The attacker may also ask a binary (yes-no) question. The secret specification
of such a question will be defined as follows:

sec6(v1, . . . , v`) =

{
1 if condition is fulfilled
0 otherwise.

For example, the question “Has page v been visited?” can be asked, which
will be defined as

secv6(v1, . . . , v`) =

{
1 if v ∈ {v1, . . . , v`}
0 otherwise.

Analogously, many other binary questions can be asked, such as “Is the nav-
igation path (v1, . . . , v`) = (v′1, . . . , v

′
`)?”, “Is the i-th visited page v?”, “Has

v been visited before v′?”, “Has a user visited a page containing more than
5 web objects?”.

Note that in the auto-suggest scenario, because of the tree structure of a prefix
tree, many of the questions an attacker may ask are equivalent to finding out the
exact path (v1, . . . , v`), or a subpath of it. For example, as each vertex v ∈ V can
be reached only following a unique path, the question “Has v been visited?” is
equivalent to asking whether (v1, . . . , v`) starts with this unique path.

Specifying the identity of websites as secret

If the visited website is not known to the attacker (e.g., if the traffic is tunneled
through an anonymizing proxy, see Section 2.1.2), the question “Which website is
the user currently visiting?” may be asked. The secret specification here is defined
as follows. Let G = (V,E) be the Internet-graph, and let G1 = (V1, E1), . . . , Gn =
(Vn, En) be the graphs corresponding to all websites. Then, V1, . . . , Vn is a partition
of V into disjoint blocks. The secret specification in this case will be the question
“To which block(s) of the partition do v1, . . . , v` belong?”, or formally

secI(v1, . . . , v`) = (V ′1 , . . . , V
′
` ), with vi ∈ V ′i and V ′i ∈ {V1, . . . , Vn}, for all i ∈ [`].

Complex secret specifications

The previously discussed secret specifications represent questions about the nav-
igation behavior of a user, which can be answered by inspecting the sequence of
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visited vertices and the graph structure, and in the case of website identification
– by additionally inspecting the partition of the Internet-graph into websites. We
call such secret specifications pure secret specifications. An attacker will often be
interested not only in asking questions about visited locations in a graph, but also
in extracting some sensitive information from the answer to such a question. For
example, the attacker may use the answer to the question “Is the navigation path
(v1, . . . , v`) = (v′1, . . . , v

′
`)?” to answer the question “Does this user read articles

about lactose intolerance?”. Or, the answer to such a question may be used as
features for a classifier which may answer questions such as “Does this user suffer
from lactose intolerance?”, “Is this user taking part in demonstrations against the
government?”, or “Is this user a terrorist?”.

To handle such questions, we define complex secret specifications as functions
or pattern recognition systems which take as input the answer to a pure secret
specification, and use some background knowledge to answer the questions. This
background knowledge may be knowledge about the context and contents of the
visited websites, or some training data. In the remainder of this work, we will only
consider pure secret specifications, and we leave precise definition of complex secret
specifications to future work.

3.2.2 Possibilistic security model

The first security model we present takes a possibilistic view on security. Given
a secret specification sec and an observation path ~o, it deals with the answer to
the question “Which are the possible values of sec(~v) corresponding to certain
observations?”. We start by defining the observations corresponding to a vertex.

Definition 6. The possible observations of a vertex in G is the function

g : V → P(O),

which returns a set containing all possible observations corresponding to this vertex.

We have assumed that a vertex v has a unique application fingerprint fapp(v),
and thus, we obtain g(v) = {fapp(v)}. In the discussion of countermeasures in
Chapter 4, the definition of g will change, allowing more than one observation per
vertex.

In the following we define the core of the possibilistic security model: the ambi-
guity about the user’s navigation path, which is the set containing all secret values
sec(~v) consistent with a given observation path.

Definition 7. Given a sequence of observations (o1, . . . , o`) corresponding to a
user’s navigation path, and a secret specification sec, the ambiguity Ksec about the
user’s navigation path is defined as:
Ksec(G, n, (o1, . . . , o`), g) =
{sec(v1, . . . , v`) | (v1, . . . , v`) ∈ paths(G, `) ∧ ∀i ∈ [`] : oi ∈ g(vi)}.
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When an attacker analyses an observation path, the ambiguity is the set contain-
ing all answers to the question defined by the secret specification. If the attacker
can answer the question deterministically, i.e., knows that the navigation path is
(v1, . . . , v`), then the cardinality of the ambiguity set is 1; if the attacker has no in-
formation what the answer to the question may be, the cardinality will be maximal.
We consider the following applications of ambiguity:

1. Cardinality of the ambiguity set: the number of possible answers to the
question defined by the security specification can be used as a quantitative
measure of information leakage. We consider the following definitions:

(i) minimal ambiguity cardinality (MAC ) over al possible observations

MAC := min
~o
Ksec(G, n,~o, g)

(ii) average ambiguity cardinality (AAC ) over all possible observations

AAC :=
1

# possible observations

∑
~o

|Ksec(G, n,~o, g)|

2. Subset inclusion: let a secret specification and two systems be given, where on
a certain input, the first system produces an observation path with ambiguity
set A1, and the second system produces an observation path with ambiguity
set A2. If on all inputs we have A1 ⊆ A2, then the first system can be
considered to leak more information than the second one.

3.2.3 Probabilistic security model

The problem of leakage in web browsing traffic may include stochastic components,
e.g., attackers may use prior knowledge about the user’s behavior to assist their
judgment, assuming that a user acts according to a certain probability distribu-
tion. Such assumptions can be found in research on web usage mining [49], where
in order to predict a user’s behavior, a probability distribution on the user’s navi-
gation is assumed, which can be calculated by inspecting web log data or structural
properties of web graphs [20].

To capture such stochastic components, we propose a probabilistic security model,
which builds upon the possibilistic model presented in the previous section. We as-
sume that the user navigates according to a previously known probability distribu-
tion, i.e., we are given a probability distribution on the paths of length ` that can be
taken by the user. Let the random variable X with a set of possible values X = V `

describe the taken path, and let the random variable Y with a set of possible values
Y = O` describe the observations which an attacker sees. The observations are de-
termined according to the conditional probability distribution P [Y |X], which gives
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the probability that an attacker will see certain observations if a user has taken a
certain navigation path. In the current model, we have deterministic observations,
and thus given an x ∈ X , we obtain P [Y = y|X = x] = 1 for y = fapp(x), and
P [Y = y|X = x] = 0 otherwise, and thus, we have Y = fapp(X). In Chapter 4, we
will discuss randomized countermeasures which break this functional relationship
of X and Y . As discussed in Section 3.2.1, the secret specification is defined as a
function sec which takes values from V `. Transferring this concept to the proba-
bilistic model, if attackers inspect the value of Y , they want to extract information
about the value of the (secret) random variable sec(X). Thus, the knowledge of
the attacker about the secret value will be captured by the conditional probability
P [sec(X)|Y ].

Given random variables X and Y , and a secret specification sec, we characterize
security properties using information theoretic definitions (see Section 2.2.1). We
define the initial uncertainty about the user’s navigation X under secret specifica-
tion sec as the min-entropy of sec(X):

initial uncertainty := H∞(sec(X)) = − log2 max
a
P [sec(X) = a].

We define the remaining uncertainty about the user’s navigation X under secret
specification sec given observations Y as the conditional min-entropy of sec(X)
given Y :

remaining uncertainty := H∞(sec(X)|Y )
= − log2

∑
~o

P [Y = ~o] max
a
P [sec(X) = a|Y = ~o].

We define the information leaked about the user’s navigation X under secret
specification sec given observations Y as the mutual (min-)information of sec(X)
and Y :

information leaked := I∞(sec(X);Y ) = H∞(sec(X))−H∞(sec(X)|Y ).

Markov property

The random variable X can be decomposed into ` random variables X1, . . . , X`,
such that if X = (v1, . . . , v`), then X1 = v1, . . . , X` = v`. If we assume that
X1, . . . , X` form a Markov chain, i.e., for each i ∈ [`], P [Xi+1 = vi+1|Xi =
vi, Xi−1 = vi−1, . . . , X1 = v1] = P [Xi+1 = vi+1|Xi = vi], this will allow simpli-
fying certain computations. For example, to compute the probability distribution
of X given a graph G, only probabilities on each edge should be specified, and not
probabilities on the whole paths. In the auto-suggest scenario, the Markov prop-
erty holds, as because of the tree structure of the corresponding graph, if we are
currently visiting vertex v, there is only one path from the root to v, and thus, the
probability of moving from v to another vertex v′ will be the same if we consider the
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previous vertices on the path from the root or not. In the web-navigation scenario
such an assumption is more problematic, as it would mean that every time users
are visiting a webpage v, they have the same preferences about which hyperlink to
follow. However, a user may decide to which webpage to navigate taking into ac-
count all previously visited webpages, and if there are several different paths from
the root to a vertex, the Markov property may be violated. Nevertheless, we note
that the assumption that X is a (first or higher order) Markov chain can be found
in the literature about prediction of user’s web navigation (e.g. see [45, 20]).

3.2.4 Discussion of security models

We have presented two notions of security: a possibilistic one based on ambigu-
ity, and a probabilistic one based on min-entropy. Relying on ambiguity allows
comparing the possible secret values corresponding to given observations, and an
ambiguity set of small cardinality indicates that from an observation, an attacker
can quite accurately determine the secret values. However, an ambiguity set of a
higher cardinality may give a false feeling of security, as it ignores stochastic com-
ponents of the system. The probabilistic notions of security allow capturing such
stochastic components, such as attacker’s belief about the user’s behavior, and as
we will show in Chapter 4, the probabilistic model allows a more natural analy-
sis of randomized countermeasures. While we will not give a clear verdict about
whether possibilistic security guarantees are sufficient to capture the vulnerability
of web browsing traffic to attacks or not, our formal analysis indicates that in some
cases possibilistic definitions are too permissive (see Section 5.4 and Section 5.5).
Note that for purposes different from the ones pursued in the current work, pos-
sibilistic notions of security have been shown to be inferior to notions of security
incorporating probabilistic assumptions [52].





4 Network fingerprints

In the previous chapter, we presented a model of leaks in web traffic, where we
assumed that an attacker can observe the application fingerprint of vertices, i.e.,
the exact sizes of web objects. Building upon those foundations, in the current
chapter we handle network fingerprints, which allow attackers to view sizes of
network packets. The network fingerprints can be different from the application
fingerprints because of changes due to network protocols, or because of applied
countermeasures. We define network fingerprints formally, and identify several
basic network fingerprints which we will use as building blocks for network protocols
and countermeasures.

4.1 Formal definitions

Network fingerprints change how observations look like in the eyes of an eavesdrop-
per. We assume that network fingerprints are stateless : they change the observa-
tions corresponding to one vertex only, and do not take into account observations
of previously visited vertices (the statelessness will be loosened in the discussion
of caching, see Chapter 6). We start by defining possibilistic network fingerprints
which extend the possibilistic security model (see Section 3.2.2), and further we
define probabilistic network fingerprints which extend the probabilistic security
model (see Section 3.2.3).

4.1.1 Possibilistic network fingerprints

In accord to the possibilistic security model from Section 3.2.2, we define possibilis-
tic network fingerprints. Given a graph G = (V,E) and an application fingerprint
function fapp : V → O, a network fingerprint is a function

fnet : O → P(O1),

which is to be interpreted as a non-deterministic function from O to O1. Both O
and O1 are sequences of integer sizes with a direction, i.e., O,O1 ⊂ (N × {↑, ↓})∗
(see Section 3.1). Non-determinism here captures potential randomization of a
network fingerprint: a statement fnet(o) = A means that fnet may output any of
the values in A. As we want a non-deterministic function to be total, we forbid
an o with fnet(o) = ∅. Given a network fingerprint fnet , there is trivially at least
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one corresponding deterministic network fingerprint fdnet : O → O1, such that
∀o ∈ O : fdnet(o) ∈ fnet(o).

Network fingerprint composition

Network fingerprint composition allows applying one network fingerprint to the
output of another network fingerprint, and for its definition we use function com-
position. The definition of network fingerprint composition is straightforward
for deterministic network fingerprints with matching types: given network fin-
gerprints f ′net : O → O1 and f ′′net : O1 → O2, the composed network fingerprint
f ′′net ◦ f ′net : O → O2 is defined, with

(f ′′net ◦ f ′net)(o) = f ′′net(f
′
net(o)).

To allow further compositions, in the following we define two natural extensions of
functions: a natural extension to power sets which allows composition with non-
deterministic network fingerprints, and a natural extension to tuples, which allows
composition with network fingerprints returning tuples.

Natural extension to power sets To allow composing a non-deterministic net-
work fingerprint f ′net : O → P(O1) with a deterministic network fingerprint f ′′net :
O1 → O2, we define the natural extension of a network fingerprint f ′′net to power
sets as the function

f̂ ′′net : P(O1)→ P(O2),

f̂ ′′net({x1, x2, . . . }) = {f ′′net(x1), f ′′net(x2), . . . },

and using this definition, the composition of f ′net and f ′′net can be built as f̂ ′′net ◦f ′net .
To allow composition of two non-deterministic network fingerprints f ′net : O →
P(O1) and f ′′net : O1 → P(O2), we define the natural extension of f ′′net to power sets
differently:

f̂ ′′net : P(O1)→ P(O2),

f̂ ′′net(A) =
⋃
x∈A

f ′′net(x),

and using this definition, the composition of f ′net and f ′′net can be built as f̂ ′′net ◦f ′net .
For ease of notation, in some cases we will use an overloaded notation fnet instead
of f̂net , and will write f ′′net ◦ f ′net instead of f̂ ′′net ◦ f ′net .

Natural extension to tuples Next, we define the natural extension of network
fingerprints to tuples, which can be applied in two cases. First, if we have a network
fingerprint f ′net : O → Ok

1 returning k-tuples and a second network fingerprint
f ′′net : O1 → O2, a composition f ′′net ◦ f ′net will not be possible because the types of
f ′net and f ′′net do not match. However, it is possible to combine them in a natural
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way, by computing f ′′net(oi) for all oi ∈ (o1, . . . , ok). We define the natural extension
of f ′′net to k-tuples as the function

f̄ ′′net : Ok
1 → Ok

2

f̄ ′′net(o1, . . . , ok) = (f ′′net(o1), . . . , f
′′
net(ok)),

and this definition makes a network fingerprint composition f̄ ′′net ◦ f ′net possible. In
the case of non-deterministic f ′′net : O1 → P(O2), we change the definition to

f̄ ′′net : P(Ok
1)→ P(Ok

2),

f̄ ′′net(A) =
⋃
x∈A

f ′′net(x).

A second case where a natural extension to tuples can be applied is if we are given
a vertex v containing multiple web objects, i.e., v = (w1, w2, . . . ) and want to apply
a network fingerprint fnet : O → P(O1) to the observations of each file separately.
To underline the different scenario when natural extension to tuples is applied, in
this case we will write perfile(fnet) instead of f̄net .

Adapting the possibilistic security model

When the (composed) network fingerprint fnet is applied, in order to compute
the ambiguity of an observation, we have to adapt the definition of the possible
observations g : V → P(O) (see Section 3.2.2). When visiting a vertex v, as a result
of the applied network fingerprint, the attacker sees an element of (fnet ◦ fapp)(v).
Accordingly, we define the possible observations as

g = fnet ◦ fapp .

To calculate the ambiguity Ksec(·) defined in Section 3.2.2, we apply this new
definition of g.

Remark

Note that we can interpret the case where no network fingerprint is applied as
using the identity function as a network fingerprint. Therefore, we can always talk
about the applied network fingerprint fnet , which may be any (composed) network
fingerprint or the identity function.

4.1.2 Probabilistic network fingerprints

The possibilistic network fingerprints introduced in the previous section are non-
deterministic functions, and in order to analyze their effect, we need to reason about
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sets of possible observations. In practice, some observations may be possible, but
not likely, and will be rarely observed by attackers. As discussed in Section 3.2.4,
this may lead to unrealistic security guarantees. To deal with this issue, we give a
probabilistic definition of network fingerprints, which will be incorporated into the
probabilistic security model (see Section 3.2.3).

Definition

Given a possibilistic network fingerprint fposs : O → P(O1), we define its proba-
bilistic counterpart as the function

fnet : O → (O1 → [0, 1]),

such that for each o ∈ O,
∑
o′∈O1

fnet(o)(o
′) = 1, and fnet(o)(o

′) > 0 iff o′ ∈ fposs(o).

We call such a network fingerprint a probabilistic network fingerprint.
For convenience of notation, given a probabilistic network fingerprint fnet , we

define the random variables F in and F out and use the notation fnet = P [F out|F in],
where fnet(o) = P [F out|F in = o] and fnet(o)(o

′) = P [F out = o′|F in = o]. Using
this notation, the conditions from above become: for each o ∈ O,

∑
o′∈O1

P [F out =

o′|F in = o] = 1, and P [F out = o′|F in = o] > 0 iff o′ ∈ fposs(o). In the case of
deterministic network fingerprints, F out is a function of F in.

Transforming a possibilistic to a probabilistic network fingerprint can be done
by explicitly defining the probability distribution P [F out|F in]. In future definitions
of specific network fingerprints, we will give a possibilistic definition, and when the
network fingerprint is viewed in a probabilistic scenario, unless otherwise specified,
we assume an arbitrary probability distribution P [F out|F in].

Network fingerprint composition

Given network fingerprints f ′net : O0 → (O1 → [0, 1]) and f ′′net : O1 → (O2 → [0, 1]),
we define probabilistic network fingerprint composition as

f ′′net ◦ f ′net : O0 → (O2 → [0, 1]),

P [F out
2◦1 = o2|F out

2◦1 = o0] =
∑
o1∈O1

P [F out
2 = o2|F out

2 = o1] · P [F out
1 = o1|F out

1 = o0].

The last definition allows an arbitrary long composition of network fingerprints,
where a recursive application of the definition above gives

(cn ◦ cn−1 ◦ · · · ◦ c1)(o0)(on) =∑
on∈On

∑
on−1∈On−1

· · ·
∑

o1∈O1

P [Cout
n = on|Cin

n = on−1] · P [Cout
n−1 = on−1|Cin

n−1 = on−2]

· · ·P [Cout
1 = o1|Cin

1 = o0].
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Similarly to the possibilistic case, we define the natural extension to tuples,
so that the composition of network fingerprints f ′net : O → (Ok

1 → [0, 1]) and
f ′′net : O1 → (O2 → [0, 1]) is possible, by transforming f ′′net to f̄ ′′net : Ok

1 → (Ok
2 →

[0, 1]). This means, given P [F out|F in], we want to obtain random variables F̄ in

defined over Ok
1 and F̄ out defined over Ok

2 such that if F̄ in = (x1, . . . , xk) and
F̄ out = (y1, . . . , yk), and the value of yi should only depend on xi. For this to hold, if
F̄ in is decomposed into independent random variables F̄ in

1 = x1, . . . , F̄
in
k = xk, and

if F̄ out is decomposed into independent random variables F̄ out
1 = y1, . . . , F̄

out
k = yk,

F̄ out
i will be only dependent on F̄ in

i . Thus, we obtain

P [F̄ out = (y1, . . . , yk)|F̄ in = (x1, . . . , xk)]
= P [F̄ out

1 = y1, . . . , F̄
out
k = yk|F̄ in

1 = x1, . . . , F̄
in
k = xk]

= P [F̄ out
1 = y1|F̄ in

1 = x1] · P [F̄ out
2 = y2|F̄ in

2 = x2] . . . P [F̄ out
k = yk|F̄ in

k = xk].

Adapting the probabilistic security model

We remind the reader that given a graph G = (V,E) and an application fingerprint
function fapp : V → O, in the probabilistic security model defined in Section 3.2.3,
two random variables were defined: X, representing the input of the system –
the user’s behavior, and Y , representing the output of the system – the attacker’s
observations, with Y = fapp(X). Applying the (composed) network fingerprint
fnet : O → (O1 → [0, 1]), the random variable Y will change accordingly, and will
be defined as Y = (fnet ◦ fapp)(X). Let X1, . . . , X` be the decomposition of X
such that if X = (v1, . . . , v`), then X1 = v1, . . . , X` = v`, and let Y1, . . . , Y` be
the decomposition of Y such that if Y = (o1, . . . , o`), then Y1 = o1, . . . , Y` = o`.
As we consider stateless network fingerprints, i.e., the observations produced by
fnet only depend on the current vertex being visited, we obtain P [Yi = oi|X =
(v1, . . . , v`)] = P [Yi = oi|Xi = vi] = P [F out

i = oi|F in
i = fapp(vi)]. Accordingly, we

compute P [Y |X] as follows:

P [Y = (o1, . . . , o`)|X = (v1, . . . , v`)]
= P [Y1 = o1, . . . , Y` = o`|X1 = v1, . . . , X` = v`]
(∗)
= P [Y1 = o1|X1 = v1, . . . , X` = v`] · · ·P [Y` = o`|X1 = v1, . . . , X` = v`]
(∗∗)
= P [Y1 = o1|X1 = v1] · · ·P [Y` = o`|X` = v`]
= P [F out = o1|F in = fapp(v1)] · · ·P [F out = o`|F in = fapp(v`)].

(∗) follows by the independence of Yi|X; (∗∗) follows by the statelessness of fnet .

4.2 Countermeasures as network fingerprints

Countermeasures are modifiers of observations which aim at reducing information
leaks in web applications. In our framework, countermeasures are modeled as net-
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work fingerprints. In the following, we discuss practical aspects of countermeasures.
To define countermeasures, we will use composed network fingerprints. In order

to deploy a network fingerprint as a countermeasure, two conditions must hold:
(1) it should be well-defined, and (2) it should be applicable in such a way that
users finally receive the service they are expecting. For example, a possible coun-
termeasure is sending the user on each request the HTTP “404 Not Found” error
message. This may be a very effective countermeasure as almost no information
is leaked about users’ browsing behavior, however users may complain about not
receiving the expected service, which makes the countermeasure not applicable. To
show that countermeasures are applicable, application scenarios for them should
be specified: how a countermeasure defined as a mathematical formula can be
deployed on a system.

As countermeasures aim at stopping information leaks, the most natural way
to deploy a countermeasure is as part of the cryptographic mechanism applied to
the data: the countermeasures can be built into the encryption routine, and the
decryption routine can include a mechanism to reverse the effect of the countermea-
sure and return the data to its original state. Similarly, this can be implemented
as extensions which run on both the browser and the server. Such an approach
would allow a great flexibility in developing countermeasures. Unfortunately, an
adoption of countermeasures against web browsing leakage on such a large scale is
a far-stretched goal as first the community should be convinced that the effect of
such countermeasures will justify the cost of their deployment, followed by a long
process of adoption.

In Section 4.3, along with formal definitions of network fingerprints, we dis-
cuss their applicability as countermeasures. We consider countermeasures which
run only on the user’s browser (client-side countermeasures), or only on the server
(server-side countermeasures), but not both (see discussion in previous paragraph).
We say that countermeasures have protocol-independent applicability if they mod-
ify the traffic before it has left its origin, and protocol-dependent applicability, if
the effect of the countermeasure relies on certain properties of the used protocols.
Thus, a countermeasure with protocol-dependent applicability may not work prop-
erly if the browsers and/or servers do not support the needed protocol features.
An example countermeasure with protocol-dependent applicability is utilizing the
HTTP/1.1 Range option, as proposed by Luo et al. [42]. This option allows re-
questing sub-ranges of objects [26], and by 2011 was supported by around 80% of
the deployed web servers [42].

4.3 Definition of practical network fingerprints

In this section, we define a number of practical network fingerprints. We identify
several basic network fingerprints which we use as building blocks for more complex
network fingerprints we call composed. We emphasize on the deployment of those



4.3. Definition of practical network fingerprints 33

protocol-independent protocol-dependent only
Name per file client client

pad × ×
buck × ×
split × ×
dummy ×
shuffle ×
wshuffle ×
k-par ×
k-mer × ×
inter ×

Table 4.1: Basic network fingerprints; per file denotes if the network fingerprint
takes as input one file, and thus application to webpages with multiple
objects will be performed per file. We denote whether the applicability
of the network fingerprint as a client-side countermeasure is protocol-
independent, or protocol-dependent.

network fingerprints as countermeasures, and discuss their applicability on the
client and on the server-side. We define network fingerprints possibilistically, and
if a network fingerprint is to be used in a probabilistic scenario, we assume an
arbitrary probability distribution on its output (see Section 4.1.2).

4.3.1 Basic network fingerprints

The basic network fingerprints we consider are listed in Table 4.1. In this section
we elaborate on each of the basic network fingerprints, giving a formal definition,
and discussing their applicability as countermeasures. As defined in Chapter 3, O
denotes the set of observations with O ⊂ (N × {↑, ↓})∗. In the following, some
network fingerprints are defined as functions over N; to apply such functions to
elements of O, the direction is retained, and if necessary, they can be applied per
file through natural extension to tuples, see Section 4.1.

Padding

Padding (which we denote as pad) is a widely considered countermeasure in the
literature (e.g., see [51, 39, 10]). It changes observations by increasing their size.
Let the set A ⊆ N describe the set from which values are chosen when padding is
applied. Then, we define the padding network fingerprint as

pad : N→ P(N),

pad(o) = {o+ p | p ∈ A}.
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A protocol-independent application of padding as a countermeasure is possible
on the server-side. For this, to each downloaded object, p additional characters
should be added, which should not change the way the browser displays the con-
tents. Padding of web-objects can be implemented by including variable-length
comments, which are possible in most languages (HTML, JavaScript), and most
file formats (JPEG, FLV), or by including special characters, e.g. whitespace char-
acters. Padding of network packets is also possible, for example by adding char-
acters to HTTP headers. A protocol-dependent client-side approach is possible by
deploying the HTTP Range option, or by causing TCP retransmissions, in order
to request data that has been already downloaded (see [42]). Note that the latter
methods will additionally incorporate other network fingerprints, such as dummy
and split (see below).

Bucketing

Bucketing (or buck) is a form of deterministic padding. Given a bucketing vector
b ∈ N∗, buck deterministically maps a file size x to the smallest b[i] ≥ x:

buck : N→ N,

buck(o) = o+ p,

where p =

{
min{b[i]− o | b[i] ≥ o} if ∃i : b[i] ≥ o
0 otherwise

For the applicability of bucketing as a countermeasure, the same considerations
hold as discussed for padding. An example of bucketing – equal-sized bucketing,
sets the bucket borders so that to each bucket, n observations from O are mapped.
In Chapter 7, we perform case studies which investigate the effect of equal-sized
bucketing with a varying bucket size n, on the security and the overhead of example
web applications.

Dummy

The network fingerprint dummy adds redundant files to observations. Formally,
we define dummy as

dummy : O → O

dummy(~o) = dummy(o1, . . . , on) = {(o′1, . . . , o′m) | (o1, . . . , on) v (o′1, . . . , o
′
m)}.

Protocol-independent application of dummy as a countermeasure is possible on
the server, e.g. by including objects in an HTML file which will be downloaded
but not shown to the user. On the client-side, protocol-independent application
is possible by requesting certain existing files from the server; for this, the client
should know in advance which files reside on the server. A protocol-dependent
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approach for implementing dummy on the client-side is using HTTP range and
TCP retransmission (see [42]).

Split

The network fingerprint split causes splitting a file into smaller files. Formally, we
define split as

split : O → P(O+)

split(o) = {(o1, . . . , on) | n ∈ N ∧
n∑
i=1

oi = o}

An approach for implementing split as a server-side countermeasure is possible on
the TCP level, by segmenting the file before it is sent on the network. Although this
approach uses TCP segmentation, we consider it protocol-independent, as packet
segmentation is a core feature of the TCP protocol [6]. A protocol-dependent ap-
plication on the client-side is possible, e.g. by setting the TCP advertising window,
or by utilizing HTTP Range (see [42]).

Shuffle

In a webpage containing more than one object, the base .html file is always re-
quested first, and the remaining web-objects (or inline web-objects) are usually
downloaded in the order in which they are included into the .html file. In the fol-
lowing, we propose the shuffle countermeasure, which changes the order in which
files are downloaded:

shuffle : O → P(O),

shuffle(o1, . . . , on) = Π(o1, . . . , on).

Figure 4.1 shows an example application of shuffle as a server-side countermea-
sure: the contents of the original .html file are stored as a JavaScript variable in
the source.js file; in main.html, all files are preloaded by including them in an
arbitrary order, after which the original HTML code is printed on screen. Note
that this code will not comply with the standard HTML document type definitions
(or DTDs), however our experiments show that modern browsers display sample
webpages correctly. This countermeasure requires a JavaScript-enabled browser,
and it will slow down the display of the contents until all files have been requested.

Weak shuffle

Using weak shuffle (wshuffle), first the base .html file is downloaded, and then the
inline files are downloaded in an arbitrary order. Formally, we define this network
fingerprint as

wshuffle : O → P(O),
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<img src="img3.png" height="0" width="0" style="display:none" />

<img src="img1.png" height="0" width="0" style="display:none" />

<img src="img4.png" height="0" width="0" style="display:none" />

<script type="text/javascript" src="source.js"></script >

<img src="img2.png" height="0" width="0" style="display:none" />

<script type="text/javascript"> <!--

document.write(source);

//--></script >

<noscript >JavaScript should be enabled to view this webpage!

</noscript >

main.html

var source =

'<head >\
<title >My image collection </title >\

</head >\

<body >\

<h1 >My image collection </h1 >\

<img src="img1.png" /><br />\

<img src="img2.png" /><br />\

<img src="img3.png" /><br />\

<img src="img4.png" /><br />\

</body >\

</html >';

source.js

Figure 4.1: A possible implementation of the shuffle countermeasure. The source
of the original .html file is included in source.js, and in main.html

all files can be preloaded in an arbitrary order.

wshuffle(o1, . . . , on) = {(o′1, . . . , o′n) ∈ Π(o1, . . . , on) | o′1 = o1}.

Note that using weak shuffle, we can define shuffle ′ as shuffle ′ = shuffle ◦wshuffle,
and we obtain shuffle = shuffle ′ = shuffle ◦ wshuffle.

Unlike shuffle, when weak shuffle is used, an attacker can be sure that the first
downloaded file is the base file. It has a protocol-independent applicability on the
client-side: after fetching the base .html file, instead of downloading inline files
in the order of their occurrence in the base file, requests for them can be sent
in an arbitrary order. On the server-side, the inline objects can be preloaded by
including them as hidden files in the beginning of the body of the .html file; this
does not require JavaScript, and the resulting code will be DTD-compliant. Using
this countermeasure, the display of inline files can be slowed down, as those files
will be requested after the whole .html file is parsed.
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<html>

<head>

<title >The original title</title>

</head>

<body style="margin :0px;">

<iframe src="redundant1.html" style="display:none"></iframe >

<iframe src="original.html" width="100%" height="100%" style="

border :0px"></iframe >

<iframe src="redundant2.html" style="display:none"></iframe >

<iframe src="redundant3.html" style="display:none"></iframe >

</body>

</html>

main.html

Figure 4.2: A possible server-side implementation of the k-parallelism countermea-
sure. The original and the redundant files can be downloaded in anar-
bitrary order by including themin iframes; the original file is displayed
to the user, while the remaining files are hidden.

k-parallelism

The k-parallelism (k-par) network fingerprint requests k − 1 redundant requests
every time a vertex v is visited; thus, an observer does not know which observation
corresponds to v, and which corresponds to redundant vertices. Formally, k-par is
defined as follows:

k-par : O → P(Ok),

k-par(o) = {(o1, . . . , ok)|o ∈ (o1, . . . , ok)},

where Ok denotes that an observation corresponds to k (simultaneously) visited
vertices.

A protocol-independent application of k-par as a countermeasure is possible both
on the client, and on the server-side. On the client-side, the implementation is
straightforward: every time a user requests a vertex v, in parallel, HTTPS requests
for additional vertices v(1), . . . , v(k−1) can be issued. A possible implementation of
k-par on the server-side is depicted on Figure 4.2: the original webpage and the
redundant webpages are all included in iframes; the original iframe is displayed to
the user, while the redundant ones are hidden from the user.

An attacker observing the output of k-par may be able to directly infer the k
streams of observations corresponding to the k requested vertices, e.g. by inspect-
ing TCP headers of TLS-encrypted data. This can be addressed by applying the
interleave network fingerprint, see below.
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k-merging

Next we define the k-merging (k-mer) network fingerprint. It is defined on web-
objects (and thus should be applied per file), and has a similar functionality as k-
parallelism: k−1 redundant vertices are picked, however only one file is transferred
through the network, and its size is the sum over the sizes of the k files.

Let the function k-sum : Nk → N be the sum of k elements of N. We define the
k-merging countermeasure as

k-mer : N→ P(N),

k-mer = k-sum ◦ k-par.

Essentially, k-merging is a form of padding, and for its application as a counter-
measure, the same considerations hold as discussed for padding (see above).

Interleave

The last basic fingerprint we present is interleave. It takes streams corresponding
to k vertices (e.g., produced by k-parallelism), and converts those streams into
one big stream of observations, preserving the order in which files are downloaded.
Formally, interleave is defined as follows:

Ok → P(O)

inter(~o1, . . . , ~ok) = {(o′1, . . . , o′m) ∈ Π(
k⊔
j=1

~oj) |

∀o′i 6= o′1, o
′
i = πn(~oj) ∃i2 < i : o′i2 = πn−1(~oj)}

To implement inteleave as a countermeasure, it should become impossible to tell
which files belong to which stream. Protocol-independent approaches for this are
not known to us; a protocol-dependent approach to achieve this is HTTP pipelining
(see [42]). Interleaving of streams can be also achieved by tunneling traffic through
an encrypted proxy (see Section 4.4).

4.3.2 Composed network fingerprints

The basic fingerprints defined in the previous section can be used as building blocks
for more complex network fingerprints, e.g. through network fingerprint composi-
tion (see Section 4.1), or through case distinction. In this section we will discuss
several example composed network fingerprints built from basic ones. The com-
posed network fingerprints we consider are summarized in Table 4.2.
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protocol-independent reveals
Definition client # files

Padding-based
pad ◦ buck ×
buck ◦ pad ×
perfile(pad ◦ buck) =: PBF ×
dummy ◦ perfile(pad ◦ buck) =: DPBF

Parallelism-based
inter ◦ k-par ×
inter ◦ perfile(split) ◦ k-par ×
wshuffle ◦ k-par ×
inter ◦ wshuffle ◦ k-par

k-mer-1st ◦ inter′ ◦ wshuffle ◦ k-par =: KIWK
Mixed

PBFD ◦KIWK

Table 4.2: Example composed network fingerprints; protocol-independence client
denotes if the network fingerprint has protocol-independent applicability
as a client-side countermeasure, and reveals # files denotes that the used
network fingerprint does not change the number of downloaded files

Example 1: Padding-based network fingerprints

If we are given an observation of a vertex v consisting of one web-object, i.e,
v = w, a (randomized) padding pad and a bucketing buck can be combined by
either computing pad ◦ buck, or buck ◦ pad. Application of any form of padding
or a composition thereof is not directly possible if the target webpage consists of
more than one web-object, i.e., ~v = (w1, . . . , wn), but should be applied per file.
For example, in the case of pad ◦ buck, we define the countermeasure perfile(pad ◦
buck) := PBF, with

perfile(pad ◦ buck)(o1, . . . , on) = ((pad ◦ buck)(o1), . . . , (pad ◦ buck)(on)).

The application of any form of (composed) padding as a countermeasure may be
useless if all vertices ~v in a web-graph consist of a unique number of web-objects.
To avoid this, we can additionally apply dummy. Thus, we obtain the new counter-
measures dummy ◦perfile(pad◦buck) := DPBF, and perfile(pad◦buck)◦dummy :=
PBFD, which no longer deterministically leak the number of files in a webpage.

Example 2: Parallelism-based network fingerprints

A second example is building a network fingerprint based on k-par. Possible
combinations include inter ◦ k-par, inter ◦ perfile(split) ◦ k-par, wshuffle ◦ k-par,
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inter◦wshuffle ◦k-par, where the overbar denotes a natural extension to tuples, see
Section 4.1. We explain how inter ◦ wshuffle ◦ k-par works in the web-navigation
scenario: k − 1 redundant webpages are chosen, after which first one of the k base
(.html) files are downloaded, followed by a sequence of all remaining files, in such
an order that every downloaded inline file is preceded by the base file of the page
where it was included. A special case of this network fingerprint first loads all k
base files, and then loads all inline files in a random order. Formally, this network
fingerprint is defined as inter′ ◦ wshuffle ◦ k-par, where

inter′(~o1, . . . , ~ok) ={(o′1, . . . , o′m) ∈ inter(~o1, . . . , ~ok) |
o′1, . . . , o

′
k ∈ Π(π1(~o1), . . . , πk(~ok))}.

Additionally, the base files can be merged through a variant of k-mer:

k-mer-1st : Nm → Nm−k+1,

k-mer-1st(o1, . . . , ok, ok+1, . . . , om) = k-sum(o1, . . . , ok) t (ok+1, . . . , om).

Then, we obtain the network fingerprint k-mer-1st◦inter′◦wshuffle◦k-par:=KIWK.

Example 3: Mixed network fingerprints

The example padding- and redundancy-based network fingerprints can also be com-
bined. For example, (k− 1) redundant webpages can be chosen, their observations
can be merged into one big observation whose first file is the merging of the k
base files, then on each of the files in the new observation we can apply padding
and we can add dummy packets, obtaining the new composed network fingerprint
PBFD ◦KIWK.

4.4 Network protocols as network fingerprints

In Chapter 3, we assumed that an attacker observes the sizes of transmitted web-
objects (the application fingerprint fapp). In practice, as data passes through the
protocol stack, the network protocols make certain changes to the transferred ob-
jects: when a message is transmitted, it is split into packets, and multiple headers
are added. In the following, we show how the effect of network protocols to ob-
servations can be modeled as composed network fingerprints, built from the basic
network fingerprints defined in Section 4.3.1.

Packet headers When passing through different network layers, each layer adds
its own headers, often of a fixed size. A header can be interpreted as a padding:

header = pad,
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and if the header is fixed-sized, then pad will be deterministic.

Packet segmentation Packet segmentation is the process of dividing a packet
into smaller chunks, where each of those chunks obtains a new header. For example,
segmentation is used by the TCP protocol for congestion control. Formally, packet
segmentation corresponds to

segment = header ◦ split,

where split is usually deterministic.

Tunneling Tunneling encapsulates traffic from one protocol into another protocol.
It may add a new layer of encryption (e.g. using an SSH tunnel), and in this case
none of the original packet headers will transmitted in the clear (see Section 2.1.2).
As a consequence, an attacker may lose the ability to distinguish which packets
correspond to which web objects. Additionally, certain background traffic which
is easily filtered out in the presence of unencrypted headers, may appear as part
of the downloaded contents. We model encrypted tunneling as an interleaving of
multiple streams of segmented packets

tunnel = inter ◦ segment ◦ k-par.





5 Formal analysis

The models presented in Chapter 3 and Chapter 4 provide tools for formal reasoning
about the problem of information leakage in web applications. In the current
chapter, we use those tools to formally analyze different aspects of the problem.

5.1 The effect of network fingerprint composition

We first address the question what the effect of applying a network fingerprint on
the security of a web application is, and whether this effect can be strengthened by
fingerprint composition. Both possibilistically and probabilistically, we show that a
fingerprint fnet can be strengthened by composing it with a fingerprint f ′net , however
one should be careful in which order the network fingerprints are composed.

5.1.1 Possibilistic case

The following theorem shows that in the possibilistic security model (see Sec-
tion 3.2.2), a composed network fingerprint f̂ ′net ◦ fnet provides better security
guarantees than the network fingerprint fnet , where f̂ ′net is the natural extension of
f ′net to powersets (see Section 4.1).

Theorem 1. Let (fapp(v1), . . . , fapp(v`)) = (o1, . . . , o`) ∈ O` be an observation path,
let sec be a secret specification, let fnet be a network fingerprint O → P(O′), and let
f ′net be a network fingerprint O′ → P(O′′). Given observation paths (o′1, . . . , o

′
`) ∈

(fnet(o1)× · · · × fnet(o`)), and (o′′1, . . . , o
′′
` ) ∈ (f ′net(o

′
1)× · · · × f ′net(o′`)), then,

Ksec(G, (o
′
1, . . . , o

′
`), fnet ◦ fapp) ⊆ Ksec(G, (o

′′
1, . . . , o

′′
` ), f̂

′
net ◦ fnet ◦ fapp).

Proof. Let sec(v1, . . . , v`) ∈ Ksec(G, (o
′
1, . . . , o

′
`), fnet ◦ fapp). According to the def-

inition of Ksec(·), this implies (1) (v1, . . . , v`) ∈ paths(G, `) and (2) ∀i ∈ [`] : o′i ∈
(fnet ◦fapp)(vi). To show that sec(v1, . . . , v`) ∈ Ksec(G, (o

′′
1, . . . , o

′′
` ), f̂

′
net ◦fnet ◦fapp),

it is left to show that (3) ∀i ∈ [`] : o′′i ∈ (f̂ ′net ◦ fnet ◦ fapp)(vi), which by definition is
equivalent to o′′i ∈

⋃
o∈fnet◦fapp(vi)

f ′net(o). This statement holds, because o′′i ∈ f ′net(o′i)

and o′i ∈ fnet(oi) = (fnet ◦ fapp)(vi).

Theorem 1 implies that the application of a network fingerprint cannot reveal
more information about the secret values than what is known without the appli-

43
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cation of this network fingerprint. In particular this means that a network finger-
print cannot invert another network fingerprint’s effect. However, as the following
proposition shows, one should be careful in which order network fingerprints are
composed: if one wants to strengthen a network fingerprint fnet by composing it
with another network fingerprint, fnet should be put on the right-hand side of the
composition.

Proposition 1. In the setting of Theorem 1, given (o′′′1 , . . . , o
′′′
` ) ∈ (f ′net(o1)×· · ·×

f ′net(o`)), there are cases where

Ksec(G, (o
′′′
1 , . . . , o

′′′
` ), f ′net ◦ fapp) ⊃ Ksec(G, (o

′′
1, . . . , o

′′
` ), f̂

′′
net ◦ fnet ◦ fapp).

Proof. Let f ′net : N → P(N) be defined as f ′net(x) = 2 if x ≤ 2 and f ′net(x) = {x}
otherwise, and let fnet : N → P(N) be defined as fnet(x) = x + 1. Let v = 2.
Then, o′′′ = f ′net(2) = 2, and o′′ = (f ′net ◦ fnet)(2) = 3. Ksec(G, (o

′′′
1 , . . . , o

′′′
` ), f ′net ◦

fapp) = f
′′−1
net (o′′′) = f

′′−1
net (2) = {1, 2}, and Ksec(G, (o

′′′
1 , . . . , o

′′′
` ), f ′net ◦fapp) = (f ′net ◦

fnet)
−1(o′′) = (f ′net ◦ fnet)−1(3) = {2}.

Thus, by Theorem 1 and Proposition 1, in order to guarantee a strengthening
of the network fingerprint fnet by means of composition, we should compose it
with other network fingerprints f ′net by first applying fnet and then f ′net , and not
the other way around, i.e., the resulting composed network fingerprint should be
f̂ ′net ◦ fnet , and not f̂net ◦ f ′net . This also means that in some cases, while f̂ ′net ◦ fnet
provides stronger security guarantees than fnet , using only f ′net would have been
the better choice.

5.1.2 Probabilistic case

We now revisit the questions about the role of network fingerprint composition
from the previous section using probabilistic security definitions (see Section 3.2.3).
First, we show a probabilistic counterpart of Theorem 1.

Theorem 2. Let sec be a secret specification, let f ′net be a network fingerprint
O → (O′ → [0, 1]), let f ′′net be a network fingerprint O′ → (O′′ → [0, 1]), and let Y ′,
Y ′′, and Y (′′◦′) be the output random variables when f ′net , f

′′
net , and f ′′net ◦ f ′net are

applied, respectively. Then, I∞(sec(X);Y ′) ≥ I∞(sec(X);Y (′′◦′)).

For the proof of Theorem 2, we introduce the data processing inequality. Intu-
itively, it states that processing of data cannot increase the amount of information
contained in these data. The data processing inequality is a well-known result for
Shannon-entropy [17]. In the following, we show that it also holds in the case of
min-entropy1.

1For an alternative proof, refer to the concurrent work by Espinoza and Smith [22]
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Lemma 3 (Data Processing Inequality). If the random variables X, Y, Z form a
Markov chain X → Y → Z, then I∞(X;Y ) ≥ I∞(X;Z).

Proof. For this proof, we use Lemma 1 and Lemma 2 shown in Section 2.2.1.
By Lemma 1, we have (1) I∞(X;Z) + I∞(X;Y |Z) = I∞(X;Y ) + I∞(X;Z|Y ).
By Lemma 2, X → Y → Z is equivalent to Z → Y → X, and thus, for all
x, y, z, we have P [X = x|Y = y, Z = z] = P [X = x|Y = y], from which we
obtain H∞(X|Y, Z) = H∞(X|Y ), and therefore (2) I∞(X;Z|Y ) = H∞(X|Y ) −
H∞(X|Y, Z) = 0. Thus, we obtain

I∞(X;Z) ≤ I∞(X;Z) + I∞(X;Y |Z)
(1)
= I∞(X;Y ) + I∞(X;Z|Y )
(2)
= I∞(X;Y )

Proof of Theorem 2. By construction, the output of a network fingerprint only de-
pends on its immediate inputs, and thus P [Y (′′◦′) = ~o2|sec(X) = a, Y ′ = ~o1] =
P [Y (′′◦′) = ~o2|Y ′ = ~o1]. Thus, sec(X), Y ′, Y (′′◦′) form a Markov chain sec(X) →
Y ′ → Y (′′◦′). According to the data processing inequality (Lemma 3), we obtain
I∞(sec(X);Y ′) ≥ I∞(sec(X);Y (′′◦′)).

Theorem 2 shows that, as in the possibilistic case (Theorem 1), composition of
network fingerprints increases the security of a web application. Next we give a
probabilistic counterpart of Proposition 1, showing that using the network finger-
print f ′′net ◦f ′net may provide worse probabilistic security guarantees than only using
f ′′net , and thus designers of network fingerprints should be careful in which order
fingerprints are composed.

Proposition 2. In the setting of Theorem 2, there are cases where I∞(sec(X);Y ′′) <
I∞(sec(X);Y (′′◦′)).

Proof. The proof is an extension of the counterexample given in the proof of Propo-
sition 1. We restrict the domain of X to be {1, 2} and set P [X = 1] = P [X =
2] = 0.5. Analogously to the possibilistic version of this proof, f ′net is defined as
P [Y ′ = y|X = x] = 1 if y = x + 1, and P [Y ′ = y|X = x] = 0 otherwise. In the
definition of f ′′net , we set P [Y ′′ = y|X = x] = 1 if y = 2, and P [Y ′′ = y|X = x] = 0
otherwise.

Applying the information theoretic definitions, in order to show that I∞(sec(X);Y ′′) <
I∞(sec(X);Y (′′◦′)) holds, it is sufficient to show∑
y

P [Y ′′ = y] max
x

P [X = x|Y ′′ = y] <
∑
y

P [Y (′′◦′) = y] max
x

P [X = x|Y (′′◦′) = y].
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Applying the Bayes law, this is equivalent to∑
y

max
x

P [X = x]P [Y ′′ = y|X = x] <
∑
y′

max
x

P [X = x]P [Y (′′◦′) = y′|X = x].

This inequality holds, as the left-hand side is equal to 1/2, and the right-hand side
is equal to 1.

5.1.3 A landscape of network fingerprints

In both Theorem 1 and Theorem 2 we show that a network fingerprint composition
f ′net ◦ fnet can be seen as at least as strong as the network fingerprint fnet . We
denote this notion of a “stronger network fingerprint” with the symbol C, and
given network fingerprints fnet and f ′net , we write fnet C f ′net iff f ′net = f ′net ◦ fnet .
fingerprints, as defined in Section 4.3. It shows the relationship of the defined
network fingerprints according to their strength. To show wshuffle C shuffle, we
use shuffle = shuffle ◦ wshuffle (see Section 4.3.1). The remaining relations are
a direct application of Theorem 1 and Theorem 2. This figure shows that both
countermeasures (see Section 4.2), and network protocols (see Section 4.4), improve
the security in web applications.

5.2 Deterministic network fingerprints

In this section, we investigate the probabilistic security guarantees implied by de-
terministic network fingerprints (e.g., many countermeasures proposed in the lit-
erature are deterministic, see [51, 39]). A deterministic network fingerprint fnet ,
together with an application fingerprint fapp , form a function fnet ◦ fapp : X → Y ,
which induces a partition of X into blocks {B(y)|y ∈ Y}, with B(y) = (fnet ◦
fapp)−1(y) = {x ∈ X |fnet ◦ fapp(x) = y}. This allows us to leverage and extend
existing methods for computing probabilistic security measures to give more direct
approaches for computing the remaining uncertainty.

As defined in Section 2.2.1, the remaining uncertainty is computed as

H∞(X|Y ) = − log
∑
y∈Y

P [Y = y] max
x∈X

P [X = x|Y = y].

In the following theorem, we show an alternative approach for calculating remaining
uncertainty for deterministic network fingerprints.

Theorem 3. Let fnet be a deterministic network fingerprint. Then, we obtain

H∞(X|Y ) = − log
∑
y∈Y

max
x∈B(y)

P [X = x]
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Figure 5.1: A landscape of network fingerprints. The defined network fingerprints
are in an C-relation to each other, which denotes a “stronger” net-
work fingerprint in the sense of Theorem 1 and Theorem 2. Different
colors (see legend) denote the applicability of network fingerprints as
countermeasures (see discussion in Section 4.2).
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Proof.
H∞(X|Y ) = − log

∑
y∈Y

P [Y = y] max
x∈X

P [X = x|Y = y]

= − log
∑
y∈Y

max
x∈X

P [Y = y]P [X = x|Y = y]

(1)
= − log

∑
y∈Y

max
x∈X

P [X = x]P [Y = y|X = x]

(2)
= − log

∑
y∈Y

max
x∈B(y)

P [X = x].

(1) follows from the Bayes’ law. We obtain (2) as the determinism of fnet implies
that P [Y = y|X = x] = 1 for x ∈ B(y), and P [Y = y|X = x] = 0 otherwise.

If we are given the probabilities of the least and most likely possible values of
X, the following proposition allows for simpler calculation of the upper and lower
bounds of H∞(X|Y ).

Proposition 3. Let xmax := arg max
x∈X

P [X = x] and xmin := arg min
x∈X

P [X = x].

Then we obtain the following bounds:

(i) H∞(X|Y ) ≥ − log |Y|P [X = xmax]

(ii) H∞(X|Y ) ≤ − log(P [X = xmax] + (|Y| − 1)P [X = xmin])

Proof.

H∞(X|Y ) = − log
∑
y∈Y

max
x∈B(y)

P [X = x]

≥ − log
|Y|∑
i=1

P [X = xi]

≥ − log |Y|max
x∈X

P [X = x]

H∞(X|Y ) = − log
∑
y∈Y

max
x∈B(y)

P [X = x]

≤ − log(max
x∈X

P [X = x] +
|Y|−1∑
i=1

P [X = xn−i+1])

≤ − log(max
x∈X

P [X = x] + (|Y| − 1) min
x∈X

P [X = x])

If we additionally assume that X is uniformly distributed, further simplification
of the calculation of security guarantees is possible. This is a known result from
Smith [48], and in the following give an alternative proof using Proposition 3.

Corollary 1. Assuming a uniform distribution on X, for a deterministic network
fingerprint fnet we obtain:

(i) H∞(X|Y ) = − log |Y||X | ,
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(ii) I∞(X;Y ) = log |X |.

Proof. As X is distributed uniformly, we obtain that P [X = x] = 1/|X | for all x.
Applying this to the results in Proposition 3, we obtain

H∞(X|Y ) ≥ − log |Y|max
x

P [X = x]

= − log |Y||X |

H∞(X|Y ) ≤ − log(max
x

P [X = x] + (|Y| − 1) min
x
P [X = x])

= − log( 1
P [X=x]

+ (|Y| − 1) 1
P [X=x]

)

= − log |Y||X |

For the second statement, as X is uniformly distributed, we obtain

H∞(X) = − log(max
x

P [X = x]) = − log 1/|X | = log |X |.

Thus,
I∞(X;Y ) = H∞(X)−H∞(X|Y )

= log |X | − log |X |+ log |Y|
= log |Y|

Guidelines for designing deterministic countermeasures

A general guideline for designing deterministic countermeasure is aiming at a lower
number of observations |Y|. Clearly, if |Y| = 1, the induced security guarantees
will be maximal, and if |Y| = |X |, the induced security guarantees will be minimal.
If X is uniformly distributed, a smaller value of |Y| leads to better security (see
Corrolary 1). While further formal investigation of the connection between |Y| and
the implied security guarantees is left to future work, the experiments we performed
(see Chapter 7) indicate that in a more general case, a lower |Y| also leads to better
security.

A second guideline follows from the corollary below. It shows that, if a new
countermeasure is constructed which merges the resulting blocks, then the new
countermeasure gives better security guarantees.

Corollary 2. Let f ′net and f ′′net be deterministic network fingerprints, and Y ′ and
Y ′′ be the corresponding output random variables. Let f ′net induce partition P1, and
let f ′′net induce the partition P2, which is obtained from P1 by merging two blocks in
P1. Then,

H∞(X|Y ′) ≤ H∞(X|Y ′′).

Proof. Let B1, . . . , Bn be the blocks in P1 which are merged in P2, i.e., P2 =
(P1 \ {B1, . . . , Bn}) ∪ {B1 ∪ · · · ∪ Bn}. Let g be a function such that g(x) = a if
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x ∈ Bi for i ∈ [`], and g(x) = x otherwise. Then, f ′′net = g◦f ′net , and by Theorem 2,
we obtain H(X|Y ′) ≤ H(X|Y ′′).

5.3 Outdegree and k-parallelism

In this section, we investigate the connection between the number of outgoing
hyperlinks in webpages and the possibilistic security guarantees provided by the
countermeasure k-parallelism (or k-par), defined in Section 4.3. We show a lower
bound for the possibilistic security guarantees provided by k-par depending on a
structural property of a web-graph – its outdegree. This allows flexible construction
of countermeasures by selecting a value for the parameter k, which delivers the
desired security guarantees.

Let G = (V,E) be a directed graph. We define the outdegree of a vertex v
(denoted δ(v)) to be the number of outgoing edges from v, and the outdegree of G
(denoted δ(G)) to be the minimal outdegree of any vertex in this graph. If G is a
web-graph, δ(G) indicates the minimal number of outgoing links from one page to
other pages in the web-graph. When applying k-par, at each vertex on the path
(v1, . . . , v`), k− 1 additional vertices are picked and transmitted over the network.
We assume that for each i ∈ [`], the k − 1 additional vertices are distinct and are
not equal to vi.

The following lemma establishes a connection between the length of a path ` in
the graph G, the outdegree of the graph δ(G), and the number of parallel streams k.

Lemma 4. Let G = (V,E) be a connected directed graph, and let k, ` ∈ N. Let
(v1, . . . , v`) be a path in G of length `, and let A1, . . . , A` be subsets of V , such
that for each i ∈ [`], |Ai| = k and vi ∈ Ai, as depicted on Figure 5.2. If k ≥
n− δ(G) + 1, then the number of possible paths (v1, . . . , v`) in G such that vi ∈ Ai,
is ≥ k · (k − (n − δ(G)))`−1. If the outdegree of all vertices in G is exactly δ(G),
then an equality holds.

Proof. Assume that k ≥ n−δ(G)+1. This proof goes by induction over the length
of the path `.

Let ` = 1. Then, the possible paths of length 1 consist of any of the elements in
A1, therefore |A1| = k = k · (k − (n− δ(G)))0.

Assume that for an ` ∈ N, the number of possible paths is ≥ k·(k−(n−δ(G)))`−1.
If we increase the path length to ` + 1, we obtain an additional vertex v`+1, and
an additional set A`+1 with |A`+1| = k and v`+1 ∈ A`+1. Each vertex u ∈ A` has
an outdegree of at least δ(G), and therefore there are at most n − δ(G) vertices
u1 such that (u, u1) /∈ E. As |A`+1| = k ≥ n − δ(G), and there are at least
k − (n − δ(G)) elements w1, . . . , wk−(n−δ(G)) ∈ A`+1, such that (u,w) ∈ E. As a
result, each path of length ` ending with u can be extended by adding one of the
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Figure 5.2: Sketch of the setting of Lemma 4 and Theorem 4. (v1, . . . , v`) is a path
in a graph G, and each set Ai contains the vertex vi and k − 1 other
vertices r1,i, . . . , rk−1,i. Each of those vertices has an outdegree of at
least δ(G).

.

edges (u,w1), . . . , (u,wk−(n−δ(G))). Thus, the number of paths of length ` + 1 will
be at least (k− (n− δ(G)))`−1 times the number of paths of length `, and therefore
it will be ≥ k · (k − (n− δ(G)))`.

Theorem 4. Let G = (V,E) be a web-graph, let (v1, . . . , v`) be a navigation path, let
the countermeasure (k−1)-parallelism be applied, and let the secret specification sec
be the identity function. Let for each i ∈ [`], oi ∈ k-par◦fapp(vi). If k ≥ n−δ(G)+1,
then

|Ksec(G, `, (o1, . . . , o`), k-par ◦ fapp)| ≥ k · (k − (n− δ(G)))`.

Proof. Each oi ∈ k-par ◦ fapp(vi) contains the observations to k vertices (vi, r1,i,
. . . , rk−1,i) =: Ai. According to the definition of ambiguity, Ksec(G, `, (o1, . . . , o`),
k-par ◦ fapp) is the set of possible (w1, . . . , w`) paths such that wi ∈ Ai. After
Lemma 4, |Ksec(G, `, (o1, . . . , o`), k-par ◦ fapp)| ≥ k · (k − (n− δ(G)))`.

Theorem 4 implies that if we add more parallel streams than n− δ(G), which is
the maximal number of non-adjacent vertices to any vertex in G, we can guarantee
a lower bound on the cardinality of the ambiguity set, which is exponential in the
length of the path `.

Proposition 4. If in the setting of Lemma 4 we have k < n − δ(G), then there
exists a graph G, a path (v1, . . . , v`) in G, and k redundant streams, such that the
number of possible paths (w1, . . . , w`) in G with wi ∈ Ai is 1.

Proof. Let G = (V,E) be a graph with V = {u1, . . . , un−δ(G), w1, . . . , wδ(G), v},
let out(u1) = out(u2) = · · · = out(uk−1) = {w1, . . . , wδ(G)}, and let out(v) =
{v, w1, . . . , wδ(G)−1}. Let the navigation path be (v1, . . . , v`) with vi = v. Now,
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applying k-par for k = n− δ(G), at positions 1, . . . , ` we may pick the same k − 1
redundant vertices u1, . . . , un−δ(G). In this case, the only possible path will be
(v1, . . . , v`) = (v, . . . , v).

In the example given in the proof above, if we increase k by one, i.e., k = n −
δ(G)+1, at each position on the path we have to add either v or wi for some i, and
according to Lemma 4, the number of possible paths grows to k ·(k−(n−δ(G)))`−1.
In this sense, the bound given by Theorem 4 is sharp.

We note that similar analysis can be performed for other countermeasures, for
example those results can be transferred to deterministic countermeasures in the
spirit of Section 5.2. We will leave further possibilistic analyses based on outdegree,
as well as their probabilistic counterparts, to future work.

5.4 The effect of added ambiguity

In this section, we investigate the effect of ambiguity added to the output of a
network fingerprint, where added ambiguity is defined as follows.

Definition 8. Given network fingerprints f ′net , f
′′
net : O → P(O′), we say that f ′′net

is a variant of f ′net with added ambiguity iff ∀o ∈ O : f ′net(o) ⊆ f ′′net(o).

For example, a randomized network fingerprint can be interpreted as a determin-
istic network fingerprint with added ambiguity. In the probabilistic case, added
ambiguity means that for all observations o, P [Y ′ = o] > 0 ⇒ P [Y ′′ = o] > 0.
Note that f ′′net cannot be interpreted as a network fingerprint composition of f ′net
with a network fingerprint adding ambiguity, as the result of f ′′net depends on the
input of f ′net , and not on its output.

In the following, we show that using Definition 8, added ambiguity increases
the security of a network fingerprint only in the possibilistic model, while in the
probabilistic model it may also be harmful to security. This is an example of a case
where the possibilistic definitions do not capture potential security vulnerabilities
which stem from the probabilistic nature of systems.

5.4.1 Possibilistic case

The following proposition shows that if on each input a network fingerprint returns
values which are possible observations of another network fingerprint on the same
input, then the ambiguity set of this network fingerprint will be a subset of the
ambiguity set of the second network fingerprint.

Proposition 5. Let f ′net , f
′′
net : O → P(O′) be network fingerprints, and let obser-

vations o′1, . . . , o
′
` ∈ (O′)` and secret specification sec be given. If ∀o ∈ O : f ′net(o) ⊆

f ′′net(o), then Ksec(G, (o
′
1, . . . , o

′
`), f

′
net ◦ fapp) ⊆ Ksec(G, (o

′
1, . . . , o

′
`), f

′′
net ◦ fapp).
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Proof. Given sec(v1, . . . , v`) ∈ Ksec(G, (o
′
1, . . . , o

′
`), f

′
net ◦ fapp), it follows that ∀i ∈

[`] : o′i ∈ (f ′net ◦ fapp)(vi) = f ′net(fapp(vi)). As ∀o ∈ O : f ′net(o) ⊆ f ′′net(o), we
obtain ∀i ∈ [`] : f ′net(fapp(vi)) ⊆ f ′′net(fapp(vi)), and thus o′i ∈ f ′′net(fapp(vi)) =
(f ′′net ◦ fapp)(vi).

5.4.2 Probabilistic case

For the problem of added ambiguity to network fingerprints, we do not obtain
a probabilistic confirmation of Proposition 5. In the following we give two simple
examples for added ambiguity which decreases the probabilistic security guarantees
of network fingerprints.

Let X be distributed uniformly with P [X = x1] = P [X = x2] = 1/2. As a first
example, consider a network fingerprint fnet with a corresponding output random
variable Y and observations o1, o2 with P [Y = o1|X = x1] = P [Y = o2|X = x1] =
P [Y = o1|X = x2] = P [Y = o2|X = x2] = 1/2, as well as a network fingerprint f ′net
with corresponding output random variable Y ′, with P [Y = o1|X = x1] = P [Y =
o2|X = x2] = 3/4, P [Y = o2|X = x1] = P [Y = o1|X = x2] = 1/4. According to
Definition 8, f ′net is a variant of fnet with added ambiguity. However, we obtain
H∞(X|Y ) = 1 > 0.4 ≈ H∞(X|Y ′), which means that f ′net gives worse security
guarantees than fnet .

In our second example, the network fingerprint f ′net will not only change the
probability distribution of fnet , but will allow an additional value o3 to be observed.
fnet will be defined as above, and f ′net is defined as P [Y = o1|X = x1] = P [Y =
o2|X = x1] = 1/2, and P [Y ′ = o1|X = x2] = P [Y ′ = o2|X = x2] = P [Y ′ = o3|X =
x2] = 1/3. Here we obtain H∞(X|Y ) = 1 > 0.6 ≈ H∞(X|Y ′), which again means
that adding ambiguity here makes the security guarantees worse.

5.5 The effect of added edges

A further issue we investigate is whether web-graphs with a higher density (which
contain more hyperlinks between pages), leak less information than web-graphs
with a lower density. Here again there is a discrepancy between the possibilistic and
the probabilistic notions of security: while possibilistically adding links increases
the security guarantees, probabilistically such a statement is not possible without
further assumptions.

Proposition 6. Let G = (V,E) and G′ = (V,E ∪ E ′) be web-graphs, and let a
secret specification sec, a network fingerprint fnet : O → P(O′), and observations
o1, . . . , o` ∈ (O′)` be given. Then,

Ksec(G, (o1, . . . , o`), fnet ◦ fapp) ⊆ Ksec(G
′, (o1, . . . , o`), fnet ◦ fapp).
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Proof. This proof goes similarly to the proof of Theorem 1. Let sec(v1, . . . , v`) ∈
Ksec(G, (o1, . . . , o`), fnet◦fapp), from which follows that (1) (v1, . . . , v`) ∈ paths(G, `)
and (2) ∀i ∈ [`] : oi ∈ (fnet ◦ fapp)(vi). Now it is left to show that (3) (v1, . . . , v`) ∈
paths(G′, `). This is trivially the case, because each edge in G is an edge in G′ by
definition, and thus each path in G is a path in G′. Therefore, (2) and (3) imply
sec(v1, . . . , v`) ∈ Ksec(G

′, (o1, . . . , o`), fnet ◦ fapp).

Proposition 6 states that increasing the set of edges in the graph will also increase
the resulting ambiguity set. However, a similar argument as in Section 5.4.2 shows
that more links may lead to decrease of security. For example, more links may
lead to new possible paths which have observations that can be distinguished by
attackers with high probability. This is a further example for discrepancies between
the possibilistic and the probabilistic models, where relying on possibilistic security
may miss potential vulnerabilities. For a clear probabilistic statement on this issue,
the link between more hyperlinks in a web-graph and the probabilistic notions of
security should be investigated more closely, which we leave to future work.

5.6 Summary and discussion

This chapter presented formal analysis of different aspects of the problem of infor-
mation leaks in web browsing traffic, based on the models presented in Chapter 3
and Chapter 4.

In Section 5.1, we showed that a network fingerprint can be strengthened by
composing it with other network fingerprints. This notion of stronger network fin-
gerprints can be interpreted as “the more, the better”; however, we show that in
order to strengthen a network fingerprint fnet by composing it with other finger-
prints, those should be applied after fnet (composition to the left), and not before
fnet . This implies that network fingerprints such as packet segmentation, packet
headers and tunneling do not decrease the security of underlying web applications;
additionally, it can be used in the design and analysis of countermeasures.

In Section 5.2, we utilized properties of deterministic network fingerprints to
allow simplified calculation of probabilistic security measures, leveraging and ex-
tending existing results for quantitative information flow.

In Section 5.3, we showed that a property of a web-graph’s structure – a graph’s
outdegree, can be used for the design countermeasures which give lower bounds on
the possibilistic security guarantees. Approaches which give probabilistic security
guarantees in dependance of the web-graph structure are left to future work.

In Section 5.4, we analyzed the effect to security of ambiguity added to the out-
put of a network fingerprint (e.g., randomizing a deterministic network fingerprint),
and in Section 5.5, we analyse the effect of hyperlinks added to web-graphs. In
both cases, we show an improvement of the provided possibilistic security guaran-
tees, which allows intuitive statements such as “more randomness is better” and
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“denser graphs are better” to be made; however we show that those statements
must not hold in the probabilistic security model, which indicates that probabilis-
tic security captures better certain potential vulnerabilities. As future work, we
consider probabilistic analysis to back up or refute the intuitive statements.





6 Caching

In this chapter, we incorporate caching into the models presented in Chapter 3
and Chapter 4. Furthermore, we investigate the effect of caching to the problem of
information leakage in web browsing traffic. First, we show that in a system with
caching enabled, our formal results from Chapter 5 still hold; second, we investigate
under which circumstances caching itself increases or reduces the security of web
applications.

6.1 Modeling caching

A browser cache is a temporary memory which stores downloaded web-objects, so
that if an object is accessed by a user a second time, it can be fetched from the
cache instead of from the web server. We assume that once a browsing session has
ended, the browser cache is emptied, for example by using the privacy browsing
mode offered by modern browsers.

The use of caching makes a browser request a subset of the web objects corre-
sponding to a webpage; even if a web object is not requested, it has been down-
loaded at some previous point in the navigation path. We model the cache behavior
by the cached request function req , which decides which web-objects of a webpage
v = (w1, . . . , wn) to request, taking into account all web objects downloaded in
the navigation path so far. Formally, given a navigation path v1, . . . , v`, a cached
request is a function

req : V + → V,

such that the following conditions hold:

(i) ∀i ∈ [`] : req(vi) v vi;

(ii) ∀i ∈ [`] : set(vi) ⊆ set(req(v1) t · · · t req(v1, . . . , vi)),

where (i) denotes that the requested web-objects are a subsequence of the actual
web-objects contained in a vertex, and (ii) denotes that when the i-th vertex is
visited, all its web-objects have been requested as part of the request for vertices
1, . . . , i.

To incorporate caching into the possibilistic security model from Section 3.2.2, we
define a new function of possible fingerprints gc : V + → P(O) with gc(vi, . . . , vi) =
f̄app ◦ req(v1, . . . , vi), which unlike the g function defined in Section 4.1.1, does not
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only take vi, but also v1, . . . , vi−1. We define cached ambiguity as follows:
Kc
φ(G, n, (o1, . . . , o`), g

c) =
{φ(v1, . . . , v`) | (v1, . . . , v`) ∈ paths(G, `) ∧ ∀i ∈ [`] : oi ∈ gc(v1, . . . , vi)}.

In the probabilistic model (see Section 3.2.3), the use of caching will affect the
definition of the output random variable Y . If we decompose the input random
variable X into X1, . . . , X` and Y into Y1, . . . , Y`, if caching is disabled, the value
of Yi will depend only on the value of Xi, i.e., P [Yi = oi|X = (v1, . . . , v`)] = P [Yi =
oi|Xi = vi] (see Section 4.1.2); if caching is enabled, Yi will additionally depend
on the values of X1, . . . , Xi−1, and thus we obtain P [Yi = oi|X = (v1, . . . , v`)] =
P [Yi = oi|X1 = v1, . . . , Xi = vi], which must not be equal to P [Yi = oi|Xi = vi].

6.2 Formal analysis revisited

In the formal analysis from Chapter 5, all presented results hold in a setting with
enabled caching. In the possibilistic results in Theorem 1, Theorem 4, Proposi-
tion 5, Proposition 6, we substitute fapp by fapp ◦ req , and for each i ∈ [`], we
substitute fapp(vi) by fapp ◦ req(v1, . . . , vi). The proofs of Proposition 1, Proposi-
tion 2, and Proposition 4 define counterexamples, and as a system with disabled
cache can be seen as a special case of a system with an enabled cache, those results
can be directly used. In the probabilistic results in Theorem 2 and in Section 5.2,
we only consider the random variables X and Y , and do not make assumptions
about dependencies of their components X1, . . . , X` and Y1, . . . , Y`; therefore, those
results are still valid with caching enabled.

6.3 The effect of caching to security

Caching bears similarities to a network fingerprint (see Chapter 4), as the cached
request req is a further function applied in order to obtain the final observations.
However, there are two differences between caching and network fingerprints: (1)
req is stateful, i.e., it takes into account previously visited vertices, while we con-
sider only stateless network fingerprints; (2) req is applied directly to vertices,
while network fingerprints are applied to observations, and thus, req is applied
before the application and the network fingerprints. In this respect, the use of
caching is similar to network fingerprint composition to the right, which according
to Proposition 1 and Proposition 2 may be harmful to security. In the following,
we investigate when the application of caching can be seen as harmful, and when
it can be seen as helpful to security.
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6.3.1 Examples

In this section we show that without further assumptions, no clear statement about
the effect of caching on security can be made. We provide simple examples where
caching may improve, worsen, or have no effect to security. In the examples below,
we assume that if a web-object was cached at some point in the current browsing
session, the browser does not request those objects from the server a second time.

Example 1: Caching neutral to security

Let G = (V,E) be a web-graph without loops, and let all vertices in V contain
distinct web objects, i.e., ∀v, u ∈ V, v 6= u : set(v) ∩ set(u) = ∅. Therefore, no web
objects are ever going to be loaded from the cache, and the attacker’s observations
with caching enabled are the same as if no caching were in place.

Example 2: Caching neutral to security

Let G = (V,E) be a web-graph with vertices v1 = (w1, w2), v2 = (w1, w3), v3 =
(w1, w3), and edges (v1, v2) and (v1, v3). Let the network fingerprint fnet be applied
per file, producing the observations (fnet ◦ fapp)(w1) = o1, (fnet ◦ fapp)(w2) = o2,
(fnet ◦ fapp)(w3) = o3, as depicted below:

Here, if the browsing starts at v1, w1 and w2 will be cached; the second observation
will be o3, no matter whether the user has visited v2 or v3. If no caching is applied,
the second observation will be (o1, o3) for both v2 and v3, and again an attacker
would not be able to distinguish between both vertices. In this example, applying
caching does not make any difference for the ability of an attacker to identify
webpages.

Example 3: Caching good for security

Let G = (V,E) be a web-graph with vertices v1 = (w1, w2), v2 = (w3), v3 =
(w1, w4), and edges (v1, v2) and (v1, v3). Let the network fingerprint fnet be applied
per file, producing the observations (fnet ◦ fapp)(w1) = o1 = (fnet ◦ fapp)(w4),
(fnet ◦ fapp)(w2) = o2, (fnet ◦ fapp)(w3) = o3 = (fnet ◦ fapp)(w4), as depicted below:
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In this example, if the browsing starts at v1, again w2 and w3 will be cached. If
caching is applied, the second observation will be o3 for both v2 and v3, and if not,
the second observation will be o3 for v2 and (o1, o3) for v3. Thus, with applied
caching, the attacker will have less certainty about the second webpage visited by
the user, and thus in this case caching improves security.

Example 4: Caching bad for security

Let G = (V,E) be a web-graph with vertices v1 = (w1, w2), v2 = (w1, w3), v3 =
(w4, w3), and edges (v1, v2) and (v1, v3). Let the network fingerprint fnet be applied
per file, producing the observations (fnet ◦ fapp)(w1) = o1, (fnet ◦ fapp)(w2) = o2,
(fnet ◦ fapp)(w3) = o3, as depicted below:

In this example, if the browsing starts at v1, again w2 and w3 will be cached. If
caching is enabled, the second observation will be o3 for v2 and (o1, o3) for v3;
otherwise, the second observation will be (o1, o3) for both v2 and v3. Therefore,
caching here makes it easier for an attacker to identify the second visited webpage,
and can be considered harmful for security.

Example 5: Caching bad for security

Let G = (V,E) be a web-graph with vertices v1 = (w1), v2 = (w2), v3 = (w1, w3),
and edges (v1, v3) and (v2, v3). Let the network fingerprint fnet be applied per
file, producing the observations (fnet ◦ fapp)(w1) = o1 = (fnet ◦ fapp)(w2), (fnet ◦
fapp)(w3) = o3, as depicted below:
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Here, if the browsing starts at v1, w1 will be cached, and the second observation will
be o3; if the browsing starts at v2, w2 will be cached, and the second observation
will be (o1, o3). Thus, by inspecting the second observation, the attacker will know
which was the first visited webpage. If no caching is applied, the first observation
will be o1 for both v1 and v2, and the second observation will be (o1, o3), making it
harder for the attacker to infer the first visited webpage. Thus, here caching can
be considered harmful for security.

6.3.2 Caching as a privacy vulnerability

As the examples in the previous section show, caching may affect the identifiability
of webpages in a positive or a negative way, or may not have any effect on the
identifiability. We note that browser caching, and browser state in general, are a
known source of concern in the security community, as shown in [25, 31, 14, 54], and
disabling caching has been mentioned as the only reliable means for protection [31].
For example, a malicious website can find out whether certain webpages have been
visited by using the knowledge that visited webpages take shorter time to load
because some of their objects are cached, or by inspecting the color of visited links.

In Example 5 above, the described security vulnerability is similar in nature: the
presence or absence of certain objects changes the observations in such a way that
an attacker gains information about the previously opened content. The security
vulnerability in Example 4 is somewhat different: the use of caching makes two
webpages produce different observations, while without caching those webpages
produce the same observations. As storing state information in a browser seems
unavoidable, more analysis is needed to assess the severity of those problems and to
find a good trade-off between bandwidth reduction from caching and the amount
of leaked information.

6.3.3 Designing “good” caches

The design of a “good” cache, i.e., a cache which only exhibits a positive or a
neutral effect to security, is desirable. A positive effect of caching to security
can be seen in Examples 3 above. Furthermore, [29] show empirically that browser
caching has a negative effect to their proposed website classification methods, which
corresponds to a positive effect to security. A neutral effect of caching to security
was demonstrated in Example 1 and Example 2 above. The following definition
reflects the case when caching is neutral for security.

Definition 9. For a graph G = (V,E), an application fingerprint fapp, and a
network fingerprint fnet , a cached request req : V + → V is called fingerprint-
invariant iff for all `, for all ~v1, ~v2 ∈ paths(G, `), the following condition is fulfilled:

(fnet ◦ fapp)(~v1) = (fnet ◦ fapp)(~v2)⇒ (fnet ◦ fapp) ◦ req(~v1) = (fnet ◦ fapp) ◦ req(~v2).
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This definition can be applied both in the possibilistic, and the probabilistic
model. In the possibilistic case, it will mean that two paths with the same possible
observations without caching enabled, will have the same observations with caching
enabled. In the probabilistic case, it will mean that with or without caching, two
paths will have the same probability distributions on their outputs.

If a cache fulfills fingerprint-invariance, an attacker will have no benefits when
caching is applied. The following proposition gives a sufficient condition for finger-
print-invariance. Let the equivalence relation ∼f denote paths which have the same
observations under fnet ◦ fapp , i.e., ~v1 ∼f ~v2 iff (fnet ◦ fapp)(~v1) = (fnet ◦ fapp)(~v2).

Proposition 7. Let ~v1 and ~v2 be paths in a graph with ~v1 ∼f ~v2, and let req :
V + → V be a cached request. If the following condition is fulfilled:

~v1 ∼f ~v2 ⇒ req(~v1) ∼f req(~v2),

then req fulfills fingerprint-invariance.

To ensure that this condition is fulfilled for certain network and application
fingerprints, the operation of the cache should be specifically adapted. Fortunately,
adapting which web-objects are to be cached and which not is possible both on
the server side, and on the client side. On the server side, objects which cause
fingerprint-invariance to be broken, can be set as non-cacheable by setting the
Cache-Control or Expires HTTP headers, see [26]. On the client side, those
elements can be deleted from the browser cache.

In our definitions, a cache decides deterministically which objects to be cached
and which not. A stochastic cache, if designed properly, may reduce the probability
that objects which help attackers in the identification of webpages are cached. As
future work, we consider designing caches which guarantee a non-negative effect on
security. As a first step, we consider devising techniques for finding objects which
cause fingerprint-invariance to be broken.



7 Practical evaluation

In this chapter, we consider the performance of countermeasures in terms of effec-
tiveness and overhead: given a countermeasure and a web-application, how effective
is the countermeasure in reducing information leaks in this web-application, and
what overhead does its application induce. We present a methodology for practical
evaluation of countermeasures which utilizes the theory developed in the previ-
ous chapters, and develop simulation approaches for dealing with computational
challenges. This methodology is demonstrated in two case studies we performed,
evaluating (1) the auto-suggest scenario, and (2) the web-navigation scenario.

7.1 Choice of performance measures

The first step we take towards a practical evaluation is establishing measures for
quantifying performance. In the following we present the measures used in our
work, which quantify two aspects of a countermeasure’s performance: security (for
reasoning about the effectiveness of a countermeasure), and overhead (for reasoning
about the cost of a countermeasure).

7.1.1 Security

To measure security, we use the probabilistic definitions from Section 3.2.3. We
chose those definitions over the possibilistic security definitions from Section 3.2.2
because the results from Chapter 5 indicate that possibilistic definitions do not
adequately capture potential security vulnerabilities. The security measures we
consider here are the initial uncertainty H∞(X) = − log max

x∈X
P [X = x], and the

remaining uncertainty

H∞(X|Y ) = − log
∑
y∈Y

P [Y = y] max
x∈X

P [X = x|Y = y].

As shown in Section 5.2, if the applied countermeasures are deterministic, we can
calculate the remaining uncertainty as

H∞(X|Y ) = − log
∑
y∈Y

max
x∈B(y)

P [X = x],
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where B(·) maps observations to blocks in the partition induced by the coun-
termeasure. Refer to Section 5.2 for further algorithms for measuring remaining
uncertainty, e.g. relying on the assumption that X is uniformly distributed.

7.1.2 Overhead

The employment of countermeasures bears both computational and communica-
tional overhead. In the following we will concentrate on the communicational cost
of countermeasures, assuming that all computationally costly calculations can be
performed offline. Let the size of an observation be a function size : O → N, and
let v1, . . . , v` be a navigation path which produces the observations o1, . . . , o` with-
out a countermeasure applied, and the observations o′1, . . . , o

′
` if the countermeasure

c is applied. We define the overhead of c as ovhd(c) =
∑
i

size(o′i) − size(oi). If c

is probabilistic, we define the expected overhead of c as

exp ovhd(c) =
∑
o

∑
o′
P [Cout = o′, Cin = o](size(o′)− size(o))

=
∑
o

P [Cin = o]
∑
o′
P [Cout = o′|Cin = o](size(o′)− size(o)).

In the case when c is the only applied (composed) countermeasure, we obtain

exp ovhd(c) =
∑
x

P [X = x]
∑
y

P [Y = y|X = x](size(y)− size(fapp(x))).

If c is deterministic, we obtain

exp ovhd(c) =
∑
x

P [X = x](size(c(x))− size(fapp(x))).

7.2 Overview of evaluation approach

To evaluate the performance of a given countermeasure in terms of the measures
discussed in the previous section, we consider the following approach:

(1) get a graph G = (V,E) corresponding to a web application;

(2) get the application fingerprints of the vertices in G;

(3) estimate the probability of the random variable sec(X), representing the secret
value contained in the user’s choice of a path in G;

(4) calculate the initial uncertainty H∞(sec(X)), and given a countermeasure c,
calculate the conditional probability P [Y |sec(X)] before and after the applica-
tion of the countermeasure;
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(5) calculate the remaining uncertainty H∞(sec(X)|Y ) with and without the coun-
termeasure c applied, as well as the expected overhead exp ovhd(c).

We demonstrate the challenges which this approach presents in two case stud-
ies we performed, evaluating equal-sized bucketing (see Section 4.3.1) on (1) the
auto-suggest scenario, and (2) the web-navigation scenario. The remainder of this
chapter elaborates on those case studies.

7.3 Case study: the auto-suggest scenario

The first set of experiments we performed targets the auto-suggest scenario as
defined in Section 3.1.2. In this scenario, we are given a dictionary D, and on each
keystroke of a user, a string v is sent to the web server, which sends back a list of
suggestions.

7.3.1 Experimental setup

In our experiments, we assume that the attacker knows that the user is looking
only for illness-related words, and we set D to be the 1183 words from the hyponym
tree1 of the word “illness”, contained in the WordNet English lexical database [24].
We generated the prefix tree G over D, using the Python NetworkX library [28]
for handling graphs.

To estimate the probabilities that a user types a certain string, we performed
Google queries for all 1183 words in D and calculated the relative frequencies of
the words on the leaves. We then traversed the tree towards the root and set
the probability of a vertex to be the a sum of the probabilities of its children,
and the probabilities of the edges outgoing from a vertex v proportional to the
probabilities of v’s children. We calculate the probability of a user’s choice of
a path (v1, . . . , v`) as P [X = (v1, . . . , v`)] = P [X` = v`|X`−1 = v`−1] · P [X`−1 =
v`−1|X`−2 = v`−2] · · ·P [X2 = v2|X1 = v1] (see the discussion of the Markov property
in Section 3.2.3).

For the application fingerprint fapp(v), we take the size of the auto-suggest list
given by Google’s auto-complete service on query v. To instantiate those values,
we issued 11678 queries for all vertices in G. In our setup, we specify that the
entire typed-in string is sensitive information by setting the secret specification sec
to be the identity function, i.e. sec = sec1 (see Section 3.2.1).

1A hyponym tree of a term has this term on its root, and the children of a vertex in this tree
are words in an “is-a” relationship to the vertex.
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7.3.2 Results

We evaluate the performance of the countermeasure c = “equal-sized bucket-
ing” (i.e., in each bucket, the same number of observations are mapped, see Sec-
tion 4.3.1). We computed the initial uncertainty H∞(sec(X)), the remaining un-
certainty H∞(sec(X)|Y ) with and without the countermeasure c applied, as well as
the relative expected overhead exp ovhd(c), for a varying path length ` = 2, . . . , 8.
In all cases, the initial uncertainty was between 5.38 and 5.55. The remaining un-
certainty when the countermeasure c was not applied was 0, meaning that the web
application is highly vulnerable to attacks: an attacker can infer the secret input
word with probability 1.

Figure 7.1 depicts the results when applying the countermeasure c, showing the
expected relative overhead (i.e., expected overhead relative to the original size of
the application fingerprints) needed to achieve certain levels of remaining uncer-
tainty for different path lengths. With an expected relative overhead of between
1.3 and 3.9, the remaining uncertainty reaches the initial uncertainty, making the
system maximally secure (i.e., the attacker does not learn any new information
from observing the traffic), and a remaining uncertainty of more than 3.5 bits can
be achieved with an expected relative overhead of 0.56–1.06. Furthermore, the
results show that for shorter paths, good security can be achieved with a smaller
overhead, e.g., for paths of length up to 4, maximal security is reached with an
expected relative overhead of up to 1.7.

7.4 Case study: the web-navigation scenario

We additionally evaluate the web-navigation scenario (see Section 3.1.1). This
evaluation proved to be more challenging because of the high complexity of web-
graphs. We discuss a straightforward approach and its limitations in Section 7.4.1,
and present an alternative simulation approach in Section 7.4.2, which we used in
the experiments described in Section 7.4.3 and Section 7.4.4.

7.4.1 Straightforward approach and its limitations

A straightforward approach we consider consists of gaining the structure of the
web-graphs corresponding to popular websites, and measuring the effects of coun-
termeasures on those graphs. In a preliminary study, we devised a web crawler by
adapting the source code of wget 1.12 [27] to fit our needs. Our initial results
showed that gaining the structure of web graphs is impractical for an evaluation
study consisting of popular websites because of the large number of possible nav-
igation paths, which makes computation of performance measures infeasible. We
present several possible approaches for handling this problem:

(i) limit the evaluation to websites which induce small webgraphs;
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Figure 7.1: The auto-complete scenario: the conditional min entropy versus the
expected relative overhead caused by equal-sized bucketing with varying
number of buckets. Curves of different color correspond to a different
path length. The dots correspond to number of buckets in the range
1, 2, 5, 10, 20, 40, 60, 80, 100, where the numbers decrease to the right.

(ii) crawl websites partially, e.g. limit the crawling to a certain depth or the
visited paths to a certain number;

(iii) use a crawl-specification, which limits the crawling to a pre-defined subset of
paths (see [9]);

(iv) use a randomized approach for generating graphs which have the structural
properties of websites, but have a controlled size.

A disadvantage of partial crawling (Approach (ii)) is that it may result in a
mutilated graph structure, e.g., obtaining a high number of “leaf” vertices, which
do not occur in the original web-graph. Approach (iv) has the disadvantage that
the obtained results may hold for the simulated graphs, but not for real instances.
Nevertheless, for our experiments we consider the latter approach, because the
flexible choice of parameters it offers allows the generation of a high number of
small web-graphs, and the specification of desired graph properties, such as graph
density. We elaborate on this approach in the following section.
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7.4.2 Simulation approach

In the simulation approach we propose, we generate random graphs which “look
like” real web-graphs, and perform our experiments on them. In the following,
we review structural properties which are known to be fulfilled by web-graphs.
Furthermore, we describe the approach we use for generating web-graphs. For a
survey of the advances in understanding real-world graphs, as well as in generation
of realistic graphs, we refer the reader to Chakrabarti and Faloutsos [7].

Properties of web-graphs

There is a large body of research targeted at capturing the structural graph prop-
erties fulfilled by websites and the Web in general. In the following, we present
several important results from this area.

Empirical studies have found that both in- and out-degrees of vertices in the
Internet graph are distributed according to a power law [34, 1]; degrees of vertices
in a graph follow a power-law if the probability that a vertex has a degree i is
proportional to 1/iα for some α > 1. Power laws have been also found in other
aspects of the Web, for example in the physical Internet topology [23], and in the
structure of online social networks [38]. The web has also been found to have a
“bowtie” structure, with a large strongly connected component in the middle [4].
Dill et al. [19] have observed a self-similarity in the web: properties of the web
such as “bowtie” structure and power laws hold for both the web at large, and for
cohesive sub-regions of it. Additionally, web-graphs were found to have a small
diameter [2].

Generating web-graphs

A classical approach for randomized generation of graphs was proposed by Erdős
and Rényi [21]: given a set of vertices V , the generation algorithm decides with
equal probability for each pair of vertices whether it is included in the set of edges E
or not. As such graphs do not ensure properties of web-graphs such as power laws,
specific generators for realistic web-graphs have been proposed, e.g. [44, 43, 8].

In our experiments, we use R-MAT (which stands for Recursive Matrix) [8],
which generates directed graphs with numbers of vertices and edges provided by
the user. R-MAT starts with an empty adjacency matrix, which is subdivided into
four equal-sized blocks. With predefined probabilities a, b, c, d with a + b + c +
d = 1, recursively one of the blocks is chosen, and is further subdivided into four
equal-sized blocks. The recursion ends when a 1 × 1 block is chosen. This 1 × 1
matrix corresponds to two vertices, and an edge between those vertices is set, where
duplicate edges are not allowed.

R-MAT provides an approach for calculating an expected outdegree of the ver-
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tices v in a generated graph:

E[δ(v)] =
1

2n

m∑
k=0

k

(
m

k

) n∑
i=0

(
n

i

)
[αn−i(1− α)i]k[1− αn−i(1− α)i]m−k,

where 2n is the number of vertices, m is the number of edges, and α = a + b. In
our experiments, we utilize this formula to generate graphs with specific expected
outdegrees.

7.4.3 Experimental setup

To generate web-graphs, we adapt pywebgraph 2.72 [46], a Python implementa-
tion of R-MAT, and for the parameters a, b, c, d we use the conjecture by [8] that
a : b = a : c = 75 : 25. In our experiments, we generated graphs with 100 ver-
tices and expected outdegrees 5, 10, 15, 20, 30, 40, 50, which allows comparing the
performance of countermeasures for graphs with different densities. We note that
the average internal outdegree of web-graphs has been used for classifying websites
into functional categories (e.g. academic, blog, shop, etc.) [40]. To compute the
probability of a path taken by a user, we assume that the user performs a random
walk in the web-graph starting at a fixed vertex, and we set a uniform distribution
on outgoing vertices. Having a fixed root vertex corresponds to an attacker who
knows the entry point of the user.

To generate the application fingerprints, we devise an approach based on the
result of Kamps and Koolen [33] showing that in Wikipedia, there is a strong cor-
relation between outdegree of a webpage and document length. Note that Kemps
and Koolen do not find such a high correlation in the web in general; neverthe-
less, we consider this a reasonable first approximation for our experiments. We
assume that a webpage contains only one file, and calculate the size of a webpage
v according to its outdegree δ(v) as:

size(v) = p · δ(v) + q + rand,

where p and q are parameters, and rand is random noise. For our analysis, we
specify as secret the set of visited vertices (i.e. we ignore their ordering), and express
this by setting sec to be the set representation of a path sec2 (see Section 3.2.1).

7.4.4 Results

In the above presented setup, we tested the effectiveness of the different variants
of the “equal-sized bucketing” countermeasure c (see Section 4.3.1), for number of
buckets between 1 and 20. We fixed the path length to ` = 5, and varied the density
of the generated graphs by setting the expected outdegree between 5 and 50. The
initial uncertainty was between 8.2 and 15.6, with higher values for denser graphs.
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Figure 7.2: The web-navigation scenaro: the conditional min entropy versus the
number of buckets of equal-sized bucketing with varying number of
buckets. The different curves correspond to web-graphs with a different
density (measured in expected outdegree).

In all cases, when no countermeasure was applied, the remaining uncertainty was
0, and thus the attacker learns the entire secret information.

Figure 7.1 depicts the results when applying the countermeasure c. In all cases,
less buckets guarantee a higher remaining uncertainty. With 5 buckets, the re-
maining uncertainty is between 2.2 and 6.9, and with 2 buckets, the remaining
uncertainty is between 5.1 and 11.8, where the higher values correspond to denser
graphs. We see that for graphs of different densities the effect of the applied coun-
termeasure is similar, however, the denser a graph is, the bigger the remaining
uncertainty with any number of buckets.



8 Conclusion

In this work, we have presented a formal framework that enables reasoning about
information leaks in web browsing traffic. To quantify the vulnerability of web
applications to information leaks, we have used information-theoretic entropy and
ambiguity sets, which bridges the problem of information leaks in web traffic to the
growing body of research in quantitative information flow. By means of our frame-
work, we have performed a formal analysis of the design of countermeasures, and
have investigated the role of network protocols and caching to security. Further-
more, we have applied our definitions in an empirical evaluation of the effectiveness
and overhead of countermeasures in a sample of web applications.

The proposed framework can facilitate the development of robust solutions against
information leaks in web applications, and we elaborate on two possible lines of
future work. First, the presented methodology can be used for the design of coun-
termeasures providing formal security guarantees at a reasonable cost. A proba-
bilistic extension of our analysis from Section 5.3 can be utilized for the design of
strong countermeasures according to the graph structure of the web application.
Good trade-offs between security and overhead can be established empirically (see
Chapter 7), and parameters for countermeasures delivering optimal trade-offs can
be obtained algorithmically, along the lines of [37].

Second, our framework can be used as a semantic basis for the development of
language-based approaches for web applications (e.g., see [56]). This would enable
the development of web applications which by construction provide quantitative
guarantees against information leaks.
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