CORE

Technical Report: A Composable Cryptographic Library with Nested Operations (Long Version)*

Michael Backes, Birgit Pfitzmann, and Michael Waidner
IBM Zurich Research Lab
\{mbc,bpf,wmi\}@zurich.ibm.com

July 31, 2008

Abstract

We present the first idealized cryptographic library that can be used like the Dolev-Yao model for automated proofs of cryptographic protocols that use nested cryptographic operations, while coming with a cryptographic implementation that is provably secure under arbitrary active attacks. The proof is a novel technique of a probabilistic, imperfect bisimulation with cryptographic reductions and static information-flow analysis.

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or SET use cryptographic primitives like signature schemes or encryption in a black-box way, while adding many non-cryptographic features. Vulnerabilities have accompanied the design of such protocols ever since early authentication protocols like Needham-Schroeder [65, 46], over carefully designed defacto standards like SSL and PKCS [76, 36], up to current widely deployed products like Microsoft Passport [50]. However, proving the security of such protocols has been a very unsatisfactory task for a long time.

One possibility was to take the cryptographic approach. This means reduction proofs between the security of the overall system and the security of the cryptographic primitives, i.e., one shows that if one could break the overall system, one could also break one of the underlying cryptographic primitives with respect to its cryptographic definition, e.g., adaptive chosen-message security for signature schemes. For authentication protocols, this approach was first used in [35]. In principle, proofs in this approach are as rigorous as typical proofs in mathematics. In practice, however, human beings are extremely fallible with this type of proof. This is not due to the cryptography, but to the distributed-systems aspects of the protocols. It is well-known from non-cryptographic distributed systems that many wrong protocols have been published even for very small problems. Hand-made proofs are highly error-prone because following all the different cases how actions of different machines interleave is extremely tedious. Humans tend to take wrong shortcuts and do not want to proof-read such details in proofs by others. If the protocol contains cryptography, this obstacle is even much worse: Already a rigorous definition of the goals gets more complicated, and often not only trace properties (integrity) have to be proven but also secrecy. Further, in principle

[^0]the complexity-theoretic reduction has to be carried out across all these cases, and it is not at all trivial to do this rigorously. In consequence, there is almost no real cryptographic proof of a larger protocol, and several times supposedly proven, relatively small systems were later broken, e.g., [70, 47].

The other possibility was to use formal methods. There one leaves the tedious parts of proofs to machines, i.e., model checkers or automatic theorem provers. This means to code the cryptographic protocols into the language of such tools, which may need more or less start-up work depending on whether the tool already supports distributed systems or whether interaction models have to be encoded first. None of these tools, however, is currently able to deal with reduction proofs. Nobody even thought about this for a long time, because one felt that protocol proofs could be based on simpler, idealized abstractions from cryptographic primitives. Almost all these abstractions are variants of the Dolev-Yao model [48], which represents all cryptographic primitives as operators of a term algebra with cancellation rules. For instance, public-key encryption is represented by operators E for encryption and D for decryption with one cancellation rule, $\mathrm{D}(\mathrm{E}(m))=m$ for all m. Encrypting a message m twice in this model does not yield another message from the basic message space but the term $\mathrm{E}(\mathrm{E}(m))$. Further, the model assumes that two terms whose equality cannot be derived with the cancellation rules are not equal, and every term that cannot be derived is completely secret. However, originally there was no foundation at all for such assumptions about real cryptographic primitives, and thus no guarantee that protocols proved with these tools were still secure when implemented with real cryptography. Although no previously proved protocol has been broken when implemented with standard provably secure cryptosystems, this was clearly an unsatisfactory situation, and artificial counterexamples can be constructed.

Three years ago, efforts started to get the best of both worlds. Essentially, [68, 71] started to define general cryptographic models that support idealization that is secure in arbitrary environments and under arbitrary active attacks, while [2] started to justify the Dolev-Yao model as far as one could without such a model. Both directions were significantly extended in subsequent papers, in particular [1, 72, 39, 9, 24, 25, 29].

Nevertheless, the paper underlying this technical report was the first that offers a provably secure variant of the Dolev-Yao model for proofs that people typically make with the Dolev-Yao model, because for the first time we cover both active attacks and nested cryptographic operations. This new property combination is essential: First, most cryptographic protocols are broken by active attacks, e.g., man-in-the-middle attacks exploiting concurrent protocol runs or attacks where an adversary reuses a message from one protocol step in a different protocol step where it suddenly gets a different semantics. Such attacks are not covered by $[2,1]$. Secondly, the main use of the Dolev-Yao model is to represent nested protocol messages like $\mathrm{E}_{p k e_{v}}\left(\operatorname{sign}_{s k s_{u}}\left(m, N_{1}\right), N_{2}\right)$, where m denotes an arbitrary message and N_{1}, N_{2} two nonces. No previous idealization proved in the reactive cryptographic models contains abstractions from cryptographic primitives (here mainly encryption and signatures, but also the nonces and the list operation) that can be used in such nested terms. Existing abstractions are either too high-level, e.g., the secure channels in [72, 9] combine encryption and signatures in a fixed way. Or they need immediate interaction with the adversary [39, 38], i.e., the adversary learns the structure of every term any honest party ever builds, and even every signed message. This abstraction is not usable for a term as above because one may want to show that m is secret because of the outer encryption, but the abstraction gives m to the adversary. (A similar immediate application of the model of [72] to such primitives would avoid this problem, but instead keep all signatures and ciphertexts in the system, so that nesting is also not possible.) Finally, there exist some semi-abstractions which still depend on cryptographic details [61, 72]. Thus they are not suitable for abstract protocol representations and proof tools, but we use such a semi-abstraction of public-key encryption as a submodule below.

The first decision in the design of an ideal library that supports both nesting and general active attacks was how we can represent an idealized cryptographic term and the corresponding real message in the same way to a higher protocol. This is necessary for using the reactive cryptographic models and their composition theorems. We do this by handles. In the ideal system, these handles essentially point to Dolev-Yao-like terms, while in the real system they point to real cryptographic messages. Our model for storing the terms belonging to the handles is stateful and in the ideal system comprises the knowledge of who knows which terms. Thus our overall ideal cryptographic library corresponds more to "the CSP Dolev-Yao model" or "the Strand-space Dolev-Yao model" than the pure algebraic Dolev-Yao model. Once one has the idea of handles, one has to consider whether one can put the exact Dolev-Yao terms under them or how one has to or wants to deviate from them in order to allow a provably secure cryptographic realization, based on a more or less general class of underlying primitives. An overview of these deviations is given in Section 2.2, and Section 2.3 surveys how the cryptographic primitives are augmented to give a secure implementation of the ideal library.

The vast majority of the work was to make a credible proof that the real cryptographic library securely implements the ideal one. This is a hand-made proof based on cryptographic primitives and with many distributed-systems aspects, and thus with all the problems mentioned above for cryptographic proofs of large protocols. Indeed we needed a novel proof technique which we call a cryptographic bisimulation. It consists of a probabilistic, imperfect bisimulation with an embedded static information-flow analysis, followed by cryptographic reductions proofs for so-called error sets of traces where the bisimulation did not work. As this proof needs to be made only once, and is intended to be the justification for later basing many protocol proofs on the ideal cryptographic library and proving them with higher assurance using automatic tools, we carefully worked out the details. Based on our experience with making this proof and the errors we found by making it, we strongly discourage the reader against accepting idealizations of cryptographic primitives where a similar security property, simulatability, is claimed but only the first step of the proof, the definition of a simulator, is made. ${ }^{1}$ Note that although the crypto-library enables formal methods, the cryptographic bisimulation needed to prove the crypto-library itself must be by hand at the current state of the art, because the real cryptographic library contains cryptographic objects. We further sketch in Section 7.2 that this cannot be simplified by certain obvious techniques.

1.1 Further Related Literature

Both the cryptographic and the idealizing approach at proving cryptographic systems started in the early 80s. Early examples of cryptographic definitions and reduction proofs are [54, 55]. Applied to protocols, these techniques are at their best for relatively small protocols where there is still a certain interaction between cryptographic primitives, e.g., [34, 74]. The early methods of automating proofs based on the Dolev-Yao model are summarized in [59]. More recently, such work concentrated on using existing general-purpose model checkers [62, 64, 45] and theorem provers [49, 67], and on treating larger protocols, e.g., [32].

Work intended to bridge the gap between the cryptographic approach and the use of automated tools started independently with [68, 71] and [2]. In [2], Dolev-Yao terms, i.e., with nested operations, are considered specifically for symmetric encryption. However, the adversary is restricted to

[^1]passive eavesdropping. Consequently, it was not necessary to define a reactive model of a system, its honest users, and an adversary, and the security goals were all formulated as indistinguishability of terms. This was extended in [1] from terms to more general programs, but the restriction to passive adversaries remains, which is not realistic in most practical applications. Further, there are no theorems about composition or property preservation from the abstract to the real system. Several papers extended this work for specific models or specific properties. For instance, [56] specifically considers strand spaces and information-theoretically secure authentication only. In [60] a deduction system for information flow is based on the same operations as in [2], still under passive attacks only.

The approach in $[68,71]$ was from the other end: It starts with a general reactive system model, a general definition of cryptographically secure implementation by simulatability, and a composition theorem for this notion of secure implementation. This work is based on definitions of secure function evaluation, i.e., the computation of one set of outputs from one set of inputs [53, 63, 31, 37]; earlier extensions towards reactive systems were either without real abstraction [61] or for quite special cases [57]. The approach was extended from synchronous to asynchronous systems in [72, 39]. All the reactive works come with more or less worked-out examples of abstractions of cryptographic systems, and first tool-supported proofs were made based on such an abstraction [9, 8] using the theorem prover PVS [66]. However, even with a composition theorem this does not automatically give a cryptographic library in the Dolev-Yao sense, i.e., with the possibility to nest abstract operations, as explained above. Our cryptographic library overcomes these problems. It is abstract in the sense needed for theorem provers, i.e., without cryptographic objects in the ideal system. It supports nested operations in the intuitive sense; operations that are performed locally are not visible to the adversary. It is secure against arbitrary active attacks, and works in the context of arbitrary surrounding interactive protocols. This holds independently of the goals that one wants to prove about the surrounding protocols; in particular, property preservation theorems for the simulatability definition we use have been proved for integrity, fairness, liveness, and noninterference $[8,22,15,14,19,4]$.

We have already exemplified the usefulness of the cryptographic library by conducting a sound security proof of the well-known Needham-Schroeder-Lowe protocol $[13,16]$ as well as several wellknown protocols that come with a symbolic representation [5, 7, 20, 12, 6]. This is one of the two first cryptographically sound proofs of the Needham-Schroeder-Lowe protocol, concurrently developed. Whereas the proof from [77] shows a slightly stronger property, our proof relies on idealizations of cryptography and has all the advantages explained in the text; in particular, the proof is suited for formal proof tools. Moreover, drawing upon insides gained from the proof of the cryptographic library, we showed that widely considered symbolic abstractions of hash functions and of the XOR operation cannot be proven computationally sound in general, hence indicating that their current symbolic representations might be overly simplistic [18, 28].

2 Overview of the Simulatable Cryptographic Library

In this section, we give an overview of our abstract and real crypto-library, in particular their relations to the standard Dolev-Yao model and standard cryptographic definitions, respectively. To understand some design decisions, a basic understanding of simulatability is important. Thus we first briefly sketch the definitions from [72].

2.1 Overview of Simulatability

A system consists of several possible structures. A structure consists of a set \hat{M} of connected correct machines and a subset S of free ports, called specified ports. In a standard cryptographic system, the structures are derived from one intended structure and a trust model. The trust model consists of an access structure $\mathcal{A C C}$ and a channel model χ. Here $\mathcal{A C C}$ contains the possible sets \mathcal{H} of indices of uncorrupted machines (among the intended ones), and χ designates whether each channel is secure, authentic (but not private) or insecure. Each structure is complemented to a configuration by adding an arbitrary user machine H and adversary machine $\mathrm{A} . \mathrm{H}$ connects only to ports in S and A to the rest, and they may interact. The general scheduling model in [72] gives each connection c (from an output port $c!$ to an input port c ?) a buffer, and the machine with the corresponding clock port $c^{\triangleleft}!$ can schedule a message when it makes a transition. In real asynchronous cryptographic systems, network connections are typically scheduled by A. Thus a configuration is a runnable system, i.e., one gets a probability space of runs. Views of individual machines in these runs are the restriction to all in- and outputs this machine sees and its internal state.

Simulatability essentially means that whatever can happen to certain users in the real system can also happen to the same users in the ideal (abstract) system: For every structure struc c_{1} of the real system, every user H , and every adversary A_{1} there exists an adversary A_{2} on a corresponding ideal structure, $s^{2} t r u c_{2}$, such that the view of H in the two configurations is indistinguishable. Indistinguishability is a well-defined cryptographic notion from [78]. This is shown in Figure 1. For the crypto-library, we even show blackbox simulatability, where A_{2} consists of a simulator Sim

Figure 1: Overview of the simulatability definition. The view of H must be indistinguishable in the two configurations. In this example, $\mathcal{H}=\{1,2\}$.
depending only on struc $_{1}$ and using A_{1} as a blackbox submachine.
In a typical ideal system, each structure contains only one machine TH called trusted host. Corresponding structures are designated by a function f. For standard cryptographic systems, f maps a real structure to a trusted host with the same set S of specified ports, so that the same honest users can connect.

2.2 Overview of the Ideal System

An ideal (abstract) crypto-library offers its users abstract cryptographic operations, such as commands to encrypt or decrypt a message, to make or test a signature, and to generate a nonce. All these commands have a simple, deterministic semantics. In a reactive scenario, this semantics is based on state, e.g., of who already knows which terms. We store state in a "database". Each entry has a type (e.g., "signature"), and pointers to its arguments (e.g., a key and a message). This corresponds to the top level of a Dolev-Yao term; an entire term can be found by following the pointers. Further, each entry contains handles for those participants who already know it. Thus the database index and these handles serve as an infinite, but efficiently constructible supply
of global and local names for cryptographic objects. However, most libraries have export operations and leave message transport to their users ("token-based"). An actual implementation of the simulatable library might internally also be structured like this, but higher protocols are only automatically secure if they do not use this export function except via the special send operations.

The ideal crypto-library does not allow cheating. For instance, if it receives a command to encrypt a message m with a certain key, it simply makes an abstract database entry for the ciphertext. Another user can only ask for decryption of this ciphertext if he has handles to both the ciphertext and the secret key. Similarly, if a user issues a command to sign a message, the ideal system looks up whether this user should have the secret key. If yes, it stores that this message has been signed with this key. Later tests are simply look-ups in this database.

A send operation makes an entry known to other participants, i.e., it adds handles to the entry. Recall that our model is an entire reactive system and therefore contains an abstract network model. We offer three types of send commands, corresponding to three channel types $\{\mathrm{s}, \mathrm{a}, \mathrm{i}\}$, meaning secure, authentic (but not private), and insecure. The types could be extended. Currently, our library contains contains public-key encryption and signatures, nonces, lists, and application data. We have recently added symmetric authentication [27] and symmetric encryption [17, 21], which also shows that the library can be extended in a modular way. Further extensions are thus easily conceivable, e.g., to incorporate the recently proposed computationally sound symbolic abstraction of zero-knowledge proofs $[11,30]$.

The main differences between our ideal crypto-library and the standard Dolev-Yao model are the following. Some of them already exist in prior extensions of the Dolev-Yao model.

- Signature schemes are not "inverses" of encryption schemes.
- Secure encryption schemes are necessarily probabilistic, and typically so are secure signature schemes. Hence if the same message is signed or encrypted several times, we have to distinguish the versions, i.e., we make different database entries. For each entry, we only need to store its type (e.g., "signature") and pointers to its arguments (e.g., a key and a message). This corresponds to the top level of a Dolev-Yao-like term.
- Secure signature schemes often have memory. The standard definition [55] does not even exclude that one signature divulges the entire history of messages signed before. We have to restrict this definition, but will allow a signature to divulge the number of previously signed messages, so that we include the most efficient provably secure schemes under classical assumptions like hardness of factoring [55, 41, 42]. ${ }^{2}$
- We cannot (easily) allow participants to send secret keys around because then the simulation is not always possible. ${ }^{3}$ Fortunately, for public-key cryptosystems this is not needed in standard protocols.
- Encryption schemes cannot keep the length of arbitrary cleartexts entirely secret. Typically one can even see the length quite precisely because message expansion is minimized. Hence we also allow this in the ideal system. A fixed-length version would be an easy addition to the library, or can be implemented on top of the library by padding to a fixed length.

[^2]- Adversaries may include incorrect messages in encrypted parts of a message which the current recipient cannot decrypt, but may possibly forward to another recipient who can, and will thus notice the incorrect format. Hence we also allow certain "garbage" terms in the ideal system.

Moreover, our ideal crypto-library contains explicit bounds on message lengths and the number of accepted inputs, so that a polynomial-time real system can simulate it correctly. In practice one would typically choose these bounds so large that they are not reached under ordinary circumstances.

2.3 Overview of the Real System

The real crypto-library offers its users the same commands as the ideal one, i.e., honest users operate on cryptographic objects via handles. This is actually quite close to standard APIs for real implementations of crypto-libraries that include key storage. The database of the real system contains real cryptographic keys, ciphertexts, etc., and the commands are implemented by real cryptographic algorithms. Sending a term on an insecure channel releases the actual bitstring to the adversary, who can do with it what he likes. The adversary can also insert arbitrary bitstrings on non-authentic channels. The simulatability proof will show that nevertheless, everything a real adversary can achieve can also be achieved by an adversary in the ideal system, or otherwise the underlying cryptography can be broken.

We base the implementation of the commands on arbitrary secure encryption and signature systems according to standard cryptographic definitions. However, we "idealize" the cryptographic objects and operations by measures similar to robust protocol design [3]. Some of these measures have already been used in prior, specialized designs.

- All objects are tagged with a type field so that, e.g., signatures cannot also be acceptable ciphertexts or keys.
- Several objects are also tagged with their parameters, e.g., signatures with the public key used.
- Randomized operations must be randomized completely. For instance, as the ideal system represents several signatures under the same message with the same key as different, the real system has to guarantee that they will be different, except for small error probabilities. Even probabilistic encryptions are randomized additionally because they are not always sufficiently random for keys chosen by the adversary.

The reason to tag signatures with the public key needed to verify them is that the usual definition of a secure signature scheme does not exclude "signature stealing:" Let ($s k_{h}, p k_{h}$) denote the key pair of a correct participant. With ordinary signatures an adversary might be able to compute a valid key pair $\left(s k_{a}, p k_{a}\right)$ such that signatures that pass the test with $p k_{h}$ also pass the test with $p k_{a}$. Thus, if a correct participant receives an encrypted signature on m, it might accept m as being signed by the adversary, although the adversary never saw m. It is easy to see that this would result in protocols that could not be simulated. (An example is given in [69], Section 6.4.) Our modification prevents this anomaly.

For the additional randomization of signatures, we include a random string r in the message to be signed. Alternatively we could replace r by a counter, and if a signature scheme is strongly randomized already we could omit r.

Ciphertexts are randomized by including the same random string r in the message to be encrypted and in the ciphertext. The outer r prevents collisions among ciphertexts from honest participants, the inner r ensures continued non-malleability.

3 Notation

We mostly use a straight font for machines, algorithms, functions, and constants; italics for sets and other variables, and a calligraphic font for $\mathcal{T Y} \mathcal{P E S}$ and \mathcal{I} ndex sets.

We write " $:=$ " for deterministic and " \leftarrow " for probabilistic assignment, and " \mathfrak{R} " for uniform random choice from a set. In an algorithm X executed by a machine M and with a named output m, " M returns n " means that M outputs $m:=n$ and stops executing X . We usually omit the return statement if an execution path ends by returning a variable m as the output m. By $x:=y++$ for integer variables x, y we mean $y:=y+1 ; x:=y$.

A function $g: \mathbb{N} \rightarrow \mathbb{R}$ is called negligible, written $g \in N E G L$, if for all positive polynomials Q, $\exists k_{0} \forall k \geq k_{0}:|g(k)| \leq 1 / Q(k)$.

We make the following assumptions about the representation of structured data types.

- For reasons of distinguishability, we use a type system consisting of abstract datatypes $\mathcal{N} \mathcal{A} \mathcal{T}$ ("naturals"), $\mathcal{H N D} \mathcal{S}$ ("handles"), $\mathcal{I N D} \mathcal{S}$ ("indices"), $\mathcal{B O O \mathcal { O }}$ ("Boolean"), $\mathcal{E} \mathcal{R} \mathcal{R}$ ("error"), $\mathcal{C H} \mathcal{A R S T R}$ ("character strings"), $\mathcal{B I} \mathcal{T} \mathcal{S T} \mathcal{R}$ ("bitstrings"), and $\mathcal{L I S T}$ ("lists"). The union of all these datatypes is denoted as $\mathcal{T Y P E S}$.
- The types $\mathcal{N} \mathcal{A} \mathcal{T}, \mathcal{H} \mathcal{N} \mathcal{D} \mathcal{S}$, and $\mathcal{I N} \mathcal{D} \mathcal{S}$ are isomorphic to $\mathbb{N}=\{1,2, \ldots\}$, and we write elements and operations as for natural numbers. $\mathcal{N} \mathcal{A} \mathcal{T}$ is extended to $\mathcal{N} \mathcal{A} \mathcal{T}_{0}$, which is isomorphic to $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
- We write $\mathcal{B O} \mathcal{O} \mathcal{L}=\{$ true, false $\}$ and $\mathcal{E} \mathcal{R} \mathcal{R}=\{\downarrow\}$. $\mathcal{C H} \mathcal{A} \mathcal{R S} \mathcal{T} \mathcal{R}$ is isomorphic to Σ^{+}for some finite alphabet $\Sigma \supseteq\{a, \ldots, z\} \cup\{0,1\}$ with $\downarrow \notin \Sigma$, and $\mathcal{B I} \mathcal{T S T} \mathcal{R}$ isomorphic to $\{0,1\}^{*}$.
- The type $\mathcal{L I S} \mathcal{T}$ contains lists of elements of $\{0,1\}^{*}$. The empty list is written (). We write a list of x_{1}, \ldots, x_{h} as $\left(x_{1}, \ldots, x_{j}\right)$. If $l=\left(x_{1}, \ldots, x_{j}\right)$ then $l[i]:=x_{i}$ for $1 \leq i \leq j$, and $l[i]:=\downarrow$ for $i>j$. By "adding an element to a list" and similar formulations we mean appending it at the end.
- The ranges and domains of all algorithms and functions implicitly contain the error element \downarrow of type $\mathcal{E} \mathcal{R} \mathcal{R}$. If \downarrow is used as an argument for an algorithm, function or as a selector for a datatype (e.g., as an index of a list element), the result is always \downarrow. However, comparisons "if $v=\downarrow$ " return true or false.
- In order to built up lists of elements of our abstract datatypes, and to apply cryptographic operations to them (again with the exception of \downarrow), we assume that elements of $\mathcal{T} \mathcal{Y} \mathcal{P} \mathcal{S} \backslash \mathcal{E} \mathcal{R} \mathcal{R}$ are uniquely encoded into the set $\{0,1\}^{*}$. The exact encoding does not matter, but if a function is efficiently computable for an abstract datatype, it must be efficiently computable also on the encoding. In particular, this comprises element retrieval for lists, comparisons and algorithms on natural numbers etc.
- The length $|w|$ of $w \in\{0,1\}^{*}$ is, as usual, the unique k with $w \in\{0,1\}^{k}$. The length $|w|$
 length of the encoding of a list l to depend only on the length of its encoded arguments: there
is a function list_len such that $\left|\left(x_{1}, \ldots, x_{j}\right)\right|=\operatorname{list_ len}\left(x_{1}, \ldots, x_{j}\right) \geq\left|x_{1}\right|+\ldots+\left|x_{j}\right|$ for all $j \in \mathbb{N}_{0}$ and all $x_{1}, \ldots, x_{j} \in \mathcal{T Y P E S} \backslash \mathcal{E R} \mathcal{R}$.
- By a "database" D we mean a finite set of mappings from finite subsets of $\mathcal{C H} \mathcal{A R S T} \mathcal{R}$ to $\mathcal{T Y P E S} \cup\{0,1\}^{*}$. These mappings are called tuples and their arguments are called attributes. With $t . a$ we mean the result of $t \in D$ on argument $a \in \Sigma^{*}$. As usual, t. $a=\downarrow$ means that t.a is undefined.

We use $D: \Leftarrow t$ as abbreviation of $D:=D \cup\{t\}$. We often write tuples as lists of assignments, like ($a_{1}:=x_{1}, \ldots, a_{k}:=x_{k}$), and if the attributes and their order are clear from the context we just write $\left(x_{1}, \ldots, x_{k}\right)$.
We will use some relational-database notation:

- If $P(A)$ is a logical condition with the attributes in A as free variables then we define the selection $\sigma_{P(A)}(D)$ as the set of all $t \in D$ whose actual attribute values satisfy $P(A)$. Let $D[P(A)]:=t$ if $\sigma_{P(A)}(D)=\{t\}$, and $D[P(A)]:=\downarrow$ if $\left|\sigma_{P(A)}(D)\right| \neq 1$.
- A key attribute is an attribute a such that $t . a$ is defined $(\neq \downarrow)$ and unique for all $t \in D$. If we designate a specific key attribute a as a primary key attribute then we write $D[x]$ instead of $D[a=x]$.

4 Ideal System for a Cryptographic Library

We now present the ideal crypto-library. We include all definition details like ports and structures as needed for the notion of simulatability, because the ideal system is the abstract cryptographic module based on which protocols should be proved in future work. Hence it has to be defined precisely, and encoded faithfully into proof tools.

4.1 Structures

Given a number n of participants and a tuple L of parameters (mainly about lengths) discussed in Section 4.2, the ideal system is of the form

$$
S y s_{n, L}^{\text {cryid }}=\left\{\left(\left\{\mathrm{TH}_{\mathcal{H}}\right\}, S_{\mathcal{H}}\right) \mid \mathcal{H} \subseteq\{1, \ldots, n\}\right\}
$$

where \mathcal{H} denotes the set of honest participants (i.e., the access structure makes no restriction on the possible corruptions).

Actually, we consider two versions $S y s_{n, L}^{\text {cry,id,stan }}$ and $S y s_{n, L}^{\text {cry,id,loc }}$ called stand-alone and localized; in the former, in- and outputs for the users are scheduled by the adversary, in the latter locally (i.e., the crypto library is then used as local subroutines by protocols using it). The ports of $\mathrm{TH}_{\mathcal{H}}$ intended for the users are, respectively,

$$
\begin{gathered}
\text { userports }_{\mathcal{H}}^{\mathcal{H}} \text { san }:=\left\{\text { in }_{u} ?, \text { out }_{u}!\mid u \in \mathcal{H}\right\} ; \\
\text { userports }_{\mathcal{H}}^{\text {loc }}:=\left\{\text { in }_{u} \text { ?, out }{ }_{u}!, \text { out }_{u}!\mid u \in \mathcal{H}\right\} .
\end{gathered}
$$

Intuitively each u represents one user. The ports of the users which connect to those ports are, respectively,

$$
\begin{aligned}
S_{\mathcal{H}}^{\text {tan }^{c}} & :=\left\{\text { in }_{u}!, \text { out }_{u} ? \mid u \in \mathcal{H}\right\} ; \\
S_{\mathcal{H}}^{\text {occ }^{c}} & :=\left\{\text { in }_{u}!, \text { out }_{u} ?, \text { in }_{u}{ }^{\text {}}!\mid u \in \mathcal{H}\right\} .
\end{aligned}
$$

Figure 2: Ports of $\mathrm{TH}_{\mathcal{H}}$; localized version. Dotted arrows are clock connections; they end at buffers, which are not shown.

The localized version is shown in Figure 2. ${ }^{4}$
For the adversary, $\mathrm{TH}_{\mathcal{H}}$ mainly offers two ports in_{a} ? and outa !. Furthermore, to allow the adversary to schedule messages even on secure channels, there are abstract versions of these secure channels. We use the following abbreviations:

$$
\begin{aligned}
\text { ch_honest } & :=\{(u, v, x) \mid u, v \in \mathcal{H} \wedge x \in\{\mathrm{~s}, \mathrm{a}\}\} \\
\text { ch_from_adv } & :=\{(u, v, x) \mid v \in \mathcal{H} \wedge(u \notin \mathcal{H} \vee x=\mathrm{i})\} \\
\text { ch_to_adv } & :=\{(u, v, x) \mid u \in \mathcal{H} \wedge(v \notin \mathcal{H} \vee x \in\{\mathrm{a}, \mathrm{i}\})\} .
\end{aligned}
$$

Then for $t \in\{\operatorname{stan}, \mathrm{loc}\}$:

$$
\begin{aligned}
\text { Ports }_{\mathbf{T H}_{\mathcal{H}}^{t}}:= & \text { userports }_{\mathcal{H}}^{t} \cup\left\{\text { in }_{\mathrm{a}} \text { ?, out }{ }_{\mathrm{a}}!, \text { out }_{\mathrm{a}}{ }^{\unlhd}!\right\} \\
& \cup\left\{\text { net_id }_{u, v, x}!, \text { net_id }_{u, v, x} ? \mid(u, v, x) \in \text { ch_honest }\right\} .
\end{aligned}
$$

4.2 Lengths and Bounds

We already mentioned that we do not assume encryption systems to hide the length of the message. Furthermore, higher protocols may need to know the length of certain terms even for honest participants. Thus the trusted host is parameterized with certain length functions denoting the length of a corresponding value in the real system. In abbreviated notation, these functions are data_len ${ }^{*}(l)$, list_len* $\left(l_{1}, \ldots, l_{j}\right)$ for all $j \in \mathbb{N}_{0}$, nonce_len (k), pks_len (k), $\operatorname{sig_ len}^{*}(k, l)$, pke_len ${ }^{*}(k)$, and enc_len* (k, l). The domain of each parameter is \mathbb{N}_{0}, of each result \mathbb{N}, and k denotes the security parameter, while l and the l_{i} 's are lengths of messages.

Furthermore, to allow a polynomial-time system to be as secure as this ideal system, we use functions max_len (k), max_skc (k), and max_in (k) bounding the length of messages, the number of signatures per key, and the number of inputs at each port of correct real machines, respectively. To avoid unrealistic special cases, we require for all $k \in \mathbb{N}$ that max_len $(k)>3$;
 for all $i \in \mathbb{N}$ with $i \leq \max _s k c(k)$.

The tuple of all these functions is the system parameter L. Each function must be bounded by a (multivariate) polynomial and efficiently computable.

[^3]
4.3 States

The state of $\mathrm{TH}_{\mathcal{H}}$ consists of a database D and variables size, curhnd $_{u}$ for $u \in \mathcal{H} \cup\{\mathrm{a}\}$, and steps p_{p} ? for each input port p ?.

4.3.1 Database D

The main data structure of $\mathrm{TH}_{\mathcal{H}}$ is a database D. The entries of D are abstract representations of the data produced during a system run, together with the information on who knows these data. Each entry in D has attributes

$$
\left(\text { ind, type, } \arg , h n d_{u_{1}}, \ldots, h n d_{u_{m}}, h n d_{\mathrm{a}}, \text { len }\right)
$$

where $\mathcal{H}=\left\{u_{1}, \ldots, u_{m}\right\}$. For each tuple $x \in D$:

- x.ind $\in \mathcal{I N} \mathcal{D}$ S called index, consecutively numbers all entries in D. We use it as a primary key attribute, i.e., we will write $D[i]$ for $D[i n d=i]$.
- x.type \in typeset $:=\{$ data, list, nonce, ske, pke, enc, sks, pks, sig, garbage $\}$ identifies the type of x. Further extensions of the library can extend this set.
- $\operatorname{x.arg}=\left(a_{1}, a_{2}, \ldots, a_{j}\right)$ is a possibly empty list of arguments. Many values a_{i} are indices of other entries in D and thus in $\mathcal{I N D S}$. We sometimes distinguish them by a superscript "ind." ${ }^{5}$ The argument domains are defined implicitly by the commands, see Section 4.5. They are easy to look up there because most types of entry are only constructed with on command; exceptions are explicitly mentioned there.
- x.hnd $_{u} \in \mathcal{H} \mathcal{N D S} \cup\{\downarrow\}$ for $u \in \mathcal{H} \cup\{\mathrm{a}\}$ identifies how u knows this entry. The value a represents the adversary, and $x \cdot h n d_{u}=\downarrow$ indicates that u does not know this entry. A value $x . h n d_{u} \neq \downarrow$ is called the handle for u to entry x. We always use a superscript "hnd" for handles and usually denote a handle to an entry $D[i]$ by $i^{\text {hnd }}$.
- $x . l e n \in \mathbb{N}_{0}$ denotes the "length" of the entry. ${ }^{6}$

4.3.2 Conventions about Indices

Initially, D is empty. $\mathrm{TH}_{\mathcal{H}}$ keeps a variable size of type $\mathcal{I N D S}$ denoting the current number of elements in D. New entries x always receive $x . i n d:=$ size++ (increment, then assign), and $x . i n d$ is never changed. Thus, ind is indeed a key attribute.

4.3.3 Conventions about Handles

 ized with 0 , and each new handle for u will be chosen as $i^{\text {hnd }}:=$ curhnd $_{u^{++}}$. Thus handles are uniquely and consecutively assigned, i.e., D always fulfills the invariant that $\left|\sigma_{h n d_{u}=i^{\text {hnd }}}(D)\right|=1$ for each $i^{\text {hnd }} \leq$ curhnd $_{u}$, and $\left|\sigma_{\text {hnd }}^{u}=i^{\text {hnd }}(D)\right|=0$ for all $i^{\text {hnd }}>$ curhnd $_{u}$. We call this fact "handle uniqueness."

[^4]The algorithm ${\operatorname{ind} 2 h_{n d}}_{u}$ (with side effect) denotes that $\mathrm{TH}_{\mathcal{H}}$ determines a handle $i^{\text {hnd }}$ for u to an entry $D[i]$: On input $i \in \mathcal{I N D S}$, it returns $D[i] . h n d_{u}$ if it is not \downarrow; else it sets $D[i] . h n d_{u}:=$ curhnd $_{u}{ }^{++}$and returns $D[i] . h n d_{u}$. We extend it by ind2hnd ${ }_{u}(i):=i$ for $i \notin \mathcal{I N D S}$. For lists, the algorithm ind2hnd ${ }_{u}^{*}$ applies ind2hnd ${ }_{u}$ to each element.

4.3.4 Input Counters

For each of its input ports p ?, $\mathrm{TH}_{\mathcal{H}}$ maintains a counter steps $s_{\mathrm{p}} \in \mathbb{N}_{0}$ initialized with 0 for the number of inputs at that port. These counters are used to ensure polynomial runtime of $\mathrm{TH}_{\mathcal{H}}$. Hence for each port, there is a bound bound d_{p} ? that the counter must not exceed. ${ }^{7}$ This bound is $\max _i n(k)$ for all ports except for in_{a} ?, where it can be $\max ^{\mathrm{i}} \mathrm{i}_{\mathrm{a}}(k):=10 n^{2} \max _i n(k) \max _l e n(k)$ or any larger polynomial. (This fits a real system with the bound max_in (k) for all ports.)

4.4 Overview of Possible Inputs

Each input c at a port in_{u} ? with $u \in \mathcal{H} \cup\{\mathrm{a}\}$ should be a list $\left(c m d, x_{1}, \ldots, x_{j}\right)$. We usually write it

$$
y \leftarrow \operatorname{cmd}\left(x_{1}, \ldots, x_{j}\right)
$$

with a variable y designating the result that $\mathrm{TH}_{\mathcal{H}}$ returns at out ${ }_{u}$!. The value $c m d$ should be a command string: Let

$$
\begin{aligned}
& b a s i c _c m d s:=\begin{array}{r}
\text { \{get_type, get_len, store, retrieve, list, list_proj, gen_nonce, gen_sig_keypair, sign, verify, } \\
\\
\text { pk_of_sig, msg_of_sig, gen_enc_keypair, encrypt, decrypt, pk_of_enc }\} ; \\
\\
\qquad \text { send_cmds }:=\{\text { send_s, send_a, send_i }\} ; \\
a d v _l o c a l _c m d s:=\{\text { adv_garbage, adv_invalid_ciph, adv_transform_sig, adv_parse }\} ; \\
a d v _s e n d _c m d s:=\{\text { adv_send_s, adv_send_a, adv_send_i }\} .
\end{array} .
\end{aligned}
$$

Then cmd must be in basic_cmds \cup send_cmds if $u \neq \mathrm{a}$, and otherwise from basic_cmds \cup $a d v _l o c a l _c m d s \cup a d v _s e n d _c m d s$. The sets of commands can be enlarged by further extensions of the library. The permitted argument numbers j and exact domains are defined in Section 4.5. Membership in all domains is easily verifiable.

The inputs at a port net_id ${ }_{u, v, x}$? come from $\mathrm{TH}_{\mathcal{H}}$ itself; each one is simply a message index $l^{\text {ind }}$.

4.5 Inputs and their Evaluation

We now define the precise inputs and how $\mathrm{TH}_{\mathcal{H}}$ evaluates them based on its abstract state. The main ideas were already explained in Section 2.2. The following more specific design decisions were made, mainly to simplify the system:

- There are commands to store real-world messages in the library and to retrieve them by a handle. Thus other commands can assume that everything is addressed by handles.
- We only allow lists to be signed and transferred, because the list-operation is a convenient place to concentrate all verifications that no secret items are put into messages.

[^5]- $\mathrm{TH}_{\mathcal{H}}$ always offers all types of channels for all participants. Otherwise we would need many different trusted hosts. Many real protocols using cryptography should only use secret and authentic channels for key distribution at the beginning. As the channel type is part of the send-command name, syntactic checks can ensure that a protocol designed with the ideal crypto-library fulfills such requirements.

4.5.1 General Conventions

Upon each input at a port p ?, the trusted host $\mathrm{TH}_{\mathcal{H}}$ first increments the counter steps p_{p} ? The machine model in [72] is such that only non-empty inputs count, as only for those a Turing step is needed in the Turing machine realization.

Furthermore, the machine model contains length functions which allow to bound how many bits of input are accepted at each port, depending on the current state. The value 0 for port p ? means that no input is accepted (again without a Turing step). Once a counter steps s_{p} ? has reached its bound bound $_{\mathrm{p}}$? , the length function for this port is always zero.

Otherwise, the length functions are determined by the domain specified for each input in the part "for ..." after the parameter list below. The domain of each parameter with the superscript hnd is $\mathcal{H} \mathcal{N D S}$, and the handle must be assigned at the time of execution, i.e., \leq curhnd $_{u}$ in the given state. An input is well-formed if it is in the correct domain (at the time of execution). If an input is not well-formed, which is easily verifiable, $\mathrm{TH}_{\mathcal{H}}$ aborts the transition without further action. (But the counter steps $_{\mathrm{p}}$? has been incremented.) The overall length function for each port p ? in each state is the maximum of the possible lengths of well-formed inputs at that port in that state; it can easily be computed.

The localized version $\mathrm{TH}_{\mathcal{H}}^{\text {loc }}$ accompanies every output at a port out ${ }_{u}$! for $u \in \mathcal{H} \cup\{$ a\} by an output 1 at out ${ }_{u}{ }^{\text {}}$!, i.e., it schedules that output immediately, the stand-alone version $\mathrm{TH}_{\mathcal{H}}^{\text {stan }}$ only for $u=\mathrm{a}$.

From now on, we only need to define well-formed inputs further.

4.5.2 Basic Commands

In this section we define how $\mathrm{TH}_{\mathcal{H}}$ evaluates a command from basic_cmds, entered at a port in_{u} ? with $u \in \mathcal{H} \cup\{a\}$. Each basic command represents one cryptographic operation; arbitrary terms similar to the Dolev-Yao model are built up or decomposed by a sequence of commands. These commands are local, i.e., they produce a result at port out ${ }_{u}$! and possibly update the database D, but do not produce outputs at other ports. They also do not touch handles for participants $v \neq u$.

Type and length queries

- Type query: $t \leftarrow$ get_type $\left(x^{\text {hnd }}\right)$.

Set $t:=D\left[h n d_{u}=x^{\text {hnd }}\right]$.type. ${ }^{8}$

- Length query: $l \leftarrow \operatorname{get_ len}\left(x^{\text {hnd }}\right)$.

Set $l:=D\left[h n d_{u}=x^{\text {hnd }}\right]$.len.

[^6]Storing and retrieving data $\mathrm{TH}_{\mathcal{H}}$ stores a string and gives u a handle to it, respectively retrieves a previously stored string.

- Storing: $m^{\text {hnd }} \leftarrow \operatorname{store}(m)$, for $m \in \mathcal{B I T S T \mathcal { R }}$ with $|m| \leq$ max_len (k).

If $i:=D[$ type $=$ data $\wedge \arg =(m)]$.ind $\neq \downarrow$ then return $m^{\text {hnd }}:=\operatorname{ind}^{2 h n d}{ }_{u}(i) .{ }^{9}$ Otherwise if data_len* $(|m|)>\max _$len (k) return \downarrow. Else set $m^{\text {hnd }}:=$ curhnd $_{u}++$ and

$$
\begin{aligned}
& D: \Leftarrow \quad\left(\text { ind }:=\text { size }++ \text {, type }:=\text { data, arg }:=(m), h n d_{u}:=m^{\text {hnd }},\right. \\
&\text { len } \left.:=\text { data_len }^{*}(|m|)\right) .
\end{aligned}
$$

- Retrieval: $m \leftarrow \operatorname{retrieve}\left(m^{\text {hnd }}\right)$.
$m:=D\left[h n d_{u}=m^{\text {hnd }} \wedge\right.$ type $=$ data $] . \arg [1] .{ }^{10}$
Lists Entries that can be sent to other players, like data, ciphertexts, and public keys, can be combined into lists. Lists cannot include secret keys because no information about those must be given away. The following commands create a list and determine the i-th element in a list.
- Generate a list: $l^{\text {hnd }} \leftarrow \operatorname{list}\left(x_{1}^{\text {hnd }}, \ldots, x_{j}^{\text {hnd }}\right)$, for $0 \leq j \leq \max \operatorname{len}(k)$.

Let $x_{i}:=D\left[h n d_{u}=x_{i}^{\text {hnd }}\right]$.ind for $i=1, \ldots, j$. If any $D\left[x_{i}\right]$.type $\in\{$ sks, ske $\}$, set $l^{\text {hnd }}:=\downarrow$.
If $l:=D\left[\right.$ type $=$ list $\left.\wedge \arg =\left(x_{1}, \ldots, x_{j}\right)\right]$.ind $\neq \downarrow$, then return $l^{\text {hnd }}:=\operatorname{ind}^{2} \operatorname{hnd}_{u}(l)$. Otherwise, set length $:=\operatorname{list}_{-} l^{*}\left(D\left[x_{1}\right]\right.$.len $, \ldots, D\left[x_{j}\right]$.len $)$ and return \downarrow if length $>$ max_len (k). Else set $l^{\text {hnd }}:=\operatorname{curhnd}_{u}++$ and

$$
\begin{aligned}
D: \Leftarrow & \left(\text { ind }:=\text { size }++ \text {, type }:=\text { list, arg }:=\left(x_{1}, \ldots, x_{j}\right), h n d_{u}:=l^{\text {hnd }},\right. \\
& \text { len }:=\text { length }) .
\end{aligned}
$$

- i-th projection: $x^{\text {hnd }} \leftarrow \operatorname{list_ proj}\left(l^{\text {hnd }}, i\right)$, for $1 \leq i \leq$ max_len (k).

If $D\left[h n d_{u}=l^{\text {hnd }} \wedge\right.$ type $=$ list $]$.arg $=\left(x_{1}, \ldots, x_{j}\right)$ with $j \geq i$, then $x^{\text {hnd }}:=\operatorname{ind}_{2} \operatorname{hnd}_{u}\left(x_{i}\right)$, otherwise $x^{\text {hnd }}:=\downarrow$.

Nonces In reality nonces are randomly chosen words, used, e.g., to verify freshness of messages. $\mathrm{TH}_{\mathcal{H}}$ just creates a new entry.

- Generation: $n^{\text {hnd }} \leftarrow$ gen_nonce().

Set $n^{\text {hnd }}:=$ curhnd $_{u}++$ and

$$
\begin{aligned}
& D: \Leftarrow\left(\text { ind }:=\text { size }++ \text {, type }:=\text { nonce, arg }:=(), \text { hnd }_{u}:=n^{\text {hnd }},\right. \\
& \text { len } \left.:=\text { nonce_len }^{*}(k)\right) .
\end{aligned}
$$

[^7]Signatures This comprises operations for key generation, signature generation and verification, and retrieval of signature components.

- Key generation: $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_sig_keypair () .

Set $s k^{\text {hnd }}:=\operatorname{curhnd}_{u^{+}}+; p k^{\text {hnd }}:=\operatorname{curhnd}_{u}++$ and

$$
\begin{gathered}
D: \Leftarrow\left(\text { ind }:=\text { size }+ \text {, type }:=\text { sks, arg }:=(0), \text { hnd }{ }_{u}:=s k^{\text {hnd }}, \text { len }:=0\right) \\
D: \Leftarrow\left(\text { ind }:=\text { size++, type }:=\text { pks, arg }:=(), \text { hnd }_{u}:=p k^{\text {hnd }}, \text { len }:=\text { pks_len }^{*}(k)\right) .
\end{gathered}
$$

The argument of the secret-key entry is a counter initialized with 0 .

- Signature generation: $s^{\text {hnd }} \leftarrow \operatorname{sign}\left(s k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $s k:=D\left[h n d_{u}=s k^{\text {hnd }} \wedge\right.$ type $=$ sks $] . i n d$ and $l:=D\left[h n d_{u}=l^{\text {hnd }} \wedge\right.$ type $=$ list $] . i n d$. If either of these is \downarrow or if length $:=\operatorname{sig}^{\prime} \operatorname{len} *(k, D[l]$.len $)>\max _l e n(k)$, return \downarrow. Also return \downarrow if $D[s k]$.arg $[1] \geq \max _$skc (k) and $u \neq \mathrm{a}$. Otherwise, set $s^{\text {hnd }}:=\operatorname{curhnd}_{u}++, p k:=s k+1$ (recall that key pairs get successive indices), $c:=D[s k]$.arg [1]++, and

$$
D: \Leftarrow\left(\text { ind }:=\text { size++, type }:=\text { sig, arg }:=(p k, l, c), h n d_{u}:=s^{\text {hnd }}, \text { len }:=\text { length }\right) .{ }^{11}
$$

- Signature verification: $v \leftarrow \operatorname{verify}\left(s^{\text {hnd }}, p k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $s:=D\left[h n d_{u}=s^{\text {hnd }} \wedge\right.$ type $\left.=\operatorname{sig}\right]$.ind. If $s=\downarrow$ then return \downarrow. Otherwise, let $(p k, l, c):=$ $D[s]$. arg. If $D[p k] . h n d_{u} \neq p k^{\text {hnd }}$ or $D[l] . h n d_{u} \neq l^{\text {hnd }}$, then $v:=$ false, else $v:=$ true. ${ }^{12}$

- Public-key retrieval: $p k^{\text {hnd }} \leftarrow$ pk_of_sig $\left(s^{\text {hnd }}\right)$.

Let $p k:=D\left[h n d_{u}=s^{\text {hnd }} \wedge\right.$ type $\left.=\operatorname{sig}\right] . \arg [1]$ and return $p k^{\text {hnd }}:=\operatorname{ind} 2 h n d_{u}(p k)$.

- Message retrieval: $l^{\text {hnd }} \leftarrow$ msg_of_sig $\left(s^{\text {hnd }}\right)$.

Let $l:=D\left[h n d_{u}=s^{\text {hnd }} \wedge\right.$ type $\left.=\operatorname{sig}\right] . \arg [2]$ and return $l^{\text {hnd }}:=\operatorname{ind} 2 h n d_{u}(l) .{ }^{13,14}$
Public-key encryption This comprises operations for key generation, encryption, decryption, and retrieval of the public key from a ciphertext.

- Key generation: $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_enc_keypair () .

Sets $s k^{\text {hnd }}:=$ curhnd $_{u}++, p k^{\text {hnd }}:=$ curhnd $_{u}++$, and

$$
\begin{gathered}
D: \Leftarrow\left(\text { ind }:=\text { size }++, \text { type }:=\text { ske, } \arg :=(), h n d_{u}:=s k^{\text {hnd }}, \text { len }:=0\right) \\
D: \Leftarrow\left(\text { ind }:=\text { size }++ \text {, type }:=\text { pke, } \arg :=(), h n d_{u}:=p k^{\text {hnd }}, \text { len }:=\text { pke_len }^{*}(k)\right) .
\end{gathered}
$$

[^8]- Encryption: $c^{\text {hnd }} \leftarrow \operatorname{encrypt}\left(p k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $p k:=D\left[h n d_{u}=p k^{\text {hnd }} \wedge\right.$ type $=$ pke $] . i n d$ and $l:=D\left[h n d_{u}=l^{\text {hnd }} \wedge\right.$ type $=$ list $]$. ind and length $:=$ enc_len* $(k, D[l]$.len $)$. If length $>\max \operatorname{len}(k)$ or $p k=\downarrow$ or $l=\downarrow$, then return \downarrow. Else set $c^{\text {hnd }}:=$ curhnd $_{u}++$ and

$$
D: \Leftarrow\left(\text { ind }:=\text { size }++ \text {, type }:=\text { enc, arg }:=(p k, l), h n d_{u}:=c^{\text {hnd }}, \text { len }:=\text { length }\right) .{ }^{15}
$$

- Decryption: $l^{\text {hnd }} \leftarrow \operatorname{decrypt}\left(s k^{\text {hnd }}, c^{\text {hnd }}\right)$.

Let $s k:=D\left[h n d_{u}=s k^{\text {hnd }} \wedge\right.$ type $=$ ske $]$.ind and $c:=D\left[h n d_{u}=c^{\text {hnd }} \wedge\right.$ type $=$ enc $] . i n d$. Return \downarrow if $c=\downarrow$ or $s k=\downarrow$ or $p k:=D[c] \cdot \arg [1] \neq s k+1$ or $l:=D[c] \cdot \arg [2]=\downarrow$ (as a result of the command adv_invalid_ciph). Else return $l^{\text {hnd }}:=\operatorname{ind}_{2}$ hnd $_{u}(l)$.

- Public-key retrieval: $p k^{\text {hnd }} \leftarrow$ pk_of_enc $\left(c^{\text {hnd }}\right)$.

Let $c:=D\left[h n d_{u}=c^{\text {hnd }} \wedge\right.$ type $\left.=\mathrm{enc}\right]$.ind. If $c=\downarrow$, return \downarrow. Otherwise, let $p k:=D[c] . \arg [1]$ and return $p k^{\text {hnd }}:=\operatorname{ind}^{2} \operatorname{hnd}_{u}(p k)$.

4.5.3 Local Adversary Commands

The following commands are also local, but, as defined in Section 4.4, only well-formed at the port in_{a} ?. Hence they are not available as commands for the honest users in the real system. They model tolerable imperfections of the real system, i.e., actions that may be possible in real systems but that are not required.

First, an adversary may create invalid entries of a certain length; they obtain the type garbage. Secondly, invalid ciphertexts are a special case because participants not knowing the secret key can reasonably ask for their type and query their public key, hence they cannot be of type garbage. Thirdly, the security definition of signature schemes does not exclude that the adversary transforms signatures by honest participants into other valid signatures on the same message with the same public key.

Finally, we allow the adversary to retrieve all information that we do not explicitly require to be hidden. We write this as a command adv_parse. It returns the type and usually all the abstract arguments of a value (with indices replaced by handles), e.g., parsing a signature yields the public key for testing this signature, the signed message, and the value of the signature counter used for this message. Only for ciphertexts where the adversary does not know the secret key, parsing only returns the length of the cleartext instead of the cleartext itself. Most of these arguments could also be queried with basic commands, but not the signature counter and the cleartext length.

- Invalid entry: $y^{\text {hnd }} \leftarrow \operatorname{adv} _$garbage (l), for $l \in \mathbb{N}$ with $l \leq \max _l e n(k)$.

Set $y^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and 16

$$
D: \Leftarrow\left(\text { ind }:=\text { size } e^{++} \text {, type }:=\text { garbage, } \arg :=(), h n d_{\mathrm{a}}:=y^{\text {hnd }}, \text { len }:=l\right) \text {. }
$$

- Signature transformation: $t^{\text {hnd }} \leftarrow$ adv_transform_sig $\left(s^{\text {hnd }}\right)$.

[^9]Let $s:=D\left[h n d_{\mathrm{a}}=s^{\mathrm{hnd}} \wedge\right.$ type $\left.=\operatorname{sig}\right]$.ind. If $s=\downarrow$ then return \downarrow. Otherwise let $(p k, l, c):=$ $D[s]$.arg. Set $t^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and

$$
\begin{aligned}
D: \Leftarrow & \left(\text { ind }:=\text { size }++ \text {, type }:=\operatorname{sig}, \arg :=(p k, l, \text { false }), h n d_{\mathrm{a}}:=t^{\mathrm{hnd}}\right. \\
& \text { len }:=D[s] . l e n)
\end{aligned}
$$

- Invalid ciphertext of length $l: c^{\text {hnd }} \leftarrow \operatorname{adv}$ _invalid_ciph $\left(p k^{\text {hnd }}, l\right)$, for $1 \leq l \leq \max \operatorname{len}(k)$.

Let $p k:=D\left[h n d_{\mathrm{a}}=p k^{\mathrm{hnd}} \wedge\right.$ type $=$ pke $]$.ind. If $p k=\downarrow$, then return \downarrow. Otherwise set $c^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and

$$
D: \Leftarrow\left(\text { ind }:=\text { size }++ \text {, type }:=\text { enc, } \arg :=(p k), h n d_{\mathrm{a}}:=c^{\mathrm{hnd}}, \text { len }:=l\right)
$$

- Parameter retrieval: (type, arg $) \leftarrow \operatorname{adv}$ _parse $\left(m^{\mathrm{hnd}}\right)$.

Let $m:=D\left[h n d_{\mathrm{a}}=m^{\mathrm{hnd}}\right]$.ind and type $:=D[m]$.type. In most cases, set arg $:=$ ind2hnda ${ }_{\mathrm{a}}^{*}(D[m] . \arg)$. (Recall that this only transforms arguments in $\mathcal{I N} \mathcal{D} \mathcal{S}$.) The only exception is for type $=$ enc and $D[m] . \arg$ of the form $(p k, l)$ (a valid ciphertext) and $D[p k-1] . h n d_{\mathrm{a}}=$

4.5.4 Send Commands

We now define the send commands in detail. Essentially, messages from one honest user to another (on a secure or authentic channel) are put on an abstract secure channel for scheduling, while messages to or from the adversary (either by their addresses, or because the channel is not private) are output immediately.

- send $_x\left(v, l^{\text {hnd }}\right)$, for $x \in\{\mathrm{~s}, \mathrm{a}, \mathrm{i}\}$ and $v \in\{1, \ldots, n\}$.

Intuitively, the list l shall be sent to user v. Let $l^{\text {ind }}:=D\left[h n d_{u}=l^{\text {hnd }} \wedge\right.$ type $=$ list $]$.ind. If $l^{\text {ind }} \neq \downarrow$, then depending on the channel type (where both cases may occur for one message):

- If $(u, v, x) \in$ ch_honest, output $l^{\text {ind }}$ at net_id ${ }_{u, v, x}$!.

- adv_send_ $x\left(u, v, l^{\text {hnd }}\right)$, for $x \in\{\mathrm{~s}, \mathrm{a}, \mathrm{i}\}, u \in\{1, \ldots, n\}$ and $v \in \mathcal{H}$ at port in_{a} ?.

Intuitively, the adversary wants to send list l to v, pretending to be u. Let $l^{\text {ind }}:=D\left[h n d_{\mathrm{a}}=\right.$
 at out ${ }_{v}$!.

4.5.5 Inputs from Secure Channels

- Input from secure channel: On input $l^{\text {ind }}$ at a port net_id ${ }_{u, v, x}$?, for $l^{\text {ind }} \in \mathcal{I} \mathcal{N D} \mathcal{S}$ with $l^{\text {ind }} \leq$ size.
$\mathrm{TH}_{\mathcal{H}}$ outputs $\left(u, x\right.$, ind $\left.2 h n d_{v}\left(l^{\text {ind }}\right)\right)$ at out ${ }_{v}$!.

4.6 Properties of the Ideal System

The following properties of the ideal system will be useful as invariants in the security proof. For every entry x in D, let owners $(x):=\left\{u \in \mathcal{H} \cup\{\mathrm{a}\} \mid x . h n d_{u} \neq \downarrow\right\}$.

Lemma 4.1 The ideal systems $S y s_{n, L}^{\text {cry, id }, x}$ for $x \in\{\operatorname{stan}$, loc $\}$ have the following properties:

1. Index and handle uniqueness: The argument ind of D is a key attribute. Further, D always fulfills $\left|\sigma_{\text {hnd } d_{u}=i^{\text {hnd }}}(D)\right|=1$ for each $i^{\text {hnd }} \leq \operatorname{curhnd}_{u}$, and $\left|\sigma_{h n d_{u}=i^{\text {hnd }}}(D)\right|=0$ for each $i^{\text {hnd }}>$ curhnd $_{u}$.
2. Well-defined terms: If an entry $x=D[i]$ has an index argument, i.e., $a:=x . \arg [j] \in \mathcal{I N D S}$ for some $j \in \mathbb{N}$, then $a<i$. (Thus following the arguments of an entry backwards recursively yields a finite, Dolev-Yao-like term.) We call the entry $D[a]$ a direct component of x, and recursively define the set of all components of x in the obvious way.
3. Message correctness: At all times and for all $(u, v, x) \in$ ch_honest, each message $l^{\text {ind }}:=$ net_ $i d_{u, v, x}[i]$ with $l^{\text {ind }} \neq \downarrow$ has $D\left[i^{\text {ind }}\right]$.type $=$ list. Here, net_ $i d_{u, v, x}[i]$ denotes the i-th element in the buffer queue of the connection.
4. Length bounds: At all times, x.len $\leq \max _l e n(k)$ for all $x \in D$.
5. Correct key pairs: Key entries only exist in pairs, i.e., $D[i]$.type $=$ sks $\Longleftrightarrow D[i+1]$. type $=$ pks and $D[i]$.type $=$ ske $\Longleftrightarrow D[i+1]$.type $=$ pke at all times and for all $i \in \mathbb{N}_{0}$. If the conditions are true, we further have $D[i+1] \cdot h n d_{u}=D[i] \cdot h n d_{u}+1$ for $u:=\operatorname{owner}(D[i])$.
6. Key secrecy: If $D[i]$.type $\in\{$ sks, ske $\}$, then $D[i]$ is not a component of $D[j]$ for any $j \neq i$. Further, \mid owners $(D[i]) \mid=1$. We write owner $(D[i])$ for the element of owners $(D[i])$ in this case. It cannot change later.

Proof. Part 1 was already shown in Sections 4.3 .2 and 4.3.3; it is easy to see that all commands respect the conventions introduced there.

Parts 2, 3, 4, and 5 can easily be seen by inspection of the commands, and for Part 4 by the precondition on the lengths of nonces and keys.

For Part 6, inspection easily shows that no type of entry has a direct component of a type in $\{$ sks, ske\}, and thus also no component. Handles may be added to existing entries upon the following inputs: Data storing and list generation, but only to data and lists; list projection, decryption, retrieval from signatures and ciphertexts, and adv_parse, but only to direct components of the given entry and thus not to secret keys; send_ x and adv_send_ x, but only to lists; and network inputs, but only to lists by Part 3 .
Moreover, the following properties will prove useful.
Lemma 4.2 The ideal systems $S y s_{n, L}^{\text {cry,id,stan }}$ and $S y s_{n, L}^{\text {cry, id,loc }}$ have the following properties:

1. The systems are polynomial-time.
2. No ideal network input is rejected because a counter steps $_{\text {net_id }_{u, v, x} \text { ? }}$ reached its bound.
3. The only modifications to existing entries x in D are assignments to previously undefined attributes $x . h n d_{u}$, and (via the command sign) counter updates in entries of type sks.
4. Whenever $\mathrm{TH}_{\mathcal{H}}$ assigns a handle $x . h n d_{u}$, it outputs it at port out ${ }_{u}$! in the same transition. Further, every new entry has exactly one handle.

Proof. For Part 1, we have to show that $\mathrm{TH}_{\mathcal{H}}$ only accepts a polynomial number of polynomiallength inputs; the action in each command is then clearly polynomial-time by the assumptions about the functions in L. For the input number, this holds because there is a counter steps s_{p} ? for inputs at each port p ?, each with a bound bound $_{\mathrm{p}}$? polynomial in k. Hence the dynamic bounds curhnd $_{u}$ on handle parameters and size on ideal network inputs are bounded by a statically fixed polynomial. All other input parameters have static polynomial domain restrictions. Hence the length bounds on inputs (recall Section 4.5.1) are indeed polynomial in k.

Part 2 holds because messages only get into a buffer net_id $d_{u, v, x}$ by a command send_x input at in_{u} ?, one per command. There are at $\operatorname{most} \max \operatorname{in}(k)$ such inputs, and max_in (k) messages are accepted at net_id ${ }_{u, v, x}$? if scheduled.

Parts 3 and 4 can easily be seen by inspection of the commands.

4.7 A Small Example

Assume that a cryptographic protocol has to perform the step

$$
u \rightarrow v: \operatorname{enc}_{p k e_{v}}\left(\operatorname{sign}_{s k s_{u}}\left(m, N_{1}\right), N_{2}\right),
$$

where m is an input message and N_{1}, N_{2} are two fresh nonces. Given our library, this is represented by the following sequence of commands input at port in_{u} ?. We assume that u has already received a handle $p k e_{v}^{\text {hnd }}$ to the public encryption key of v, and created signature keys, which gave him a handle $s k s_{u}^{\text {hnd }}$.

1. $m^{\text {hnd }} \leftarrow \operatorname{store}(m)$.
2. $N_{1}^{\text {hnd }} \leftarrow$ gen_nonce () .
3. $l_{2}^{\text {hnd }} \leftarrow \operatorname{list}\left(s i g^{\text {hnd }}, N_{2}^{\text {hnd }}\right)$.
4. $l_{1}^{\text {hnd }} \leftarrow \operatorname{list}\left(m^{\text {hnd }}, N_{1}^{\text {hnd }}\right)$.
5. $e n c^{\text {hnd }} \leftarrow \operatorname{encrypt}\left(p k e_{v}^{\text {hnd }}, l_{2}^{\text {hnd }}\right)$.
6. $\operatorname{sig}{ }^{\text {hnd }} \leftarrow \operatorname{sign}\left(s k s_{u}^{\text {hnd }}, l_{1}^{\text {hnd }}\right)$.
7. $m^{\text {hnd }} \leftarrow \operatorname{list}\left(e n c^{\text {hnd }}\right)$.
8. $N_{2}^{\text {hnd }} \leftarrow$ gen_nonce ().
9. send_i $\left(v, m^{\text {hnd }}\right)$

Note that the entire term is constructed by a local interaction of user u and the ideal library, i.e., the adversary does not learn anything about this interaction until Step 8. In Step 9, the adversary gets an output ($u, v, \mathrm{i}, m_{\mathrm{a}}^{\text {hnd }}$) with a handle $m_{\mathrm{a}}^{\text {hnd }}$ for him to the resulting entry. In the real system described below, the sequence of inputs for constructing and sending this term is identical, but real cryptographic operations are used to build up a bitstring m until Step 8, and m is sent to v via a real insecure channel in Step 9.

5 Real System

In a real system, the commands are implemented by real cryptographic algorithms, and messages are actually sent between machines. We first describe the underlying algorithms; then we define the machines of the real system in an order similar to the ideal system.

5.1 Cryptographic Operations

The real system uses digital signatures and public-key encryption. The ranges of all algorithms are $\{0,1\}^{+} \cup\{\downarrow\}$.

5.1.1 Digital Signatures

We denote a digital signature scheme by a tuple $\mathcal{S}=$ (gens, sign, test, pks_len, sig_len) of polynomialtime algorithms. We write

$$
(s k, p k) \leftarrow \operatorname{gens}_{s}\left(1^{k}, 1^{s}\right)
$$

for the generation of a secret signing key and a public test key based on a security parameter, $k \in \mathbb{N}$, and the desired maximum number of signatures, $s \in \mathbb{N}$. The length of $p k$ is pks_len $(k, s)>0$. By

$$
\operatorname{sig} \leftarrow \operatorname{sign}_{s k, s c}(m)
$$

we denote the (probabilistic) signing of a message $m \in\{0,1\}^{+}$, where $s c \in\{1, \ldots, s\}$ is a counter value. ${ }^{17}$ Verification

$$
b:=\operatorname{test}_{p k}(\operatorname{sig}, m)
$$

is deterministic and returns true (then we say that the signature is valid) or false. Correctly generated signatures for correct key pairs must always be valid. The length of sig is sig_len $(k, s,|m|)>$ $0 .{ }^{18}$ This is also true for every $s i g^{\prime}$ with test ${ }_{p k}\left(s i g^{\prime}, m\right)=$ true for a value $p k \in\{0,1\}^{\mathrm{pks} _l e n(k, s)}$. The functions pks_len, sig_len must be bounded by multivariate polynomials.

The accepted security definition for general-purpose signing is security against existential forgery under adaptive chosen-message attacks [55]. We only use our notation for interacting machines.

Definition 5.1 (Signature Security) Given a signature scheme and a function s over \mathbb{N}, the signer machine Sig_{s} is defined as follows: It has one input and one output port, variables $s k, p k$ initialized with \downarrow and a counter sc initialized with 0 , and the following transition rules:

- First generate a key pair, $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{S}}\left(1^{k}, 1^{s(k)}\right)$, and output $p k$.
- On input (sign, m_{j}), and if $s c<s(k)$, set sc++ and return $\operatorname{sig}_{j} \leftarrow \operatorname{sign}_{s k, s c}\left(m_{j}\right)$.

The signature scheme is called existentially unforgeable under adaptive chosen-message attack if for every efficiently computable, polynomially bounded s and every probabilistic polynomial-time machine $\mathrm{A}_{\text {sig }}$ that interacts with Sig_{s} and outputs a pair (m, sig), the probability that test ${ }_{p k}($ sig,$m)=$ true and m was not signed by Sig_{s} during the interaction (i.e., a forged signature), is negligible (in $k)$.

5.1.2 Encryption

We denote a public-key encryption scheme by a tuple $\mathcal{E}=\left(\operatorname{gen}_{\mathrm{E}}, \mathrm{E}, \mathrm{D}\right.$, pke_len, enc_len) of polynomial-time algorithms. We assume that messages of arbitrary length can be encrypted and that secrecy holds within all subsets of messages of the same length. We write

$$
(s k, p k) \leftarrow \operatorname{gen}_{\mathbb{E}}\left(1^{k}\right)
$$

[^10]for the generation of a secret decryption key and a public encryption key. The length of $p k$ is pke_len $(k)>0$. We denote the (probabilistic) encryption of a message $m \in\{0,1\}^{+}$by
$$
c \leftarrow \mathrm{E}_{p k}(m),
$$
and deterministic decryption by
$$
m:=\mathrm{D}_{s k}(c) .
$$

The result m may be \downarrow for wrong ciphertexts. The length of c is enc_len $(k,|m|) \geq|m|>0$ for every value $p k \in\{0,1\}^{\text {pke_len }(k)}$, and also for every c^{\prime} with $m:=\mathrm{D}_{s k}\left(c^{\prime}\right) \neq \downarrow$ for a correctly generated secret key. The functions pke_len, enc_len must be bounded by multivariate polynomials.

The following security definition means that any two equal-length messages are indistinguishable even in adaptive chosen-ciphertext attacks. Indistinguishability was introduced in [54], chosenciphertext security in [73] and formalized as "IND-CCA2" in [33]. It is the accepted definition for general-purpose encryption. An efficient encryption system secure in this sense is [43].

Definition 5.2 (Encryption Security) Given an encryption scheme, the decryptor machine Dec is defined as follows: It has one input and one output port, variables $s k, p k, c$ initialized with \downarrow, and the following transition rules:

- First set $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$ and output $p k$.
- On input (enc, m_{0}, m_{1}) (intuitively a pair of messages an adversary hopes to be able to distinguish), and if $\left|m_{0}\right|=\left|m_{1}\right|$ and $c=\downarrow$, set $b \leftarrow \mathfrak{R}\{0,1\}$ and store and output the encryption $c \leftarrow \mathrm{E}_{p k}\left(m_{b}\right)$.
- On input ($\operatorname{dec}, c_{j}$) and if $c_{j} \neq c$, return $m:=\mathrm{D}_{s k}(c)$.

The encryption scheme is called indistinguishable under adaptive chosen-ciphertext attack if for every probabilistic polynomial-time machine $\mathrm{A}_{\mathrm{enc}}$ that interacts with Dec and finally outputs a bit b^{*} (meant as a guess at b), the probability of the event $b^{*}=b$ is bounded by $1 / 2+g(k)$ for a negligible function g.

5.2 Structures

Given a signature scheme \mathcal{S} and an encryption scheme \mathcal{E}, we now define a real crypto-library, again in a stand-alone and a localized version $S y s_{n, \mathcal{S}, \mathcal{E}, L^{\prime}}^{\text {cry, }}$, and $S y s_{n, \mathcal{S}, \mathcal{E}, L^{\prime}}^{\text {cry,real. }}$. The parameter n denotes the number of participants, and L^{\prime} is a tuple of parameters discussed in Section 5.3.

The systems are standard cryptographic systems as defined in [72] and sketched in Section 2.1.

- The intended structure has n machines $\left\{\mathrm{M}_{1}, \ldots, \mathrm{M}_{n}\right\}$.
- The intended specified ports are defined via

$$
\begin{gathered}
S^{*, \operatorname{stan}^{c}}:=\left\{\operatorname{in}_{u}!, \text { out }_{u} ? \mid u \in\{1, \ldots n\}\right\} ; \\
S^{*, \text { occ }^{c}}:=\left\{\operatorname{in}_{u}!, \text { out }_{u} ?, \text { in }_{u}{ }^{\triangleleft}!\mid u \in\{1, \ldots n\}\right\} .
\end{gathered}
$$

- Correspondingly, each M_{u} has ports in_{u} ? and out ${ }_{u}$!, and in the localized version also out ${ }_{u}{ }^{〔}$!
- Each M_{u} has three connections to each M_{v} with $v \in\{1, \ldots n\}$, called $n e t_{u, v, \mathbf{s}}$, net $t_{u, v, \mathrm{a}}$ and net $_{u, v, \mathrm{i}}$. They are called network connections and the corresponding ports network ports. All the network connections are scheduled by the adversary.
- The access structure $\mathcal{A C C}$ consists of all subsets \mathcal{H} of $\{1, \ldots, n\}$.
- The channel model χ maps each connection $n e t_{u, v, x}$ to x.

The channel model means that in an actual structure, an honest intended recipient gets all messages output at ports of type s (secret) and a (authentic) and the adversary gets all messages output at ports of type a and i (insecure). Furthermore, all messages received at an input port of type i come from the adversary. This is shown in Figure 3. To ensure globally unique port names, some ports get a superscript a according to the rules in [72]. In the following, the machine is always clear from the context; thus we usually omit these superscripts.

Figure 3: Connections from a correct machine to another in the real system. User in- and outputs are scheduled as in the ideal system, network connections by the adversary.

5.3 Lengths and Bounds

The parameter L^{\prime} of the real system consists of functions max_len (k), max_skc (k), and max_in (k) as in the ideal system and a function nonce_len (k) of the same type, where $2^{- \text {nonce_len }(k)}$ must be negligible.

For use in preconditions and lemmas, we define the resulting lengths of data items in the real system, i.e., the length functions of the corresponding ideal system, as a function $L:=\mathrm{R} 2 \operatorname{lpar}\left(\mathcal{S}, \mathcal{E}, L^{\prime}\right)$. We abbreviate

- pks_len' $(k):=$ pks_len $\left(k, \max _\right.$skc $\left.(k)\right)$;
- $\operatorname{sig} _l e n^{\prime}(k, l):=\operatorname{sig}$ _len $(k$, max_skc (k), list_len $($ nonce_len $(k), l))$; and
- enc_len' $(k, l):=$ enc_len $(k$, list_len(nonce_len $(k), l))$.

Now L consists of the following functions:

- data_len* $(l):=$ list_Ien $(|d a t a|, l) ;$
- list_len ${ }^{*}\left(l_{1}, \ldots, l_{j}\right):=\operatorname{list_ len}\left(|\operatorname{list}|, l_{1}, \ldots, l_{j}\right)$;
- nonce_len ${ }^{*}(k):=$ list_len $(\mid$ nonce \mid, nonce_len $(k))$;
- pks_len ${ }^{*}(k):=$ list_len $\left(|\mathrm{pks}|\right.$, pks_len $\left.^{\prime}(k)\right)$;
- $\operatorname{sig}^{\prime} \operatorname{len}^{*}(k, l):=$ list_len $\left(\mid\right.$ sig \mid, pks_len ${ }^{\prime}(k)$, nonce_len $(k), l$, sig_len $\left.^{\prime}(k, l)\right)$;
- pke_len* $(k):=$ list_len $(\mid$ pke|, pke_len $(k))$;
- enc_len ${ }^{*}(k, l):=$ list_len $(|e n c|$, pke_len (k), enc_len' (k, l), nonce_len $(k))$;
and max_len, max_skc and max_in are taken unchanged from L^{\prime}.
We require that nonce_len* (k), pks_len* (k), and pke_len* (k) are upper bounded by max_len (k), and we denote the set of parameters L^{\prime} that fulfill these constraints as ValidPar.

Lemma 5.1 For a tuple $L^{\prime} \in$ ValidPar of parameters for the real crypto-library and correct signature and encryption systems, the algorithm $L:=\mathrm{R} 2 \operatorname{lpar}\left(\mathcal{S}, \mathcal{E}, L^{\prime}\right)$ yields a correct tuple L of parameters for the ideal crypto-library.

Proof. We have to verify the conditions from Section 4.2. Clearly the range of all functions type_len* is indeed \mathbb{N}. Next, type_len* $(k)<$ max_len (k) for type $\in\{$ nonce, pks, pke $\}$ and max_skc $(k)<$ $\max _i n(k)$ holds by direct preconditions. Finally, one easily sees that all the functions are bounded by a multivariate polynomial and efficiently computable because all the basic functions in the definitions are.

5.4 States of a Machine

The state of each machine M_{u} consists of a database D_{u} and variables curhnd $_{u}$ and steps s_{p} ? for each input port p ?

5.4.1 Database D_{u}

The main data structure of M_{u} is a database D_{u} that contains implementation-specific data such as ciphertexts and signatures produced during a system run. Its primary key attribute corresponds to the handles for u in the ideal system. Each entry x in D_{u} has attributes

$$
\left(\text { hnd }_{u}, \text { word, type }, \text { add_arg }\right) .
$$

- . $_{\mathrm{h}}^{\mathrm{h}} \mathrm{d}_{u} \in \mathcal{H} \mathcal{N D S}$ consecutively numbers all entries in D_{u}. We use it as a primary key attribute, i.e., we will write $D_{u}\left[i^{\text {hnd }}\right]$ for $D_{u}\left[h n d_{u}=i^{\text {hnd }}\right]$.
- x.word $\in\{0,1\}^{+}$is the real representation of x.
- x.type \in typeset $\cup\{$ null $\}$ identifies the type of x. The value null denotes that the entry has not yet been parsed. Again, the typeset can be extended.
- x.add_arg is a list of ("additional") arguments. Typically it is (), only for signing keys it contains the counter.

5.4.2 Conventions about Handles

 number of elements in D_{u}. New entries x always receive $x \cdot h n d_{u}:=$ curhnd $_{u}++$, and $x . h n d_{u}$ is never changed. Thus, $h n d_{u}$ is indeed a key attribute. By

$$
\left(i^{\text {hnd }}, D_{u}\right): \leftarrow(i, \text { type }, \text { add_arg }),
$$

spoken "determine a handle $i^{\text {hnd }}$ for \ldots in D_{u} ", for $i \in\{0,1\}^{+}$, type \in typeset, and add_arg $\in \mathcal{L I S T}$, we abbreviate the following algorithm: If $i^{\text {hnd }}:=D_{u}[$ word $=i \wedge$ type $\notin\{$ sks, ske $\}] . h n d_{u} \neq \downarrow$, return $i^{\text {hnd }}$, assigning the input values type and add_arg to the corresponding attributes of $D_{u}\left[i^{\text {hnd }}\right]$ only if $D_{u}\left[i^{\text {hnd }}\right]$.type was null. Else if $|i|>\max -l e n(k)$, return $i^{\text {hnd }}=\downarrow$. Otherwise, set $i^{\text {hnd }}:=\operatorname{curhnd}_{u^{++}}$, $D_{u}: \Leftarrow\left(i^{\text {hnd }}, i\right.$, type,$\left.a d d _a r g\right)$ and return $i^{\text {hnd }}$.

5.4.3 Input Counters

For each of its input ports p ?, M_{u} maintains a counter steps $_{\mathrm{p}}$? $\in \mathbb{N}_{0}$ initialized with 0 for the number of inputs at that port. All corresponding bounds bound d_{p} ? are max_in (k).

5.5 Inputs and their Evaluation

Now we describe how M_{u} evaluates individual inputs. Mainly, these are the cryptographic operations with the modifications motivated in Section 2.3. For general unambiguity, not only all cryptographic objects are tagged, but also data and lists.

5.5.1 General Conventions

The general conventions are similar to those in the ideal system. (In fact, the domains for inputs at port in_{u} ? are the same as in $\mathrm{TH}_{\mathcal{H}}$ in corresponding states, which will be defined later.)

Upon each input at a port p ?, the machine M_{u} first increments the counter steps s_{p}, and once a counter steps s_{p} has reached its bound max_in (k), the length function for this port is always zero.

Otherwise, the length function is determined by the domain specified for each input in the part "for ..." below. The domain of each parameter with subscript hnd is $\mathcal{H} \mathcal{N} \mathcal{D}$, and it must be \leq curhnd $_{u}$ at the time of execution. An input in the correct domain is called well-formed. If an input is not well-formed, which is easily verifiable, M_{u} aborts the transition without further action. (But the counter steps $_{\mathrm{p}}$? has been incremented.) The overall length function for each port p? in each state is the maximum of the possible lengths of well-formed inputs at that port in that state; it can easily be computed.

In the localized version, M_{u} accompanies every output at the port out ${ }_{u}$! by an output 1 at out $_{u}{ }^{\triangleleft}$!, i.e., it schedules that output immediately.

From now on, we only need to consider well-formed inputs further.

5.5.2 Constructors and One-level Parsing

Constructors For each type, we define the main constructor via an algorithm make_type, which is purely functional, i.e., it does not use or modify global variables, except that it uses $k .{ }^{19}$

Functional parsing We also define a functional algorithm parse, written

$$
(\text { type }, \arg) \leftarrow \operatorname{parse}(m),
$$

for $m \in\{0,1\}^{+}$and with outputs type \in typeset and a list arg with elements in Σ^{*}.
On input m, it tests if m is of the form (type, m_{1}, \ldots, m_{j}) with type \in typeset $\backslash\{$ sks, ske, garbage $\}$ and $j \geq 0$. If this fails, it returns (garbage, ()). Otherwise it makes a call $\arg \leftarrow$ parse_type (m) to an algorithm which returns \downarrow if m is not really of this type and otherwise computes the arguments. These algorithms are described after the corresponding constructors in Section 5.5.3. If parse_type returns $\arg =\downarrow$, parse again outputs (garbage, ()).

Parsing in D_{u} By
"parse $m^{\text {hnd" }}$

[^11]we abbreviate that M_{u} calls (type, arg $) \leftarrow \operatorname{parse}\left(D_{u}\left[m^{\mathrm{hnd}}\right]\right.$.word $)$, assigns $D_{u}\left[m^{\text {hnd }}\right]$.type $:=$ type if it was still null, and may then use arg. By
$$
\text { "parse } m^{\text {hnd }} \text { if necessary" }
$$
we mean the same except that M_{u} does nothing if $D_{u}\left[m^{\text {hnd }}\right]$.type \neq null. ${ }^{20}$

5.5.3 Basic Commands and parse_type

We now define how M_{u} evaluates a command from basic_cmds, entered at the port in ${ }_{u}$?. Basic commands are again local, i.e., they produce a result at out ${ }_{u}$! and possibly update the database D_{u}, but do not produce outputs at other ports. The basic commands are implemented by the underlying cryptographic operations with the modifications motivated in Section 2.3. For general unambiguousness, not only all cryptographic objects are tagged, but also data and lists.

Type and length queries

- Type query: $t \leftarrow$ get_type $\left(x^{\mathrm{hnd}}\right)$.

Parse x^{hnd} if necessary. Then let $t:=D_{u}\left[x^{\mathrm{hnd}}\right]$.type .

- Length query: $l \leftarrow$ get_len $\left(x^{\text {hnd }}\right)$.

Parse x^{hnd} if necessary. If $D_{u}\left[x^{\mathrm{hnd}}\right]$.type $\notin\{$ sks, ske $\}$ then let $l:=\mid D_{u}\left[x^{\mathrm{hnd}}\right]$.word \mid, otherwise let $l:=0$.

Storing and retrieving data

- Constructor: $d \leftarrow$ make_data (m), for $m \in\{0,1\}^{*}$.

Let $d:=($ data,$m)$.

- Storing: $m^{\text {hnd }} \leftarrow \operatorname{store}(m)$, for $m \in\{0,1\}^{*}$ with $|m| \leq \max$ len (k).

Let $d \leftarrow$ make_data (m) and $\left(d^{\text {hnd }}, D_{u}\right): \leftarrow(d$, data, ()$)$.

- Parsing: arg \leftarrow parse_data (m).

If m is of the form (data, m^{\prime}) with $m^{\prime} \in\{0,1\}^{*}$, return $\left(m^{\prime}\right)$, else \downarrow.

- Retrieval: $m \leftarrow$ retrieve $\left(m^{\text {hnd }}\right)$.

Parse $m^{\text {hnd }}$ if necessary. Return parse_data $\left(D_{u}\left[h n d_{u}=m^{\text {hnd }} \wedge\right.\right.$ type $=$ data $]$.word $)[1]$.

Lists

- Constructor: $l \leftarrow$ make_list $\left(x_{1}, \ldots, x_{j}\right)$, for $j \in \mathbb{N}_{0}$ and $x_{i} \in\{0,1\}^{+}$for $i:=1, \ldots, j$.

Let $l:=\left(\right.$ list $\left., x_{1}, \ldots, x_{j}\right)$.

- Generate a list: $l^{\mathrm{hnd}} \leftarrow \operatorname{list}\left(x_{1}^{\mathrm{hnd}}, \ldots, x_{j}^{\mathrm{hnd}}\right)$, for $0 \leq j \leq \max \operatorname{len}(k)$.

If there is an i with $D_{u}\left[x_{i}^{\text {hnd }}\right]$.type $\in\{$ sks, ske $\}$, return $\downarrow .^{21}$ Else set $l:=$ make_list $\left(D_{u}\left[x_{1}^{\text {hnd }}\right]\right.$.word $, \ldots, D_{u}\left[x_{j}^{\text {hnd }}\right]$.word $)$ and $\left(l^{\text {hnd }}, D_{u}\right): \leftarrow(l$, list, ($)$).

[^12]- Parsing: arg \leftarrow parse_list (l).

If l is of the form (list, x_{1}, \ldots, x_{j}) with $j \in \mathbb{N}_{0}$ and $x_{i} \in\{0,1\}^{+}$for $i:=1, \ldots, j$, return $\left(x_{1}, \ldots, x_{j}\right)$, else \downarrow. In the first case, we call l a tagged list.

- i-th projection: $x^{\text {hnd }} \leftarrow \operatorname{list_ proj}\left(l^{\text {hnd }}, i\right)$, for $1 \leq i \leq \max _l e n(k)$.

Parse $l^{\text {hnd }}$, yielding \arg. If $D_{u}\left[l^{\text {hnd }}\right]$.type \neq list, return \downarrow. Otherwise let $x:=\arg [i]$. If $x=\downarrow$, return \downarrow, else let $\left(x^{\text {hnd }}, D_{u}\right): \leftarrow(x$, null, ($)$).

Nonces

- Constructor: $n \leftarrow$ make_nonce().

Let $n^{\prime} \mathscr{R}^{\leftarrow}\{0,1\}^{\text {nonce_len }(k)}$ and $n:=$ (nonce, $\left.n^{\prime}\right)$.

- Generation: $n^{\text {hnd }} \leftarrow$ gen_nonce().

Let $n \leftarrow$ make_nonce ()$, n^{\text {hnd }}:=\operatorname{curhnd}_{u}++$ and $D_{u}: \Leftarrow\left(n^{\text {hnd }}, n\right.$, nonce, ()$)$.

- Parsing: arg \leftarrow parse_nonce (n).

If n is of the form (nonce, n^{\prime}) with $n^{\prime} \in\{0,1\}^{\text {nonce_len }(k)}$, return (), else \downarrow.

Signatures

- Key constructor: $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair () .

Let $(s k, p k) \leftarrow \operatorname{gen}_{S}\left(1^{k}, 1^{\text {max_skc }(k)}\right)$ and set $s k^{*}:=(\mathrm{sks}, s k, p k)$ and $p k^{*}:=(\mathrm{pks}, p k)$.

- Key generation: $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_sig_keypair () .

Let $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair ()$, s k^{\text {hnd }}:=\operatorname{curhnd}_{u}++, p k^{\text {hnd }}:=\operatorname{curhnd}_{u}++, D_{u}: \Leftarrow$ $\left(s k^{\mathrm{hnd}}, s k^{*}\right.$, sks, $\left.(0)\right)$, and $D_{u}: \Leftarrow\left(p k^{\text {hnd }}, p k^{*}, \mathrm{pks},()\right) .{ }^{22}$

- Public-key parsing: arg \leftarrow parse_pks $\left(p k^{*}\right)$.

If $p k^{*}$ is of the form (pks, $p k$) with $p k \in\{0,1\}^{\mathrm{pks}_{-} \ln ^{\prime}(k)}$, return (), else \downarrow.

- Signature constructor: $s^{*} \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$, with $s k^{*}, l \in\{0,1\}^{+}$and $c \in \mathbb{N}$ with $c \leq$ max_skc (k).
Select $r \stackrel{\mathcal{R}}{\leftarrow}\{0,1\}^{\text {nonce_len }(k)}$, set $\left(s k:=s k^{*}[2]\right.$ and $p k:=s k^{*}[3]$, sign $\operatorname{sig} \leftarrow \operatorname{sign}_{s k, c}((r, l))$, and return $s^{*}:=(\mathrm{sig}, p k, r, l, s i g)$.
- Signature generation: $s^{\text {hnd }} \leftarrow \operatorname{sign}\left(s k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Parse $l^{\text {hnd }}$ if necessary. (Secret keys are not received from the network and thus always parsed.) If $D_{u}\left[s k^{\text {hnd }}\right]$.type \neq sks or $D_{u}\left[s k^{\text {hnd }}\right]$.add_arg $[1] \geq$ max_skc (k) or $D_{u}\left[l^{\text {hnd }}\right]$. type \neq list, then return \downarrow. Otherwise set $s k^{*}:=D_{u}\left[s k^{\text {hnd }}\right]$.word, $c:=D_{u}\left[s k^{\text {hnd }}\right]$.add_arg[1]++, $l:=D_{u}\left[l^{\text {hnd }}\right]$.word, and $s^{*} \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$. If $\left|s^{*}\right|>\max$ _len (k), decrement $D_{u}\left[s k^{\text {hnd }}\right]$.add_arg $[1]$ again and return \downarrow, else set $s^{\text {hnd }}:=\operatorname{curhnd}_{u^{++}}$and $D_{u}: \Leftarrow\left(s^{\text {hnd }}, s^{*}, \operatorname{sig},()\right)$.

- Signature parsing: arg $\leftarrow \operatorname{parse} \operatorname{sig}\left(s^{*}\right)$.

If s^{*} is not of the form (sig, $p k, r, l$, sig) with $p k \in\{0,1\}^{\text {pks_len' }}(k), r \in\{0,1\}^{\text {nonce_len }(k)}, l \in$ $\{0,1\}^{+}$, and sig $\in\{0,1\}^{\text {sig_len' }}(k,|l|)$, return \downarrow. Also return \downarrow if l is not a tagged list or if $\operatorname{test}_{p k}(\operatorname{sig},(r, l))=$ false. Otherwise set $p k^{*}:=(\mathrm{pks}, p k)$ and $\arg :=\left(p k^{*}, l\right)$.

[^13]- Signature verification: $v \leftarrow \operatorname{verify}\left(s^{\mathrm{hnd}}, p k^{\mathrm{hnd}}, l^{\mathrm{hnd}}\right)$.

Parse $s^{\text {hnd }}$ yielding \arg. If $D_{u}\left[s^{\text {hnd }}\right]$.type $\neq \operatorname{sig}$, return \downarrow. Else let $\left(p k^{*}, l\right):=\arg$. Let $v:=$ true if $D_{u}\left[p k^{\text {hnd }}\right]$.word $=p k^{*}$ and $D_{u}\left[l^{\text {hnd }}\right]$.word $=l$, else $v:=$ false. ${ }^{23}$

- Public-key retrieval: $p k^{\mathrm{hnd}} \leftarrow \mathrm{pk}$ _of_sig $\left(s^{\mathrm{hnd}}\right)$.

Parse $s^{\text {hnd }}$ yielding arg. If $D_{u}\left[s^{\text {hnd }}\right]$.type \neq sig, return \downarrow. Otherwise, let $\left(p k^{\text {hnd }}, D_{u}\right): \leftarrow$ $(\arg [1], \mathrm{pks},())$.

- Message retrieval: $l^{\text {hnd }} \leftarrow$ msg_of_sig $\left(s^{\text {hnd }}\right)$.

Parse $s^{\text {hnd }}$ yielding \arg. If $D_{u}\left[s^{\text {hnd }}\right]$.type $\neq \operatorname{sig}$, return \downarrow. Otherwise, let $\left(l^{\text {hnd }}, D_{u}\right): \leftarrow$ (arg[2], list, ()).

Public-key encryption

- Key constructor: $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_enc_keypair () .

Let $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$ and set $s k^{*}:=(\mathrm{ske}, s k)$ and $p k^{*}:=(\mathrm{pke}, p k)$.

- Key generation: $\left(s k^{\mathrm{hnd}}, p k^{\mathrm{hnd}}\right) \leftarrow$ gen_enc_keypair () .

Set $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_enc_keypair ()$, s k^{\text {hnd }}:=$ curhnd $_{u}++, p k^{\text {hnd }}:=\operatorname{curhnd}_{u}++, D_{u}: \Leftarrow$ $\left(s k^{\mathrm{hnd}}, s k^{*}\right.$, ske,()$)$, and $D_{u}: \Leftarrow\left(p k^{\mathrm{hnd}}, p k^{*}\right.$, pke, ()).

- Public-key parsing: arg \leftarrow parse_pke $\left(p k^{*}\right)$.

If $p k^{*}$ is of the form (pke, $p k$) with $p k \in\{0,1\}^{\text {pke_len }(k)}$, return (), else \downarrow.

- Encryption constructor: $c^{*} \leftarrow \operatorname{make} \operatorname{enc}\left(p k^{*}, l\right)$, for $p k^{*}, l \in\{0,1\}^{+}$.

Let $p k:=p k^{*}[2]$, set $r \stackrel{\mathcal{R}}{\leftarrow}\{0,1\}^{\text {nonce_len }(k)}$, encrypt $c \leftarrow \mathrm{E}_{p k}((r, l))$, and let $c^{*}:=($ enc, $p k, c, r)$.

- Encryption: $c^{\mathrm{hnd}} \leftarrow \operatorname{encrypt}\left(p k^{\mathrm{hnd}}, l^{\mathrm{hnd}}\right)$.

Parse $p k^{\mathrm{hnd}}$ and l^{hnd} if necessary. If $D_{u}\left[p k^{\mathrm{hnd}}\right]$.type \neq pke or $D_{u}\left[l^{\mathrm{hnd}}\right]$.type \neq list, then return \downarrow. Otherwise, set $p k^{*}:=D_{u}\left[p k^{\mathrm{hnd}}\right]$.word, $l:=D_{u}\left[l^{\mathrm{hnd}}\right]$. word, and $c^{*} \leftarrow \operatorname{make}$ enc $\left(p k^{*}, l\right)$. If $c^{*}=$ \downarrow or $\left|c^{*}\right|>\max _l e n(k)$ then return \downarrow, else set $c^{\text {hnd }}:=\operatorname{curhnd}_{u}++$ and $D_{u}: \Leftarrow\left(c^{\text {hnd }}, c^{*}\right.$, enc, ()).

- Ciphertext parsing: $\arg \leftarrow \operatorname{parse_ enc}\left(c^{*}\right)$.

If c^{*} is not of the form (enc, $p k, c, r$) with $p k \in\{0,1\}^{\text {pke_len }(k)}, c \in\{0,1\}^{+}$, and $r \in$ $\{0,1\}^{\text {nonce_len }(k)}$, return \downarrow, else $\arg :=\left(p k^{*}\right):=(($ pke, $p k))$.

- Functional decryption: $l \leftarrow \operatorname{parse} \operatorname{decrypt}\left(s k^{*}, c^{*}\right)$.

Let $s k:=s k^{*}[2], c:=c^{*}[3]$, and $r:=c^{*}[4]$. Decrypt $l^{*}:=\mathrm{D}_{s k}(c)$. If $l^{*}=\downarrow$ or $l^{*}[1] \neq r$ or $l^{*}[2]$ is not a tagged list, return $l:=\downarrow$, else $l:=l^{*}[2]$.

- Decryption: $l^{\mathrm{hnd}} \leftarrow \operatorname{decrypt}\left(s k^{\mathrm{hnd}}, c^{\mathrm{hnd}}\right)$.

Parse c^{hnd} yielding $\arg =:\left(p k^{*}\right)$. Return \downarrow if $D_{u}\left[s k^{\mathrm{hnd}}\right]$.type \neq ske or $D_{u}\left[c^{\mathrm{hnd}}\right]$.type \neq enc or $D_{u}\left[s k^{\mathrm{hnd}}+1\right]$.word $\neq p k^{*} .{ }^{24}$ Otherwise, set $s k^{*}:=D_{u}\left[s k^{\mathrm{hnd}}\right]$.word, $c^{*}:=D_{u}\left[c^{\mathrm{hnd}}\right]$.word, and $l \leftarrow \operatorname{parse} _\operatorname{decrypt}\left(s k^{*}, c^{*}\right)$. If $l=\downarrow$, return \downarrow. Otherwise let $\left(l^{\text {hnd }}, D_{u}\right): \leftarrow(l$, list, ()).

[^14]- Public-key retrieval: $p k^{\text {hnd }} \leftarrow$ pk_of_enc $\left(c^{\text {hnd }}\right)$.

Parse $c^{\text {hnd }}$ yielding arg. If $D_{u}\left[c^{\text {hnd }}\right]$.type \neq enc, return \downarrow. Otherwise let $\left(p k^{\text {hnd }}, D_{u}\right): \leftarrow$ $(\arg [1]$, pke, ()$)$.

5.5.4 Send Commands

- send $_x\left(v, l^{\text {hnd }}\right)$, for $x \in\{\mathrm{~s}, \mathrm{a}, \mathrm{i}\}$ and $v \in\{1, \ldots, n\}$.

Parse $l^{\text {hnd }}$ if necessary. If $D_{u}\left[l^{\text {hnd }}\right]$. type $=$ list, output $D_{u}\left[l^{\text {hnd }}\right]$.word at port net ${ }_{u, v, x}$!.

5.5.5 Network Inputs

- Network input: On input l at a port net $_{w, u, x}$?, for $l \in\{0,1\}^{+}$and $|l| \leq$ max_len (k).

Test if $l=\left(\right.$ list $\left., x_{1}, \ldots, x_{j}\right)$ for some $j \in \mathbb{N}_{0}$ and values $x_{i} \in\{0,1\}^{+}$. If yes, let $\left(l^{\text {hnd }}, D_{u}\right): \leftarrow$ $(l$, list, ()$)$ and output $\left(w, x, l^{\text {hnd }}\right)$ at out $_{u}!$.

5.6 Properties of the Real System

The following properties of the real system are useful:
Lemma 5.2 The real systems $S y s_{n, \mathcal{S}, \mathcal{E}, L^{\prime}}^{\mathrm{cry} \text {, }}$ for $x \in\{$ stan, loc $\}$ have the following properties:

1. The argument $h n d_{u}$ of D_{u} is a key attribute.
2. The only modifications to existing entries x in D_{u} are that x.type changes from null to something else and that $x . a d d_{_}$arg changes from () to something else at the same time, and counter updates in entries of type sks.
3. At all times we have $\mid x$.word $\mid \leq \max$ _len (k) for all $x \in D_{u}$, except possibly if $x . t y p e \in\{$ sks, ske $\}$.
4. The systems are polynomial-time.

Proof.

1. This was already shown in Section 5.4.2.
2. This can easily be seen by inspection of the commands.
3. By Part 2, we only need to consider commands that produce new entries. In most cases, the subroutine " $\left(x^{\mathrm{hnd}}, D_{u}\right): \leftarrow \ldots$ " is used, which tests for this bound. For signatures and encryptions, the outer command contains the test. For nonces and public keys, their lengths are nonce_len* (k), pks_len* (k), and pke_len* (k), respectively, which are bounded by max_len (k) by Section 5.3.
4. We have to show that each M_{u} only accepts a polynomial number of polynomial-length inputs; the action in each command is then clearly polynomial-time because all basic algorithms used are this. For the numbers, this holds because there is a counter steps s_{p} ? for inputs at each port p ?, each with the polynomial bound $\max _i n(k)$. As each input adds at most 2 entries to D_{u}, the dynamic bound curhnd $_{u}$ for handle parameters is also polynomially bounded. All other input parameters have static polynomial domain restrictions. Hence the length bounds on inputs (recall Section 4.5.1) are indeed polynomial in k.

6 Simulator

We claim that every real system $S y s_{n, \mathcal{S}, \mathcal{E}, L^{\prime}}^{\mathrm{cry}, \text {, }}$, , $x \in\{\operatorname{stan}, \mathrm{loc}\}$ in Section 5 is as secure as the ideal system $S y s_{n, L}^{\text {cry, id, } x}$ in Section 4 for the corresponding parameters $L:=\mathrm{R} 2 \operatorname{lpar}\left(\mathcal{S}, \mathcal{E}, L^{\prime}\right)$, even with a blackbox simulation. The first major step in this proof is to construct a simulator $\operatorname{Sim}_{\mathcal{H}}$ for each set \mathcal{H} such that for every real adversary A, the combination $\operatorname{Sim}_{\mathcal{H}}(A)$ of $\operatorname{Sim}_{\mathcal{H}}$ and A achieves the same effects in the ideal system as the adversary A in the real system, see Figure 4.

Figure 4: Set-up of the simulator. User in- and outputs are scheduled as in the ideal system.
Basically $\operatorname{Sim}_{\mathcal{H}}$ has to translate real messages from the real adversary A into handles as $\mathrm{TH}_{\mathcal{H}}$ expects them at its adversary input port in_{a} ? and vice versa, see Figure 4. In both directions, $\operatorname{Sim}_{\mathcal{H}}$ has to parse messages completely because it can only construct the other version (abstract or real) bottom-up. This is done by recursive algorithms. In some cases, the simulator cannot produce any corresponding message. We collect these cases in so-called error sets and show later that they cannot occur at all or only with negligible probability.

6.1 Ports and Scheduling

The ports of $\operatorname{Sim}_{\mathcal{H}}$ are shown in Figure 4. In particular, the clock ports, i.e., the scheduling, are as follows: A remains the master scheduler. It also still schedules the connections between itself and H , the network connections net ${ }_{u, v, x}$ with $(u, v, x) \notin$ ch_honest (including the doubled connections $\left.n e t_{u, v, x}^{a}\right)$, and in the stand-alone version the user in- and outputs, i.e., these clock ports of A are unchanged. Each clock port net ${ }_{u, v, x}{ }^{\triangleleft}$! with $(u, v, x) \in$ ch_honest is renamed into net_id ${ }_{u, v, x}{ }^{\triangleleft}$! so that A also schedules the ideal secure channels. (Port renaming is allowed in blackbox reductions, cf. [72].) Recall that $\mathrm{TH}_{\mathcal{H}}$ schedules its outputs at outa!.

Thus $\operatorname{Sim}_{\mathcal{H}}$ mainly schedules the connection $i n_{\mathrm{a}}$. It immediately does this (by outputting 1 at $\mathrm{in}_{\mathrm{a}}{ }^{〔}$!), whenever it makes an output at in_{a} !; we do not repeat this below. For local commands, we abbreviate subroutine behavior as follows:

$$
\text { "Call } y \leftarrow x \text { at } \mathrm{in}_{\mathrm{a}} \text { !, expecting ...", }
$$

means that $\operatorname{Sim}_{\mathcal{H}}$ outputs x at port in_{a} ! and schedules it, waits for an input at out ${ }_{\mathrm{a}}$? by setting all other length functions to 0 , and assigns the input to a variable y. If y is not in the domain given after "expecting", $\operatorname{Sim}_{\mathcal{H}}$ aborts all current recursive algorithms and its outermost transition. As $\mathrm{TH}_{\mathcal{H}}$ reacts to local commands with an output at out ${ }_{\mathrm{a}}$! and schedules it immediately, we really get subroutine behavior.

6.2 Long-term States of the Simulator

The state of $\operatorname{Sim}_{\mathcal{H}}$ consists of a database D_{a} and variables curhnd $_{\mathrm{a}}$ and step $_{\mathrm{p}}$? for each input port p?

6.2.1 Database D_{a}

To ensure that the same abstract message is always mapped to the same real message and vice versa, $\operatorname{Sim}_{\mathcal{H}}$ maintains a database $D_{\text {a }}$ of already mapped adversary handles. Each entry in $D_{\text {a }}$ has attributes

$$
\left(h n d_{\mathrm{a}}, \text { word }, a d d_{-} a r g\right)
$$

For each tuple $x \in D_{\mathrm{a}}$:

- $x . h n d_{\mathrm{a}} \in \mathcal{H} \mathcal{N D S}$ is used as the primary key attribute. However, its use is not as straightforward as in the ideal and real system, compare Lemma 6.2.
- x.word $\in\{0,1\}^{*}$ is the real representation of x, or ϵ for unknown secret keys (of the adversary).
- $x . a d d_{_}$arg is a list of additional arguments. Typically it is (). However, for public keys received from the adversary it is (adv), and for keys from honest users, where the simulator generated a key pair, it is of the form (honest, $s k^{*}$).

6.2.2 Conventions about Handles

Initially, D_{a} is empty. $\operatorname{Sim}_{\mathcal{H}}$ keeps a counter curhnd of type $\mathcal{H} \mathcal{N} \mathcal{D} \mathcal{S}$, which denotes the current size of D_{a}, except temporarily within the algorithm id2real defined below.

6.2.3 Input Counters

For each of its input ports p ?, $\operatorname{Sim}_{\mathcal{H}}$ maintains a counter step $_{s_{\mathrm{p}}} \in \mathbb{N}_{0}$ initialized with 0 for the number of inputs at that port. The corresponding bounds bound d_{p} are max_in (k) for the network ports and $\max _{\mathrm{in}}^{\mathrm{a}}(k)=10 n^{2} \operatorname{max_ in}(k) \max \operatorname{len}(k)$ for out ${ }_{\mathrm{a}}$?.

6.3 Input Evaluation

6.3.1 General Conventions

Upon each input at a port p ?, the main simulator $\operatorname{Sim}_{\mathcal{H}}$ first increments the counter steps s_{p}. This is the only case where such a counter is increased. Once a counter steps s_{p} ? has reached bound $d_{\mathrm{p} \text { ? }}$, the length function for this port is always zero.

Otherwise, the length functions are determined by the domain specified for each input below.

6.3.2 Send Commands

In this section, we define the behavior of $\operatorname{Sim}_{\mathcal{H}}$ when it receives an input from $\mathrm{TH}_{\mathcal{H}}$. We only consider "unsolicited" inputs here, not the immediate results of local commands. These inputs are the results of send commands by honest users.

- Input from $\mathbf{T H}_{\mathcal{H}}$: On input m at port out ${ }_{\mathbf{a}}$?, for $m=\left(u, v, x, l^{\text {hnd }}\right)$ with $(u, v, x) \in$ ch_to_adv and $l^{\text {hnd }} \leq$ max_hnd $(k):=6 n^{2}$ max_in (k) max_len (k).
If $D_{\mathrm{a}}\left[l^{\text {hnd }}\right] \neq \downarrow$, let $l:=D_{\mathrm{a}}\left[l^{h n d}\right]$.word. Else set curhnd $_{\mathrm{a}}++$ and produce such a word with an algorithm $l \leftarrow \operatorname{id} 2 \operatorname{real}\left(l^{\text {hnd }}\right)$ (with side-effects). Then output l at port net ${ }_{u, v, x}!$.

We will show that max_hnd (k) is an upper bound on the database size in $\mathrm{TH}_{\mathcal{H}}$ if $\mathrm{TH}_{\mathcal{H}}$ interacts with $\operatorname{Sim}_{\mathcal{H}}$. Actually $\mathrm{TH}_{\mathcal{H}}$ always uses $l^{\text {hnd }}=$ curhnd $_{\mathrm{a}}++$ for new adversary handles. Hence $\operatorname{Sim}_{\mathcal{H}}$'s update of curhnd ${ }_{\mathrm{a}}$ restores "correct derivation".

Overall structure of id2real The algorithm id2real recursively parses an abstract message, builds up a corresponding real message, and enters all new message parts into D_{a}. It only interacts with $\mathrm{TH}_{\mathcal{H}}$ by local commands, so that we get an uninterrupted dialogue between $\operatorname{Sim}_{\mathcal{H}}$ and $\mathrm{TH}_{\mathcal{H}}$.

The domain expectations of id2real and certain additional format claims made will be proven in Section 7 for interaction with $\mathrm{TH}_{\mathcal{H}}$. The main explanation is that id2real is only called for new handles. They only occur if the corresponding entry in $\mathrm{TH}_{\mathcal{H}}$ was constructed at the request of an honest user, and thus by a basic command. Hence none of the exceptional data formats occurs.

Now id2real $\left(m^{\text {hnd }}\right)$ is defined as follows.

1. Call $\left(\right.$ type,$\left.\left(m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right)\right) \leftarrow$ adv_parse $\left(m^{\text {hnd }}\right)$ at in_{a} ! (we use the superscript ${ }^{\text {hnd }}$ although not all ideal attributes are handles), expecting type \in typeset $\backslash\{$ sks, ske, garbage $\}$ and $j \leq$ $\max _l e n(k)$, and $m_{i}^{\text {hnd }} \leq \max$ hnd (k) if $m_{i}^{\text {hnd }} \in \mathcal{H N D S}$ and otherwise $\left|m_{i}^{\text {hnd }}\right| \leq \max \operatorname{len}(k)$.
2. For $i:=1, \ldots, j$: If $m_{i}^{\text {hnd }} \in \mathcal{H N D} \mathcal{S}$ and $m_{i}^{\text {hnd }}>$ curhnd $_{\mathrm{a}}$, set curhnd $d_{\mathrm{a}}++$.
3. For $i:=1, \ldots, j$: If $m_{i}^{\text {hnd }} \notin \mathcal{H} \mathcal{N D S}$, set $m_{i}:=m_{i}^{\text {hnd }}$. Else if $D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right] \neq \downarrow$, let $m_{i}:=$ $D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right]$.word. Else make a recursive call $m_{i} \leftarrow \mathrm{id} 2$ real $\left(m_{i}^{\text {hnd }}\right)$. Let $\arg { }^{\text {real }}:=\left(m_{1}, \ldots, m_{j}\right)$.
4. Construct and enter the real message m depending on type:

- If type $\in\{$ data, list, nonce $\}$, set $m \leftarrow$ make_type (arg $\left.{ }^{\text {real }}\right)$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m,()\right)$.
- If type $\in\{$ pks, pke $\}$, call $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair () or $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_enc_keypair () , respectively, and set $m:=p k^{*}$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m\right.$, (honest, $\left.s k^{*}\right)$).
- If type $=\mathrm{sig}$, we claim that arg $^{\text {real }}$ is of the form $\left(p k^{*}, l, c\right)$ with $c \in \mathbb{N}$. Let $p k^{\text {hnd }}:=$ $m_{1}^{\text {hnd }}$. We claim that $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right]$.add_arg is of the form (honest, $s k^{*}$). Then set $m \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m,()\right)$.
- If type $=$ enc, we claim that $l^{\text {hnd }}:=m_{2}^{\text {hnd }} \neq \downarrow$, and distinguish two cases:

If $l^{\text {hnd }} \in \mathcal{H} \mathcal{N D S}$ (i.e., a cleartext handle, not only a length was output), let $m \leftarrow$ make_enc $\left(\arg ^{\text {real }}\right)$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m,()\right)$.
Otherwise argreal is of the form $\left(p k^{*}, l e n\right)$ with $l e n \in \mathbb{N}$. Then $\operatorname{Sim}_{\mathcal{H}}$ encrypts a fixed message of the correct length; it must not be a list. Let $p k:=p k^{*}[2]$ and $l e n^{*}:=$
 (enc, $p k, c, r)$, and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m,()\right)$.

6.3.3 Network Inputs

Now we define the behavior of $\operatorname{Sim}_{\mathcal{H}}$ when it receives an input from A.
 and $|l| \leq$ max_len (k).

If l is not a tagged list, abort the transition. Otherwise translate l into a corresponding handle $l^{\text {hnd }}$ by an algorithm $l^{\text {hnd }} \leftarrow \operatorname{real} 2 \mathrm{id}(l)$ (with side-effects). Then output the command adv_send_ $x\left(w, u, l^{\text {hnd }}\right)$ at port $\mathrm{in}_{\mathrm{a}}!$.

Overall structure of real2id The algorithm real2id recursively parses a real message, builds up a corresponding term in $\mathrm{TH}_{\mathcal{H}}$, and enters all subterms into D_{a}. It only interacts with $\mathrm{TH}_{\mathcal{H}}$ by local commands. As these have a subroutine behavior, we get an uninterrupted dialogue between $\operatorname{Sim}_{\mathcal{H}}$ and $\mathrm{TH}_{\mathcal{H}}$.

- $m^{\mathrm{hnd}} \leftarrow \operatorname{real} 2 \mathrm{id}(m)$, for $m \in\{0,1\}^{+}$.

If there is already a handle $m^{\text {hnd }}$ with $D_{\mathrm{a}}\left[m^{\text {hnd }}\right]$.word $=m$, return that. Otherwise set (type, $\arg):=\operatorname{parse}(m)$ and call a type-specific algorithm add_arg \leftarrow real2id_type $(m, a r g)$ (with side-effects). Set $m^{\text {hnd }}:=\operatorname{curhnd}_{\mathrm{a}}++$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\mathrm{hnd}}, m, a d d_{-} a r g\right)$.

In the definitions of real2id_type, we write the parameter arg in the form that it must have when parse returned (type, arg). Each real2id_type ignores the results of its calls to $\mathrm{TH}_{\mathcal{H}}$, which are predictable handles. Thus the length function for out ${ }_{a}$? can be 1 in those states.

Garbage $\quad a d d_{-} a r g \leftarrow$ real2id_garbage $(m,())$. Call $m^{\mathrm{hnd}} \leftarrow$ adv_garbage $(|m|)$ at $\mathrm{in}_{\mathrm{a}}!$. Then return ().

Data $a d d_{_} a r g \leftarrow$ real2id_data $\left(m,\left(m^{\prime}\right)\right)$. Call $m^{\text {hnd }} \leftarrow \operatorname{store}\left(m^{\prime}\right)$ at in n_{a} !. Return ().

Lists add_arg \leftarrow real2id_list $\left(m,\left(m_{1}, \ldots, m_{j}\right)\right)$. Make recursive calls $m_{i}^{\text {hnd }} \leftarrow \operatorname{real2id}\left(m_{i}\right)$ for $i:=$ $1, \ldots, j$ (in this order). Then call $m^{\text {hnd }} \leftarrow \operatorname{list}\left(m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right)$ at in $n_{\mathrm{a}}!$. Return ().

Nonces \quad add_arg \leftarrow real2id_nonce $(m,())$. Call $m^{\text {hnd }} \leftarrow$ gen_nonce () at ina!. Return ().

Signatures

- add_arg \leftarrow real2id_pks $(m,())$.

Call $\left(s k^{\mathrm{hnd}}, p k^{\mathrm{hnd}}\right) \leftarrow$ gen_sig_keypair () at $\mathrm{in}_{\mathrm{a}}!$. Set $D_{\mathrm{a}}: \Leftarrow\left(\operatorname{curhnd}_{\mathrm{a}}++, \epsilon,()\right)$ for the secret key and return $a d d_{-} a r g:=(\mathrm{adv})$ for the public key. ${ }^{25}$

- add_arg \leftarrow real2id_sig $\left(s^{*},\left(p k^{*}, l\right)\right)$.

Make recursive calls $p k^{\mathrm{hnd}} \leftarrow \operatorname{real} 2 \mathrm{id}\left(p k^{*}\right)$ and $l^{\mathrm{hnd}} \leftarrow \operatorname{real} 2 \mathrm{id}(l)$.

[^15]If $D_{\mathrm{a}}\left[p k^{\mathrm{hnd}}\right] . a d d_{_} a r g=(\mathrm{adv})$, set $s k^{\mathrm{hnd}}:=p k^{\mathrm{hnd}}-1$. Then call $s^{\mathrm{hnd}} \leftarrow \operatorname{sign}\left(s k^{\mathrm{hnd}}, l^{\mathrm{hnd}}\right)$ at in_{a} ! and return (). ${ }^{26}$

Otherwise, let $(\operatorname{sig}, p k, r, l, s i g):=s^{*}$. Verify whether the adversary has seen another signature on the same message, i.e., if there exist $s^{\text {hnd }}, r^{\prime}$, and $s i g^{\prime}$ with $D_{\mathrm{a}}\left[s^{\mathrm{hnd}}\right]$.word $=$ (sig, $p k, r^{\prime}, l$, sig' $)$ and $D_{\mathrm{a}}\left[s^{\mathrm{hnd}}\right]$.type $=$ sig. If yes, call $t^{\mathrm{hnd}} \leftarrow \operatorname{adv}$ _transform_sig $\left(s^{\mathrm{hnd}}\right)$ at in_{a} ! and return ().
Otherwise, $\operatorname{Sim}_{\mathcal{H}}$ gives up the simulation. ${ }^{27}$

Public-key encryption

- add_arg \leftarrow real2id_pke $(m,())$.

Call $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_enc_keypair () at $\mathrm{in}_{\mathrm{a}}!$. Set $D_{\mathrm{a}}: \Leftarrow\left(\operatorname{curhnd}_{\mathrm{a}}++, \epsilon,()\right)$ for the secret key and return $a d d_{_} a r g:=(\mathrm{adv})$ for the public key.

- $a d d_{-} a r g \leftarrow$ real2id_enc $\left(c^{*},\left(p k^{*}\right)\right)$.

Make a recursive call $p k^{\mathrm{hnd}} \leftarrow \operatorname{real} 2 \mathrm{id}\left(p k^{*}\right)$. Now, to produce a corresponding abstract ciphertext in $\mathrm{TH}_{\mathcal{H}}$, we try to find out the message.

If $D_{\mathrm{a}}\left[p k^{\mathrm{hnd}}\right] . a d d_{-} \arg =(\mathrm{adv})$, then $\operatorname{Sim}_{\mathcal{H}}$ does not know the corresponding secret key. Call $c^{\text {hnd }} \leftarrow$ adv_invalid_ciph $\left(p k^{\text {hnd }},\left|c^{*}\right|\right)$ at ina $!$ and return ()$.{ }^{28}$
If $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right]$.add_arg $=$ (honest, $\left.s k^{*}\right)$, let $l \leftarrow \operatorname{parse_ decrypt~}\left(s k^{*}, c^{*}\right)$. If $l=\downarrow$, call $c^{\text {hnd }} \leftarrow$ adv_invalid_ciph $\left(p k^{\text {hnd }},\left|c^{*}\right|\right)$ at in_{a} ! and return (). Else make a recursive call $l^{\text {hnd }} \leftarrow$ real $2 \mathrm{id}(l)$, call $c^{\text {hnd }} \leftarrow \operatorname{encrypt}\left(p k^{\text {hnd }}, l^{\text {hnd }}\right)$ at $\mathrm{in}_{\mathrm{a}}!$, and return ().

6.4 Properties of the Simulator

We first show that the simulator is valid.

Lemma 6.1 Each machine $\operatorname{Sim}_{\mathcal{H}}$ is polynomial-time. Hence for every polynomial-time adversary A on the real system, the joint machine $\operatorname{Sim}_{\mathcal{H}}(\mathrm{A})$ is polynomial-time and thus a valid adversary on the ideal system.

Proof. For each of its input ports, $\operatorname{Sim}_{\mathcal{H}}$ has a polynomially bounded input counter and polynomially bounded length functions. Further, every transition is polynomial-time because an execution of id2real without inner recursions is clearly polynomial-time, and every inner recursion starts with an output at in_{a} ! and thus ends a transition. The combination $\operatorname{Sim}_{\mathcal{H}}(\mathrm{A})$ of two polynomial-time machines $\operatorname{Sim}_{\mathcal{H}}$ and A is clearly polynomial-time again.

[^16]The following properties of the simulator are useful for the correctness proof.
Lemma 6.2 Each machine $\operatorname{Sim}_{\mathcal{H}}$ has the following properties:

1. Each call id2real ($\left.m^{\text {hnd }}\right)$ leads to $D_{\mathrm{a}}\left[m^{\text {hnd }}\right] \neq \downarrow$ unless the execution aborts.
2. If $\operatorname{Sim}_{\mathcal{H}}$ interacts with $\mathrm{TH}_{\mathcal{H}}$, the following holds for the algorithm id2real:

- Calls id2real $\left(m^{\text {hnd }}\right)$ are only made for $m^{\text {hnd }} \leq \max _$hnd (k), and at most one such call for each $m^{\text {hnd }}$.
- At most max_hnd (k) outputs at in_{a} ! are made.
- No new entries in D (of $\left.\mathrm{TH}_{\mathcal{H}}\right)$ are made.

3. Each call real $2 \mathrm{id}(m)$ leads to a recursion tree with the following properties:

- At most $|m|-1$ additional calls real2id $\left(m_{i}\right)$, each with $\left|m_{i}\right|>0$ are made.
- At most $|m|$ outputs at are made at in_{a} !.
- curhnd $_{\mathrm{a}}$ is increased by at most $2|m|$, and thus at most $2|m|$ new entries are made in D_{a}.

4. If $\operatorname{Sim}_{\mathcal{H}}$ interacts with $\mathrm{TH}_{\mathcal{H}}$, the following holds:

- The argument $h n d_{\mathrm{a}}$ of D_{a} is a key attribute.
- Outside any execution of id2real, the entries in D_{a} are consecutively numbered, i.e., $\left\{\right.$ x.hnd $\left._{\mathrm{a}} \mid x \in D_{\mathrm{a}}\right\}=\left\{1, \ldots\right.$, curhnd $\left._{\mathrm{a}}\right\}$.

5. In interaction of $\mathrm{TH}_{\mathcal{H}}$ and $\operatorname{Sim}_{\mathcal{H}}$, the following holds:

- No handle output by $\mathrm{TH}_{\mathcal{H}}$ is rejected by $\operatorname{Sim}_{\mathcal{H}}$.
- The counters steps outa ? of $\operatorname{Sim}_{\mathcal{H}}$ and steps in $_{\text {a }}$? of $\mathrm{TH}_{\mathcal{H}}$ never reach their bounds.

Proof.

1. Unless an execution of id2real $\left(m^{\text {hnd }}\right)$ aborts, it ends in Step 4 with an assignment $D_{\mathrm{a}}: \Leftarrow$ ($m^{\text {hnd }}, \ldots$.).
2. Calls id2real $\left(m^{\text {hnd }}\right)$ are only made by the outer transition for send commands and in Step 3 of id2real. Both times it was verified that $m^{\text {hnd }} \leq \max _$hnd (k) and $D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right] \neq \downarrow$. We want to show that every $m^{\text {hnd }}$ is used in at most one call.
By Part 1, this can only be violated if a first call id2real ($m^{\text {hnd }}$) has not finished when a second one is made, i.e., the second call is a node in the recursion tree of the first one. In a recursion tree, $\operatorname{Sim}_{\mathcal{H}}$ only obtains new handles with the command adv_parse. Hence $\mathrm{TH}_{\mathcal{H}}$ only follows the components of a term. By Lemma 4.1.2, all components of a term in $\mathrm{TH}_{\mathcal{H}}$ have smaller indices. In particular, no index and thus no adversary handle occurs twice, which proves our claim.

The other bound follows immediately because each subcall (without inner recursions) makes one output at in_{a} ! (in Step 1).

As the only command to $\mathrm{TH}_{\mathcal{H}}$ is adv_parse, no new entries in D are made.
3. We consider a call real2id (m) with $L:=|m|$. Once we have shown the bound on the number of recursive calls, the other bounds follow immediately because each subcall (without inner recursions) makes at most one output at in_{a} ! and increases curhnd $_{\mathrm{a}}$ by at most 2 .

We show the first claim inductively over L. Subcalls only happen when parsing results in type $\in\{$ list, sig, enc $\}$. The basis $L=1$ is clear because no subcall happens for a message of length 1 . Now let $L>1$.

For lists, we have $m=\left(\right.$ list, $\left.m_{1}, \ldots, m_{j}\right)$ and all m_{i} are non-empty. By the preconditions on list_len we have $\left|m_{i}\right|<L$ for all i. Hence we can use the induction hypothesis for each m_{i}. This immediately gives that all subcalls are made for non-empty messages, and the number of subcalls is bounded by $j+\left(\left|m_{1}\right|-1\right)+\ldots+\left(\left|m_{j}\right|-1\right)=\left|m_{1}\right|+\ldots+\left|m_{j}\right| \leq L-1$.
For signatures, we have $m=s^{*}=(\mathbf{s i g}, p k, r, l, s i g)$ and subcalls are made for $p k^{*}=(\mathrm{pks}, p k)$ and l. Clearly $\left|p k^{*}\right|>0$, and $|l|>0$ was verified in parsing. Parsing $p k^{*}$ yields type $=\mathrm{pks}$; thus no further subcalls are made for it. Further, $|l| \leq L-4$ because all components are non-empty. By the induction hypothesis, at most $L-5$ subcalls are made for it, and thus overall at most $L-3$.
For ciphertexts, we have $m=c^{*}=($ enc, $p k, c, r)$, and subcalls are made for $p k^{*}=(\mathrm{pks}, p k)$ and possibly $l:=l^{*}[2]$, where l^{*} is the result of decrypting with the encryption machine and $\left|l^{*}\right| \leq|c|$ was verified. Clearly $\left|p k^{*}\right|>0$, and $|l|>0$ by a test that l is a tagged list before the recursive call. Parsing $p k^{*}$ yields type $=$ pke; thus no further subcalls are made for it. Further, $|c| \leq L-3$ because all components are non-empty, and thus also $|l| \leq L-3$. By the induction hypothesis, at most $L-3$ subcalls are made for it, and thus overall at most $L-2$.
4. We show these conditions on handles inductively over the inputs.

Upon network inputs, new entries in D_{a} are always made with the handle curhnd $_{\mathrm{a}}++$. The first two claims follow immediately.

Upon inputs from $\mathrm{TH}_{\mathcal{H}}$, curhnd ${ }_{a}$ is always immediately updated when $\mathrm{TH}_{\mathcal{H}}$ sends a new handle; thus curhnd $_{\mathrm{a}}$ equals $\mathrm{TH}_{\mathcal{H}}$'s variable curhnd $_{\mathrm{a}}$, for which the claim holds with $\mathrm{TH}_{\mathcal{H}}$'s handles. Further, $\mathrm{TH}_{\mathcal{H}}$ immediately outputs each handle (Lemma 4.2.4), and by Part 1 each call id2real ($m^{\text {hnd }}$) ends with a new entry x with $x . h n d_{\mathrm{a}}=m^{\text {hnd }}$. Hence at the end of an outermost execution of id2real the claim also holds for the handles in D_{a}.
5. In the given combination, the free ports are in_{u} ? for $u \in \mathcal{H}$ and net ${ }_{w, u, x}$? with $(w, u, x) \in$ ch_from_adv and the clock ports for the secure channels (recall Figure 4). We first consider the effects of inputs there separately.

- User inputs. There are at most n user ports, each accepting at most max_in (k) inputs. These inputs directly lead to at most $2 n \max \operatorname{in}(k)$ new entries in D.
Further, each such input leads to at most one direct output at outa ! (if it is a send command), which leads to one call id2real ($\left.m^{\text {hnd }}\right)$. These calls lead to at most max_hnd (k) outputs at in_{a} ! and thus at most max_hnd (k) responses at outa !, whose consequences we have already covered by considering the entire executions of id2real, and to no new entries in D.
- Network inputs. There are at most $2 n^{2}$ network ports, each accepting at most max_in (k) inputs of length at most max_len (k). Each input m leads to at most one direct output at
in_{a} ! (the final ideal message) and a call real2id (m). This call leads to at most max_len $(k)-$ 1 further outputs at in_{a} !. Overall this gives at most

$$
\max _{-} \mathrm{in}_{\mathrm{a} _ \text {net }}(k):=2 n^{2} \max _i n(k) \max _\operatorname{len}(k)
$$

outputs at in_{a} !. This also gives max_in n_{a} net (k) responses at out ${ }_{\mathrm{a}}$!, whose consequences we have already covered by considering the entire execution of real $2 \mathrm{id}(m)$.
Hence in $\mathbf{T H}_{\mathcal{H}}$, these inputs lead to at most 2 max_in $_{\text {a_ }}$ net (k) new entries in D.

- Ideal secure channels. Inputs at a port net_id ${ }_{u, v, \mathrm{x}}$? in $\mathrm{TH}_{\mathcal{H}}$ neither lead to new entries in D nor to outputs at outa!.

Altogether, we get at most

$$
2 n \max _i n(k)+2 \max _{-} \mathrm{in}_{\mathrm{a}} \text {-net }(k)
$$

entries in D (independent of how we chose the bounds for the inner ports), and this bounds curhnd a_{a} in $\mathrm{TH}_{\mathcal{H}}$. Thus $\operatorname{Sim}_{\mathcal{H}}$'s handle bound max_hnd $(k)=6 n^{2} \max \operatorname{in}(k) \max \operatorname{len}(k)$ is safe.
The outputs at out ${ }_{a}$! and in_{a} ! are bounded by, respectively,

$$
\begin{aligned}
& n \text { max_in }(k)+\text { max_hnd }(k)+\text { max_in }_{\text {a_net }}(k) ; \\
& \max \text { hnd }(k)+\text { max_in }_{\mathrm{a}} \text { _net }(k) \text {. }
\end{aligned}
$$

Both are smaller than the value $\max ^{\operatorname{in}} \mathrm{n}_{\mathrm{a}}(k)=10 n^{2} \max \operatorname{in}(k) \max \operatorname{len}(k)$, which is used as bound $_{\mathrm{in}_{\mathrm{a}}}$? by $\mathrm{TH}_{\mathcal{H}}$ and as bound $_{\text {out }_{a}}$? and bound $d_{\text {out }_{\text {enc }, u} \text { ? }}$ by $\operatorname{Sim}_{\mathcal{H}}$. This proves the remaining claims.

7 Security Proof

In the following, we omit the index $x \in\{$ stan, loc\} (stand-alone or localized system version). The theorem and proof hold for both versions. In the following, let a secure signature scheme \mathcal{S} and a secure encryption scheme \mathcal{E} be given. Informally, we state that for all $n \in \mathbb{N}$, all correct parameters L^{\prime}, and all $\mathcal{H} \subseteq\{1, \ldots, n\}$, there is a simulator $\operatorname{Sim}_{\mathcal{H}}$ such that for all polynomial-time honest users H and adversaries A , the view of H while interacting with the correct machines $\mathrm{M}_{u, \mathcal{H}}$ (i.e., the derivations according to the channel model) for $u \in \mathcal{H}$ and A is polynomially indistinguishable from the view of H while interacting with $\mathrm{TH}_{\mathcal{H}}$ and $\operatorname{Sim}_{\mathcal{H}}(\mathrm{A})$ for the parameters $L:=\mathrm{R} 2 \operatorname{lpar}\left(\mathcal{S}, \mathcal{E}, L^{\prime}\right)$. Since for each structure of the real library, there is a unique structure of the ideal library that has the same set of specified ports, we have a canonical mapping f between the ideal and the real structures. Using the terminology of [72], this means that the real library is as secure as the ideal library for the canonical mapping and for polynomial indistinguishability of views, which is denoted by the relation $\geq{ }_{\text {sec }}^{f, \text { poly }}$.

Theorem 7.1 (Security of Cryptographic Library) Let a secure signature scheme \mathcal{S} and a secure encryption scheme \mathcal{E} be given. For all $n \in \mathbb{N}$ and $L^{\prime} \in \operatorname{ValidPar}$ and for $L:=\operatorname{R} 2 \operatorname{lpar}\left(\mathcal{S}, \mathcal{E}, L^{\prime}\right)$, we have

$$
S y s_{n, \mathcal{S}, \mathcal{E}, L^{\prime}}^{\text {cry,real }} \geq_{\text {sec }}^{f, \text { poly }} S y s_{n, L}^{\text {cry,id }}
$$

for the canonical mapping f with blackbox simulatability.

7.1 The Cryptographic Bisimulation Technique

Given the simulator, we show that arbitrary polynomial-time users H and an arbitrary polynomialtime adversary A cannot distinguish the combination of the real machines $\mathrm{M}_{u, \mathcal{H}}$ from the combination of $\mathrm{TH}_{\mathcal{H}}$ and $\operatorname{Sim}_{\mathcal{H}}$. In the following, we consider a fixed \mathcal{H} and we write M_{u} instead of $\mathrm{M}_{u, \mathcal{H}}$ for simplicity. The standard technique in non-cryptographic distributed systems for rigorously proving that two systems have identical visible behaviors is a bisimulation, i.e., one defines a mapping between the respective states and shows that identical inputs in mapped states retain the mapping and produce identical outputs. We need a probabilistic bisimulation because the real system and the simulator are probabilistic, i.e., identical inputs should yield mapped states with the correct probabilities and identically distributed outputs. (To achieve the former, we indeed use mappings, not arbitrary relations for the bisimulation.)

In the presence of cryptography and active attacks, however, a normal probabilistic bisimulation is still insufficient for three crucial reasons. First, the adversary might succeed in attacking the real system with a very small probability, while this is impossible in the ideal system. This means that we have to cope with error probabilities. Secondly, encryption only gives computational indistinguishability, which cannot be captured by a bisimulation, because the actual values in the two systems may be quite different. Thirdly, the adversary might guess a random value, e.g., a nonce that has already been created by some machine but that the adversary has ideally not yet seen. (Formally, "ideally not yet seen" just means that the bisimulation fails if the adversary sends a certain value which already exists in the databases but for which there is no command to give the adversary a handle.) In order to perform a rigorous reduction proof in this case, we have to show that no partial information about this value has already leaked to the adversary because the value was contained in a nested term, or because certain operations would leak partial information. For instance, here the proof would fail if we allowed arbitrary signatures according to the definition of [55], which might divulge previously signed messages, or if we did not additionally randomize probabilistic ciphertexts made with keys of the adversary.

We meet these challenges by first factoring out the computational aspects by a special treatment of ciphertexts. Then we use a new bisimulation technique that includes a static information-flow analysis. It is followed by the remaining cryptographic reductions.

7.2 Outline of our Proof

We first give an outline of the proof, see Figure 5.

- Introducing encryption machines. We use the two encryption machines Enc $\mathcal{H}_{\mathcal{H}}$ and $\mathrm{Enc}_{\text {sim, }} \mathcal{H}$ from [72] to handle the encryption and decryption needs of the system. Roughly, the first machine calculates the correct encryption of every message m, whereas the second one always encrypts the fixed message $1^{|m|}$ and answers decryption requests for the resulting ciphertexts by table look-up. By [72], $\mathrm{Enc}_{\mathcal{H}}$ is at least as secure as $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$. We rewrite the machines M_{u} such that they use Enc $\mathcal{H}_{\mathcal{H}}$ (Step 1 in Figure 5); this yields modified machines M_{u}^{\prime}. We then replace $\mathrm{Enc}_{\mathcal{H}}$ by its idealized counterpart $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ (Step 2 in Figure 5) and use the composition theorem to show that the original system is at least as secure as the resulting system.
- Combined system. We now want to compare the combination $\mathrm{M}_{\mathcal{H}}$ of the machines M_{u}^{\prime} and Enc $_{\text {sim }, \mathcal{H}}$ with the combination $\operatorname{THSim}_{\mathcal{H}}$ of the machines $\mathrm{TH}_{\mathcal{H}}$ and $\operatorname{Sim}_{\mathcal{H}}$. However, there is no direct invariant mapping between the states of these two joint machines. Hence we define

Figure 5: Overview of the proof of Theorem 7.1.
an intermediate machine $\mathcal{C}_{\mathcal{H}}$ with a state space combined from both these systems (Step 3 in Figure 5).

- The cryptographic bisimulation. We show that the joint view of H and A is equal in interaction with the combined machine $\mathrm{C}_{\mathcal{H}}$ and the two machines $\mathrm{THSim}_{\mathcal{H}}$ and $\mathrm{M}_{\mathcal{H}}$, except for certain runs, which we collect in error sets. We show this by performing two bisimulations simultaneously (Step 4 in Figure 5). Transitivity and symmetry of indistinguishability then yield the desired result for $\operatorname{THSim}_{\mathcal{H}}$ and $\mathrm{M}_{\mathcal{H}}$. Besides several normal state invariants of $\mathrm{C}_{\mathcal{H}}$, we also define and prove an information-flow invariant on the variables of $\mathrm{C}_{\mathcal{H}}$.
- Reduction proofs. We show that the aggregated probability of the runs in error sets is negligible, as we could otherwise break the underlying cryptography. I.e., we perform reduction proofs against the security definitions of the primitives. For signature forgeries and collisions of nonces or ciphertexts, these are relatively straightforward proofs. For the fact that the adversary cannot guess "official" nonces as well as additional randomizers in signatures and ciphertexts, we use the information-flow invariant on the variables of $\mathrm{C}_{\mathcal{H}}$ to show that the adversary has no partial information about such values in situations where correct guessing would put the run in an error set. This proves that $\mathrm{M}_{\mathcal{H}}$ is computationally at least as secure as the ideal system (Step 5 in Figure 5).

Finally, simulatability is transitive [72]. Hence the original real system is also as secure as the ideal system (Step 6 in Figure 5).

The reason for treating encryption separately at the beginning (and not in the final reduction proofs like the other primitives), although every additional machine makes a bisimulation more complex, is that computational indistinguishability of real and simulated ciphertexts does not give us a mapping that is almost everywhere correct.

Recall that the cryptographic bisimulation must be by hand at the current state of the art, because the real cryptographic library contains cryptographic objects. Further, it cannot be simplified by any obvious modularization techniques: If several small machines together compute one nested term, the real ones must exchange cryptographic objects. However, in the overall system hiding the intermediate results from the adversary, these objects must be hidden. Hence there are still two relatively different distributed systems with cryptographic objects to be compared. Thus, we still need a hand-proved cryptographic bisimulation. Then, any further modularization, e.g., an introduction of signature and nonce machines similar to the encryption machines, makes the bisimulation more complex because of larger state spaces.

In the following, we present the proof in detail.

7.3 Introducing Encryption Machines

First we want to replace the encryption of each message m sent among honest users by an encryption of the fixed message $1^{|m|}$, and the decryption of each ciphertext generated that way by table look-up.

7.3.1 Encryption Machines

We use the two encryption systems $\mathrm{Enc}_{\mathcal{H}}$ and $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ from [72]; we only exploit our more powerful database notation for a slightly different, but equivalent presentation.

Scheme 7.1 (Ideal and "Real" Encryption Systems) Let an encryption scheme (gen ${ }_{\mathrm{E}}, \mathrm{E}, \mathrm{D}$, pke_len, enc_len) and parameters $n \in \mathbb{N}$ and $s_{\text {keys }}, s_{\text {encs }}: \mathbb{N} \Rightarrow \mathbb{N}$ be given. The
functions $s_{\text {keys }}$ and $s_{\text {encs }}$ must be polynomially bounded in k. $s_{\text {keys }}(k)$ denotes the maximum number of keys generated in the system and $s_{\text {encs }}(k)$ the maximum number of encryptions per key. We define two systems

- $S y s_{n, s_{\text {keys }}, s_{\text {encs }}}^{\mathrm{enc} \text { sim }}:=\left\{\left(\left\{\mathrm{Enc}_{\text {sim }, \mathcal{H}}\right\}, S_{\mathrm{enc}, \mathcal{H}}\right) \mid \mathcal{H} \subseteq\{1, \ldots, n\}\right\}$.

For every \mathcal{H}, the ports are

- Ports $_{\text {Enc }_{\mathcal{H}}}:=$ Ports $_{\text {Enc }_{\text {sim }, \mathcal{H}}}:=\left\{\right.$ in $_{\text {enc }, u}$?, out enc,u !, out $\left.{ }_{\text {enc }, u}{ }^{\triangleleft}!\mid u \in \mathcal{H}\right\}$,
- $S_{\mathrm{enc}, \mathcal{H}}^{c}:=\left\{\mathrm{in}_{\mathrm{enc}, u}!\right.$, in $\mathrm{nenc}, u^{\triangleleft}!$, out enc, u ?|uG $\left.\mathcal{H}\right\}$.

Each machine maintains a key counter curkey $\in \mathbb{N}$ initialized with 0 , and initially empty databases keys and ciphers. Entries in keys have attributes (owner, skenc, pkenc, ec). Entries in ciphers have attributes ($m s g, p k e n c$, ciph) and are used to look up intended cleartexts in the ideal system. The transition functions are given by the following rules. Let $\mathrm{in}_{\mathrm{enc}, u}$? be the port where the current input is made; the resulting output goes to out ${ }_{\text {enc }, u \text { ! with out }}^{\text {enc }, u}{ }^{\triangleleft}!:=1$.

- $p k \leftarrow$ (generate). (In Enc $\mathcal{H}_{\mathcal{H}}$ and Enc $\left._{\text {sim }}, \mathcal{H}.\right)$ If curkey $<s_{\text {keys }}(k)$ then set curkey++, $(s k, p k) \leftarrow$ $\operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$, and keys $: \Leftarrow(u, s k, p k, 0)$, where 0 is the initial value of an encryption counter, and return $p k$. Otherwise return \downarrow.
- $c \leftarrow($ encrypt, $p k, m)$, for $p k, m \in\{0,1\}^{+}$. Let $K:=k e y s[p k e n c=p k]$. If $K=\downarrow$ or $K . e c \geq$ $s_{\text {encs }}$, return \downarrow, else set $K . e c++$ and
- in Enc $_{\mathcal{H}}:$ Return $c \leftarrow \mathrm{E}_{p k}(m)$;
- in $\mathrm{Enc}_{\text {sim }, \mathcal{H}}:$ Set $c \leftarrow \mathrm{E}_{p k}\left(1^{|m|}\right)$ and ciphers $: \Leftarrow(m, p k, c)$ and return c.
- $m \leftarrow$ (decrypt, $p k, c)$, for $p k, c \in\{0,1\}^{+}$. (Note that $p k$ is used to designate the desired secret key.) Let $K:=k e y s[p k e n c=p k \wedge$ owner $=u]$. If $K=\downarrow$, return \downarrow, else let $s k:=K$.skenc and
- in Enc $\mathcal{H}_{\mathcal{H}}$: Return $m:=\mathrm{D}_{s k}(c)$;
- in $\mathrm{Enc}_{\text {sim }, \mathcal{H}}:$ Let $m:=\operatorname{ciphers}[p k e n c=p k \wedge c i p h=c]$.msg. If $m \neq \downarrow$, return m, else return $m:=\mathrm{D}_{s k}(c) .{ }^{29}$

We need the following properties of these encryption machines.
Lemma 7.1 The encryption systems have the following properties:

1. The two systems are computationally indistinguishable (without even a simulator), i.e., $S y s_{n, s_{\text {keys }}, s_{\text {encs }}}^{\text {enc,real }} \geq{ }_{\text {sec }}^{f, \text { poly }} S y s_{n, s_{k e y s}, s_{\text {encs }}}^{\text {enc,sim }}$ holds for the canonical mapping f and all parameters $n \in \mathbb{N}$ and $s_{\text {keys }}, s_{\text {encs }} \in \mathbb{N}[x]$.
[^17]
2. Each transition is polynomial-time.

The first part was shown in [72] for polynomials $s_{\text {keys }}$ and $s_{\text {encs }}$. Inspection of the proof easily reveals that this also holds for polynomially bounded functions. The second part is obvious.

7.3.2 Rewriting the Real System with Encryption Machines

We now rewrite the real machines M_{u} such that they use one of the encryption systems instead of doing all the work themselves. We call the modified machines M_{u}^{\prime}. We set the parameters for the encryption system to $s_{\text {keys }}:=s_{\text {encs }}:=\max \operatorname{in}(k)+1$. This will ensure that the encryption system does not refuse actions that the overall system needs.

Each M_{u}^{\prime} has three additional ports $\mathrm{in}_{\text {enc }, u}$!, in $\mathrm{n}_{\mathrm{enc}, ~}{ }^{〔}$!, and out ${ }_{\text {enc }, u}$? for connecting to the encryption machine. It maintains a counter steps $_{\text {outenc }, u \text { ? }}$ with bound bound $_{\text {outenc }, u}$? $:=\max$ in $(k)+1$; the counter and length functions are treated as in the other systems. By "call the encryption machine with $y \leftarrow x$, expecting $y \ldots$.." we abbreviate the same subroutine behavior as in the simulator, where M_{u}^{\prime} uses the port in $\mathrm{enc}, u!$.

The state is unmodified; only the actual entries in D_{u} for secret decryption keys are different. The following transitions are modified:

- $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_enc_keypair () .

Set $s k^{\text {hnd }}:=$ curhnd $_{u}++; p k^{\text {hnd }}:=$ curhnd $_{u}++$. Call the encryption machine with $p k \leftarrow$ (generate), expecting $|p k|=$ pke_len (k), and store $D_{u}: \Leftarrow\left(s k^{\text {hnd }}, \epsilon\right.$, ske, ()) and $D_{u}: \Leftarrow$ $\left(p k^{\text {hnd }},(\right.$ pke,$p k)$, pke, ()). Note that the secret key is only stored in the encryption machine.

- $c^{*} \leftarrow$ make_enc $\left(p k^{*}, l\right)$, for $p k^{*}, l \in\{0,1\}^{+}$. (Note that this function is no longer state-less.)

If enc_len* $(k,|l|)>\max$ len (k), return \downarrow. Otherwise let $p k:=p k^{*}[2], r{ }^{\mathcal{R}}\{0,1\}^{\text {nonce_len }(k)}$, and $l^{*}:=(r, l)$. Call the encryption machine with $c \leftarrow$ (encrypt, $\left.p k, l^{*}\right)$, expecting $|c| \leq \max \operatorname{len}(k)$. If $c=\downarrow$ (it was an adversary key), encrypt directly as $c \leftarrow \mathrm{E}_{p k}\left(l^{*}\right)$. Set $c^{*}:=$ (enc, $\left.p k, c, r\right)$.

- $l^{\text {hnd }} \leftarrow \operatorname{decrypt}\left(s k^{\text {hnd }}, c^{\text {hnd }}\right)$.

Parse $c^{\text {hnd }}$ yielding $\arg =:\left(p k^{*}\right)$. Return \downarrow if $D_{u}\left[s k^{\text {hnd }}\right]$.type \neq ske or $D_{u}\left[c^{\text {hnd }}\right]$.type \neq enc or $D_{u}\left[s k^{\text {hnd }}+1\right]$.word $\neq p k^{*}$. Otherwise, set $p k:=p k^{*}[2], c:=D_{u}\left[c^{\text {hnd }}\right]$.word $[3]$, and $r:=$ $D_{u}\left[c^{\text {hnd }}\right]$.word $[4]$. Call the encryption machine with $l^{*} \leftarrow$ (decrypt, $p k, c$), expecting $\left|l^{*}\right| \leq|c|$. If $l^{*}=\downarrow$ or $l^{*}[1] \neq r$ or $l:=l^{*}[2]$ is not a tagged list, then $l^{\text {hnd }}:=\downarrow$; else let $\left(l^{\text {hnd }}, D_{u}\right): \leftarrow$ (l, list, ()).

The commands make_enc_keypair and parse_decrypt can be omitted, while parse_pke, encrypt, parse_enc, and pk_of_enc remain unchanged.

The following properties of the rewritten system are useful:
Lemma 7.2 The rewritten real machines M_{u}^{\prime} have the following properties:

1. They are polynomial-time.
2. If they are used together with $\mathrm{Enc}_{\mathcal{H}}$ or $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$, no counter steps $s_{o \mathrm{outen}, u}$?, curkey, or K.ec reaches its bound.
3. If used with $\mathrm{Enc}_{\mathcal{H}}$, their behavior is perfectly indistinguishable (for A and H) from the real system.

Proof.

1. Each machine M_{u}^{\prime} is polynomial-time because the new input port outenc,u ! only allows a polynomial number of inputs because of the corresponding counter, the length function for this port is polynomially bounded and each modified transition only takes a polynomial number of steps.
2. First we consider a counter steps $_{\text {outenc }, u \text { ? }}$ for $u \in \mathcal{H}$. Each output by Enc $_{\mathcal{H}}$ or $\operatorname{Enc}_{\text {sim }, \mathcal{H}}$ at out ${ }_{\text {enc }, u}$! is preceded by an input at $\mathrm{in}_{\mathrm{enc}, u}$!, and M_{u}^{\prime} only makes such an input upon a basic command, i.e., an input at in_{u} ?. Thus there are at most max_in (k) such outputs.

Similarly, the counter curkey in $\mathrm{Enc}_{\mathcal{H}}$ or $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ is only incremented upon key generation commands input at a port in_{u} ? with $u \in \mathcal{H}$, and thus at most n max_in $(k)<s_{\text {keys }}$ times. Each counter keys.ec is only incremented upon encryption commands input at a port in_{u} ? with $u \in \mathcal{H}$, and thus at most n max_in $(k)<s_{\text {encs }}$ times.
3. To prove equal outside behavior, we tacitly use Part 2. The major change is that secret decryption keys are no longer stored in D_{u}, but in ciphers. However, considering key generation and decryption together one easily sees that the same secret key is always used in both systems. As the search in the subroutine $: \leftarrow$ does not include secret keys, no other command operates on secret keys. The other change is that M_{u}^{\prime} returns \downarrow in make_enc if $|c|>$ max_len (k), while M_{u} returns c^{*}. However, this does not matter since M_{u} then rejects c^{*} in the surrounding command encrypt.

7.3.3 Replacing the Encryption Machine in the Real System

We now want to replace the system $\mathrm{Enc}_{\mathcal{H}}$ with $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$. This can be achieved by using the composition theorem of [72], i.e., it is possible to securely replace a subsystem of a larger system if the subsystem is as secure as the replacement in the sense of simulatability. We only have to show that the preconditions of the theorem are fulfilled. This is straightforward except for showing that the system on top of the replaced subsystem is polynomial-time, and this was shown in Lemma 7.2.

7.4 Combined System

We have to show that the modified real system, using the encryption machine, is at least as secure as the ideal system. We even show the stronger statement that the joint view of H and A , together with the buffers of connections leading to or from them, is indistinguishable.

In other words, we compare the joint machine $\operatorname{THSim}_{\mathcal{H}}$ consisting of $\mathrm{TH}_{\mathcal{H}}$ and $\operatorname{Sim}_{\mathcal{H}}$ with the combination $\mathrm{M}_{\mathcal{H}}$ of the correct machines M_{u}^{\prime} with $u \in \mathcal{H}$ and $\mathrm{Enc}_{\operatorname{sim}, \mathcal{H}}$ (recall Figure 5).

A method to compare the observable behavior of two distributed systems is to define a mapping between their states and to show that the same input in corresponding states leads to the same output and corresponding states again, i.e., a bisimulation. However, the states of THSim \mathcal{H} and $\mathrm{M}_{\mathcal{H}}$ are not immediately comparable: a simulated state has no real versions for data that the adversary
has not yet seen, while a real state has no global indices, adversary handles, and entries for data that are still unparsed in the correct machines. Similarly, the respective encryption machines are not always in a comparable state, e.g., because basic commands from the honest users cause the subsystems of $M_{\mathcal{H}}$ to generate keys and ciphertexts, whereas for the subsystems of the simulator, this only happens when such a message is sent to A.

Therefore we define an intermediate system $\mathcal{C}_{\mathcal{H}}$ ("combined") with a combined state space of $M_{\mathcal{H}}$ and $\operatorname{THSim}_{\mathcal{H}}$. We then compare $\mathrm{C}_{\mathcal{H}}$ with $\mathrm{M}_{\mathcal{H}}$ using a mapping from the states of $\mathrm{C}_{\mathcal{H}}$ to those of $\mathrm{M}_{\mathcal{H}}$, and similarly with $\operatorname{THSim}_{\mathcal{H}}$. By the transitivity of indistinguishability (of the families of views of the same A and H in all three configurations), we obtain the desired result.

7.4.1 Timing

The goal of a bisimulation is to prove that each input from A or H leads to the same outputs to A and H and to mapped states in the two pairs of configurations (except for the error sets). In this section, we show how this corresponds to our scheduling model.

We have already informally introduced machines $\operatorname{THSim}_{\mathcal{H}}, \mathrm{M}_{\mathcal{H}}$, and $\mathrm{C}_{\mathcal{H}}$ as combinations of other machines. However, a combination in the standard sense (formally defined in [72]) leaves all buffers separate, and thus its transitions are micro-transitions where only one submachine switches. Here we want macro-transitions where the submachines run until control is returned to A or H . Thus buffers that are entirely within the combination (i.e., their in, out and clock port) become a normal part of the state of the combined machine. Only for these macro-transitions can we hope for the bisimulation properties. We have to show that they are well-defined for our combinations.
$\mathrm{M}_{\mathcal{H}}$ is mainly a standard combination of the correct machines M_{u}^{\prime} because A schedules all the network connections. Only the connections to $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ become internal. As at most one subroutine call to $\mathrm{Enc}_{\operatorname{sim}, \mathcal{H}}$ is made in each transition, every macro-transition clearly terminates.

In $\operatorname{THSim}_{\mathcal{H}}$, the buffers $i n_{\mathrm{a}}$ and outa become internal. When $\mathrm{TH}_{\mathcal{H}}$ obtains a send command or $\operatorname{Sim}_{\mathcal{H}}$ a network input, the entire sequence of steps including id2real or real2id, respectively, becomes one macro-transition. Each one is a legitimate state transitions, because it terminates, as shown in Lemma 6.2, and leads to at most one output at each external port. (A send command leads to at most one network output, but possibly into duplicated buffers, and a network input leads to at most one user output.)

7.4.2 Definition of the Combined System

We now briefly define the combined system. Possible ambiguities will disappear below, where we compare the effects of all inputs in the three systems.

States of $C_{\mathcal{H}}$ The main part of $\mathrm{C}_{\mathcal{H}}$ is a database D^{*} structured like D in $\mathrm{TH}_{\mathcal{H}}$. An entry x may have the following additional attributes:

- x.word $\in\{0,1\}^{*}$ is always defined and contains real data as in $\mathrm{M}_{\mathcal{H}}$ or $\operatorname{Sim}_{\mathcal{H}}$ under the same handle(s). For x.type $\in\{$ sks, ske $\}$, it is ϵ for adversary keys, i.e., if owner $(x)=$ a (recall Lemma 4.1.6), else a real secret key. For all other types, the word is non-empty.
- . parsed $_{u} \in\{$ true, false $\}$ for $u \in \mathcal{H}$ is \downarrow if $x . h n d_{u}=\downarrow$; otherwise true indicates that the entry would be parsed in D_{u}, and false that it would still be of type null.
- x.owner for ciphertexts with honest-user keys is adv if the ciphertext was received from the adversary, otherwise honest. For other ciphertexts it is \downarrow.
- x.ec for secret encryption keys corresponds to the encryption counter in ciphers of the encryption machines.

Its state also contains variables size and curhnd $_{u}$ as in $\mathrm{TH}_{\mathcal{H}}$, the inner buffer variables out ${ }_{\mathrm{a}}$ and $i n_{\mathrm{a}}$, all variables steps $_{\mathrm{p}}$? as in $\mathrm{THSim}_{\mathcal{H}}$, and variables steps $_{\text {outenc }, u}$? equal to the step counters in $\mathrm{M}_{\mathcal{H}}$.

Transitions of $C_{\mathcal{H}}$ The D-part of $C_{\mathcal{H}}$'s database D^{*}, the variables size and curhnd $_{u}$, and the ideal secure channels are treated exactly as in $\mathrm{TH}_{\mathcal{H}}$. An entry whose first handle $x . h n d_{u}$ is for $u \in \mathcal{H}$ gets the word that M_{u}^{\prime} would contain under this handle except that also the secret keys from $\mathrm{Enc}_{\operatorname{sim}, \mathcal{H}}$ are entered, and otherwise that from $\operatorname{Sim}_{\mathcal{H}}$. Thus, essentially, entries created due to basic commands from H get the words that M_{u}^{\prime} and $\mathrm{Enc}_{\operatorname{sim}, \mathcal{H}}$ would construct, while words received in network inputs from A are parsed completely and entered as by $\operatorname{Sim}_{\mathcal{H}}$. Outputs to H are made as in $\mathrm{TH}_{\mathcal{H}}$, outputs to A as in $\mathrm{M}_{\mathcal{H}}$.

7.4.3 Derivations

We now define the derivations of the original systems from the combined system. They are the mappings that we will show to be bisimulations. We use the following additional notation:

- Let ω abbreviate word lookup, i.e., $\omega(i):=D^{*}[i]$.word if $i \in \mathcal{H N D} \mathcal{N}$, else $\omega(i):=i$. Let ω^{*}, applied to a list, denote that ω is applied to each element.
- We give most derived variables and entire machine states a superscript *, because in the bisimulation we have to compare them with the "original" versions. We make an exception with some variables of $\operatorname{THSim}_{\mathcal{H}}$ that are equal by construction in $\mathrm{C}_{\mathcal{H}}$; in particular D^{*} is $\mathrm{C}_{\mathcal{H}}$'s extended database and the derived D-part for $\mathrm{TH}_{\mathcal{H}}$ is immediately called D again.

We now assume that a state of $\mathrm{C}_{\mathcal{H}}$ is given and define derived states corresponding to the original systems.
$\mathrm{TH}_{\mathcal{H}}: D$: This is the restriction of D^{*} to all attributes except word and parsed $_{u}$.
curhnd $_{u} \quad$ (for $u \in \mathcal{H} \cup\{\mathrm{a}\}$), size, and steps s_{p} : All these variables are equal to those in $\mathrm{C}_{\mathcal{H}}$.
$\mathrm{M}_{\mathcal{H}}{ }^{*}: D_{u}^{*}:\left(\right.$ For every $u \in \mathcal{H}$.) We derive D_{u}^{*} as follows, starting with an empty database: For every $x^{\text {hnd }} \leq$ curhnd $_{u}$, let $x:=D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]$.ind, type $:=D^{*}[x]$.type, and $m:=D^{*}[x]$.word . Then

- If $D^{*}[x]$.parsed ${ }_{u}=$ false, then $D_{u}^{*}: \Leftarrow\left(x^{\text {hnd }}, m\right.$, null, ()).
- Else if type $\neq\{$ sks, ske $\}$, then $D_{u}^{*}: \Leftarrow\left(x^{\text {hnd }}, m\right.$, type, ()$)$.
- Else if type $=\mathrm{sks}$, then $D_{u}^{*}: \Leftarrow\left(x^{\text {hnd }}, m, \mathrm{sks}, D^{*}[x]\right.$.arg). (Both have a signature counter.)
- Else if type $=$ ske, then $D_{u}^{*}: \Leftarrow\left(x^{\text {hnd }}, \epsilon\right.$, ske, ()$)$. (A secret key of an honest user is only in $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$.)
curhnd $_{u}^{*}$: This variable equals curhnd $_{u}$ of $\mathrm{C}_{\mathcal{H}}$.
steps s_{p}^{*} : These variables equal steps ${ }_{\mathrm{p}}$? of $\mathcal{C}_{\mathcal{H}}$, except for p ? $=\operatorname{net}_{u, v, x}$? with $(u, v, x) \in$ ch_honest, where they equal steps $_{\text {net_id }_{u, v, x} \text { ? }}$.
$n e t_{u, v, x}^{*}:\left(\right.$ For every $(u, v, x) \in$ ch_honest. $\left.^{\prime}\right)$ Let $n e t_{u, v, x}^{*}:=\omega^{*}\left(\right.$ net_id $\left._{u, v, x}\right)$.
$\operatorname{Sim}_{\mathcal{H}}{ }^{*}: D_{\mathrm{a}}^{*}$: We derive D_{a}^{*} as follows, starting with an empty database: For all $x^{\text {hnd }} \leq$ curhnd $_{\mathrm{a}}$, let $x:=D^{*}\left[h n d_{\mathrm{a}}=x^{\mathrm{hnd}}\right]$.ind, type $:=D^{*}[x]$.type, and $m:=D^{*}[x]$.word.
- If type $\notin\{$ pks, pke $\}$ (i.e., not a public key), then $D_{\mathrm{a}}^{*}: \Leftarrow\left(x^{\mathrm{hnd}}, m,()\right)$.
- If type $\in\{$ pks, pke $\}$, let $s k^{\text {ind }}:=x-1$. If owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=\mathrm{a}$, then $D_{\mathrm{a}}^{*}: \Leftarrow$ $\left(x^{\text {hnd }}, m,(\mathrm{adv})\right)$, else $D_{\mathrm{a}}^{*}: \Leftarrow\left(x^{\text {hnd }}, m\right.$, (honest, $\left.\left.\omega\left(s k^{\text {ind }}\right)\right)\right)$.
curhnd $_{\mathrm{a}}^{*}$: This variable equals curhnd $_{\mathrm{a}}$ of $\mathrm{C}_{\mathcal{H}}$.
steps s_{p} : These variables are identical to those in $\mathrm{C}_{\mathcal{H}}$.
$\operatorname{THSim}_{\mathcal{H}}$: out ${ }_{\mathrm{a}}$, in $_{\mathrm{a}}$: These buffer contents are equal to those in $\mathcal{C}_{\mathcal{H}}$, and we claim that they are empty after each macro-transition.
net_id $d_{u, v, x}$: (For every $(u, v, x) \in$ ch_honest.) The buffers of messages on secure channels are equal to those in $\mathrm{C}_{\mathcal{H}}$.
$E n c_{\text {sim }, \mathcal{H}}^{*}$: keys ${ }^{*}$: We derive keys ${ }^{*}$ as follows, starting with an empty database: For all $s k^{\text {ind }} \leq$ size with $D^{*}\left[s k^{\text {ind }}\right]$.type $=$ ske and $u:=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$, let keys ${ }^{*}: \Leftarrow$ $\left(u, D^{*}\left[s k^{\text {ind }}\right]\right.$.word $[2], D^{*}\left[s k^{\text {ind }}+1\right]$.word $\left.[2], D^{*}\left[s k^{\text {ind }}\right] . e c\right)$. Thus we take the owner, untagged secret key and counter from the secret-key entry and the untagged public key from the corresponding public-key entry.
ciphers*: We derive ciphers* as follows, starting with an empty database: For all $c^{\text {ind }} \leq$ size with $D^{*}\left[c^{\text {ind }}\right]$.type $=$ enc and $D^{*}\left[c^{\text {ind }}\right]$.owner $=$ honest, let $\left(p k^{\text {ind }}, l^{\text {ind }}\right):=D^{*}\left[c^{\text {ind }}\right]$. arg , $\left(l, p k^{*}, c^{*}\right):=\omega^{*}\left(\left(l^{\text {ind }}, p k^{\text {ind }}, c^{\text {ind }}\right)\right)$, and $l^{*}=\left(c^{*}[4], l\right)$. Then set ciphers ${ }^{*}: \Leftarrow$ $\left(l^{*}, p k^{*}[2], c^{*}[3]\right)$.
curkey * : Let curkey ${ }^{*}=\mid$ keys $^{*} \mid$.
The buffers to and from $E n c_{\text {sim }, \mathcal{H}}^{*}$ are empty after each macro-transition.
In the comparison between $\mathrm{C}_{\mathcal{H}}$ and $\mathrm{M}_{\mathcal{H}}$ and $\operatorname{THSim} \mathcal{H}_{\mathcal{H}}$, we show that the derived states and outputs are the same as in the original systems except for certain cases that we collect in (families of) error sets. We show in Section 7.9 that the error sets have negligible probability.

7.4.4 Invariants in $\mathrm{C}_{\mathcal{H}}$

For the bisimulation, we need invariants about $\mathrm{C}_{\mathcal{H}}$. Those that concern only the D-part of the state have already been presented in Lemma 4.1. They are index and handle uniqueness, well-defined terms, message correctness, key secrecy, length bounds, and correct key pairs. This lemma also holds for $\mathcal{C}_{\mathcal{H}}$ because $C_{\mathcal{H}}$ always treats the D-part of its state with transitions of $\mathrm{TH}_{\mathcal{H}}$. We now present new invariants.

- Fully defined. For every $x \in D^{*}$, the attributes x.ind, x.type, x.arg, x.length, and x.word are never \downarrow.
- Word uniqueness. For each word $m \in\{0,1\}^{*}$, we have $\mid D^{*}[$ word $=m \wedge$ type $\notin\{$ sks, ske $\}] \mid \leq 1$.
- Correct length. For all $i \leq$ size, $D[i]$.len $=\mid D^{*}[i]$.word \mid, except if $D[i]$.type $\in\{$ sks, ske $\}$.
- No unparsed secret keys. If $u \in \operatorname{owners}\left(D^{*}[i]\right) \cap \mathcal{H}$ and $D^{*}[i]$.parsed ${ }_{u}=$ false, then $D^{*}[i]$.type \notin \{sks, ske\}.
- Correct arguments. For all $i \leq$ size, the real message $m:=D^{*}[i]$.word and the abstract type and arguments, type ${ }^{\text {id }}:=D^{*}[i]$.type and $\arg ^{\text {ind }}:=D^{*}[i]$.arg, are compatible. More precisely, let $\arg ^{\text {real }}:=\omega^{*}\left(\right.$ arg $\left.^{\text {ind }}\right)$. Then we require:
- If $m=\epsilon$, then type ${ }^{\text {id }} \in\{$ sks, ske $\}$.
- If type ${ }^{\text {id }} \notin\{$ sks, ske $\}$, let (type, arg $\left.{ }^{\text {parse }}\right):=$ parse (m). Then type $=$ type ${ }^{\text {id }}$, and:
* If type $\notin\{$ sig, enc $\}$, then $\arg { }^{\text {parse }}=$ arg ${ }^{\text {real }}$.
* If type $=$ sig, then $\arg ^{\text {parse }}=\arg { }^{\text {real }}[1,2]$. (Parsing does not output a counter.)
* If type $=$ enc, then $\arg ^{\text {parse }}[1]=\arg { }^{\text {real }}[1]$.

Further, let $o:=D^{*}[i]$.owner and $s k^{\text {ind }}:=\arg ^{\text {ind }}[1]-1$. Then $\left(\right.$ owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=$ a $\Longleftrightarrow o=\downarrow)$. For $o=$ honest, we only claim that $l^{\text {ind }}:=\arg ^{\text {ind }}[2] \neq \downarrow$.
For $o=\mathrm{adv}$, we claim that the decrypted and looked-up cleartexts are equal: Let $s k^{*}:=\omega\left(s k^{\text {ind }}\right), l^{\text {ind }}:=\arg { }^{\text {ind }}[2]$, and $l:=$ parse_decrypt $\left(s k^{*}, m\right)$. We claim that $l=\omega\left(l^{\text {ind }}\right)$.

- Strongly correct arguments if a \notin owners $\left(D^{*}[i]\right)$ or $D^{*}[i]$.owner $=$ honest. Let type $:=$ $D^{*}[i] \cdot$ type, $\arg ^{\text {ind }}:=D^{*}[i]$. \arg and $\arg { }^{\text {real }}:=\omega^{*}\left(\arg ^{\text {ind }}\right)$. Then type \neq garbage and $m:=$ $D^{*}[i]$.word has the following probability distribution: ${ }^{30}$
- If type $\in\{$ data, list, nonce $\}$, then $m \leftarrow$ make_type (arg $^{\text {real }}$).
- If type $\in\{\mathrm{sks}, \mathrm{pks}, \mathrm{ske}, \mathrm{pke}\}$, the formula is applied to pairs, i.e., we have $p k^{\text {ind }}=$ $s k^{\text {ind }}+1$ with appropriate types, and $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair () or $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_enc_keypair () , respectively, for $\left(s k^{*}, p k^{*}\right):=\omega^{*}\left(s k^{\text {ind }}, p k^{\text {ind }}\right)$.
- If type $=\operatorname{sig}$, then $a r g^{\text {ind }}$ is of the form $\left(p k^{\text {ind }}, l^{\text {ind }}, c\right)$ with $c \in \mathbb{N}$ and $c \leq \max _s k c(k)$. Let $s k^{\text {ind }}:=p k^{\text {ind }}-1$ and $\arg ^{\prime \text { real }}:=\omega^{*}\left(s k^{\text {ind }}, l^{\text {ind }}, c\right)$. Then $a \neq \operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$ and $m \leftarrow$ make_sig $\left(\right.$ arg $\left.^{\prime \text { real }}\right)$.
- If type $=$ enc, then $\arg { }^{\text {real }}$ is of the form $\left(p k^{*}, l\right)$ and m of the form (enc, $\left.p k, c, r\right)$ with $p k=$ $p k^{*}[2]$ and where r is distributed as $r \leftarrow_{\leftarrow}^{\mathcal{R}}\{0,1\}^{\text {nonce-len }(k)}$. Further, $o:=D^{*}[i]$.owner \neq adv.
The distribution of c depends on o : If $o=$ honest (a ciphertext among honest users), then $c \leftarrow \mathrm{E}_{p k}\left(1^{|(r, l)|}\right)$. If $o=\downarrow$ (a ciphertext from an honest user to the adversary), then $c \leftarrow \mathrm{E}_{p k}((r, l))$.
- Word secrecy. We require that the adversary never obtains information about nonce-like word components without adversary handles. For this, we define a set Pub_Var of "public" variables that A may know or get to know later as follows: It contains
- all words $D^{*}[i]$.word with $D^{*}[i] . h n d_{\mathrm{a}} \neq \downarrow ;$
- the state of A and H ;
- the $\mathrm{TH}_{\mathcal{H}}$-part of the state of $\mathrm{C}_{\mathcal{H}}$ and the ideal secure channels;
- secret keys where the public keys are public, i.e., if $D^{*}[i] . h n d_{\mathrm{a}} \neq \downarrow$ and $D^{*}[i]$.type \in $\{$ pks, pks $\}$, then also $D^{*}[i-1]$.word. ${ }^{31}$

We claim that at all times, no information from outside has flown into Pub_Var in the sense of information flow in programming languages (static program analysis).

[^18]"Word secrecy" implies that no information from "official" nonces n^{\prime}, random values r in signatures and ciphertexts, and public keys has flown into Pub_Var unless these values have adversary handles. There, the treatment of absence of information flow in the static sense implies absence of Shannon information. We need this stronger notion for the bisimulation because it is inductive: If two variables x and y individually obtain no information flow about a variable z, then neither does the pair (x, y), in contrast to Shannon information.

The following definition summarizes what we plan to do with these invariants:
Definition 7.1 (Bisimulation Property) By "an input retains all invariants" we mean the following:

- The resulting macro-transition of $\mathcal{C}_{\mathcal{H}}$ retains the invariants if they were true before the input.
- If the input is made to $\mathrm{M}_{\mathcal{H}}$ or $\operatorname{THSim}_{\mathcal{H}}$ in the state derived from $\mathrm{C}_{\mathcal{H}}$, then the probability distribution of the next state equals that of the states derived from the next state of $\mathrm{C}_{\mathcal{H}}$. We call this "correct derivation".

All conditions are obviously true initially, when all databases and buffers are empty and the counters 0 .

We use the following general lemma about transitions of $\mathrm{C}_{\mathcal{H}}$:
Lemma 7.3 The combined machine $\mathrm{C}_{\mathcal{H}}$ has the following property:

1. The only modifications to existing entries x in D^{*} of $\mathcal{C}_{\mathcal{H}}$ are assignments to previously undefined attributes $x . h n d_{u}$ together with $x \cdot$ parsed $_{u}:=$ false, changes of x. parsed $_{u}$ from false to true, and (via the commands sign and encrypt) modifications to the counters in entries of type sks and ske.
2. The function owner of a secret key never changes.
3. If a state change in $\mathrm{C}_{\mathcal{H}}$ only consists in a new handle $x . h n d_{u}$ in an existing entry x in D^{*} and an assignment to x.parsed ${ }_{u}$, only the following invariants have to be shown:

- "Correct derivation" of D_{u} and curhnd d_{u}^{*}.
- "Word secrecy" if $u=\mathrm{a}$.

Proof. Part 1 follows immediately from the definition of $\mathcal{C}_{\mathcal{H}}$, and can easily be verified by inspection of the detailed commands.

For Part 3, it is clear that the other derivations are not affected. "Fully defined", "word uniqueness", and "correct length" are clear, and so is "correct arguments" given Part 2. "Strongly correct arguments" is required for fewer entries if an adversary handle is added, and clear for those. For "no unparsed secret keys", our preconditions never occur for secret keys by "key secrecy". For "word secrecy" in the case $u \neq \mathrm{a}$, the new handle does not change which words belong to Pub_Var, and the information in $x . h n d_{u}$ is from the D-part of D^{*} and thus within Pub_Var.

7.5 Comparison of Basic Commands

We first consider the effects of a basic command c input at a port in_{u} ? with $u \in \mathcal{H}$. Recall that the actions of $\mathrm{C}_{\mathcal{H}}$ on a large part of its state are by definition equal to those of $\mathrm{TH}_{\mathcal{H}}$, and so is $\mathrm{C}_{\mathcal{H}}$'s output at out ${ }_{u}$!. We will not always mention this again.

7.5.1 General Aspects

Lemma 7.4 For an individual basic command c input at in_{u} ?, we can assume it is well-formed and we only have to show the following properties:

- The outputs at out ${ }_{u}$! in $C_{\mathcal{H}}$ (where it is defined to be as in $\mathrm{TH}_{\mathcal{H}}$) and $\mathrm{M}_{\mathcal{H}}$ are the same.
- "Correct derivation" of D_{u} and curhnd $_{u}$.
- For the commands gen_enc_keypair and encrypt, "correct derivation" of the state of Enc sim, \mathcal{H}.
- The invariants in D^{*} are retained, where "word secrecy" is already clear.

Proof. The length functions in $\mathrm{TH}_{\mathcal{H}}$, and thus $\mathrm{C}_{\mathcal{H}}$, and M_{u}^{\prime} are defined from identical variables steps $_{\mathrm{in}_{u}}$? , with identical bounds bounds $\mathrm{in}_{\mathrm{i}_{u}}$? $=\max \operatorname{in}(k)$, and from identical input domains. The latter follows because the domains are textually equal, and the only dynamic condition is that handle parameters are $<$ curhnd $_{u}$, which is also equal. Hence $\mathrm{C}_{\mathcal{H}}$ and M_{u}^{\prime} obtain the same actual inputs. Then they both increment ${\text { steps } s_{i_{u}} \text { ? }}$. Next follow domain tests, which are equal as we just saw. Hence the general conventions lead to abortion in the same cases. Hence from now on, we assume that c is well-formed.

Now we exploit that c is local in both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime}. First this implies that the only output in all systems is made at out ${ }_{u}$!, and that all buffer contents and remaining step variables remain correctly derived.

Secondly, the submachine $\operatorname{Sim}_{\mathcal{H}}$ of $\operatorname{THSim}_{\mathcal{H}}$ is not involved, nor is any other machine M_{v}^{\prime}. We show that their derived counterparts D_{v}^{*} and curhnd d_{v}^{*} with $v \in \mathcal{H} \cup\{a\} \backslash\{u\}$ are also unchanged. Locality also means that $\mathrm{TH}_{\mathcal{H}}$ and thus $\mathrm{C}_{\mathcal{H}}$ does not modify handles for such a value v. Thus curhnd d_{v}^{*} is indeed unchanged, and the database D_{v}^{*} can change at most by changes to a non-handle attribute of an existing entry x of D^{*} with $x . h n d_{v} \neq \downarrow$. By Lemma 7.3.1, this can only happen if x.type $=$ sks and in a sign command. (The attribute x.ec for x.type $=$ ske is only used in the derivation of Enc sim, \mathcal{H}.) However, by "key secrecy" (Lemma 4.1.6), this would imply $x . h n d_{u}=\downarrow$, and we easily see below that this is not the case in such a sign command (honest users only sign with their own keys). This proves all the derivations that are not shown individually.

Basic commands other than gen_enc_keypair and encrypt clearly do not change the state of $E n c_{\text {sim }, \mathcal{H}}$. Further, they do not modify entries of type ske, pke and enc, upon which the derivation relies.

Finally, we show word secrecy: The output at out ${ }_{u}$! and the updates to the D-part of D^{*} are made entirely with commands of $\mathrm{TH}_{\mathcal{H}}$ and thus within Pub b_{-}Var. New or existing words only get a handle for u, so that nothing is added to Pub_Var.

7.5.2 One-level Parsing

Many command executions in M_{u}^{\prime} contain a subroutine "parse $x^{\text {hnd }}$ (if necessary)". We show that it retains the invariants and ensures $D_{u}\left[x^{\text {hnd }}\right]$.type \neq null.

The subroutines assign $D_{u}\left[x^{\text {hnd }}\right]$.type by parsing $D_{u}\left[x^{\text {hnd }}\right]$.word $=D^{*}\left[h n d_{u}=x^{\mathrm{hnd}}\right]$.word if it was still null. By "correct arguments" this is $D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]$.type unless we would use it for secret keys, which is excluded by "no unparsed secret keys". Here $\mathcal{C}_{\mathcal{H}}$ sets $D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]$.parsed ${ }_{u}:=$ true if it was still false. Thus in the derived D_{u}^{*} we change from $\left(x^{\text {hnd }}, m\right.$, null, ()) to ($x^{\text {hnd }}, m, D^{*}\left[h n d_{u}=\right.$ $\left.x^{\text {hnd }}\right]$.type, ()). (Again, exceptions for secret keys are excluded by "no unparsed secret keys".) This retains "correct derivation" of D_{u}, the only invariant that could be affected, and ensures $D_{u}\left[x^{\text {hnd }}\right]$.type \neq null.

7.5.3 Type and Length Queries

We only have to show equal outputs because no state changes are made (beyond possibly that in parsing).

- Type query: $t \leftarrow$ get_type $\left(x^{\text {hnd }}\right)$.

In $\mathrm{TH}_{\mathcal{H}}$ and thus in $\mathrm{C}_{\mathcal{H}}$, we get $t=D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]$.type. In M_{u}^{\prime}, parsing ensures $D_{u}\left[x^{\text {hnd }}\right]$.type \neq null, and thus by "correct derivation" $t=D_{u}\left[x^{\text {hnd }}\right]$.type $=D^{*}\left[h n d_{u}=\right.$ $\left.x^{\text {hnd }}\right]$.type. This is equal.

- Length query: $l \leftarrow$ get_len $\left(x^{\text {hnd }}\right)$.

In $\mathrm{TH}_{\mathcal{H}}$, we get $l=D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]$.len. In M_{u}^{\prime}, parsing ensures $D_{u}\left[x^{\text {hnd }}\right]$.type \neq null. Thus, if $D_{u}\left[x^{\text {hnd }}\right]$.type $\notin\{$ sks, ske $\}$, we get $l=\mid D_{u}\left[x^{\text {hnd }}\right]$.word $|=| D^{*}\left[h n d_{u}=x^{\mathrm{hnd}}\right]$.word \mid. By the invariant "correct length", this is equal. For $D_{u}\left[x^{\text {hnd }}\right]$.type $\in\{$ sks, ske $\}$, both output $l=0$.

7.5.4 Storing and Retrieving Data

- Storing: $m^{\text {hnd }} \leftarrow \operatorname{store}(m)$, for $m \in\{0,1\}^{*}$.

Let $m^{*}:=($ data,$m)$. Correct arguments for the type data means that for every $i, D^{*}[i]$.type $=$ data and $D^{*}[i]$.arg $=(m)$ if and only if $D^{*}[i]$.word $=m^{*}$. $\mathrm{TH}_{\mathcal{H}}$ first searches for the former kind of entry, M_{u}^{\prime} for the latter in the derived D_{u}. If it exists and has a u-handle $m^{\text {hnd }}$, both return $m^{\text {hnd }}$. (By word and handle uniqueness, there is at most one.)
If it exists but has no u-handle, $\mathrm{TH}_{\mathcal{H}}$ and thus $\mathrm{C}_{\mathcal{H}}$ assigns a new handle $m^{\text {hnd }}:=$ curhnd++. M_{u}^{\prime} verifies (in the subroutine $\left.: \leftarrow\right)$ that $\left|m^{*}\right| \leq$ max_len (k); this is true by "correct length" for $D^{*}[i]$. Thus it makes a new entry ($m^{\text {hnd }}, m^{*}$, data, ()) with the same handle (by "correct derivation" of curhnd $\left._{u}\right)$. Thus $\mathrm{C}_{\mathcal{H}}$ sets $D^{*}[i] \cdot$ parsed $_{u}:=$ true. The outputs are equal and "correct derivation" is retained. By Lemma 7.3.3, this is all we have to show.
If there is no such entry, $\mathrm{TH}_{\mathcal{H}}$, and thus $\mathrm{C}_{\mathcal{H}}$, verifies data_len* $(|m|) \leq \max \operatorname{len}(k)$. M_{u}^{\prime} acts as in the previous case. The length tests are equivalent because data_len* $(|m|)=$ list_len $\left(\mid\right.$ data $|,|m|)=\left|m^{*}\right|$. Then both make an entry with $m^{\text {hnd }}:=$ curhnd ++ and resulting in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=$ data, $\arg :=(m), h n d_{u}:=m^{\text {hnd }}$, len $:=$ data_len* $(|m|)$, parsed $_{u}:=$ true, word $\left.:=m^{*}\right)$. The outputs are equal, and "correct derivation" is clearly retained. The invariants are shown as follows: "Fully defined" and "no unparsed secret keys" are obvious. "Word uniqueness" holds by the preconditions of this case. "Correct length" holds because we already showed $\left|m^{*}\right|=$ data_len* $(|m|)$. "Correct arguments" was already written out above. "Strongly correct arguments" holds by construction.

- Retrieval: $m \leftarrow \operatorname{retrieve}\left(m^{\mathrm{hnd}}\right)$.

Let $m^{\text {ind }}:=D^{*}\left[h n d_{u}=m^{\text {hnd }}\right]$.ind and $m:=D^{*}\left[m^{\text {ind }}\right]$.word. TH $\mathcal{H}_{\mathcal{H}}$ returns \downarrow if $D^{*}\left[m^{\text {ind }}\right]$.type \neq data, and M_{u}^{\prime} if $D_{u}\left[m^{\text {hnd }}\right] \neq$ data after parsing. This is equivalent. Otherwise $\mathrm{TH}_{\mathcal{H}}$ returns $D^{*}\left[m^{\text {ind }}\right] . \arg [1]$, and M_{u}^{\prime} returns parse_data $\left(D_{u}\left[m^{\text {hnd }}\right]\right.$.word $)[1]$. This is equal by "correct derivation" and "correct arguments".

7.5.5 Lists

- Generate a list: $l^{\mathrm{hnd}} \leftarrow \operatorname{list}\left(x_{1}^{\mathrm{hnd}}, \ldots, x_{j}^{\mathrm{hnd}}\right)$, for $j \geq 0$.

Let $x_{i}:=D^{*}\left[h n d_{u}=x_{i}^{\text {hnd }}\right]$.ind for $i=1, \ldots, j$. $\mathrm{TH}_{\mathcal{H}}$ returns \downarrow if any $D^{*}\left[x_{i}\right]$.type $\in\{$ sks, ske $\}$, and M_{u}^{\prime} if $D_{u}\left[x_{i}^{\text {hnd }}\right]$.type $\in\{$ sks, ske $\}$. This is equivalent even though $D_{u}\left[x_{i}^{\text {hnd }}\right]$.type may still be null, i.e., $D^{*}\left[x_{i}\right] \cdot$ parsed $_{u}=$ false, by "no unparsed secret keys". Otherwise let $l:=\left(\right.$ list,$D^{*}\left[x_{1}\right]$.word $, \ldots, D^{*}\left[x_{j}\right]$.word $)$.
The rest is similar to store; thus we are briefer: By "correct arguments", for every i we have $D^{*}[i]$. type $=$ list and $D^{*}[i] . \arg =\left(x_{1}, \ldots, x_{j}\right)$ iff $D^{*}[i]$.word $=l$. If such an entry exists, both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} determine and return a handle for u to it; M_{u}^{\prime} 's verification that $|l| \leq$ max_len (k) (in $: \leftarrow)$ is true by "correct length" for $D^{*}[i]$. Thus they make the same output and retain "correct derivation".

If no such entry exists, $\mathrm{TH}_{\mathcal{H}}$ sets length $:=$ list_len* $\left(D^{*}\left[x_{1}\right]\right.$.len $, \ldots, D^{*}\left[x_{j}\right]$.len $)$ and verifies length $\leq \max \operatorname{len}(k) . \quad \mathrm{M}_{u}^{\prime}$ acts as in the previous case. The length tests are equivalent because length $=$ list_len $\left(|\mid\right.$ list $|, D^{*}\left[x_{1}\right]$.len $, \ldots, D^{*}\left[x_{j}\right]$.len $)=|l|$ by "correct length" for the entries $D^{*}\left[x_{i}\right]$, which are not secret keys. Then both make an entry with $l^{\text {hnd }}:=$ curhnd++ and resulting in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ list, $\arg :=\left(x_{1}, \ldots, x_{j}\right), h n d_{u}:=l^{\text {hnd }}$, len $:=$ length, parsed ${ }_{u}:=$ true, word $:=l$).
The outputs are equal and "correct derivation" is clearly retained. The invariants "fully defined" and "no unparsed secret keys" are obvious, "word uniqueness" holds by the preconditions of this case, "correct length" was already shown, and "correct arguments" and "strongly correct arguments" are obvious.

- i-th projection: $x^{\text {hnd }} \leftarrow \operatorname{list_ proj}\left(l^{\mathrm{hnd}}, i\right)$, for $i \in \mathbb{N}$.

Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[h n d_{u}=l^{\mathrm{hnd}}\right]$.type \neq list. This is equivalent because M_{u}^{\prime} first parses. Otherwise $\mathrm{TH}_{\mathcal{H}}$ uses $x_{i}^{\text {ind }}:=D^{*}\left[h n d_{u}=l^{\text {hnd }}\right]$. $\arg [i]$, while M_{u}^{\prime} parses $D^{*}\left[h n d_{u}=\right.$ $\left.l^{\mathrm{hnd}}\right]$.word, yielding \arg, and sets $x_{i}:=\arg [i]$. By "correct arguments", $D^{*}\left[x_{i}^{\text {ind }}\right]$.word $=x_{i}$.
If $x^{\text {hnd }}:=D^{*}\left[x_{i}^{\text {ind }}\right] . h n d_{u}$ already exists, $\mathrm{TH}_{\mathcal{H}}$ returns it, and as $D^{*}\left[x_{i}^{\text {ind }}\right]$.type $\notin\{$ sks, ske $\}$ by "key secrecy", M_{u}^{\prime} also finds this entry in the subroutine $: \leftarrow$ and returns $x^{\text {hnd }}$. Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds it as $x^{\text {hnd }}:=$ curhnd $_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word x_{i}, and thus makes a new entry (x^{hnd}, x_{i}, null, ()) with the same handle. (Its test $\left|x_{i}\right| \leq \max l e n(k)$ is true by "correct length" for $D^{*}\left[x_{i}^{\text {ind }}\right]$.) Equal outputs and "correct derivation" is clear. By Lemma 7.3.3, this is all we have to show.

7.5.6 Nonces

- Generation: $x^{\mathrm{hnd}} \leftarrow$ gen_nonce().

Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} set $x^{\text {hnd }}:=$ curhnd $_{u}++$ and make a new entry. In $\mathrm{C}_{\mathcal{H}}$ this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ nonce, $\arg :=(), h n d_{u}:=n^{\text {hnd }}$, len $:=$ nonce_len $^{*}(k)$, parsed $_{u}:=$ true, word $:=\left(\right.$ nonce, $\left.\left.n^{\prime}\right)\right)$ with $n^{\prime} \stackrel{\mathcal{R}}{\leftarrow}\{0,1\}^{\text {nonce_len }(k)}$.

Equal outputs and "correct derivation" are clear, and so are "fully defined" and "no unparsed secret keys". If "word uniqueness" is not fulfilled, i.e., n^{\prime} equals an old nonce, we put the run in an error set Nonce_Coll. "Correct length" is fulfilled by obvious computation, and "correct arguments" and "strongly correct arguments" obviously.

7.5.7 Signatures

- Key generation: $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_sig_keypair () .

Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} set $s k^{\text {hnd }}:=\operatorname{curhnd}_{u}++; p k^{\text {hnd }}:=\operatorname{curhnd}_{u^{++}}$and make two new entries. In $\mathcal{C}_{\mathcal{H}}$ this gives $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=$ sks, $\arg :=(0), h n d_{u}:=s k^{\text {hnd }}$, len $:=0$, parsed $_{u}:=$ true, word $\left.:=s k^{*}\right)$ and $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=\mathrm{pks}$, arg $:=(), h n d_{u}:=p k^{\mathrm{hnd}}$, len $:=$ pks_len* (k), parsed $_{u}:=$ true, word $\left.:=p k^{*}\right)$, where $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair () .
The outputs are equal. "Correct derivation" follows with the special definition for type sks. "Fully defined" is clear, and "no unparsed secret keys" holds because the secret key is parsed. If "word uniqueness" is not fulfilled, we put the run in an error set Key_Coll. In this case, $p k$ matches an already existing value. (Recall that "word uniqueness" is not required for entries of type sks.) "Correct length" is fulfilled by the exception for secret keys, and because pks_len ${ }^{*}(k)=$ list_len $\left(\mid\right.$ pks \mid, pks_len $\left.^{\prime}(k)\right)=\left|p k^{*}\right|$ by definition of make_sig_keypair. Under "correct arguments", nothing is required for type sks, and for pks it is clearly fulfilled. "Strongly correct arguments" is obvious.

- Signature generation: $s^{\text {hnd }} \leftarrow \operatorname{sign}\left(s k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $s k^{\text {ind }}:=D^{*}\left[h n d_{u}=s k^{\text {hnd }}\right]$.ind and $l^{\text {ind }}:=D^{*}\left[h n d_{u}=l^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[s k^{\text {ind }}\right]$.type \neq sks or $D^{*}\left[l^{\text {ind }}\right]$.type \neq list or $D^{*}\left[s k^{\text {ind }}\right]$.arg $[1] \geq \max _s k c(k)$. Their tests are equivalent by "correct derivation" and although M_{u}^{\prime} only ensures that $D_{u}\left[l^{\text {hnd }}\right]$ is parsed by "no unparsed secret keys".
Further, $\mathrm{TH}_{\mathcal{H}}$ returns \downarrow if length $:=\operatorname{sig} _l^{*}{ }^{*}\left(k, D^{*}\left[l^{\text {ind }}\right]\right.$.len $)>\max$ _len (k). Else it sets $s^{\text {hnd }}:=$ curhnd $_{u}++, p k^{\text {ind }}:=s k^{\text {ind }}+1$ and $c:=D^{*}\left[s k^{\text {ind }}\right]$.arg $[1]++$. Then $\mathrm{TH}_{\mathcal{H}}$ makes a new entry $D: \Leftarrow\left(\right.$ ind $:=$ size + + , type $:=\operatorname{sig}$, arg $:=\left(p k^{\text {ind }}, l^{\text {ind }}, c\right), h n d_{u}:=s^{\text {hnd }}$, len $:=$ length $)$.
M_{u}^{\prime} uses $\left(s k^{*}, l\right):=\omega\left(s k^{\text {ind }}, l^{\text {ind }}\right)$ and sets $c:=D_{u}\left[s k^{\text {hnd }}\right]$.add_arg $[1]++$ and $s^{*} \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$. If $\left|s^{*}\right|>\max \operatorname{len}(k)$, it decrements $D_{u}\left[s k^{\text {hnd }] . a d d _a r g[1] ~ a g a i n ~ a n d ~ r e-~}\right.$ turns \downarrow. This length test equals that in $\mathrm{TH}_{\mathcal{H}}$: By "strongly correct arguments", the key pair including $s k^{*}$ was generated with make_sig_keypair (because by "key secrecy" the secret key has at most one handle, and this is $D^{*}\left[s k^{\text {ind }}\right] . h n d_{u}$ by the input condition). With the notation from inside make_sig, this means that $s k$ was correctly generated, and thus by Section 5.1.1, we have $|\operatorname{sig}|=\operatorname{sig} \operatorname{len}\left(k, \max _\right.$skc $\left.(k),|(r, l)|\right)=\operatorname{sig} _l e n^{\prime}(k,|l|)$. This yields $\left|s^{*}\right|=\operatorname{sig} _l e n^{*}(k,|l|)$, and by "correct length" for the entry $D^{*}\left[l^{\text {ind }}\right]$ (which is not a secret key) this is what $\mathrm{TH}_{\mathcal{H}}$ verified.

Hence either both do not change their state and return \downarrow, or both make the described updates and M_{u}^{\prime} sets $s^{\text {hnd }}:=$ curhnd $_{u}++$ and makes an entry $D_{u}: \Leftarrow\left(s^{\text {hnd }}, s^{*}\right.$, sig, ()$)$.
The outputs are equal, and the update to $D^{*}\left[s k^{\text {ind }}\right]$ retains "correct derivation" because the counters are updated consistently, and no invariants is affected.
Now we consider the new signature entry: "Correct derivation" is clear if we augment $\mathrm{TH}_{\mathcal{H}}$'s entry with the word s^{*} and parsed $_{u}=$ true. "Fully defined" and "no unparsed secret keys" are clear. If "word uniqueness" is not fulfilled, then r within s^{*} equals an old value in the
same place in a word; hence we put the run in an error set Nonce_Coll. "Correct length" is fulfilled as shown above.
"Correct arguments" follows by comparing the output format of make_sig with the predicate in parse_sig. Here we exploit that correctly generated signatures for correct key pairs are always valid (Section 5.1.1), that l is a tagged list by "correct arguments" for $D^{*}\left[l^{\text {ind }}\right]$, and that $D^{*}\left[p k^{\text {ind }}\right]=p k^{*}$ as returned by parsing by "strongly correct arguments" for the key pair. "Strongly correct arguments" holds by construction and because $c \leq \max$ _skc (k).

- Signature verification: $v \leftarrow \operatorname{verify}\left(s^{\text {hnd }}, p k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $s^{\text {ind }}:=D^{*}\left[h n d_{u}=s^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[s^{\text {ind }}\right]$.type \neq sig. (Indeed M_{u}^{\prime} has parsed the entry.) Otherwise, let ($\left.p k^{\text {ind }}, l^{\text {ind }}, c\right):=D^{*}\left[s^{\text {ind }}\right] . \arg , s^{*}:=D^{*}\left[s^{\text {ind }}\right]$. word, and $\left(p k^{*}, l\right) \leftarrow$ parse_sig $\left(s^{*}\right)$. By "correct arguments" for the entry $D^{*}\left[s^{\text {ind }}\right]$, we have $\left(p k^{*}, l\right)=$ $\omega^{*}\left(p k^{\text {ind }}, l^{\text {ind }}\right)$.
Then $\mathrm{TH}_{\mathcal{H}}$ outputs true if $p k^{\text {hnd }}=D^{*}\left[p k^{\text {ind }}\right] . h n d_{u}$ and $l^{\text {hnd }}=D^{*}\left[l^{\text {ind }}\right] . h n d_{u}$, and M_{u}^{\prime} if $D^{*}\left[h n d_{u}=p k^{\text {hnd }}\right]$.word $=p k^{*}$ and $D^{*}\left[h n d_{u}=l^{\text {hnd }}\right]$.word $=l$. By the previous paragraph, the former clearly implies the latter. By "word uniqueness", the latter also implies the former. Otherwise both output false.

- Public-key retrieval: $p k^{\text {hnd }} \leftarrow$ pk_of_sig $\left(s^{\text {hnd }}\right)$.

We start exactly as in signature verification: Let $s^{\text {ind }}:=D^{*}\left[h n d_{u}=s^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[s^{\text {ind }}\right]$.type \neq sig. (Indeed M_{u}^{\prime} has parsed the entry.) Otherwise, let $\left(p k^{\text {ind }}, l^{\text {ind }}, c\right):=D^{*}\left[s^{\text {ind }}\right]$. arg $, s^{*}:=D^{*}\left[s^{\text {ind }}\right]$.word, and $\left(p k^{*}, l\right) \leftarrow$ parse_sig $\left(s^{*}\right)$. By "correct arguments" for the entry $D^{*}\left[s^{\text {ind }}\right]$, we have $\left(p k^{*}, l\right)=\omega^{*}\left(p k^{\text {ind }}, l^{\text {ind }}\right)$.
The rest is as in list projection: If $D^{*}\left[p k^{\text {ind }}\right] . h n d_{u}$ already exists, both return it. Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds it as $p k^{\text {hnd }}:=$ curhnd $_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word $p k^{*}$, and thus makes a new entry ($p k^{\text {hnd }}, p k^{*}$, null, ()) with the same handle. (Its test $\left|p k^{*}\right| \leq \max _$len (k) is true by "correct length" for $D^{*}\left[p k^{\text {ind }}\right]$.) Equal outputs and "correct derivation" are clear. By Lemma 7.3.3, this is all we have to show.

- Message retrieval: $l^{\text {hnd }} \leftarrow$ msg_of_sig $\left(s^{\text {hnd }}\right)$.

This is exactly like public-key retrieval, only with the second argument, $l^{\text {ind }}$, of $D^{*}[s] . a r g$.

7.5.8 Public-key Encryption

For the first two of the following commands, Lemma 7.4 requires us to also consider the encryption machine. Recall that the counters curkey and K.ec of entries in keys never reach their bounds. (This follows from Lemma 7.2.2 inductively with the fact that the derived real system that we actually consider equals a normal real one.)

- Key generation: $\left(s k^{\text {hnd }}, p k^{\text {hnd }}\right) \leftarrow$ gen_enc_keypair () .

Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} set $s k^{\text {hnd }}:=$ curhnd $_{u}++, p k^{\text {hnd }}:=$ curhnd $_{u}++$.
Then M_{u}^{\prime} calls the encryption machine with $p k \leftarrow$ (generate) at port inenc,u ?. As curkey has not reached its bound, Enc $\operatorname{sim}_{\text {si }}$ H generates a key pair as $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$ and makes an entry ($u, s k, p k, 0$) in keys. This implies $|p k|=$ pke_len (k) and thus M_{u}^{\prime} accepts $p k$.

Then $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} each make two new entries. In $\mathrm{C}_{\mathcal{H}}$, this gives $D^{*}: \Leftarrow($ ind $:=$ size++, type $:=$ ske, $\arg :=(), h n d_{u}:=s k^{\text {hnd }}$, len $:=0$, parsed $_{u}:=$ true, word $:=($ ske, sk), ec $:=0$) and $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ pke, arg $:=(), h n d_{u}:=p k^{\text {hnd }}$, len $:=\operatorname{pke}^{\prime}$ len $^{*}(k)$, parsed $_{u}:=$ true, word := (pke, $p k)$).
Equal outputs and "correct derivation" of D_{u} and curhnd $_{u}$ are clear. In the derived keys*, the new secret-key entry in D^{*} leads to an entry ($u, s k, p k, 0$). This equals the new entry in keys. The counters curkey and curkey* clearly remain equal, and nothing changes in ciphers and ciphers*.
"Fully defined" is clear, and "no unparsed secret keys" holds because the secret key is parsed. "Word uniqueness" is only required for the public key. If it is not fulfilled, and thus $p k$ equals an old key, we put the run in an error set Key_Coll. "Correct length" is only needed for the public key and follows from the definition of pke_len*. "Correct arguments" is only needed for the public key and clear there. "Strongly correct arguments" holds by simple comparison with the algorithm make_enc_keypair.

- Encryption: $c^{\text {hnd }} \leftarrow \operatorname{encrypt}\left(p k^{\text {hnd }}, l^{\text {hnd }}\right)$.

Let $p k^{\text {ind }}:=D^{*}\left[h n d_{u}=p k^{\text {hnd }}\right]$.ind and $l^{\text {ind }}:=D^{*}\left[h n d_{u}=l^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[p k^{\text {ind }}\right]$.type \neq pke or $D^{*}\left[l^{\text {ind }}\right]$.type \neq list. (Indeed, M_{u}^{\prime} has parsed both entries.) Let $\left(p k^{*}, l\right):=\omega^{*}\left(\left(p k^{\text {ind }}, l^{\text {ind }}\right)\right)$ and $p k:=p k^{*}[2]$. We have $|p k|=$ pke_len (k) even if it is an adversary key because "correct arguments" for $D^{*}\left[p k^{\text {ind }}\right]$ implies that parse_pke $\left(p k^{*}\right)$ does not return \downarrow.
Further, $\mathrm{TH}_{\mathcal{H}}$ returns \downarrow if length $:=$ enc_len* $\left(k, D^{*}\left[l^{\text {ind }}\right]\right.$.len $)>\max \operatorname{len}(k)$, and so does M_{u}^{\prime} if enc_len ${ }^{*}(k,|l|)>$ max_len (k) (by the rewritten algorithm make_enc). This is equivalent by "correct length" for $D^{*}\left[l^{\text {ind }}\right]$.
Now M_{u}^{\prime} sets $r \underset{\leftarrow}{\leftarrow}\{0,1\}^{\text {nonce_len }(k)}$ and $l^{*}:=(r, l)$, and calls the encryption machine with $c \leftarrow\left(\right.$ encrypt, $\left.p k, l^{*}\right)$ at port $\mathrm{in}_{\mathrm{enc}, u}$?. We distinguish two cases, where $s k^{\text {ind }}:=p k^{\text {ind }}-1$ and $v:=$ owner ($\left.D^{*}\left[s k^{\text {ind }}\right]\right)$:

- If $v \in \mathcal{H}$, then by "correct derivation" of keys, there is an entry K in keys with K.pkenc $=$ $p k$. Enc sim, \mathcal{H} sets K.ec++, and $\mathcal{C}_{\mathcal{H}}$ reflects that in $D^{*}\left[s k^{\text {ind }}\right] . e c++$. Then Enc ${ }_{\text {sim }, \mathcal{H}}$ sets $c \leftarrow \mathrm{E}_{p k}\left(1^{\left|l^{* *}\right|}\right)$ and ciphers $: \Leftarrow\left(l^{*}, p k, c\right)$ and returns c. Clearly $|c|=$ enc_len $^{\prime}(k,|l|)$.
- If $v=\mathrm{a}$, then by "correct derivation" of keys and "word uniqueness", there is no such entry K in keys. Then Enc sim $^{\boldsymbol{H}}$ immediately returns \downarrow, and M_{u}^{\prime} itself encrypts $c \leftarrow$ $\mathrm{E}_{p k}\left(l^{*}\right)$. Again we have $|c|=\operatorname{enc}_{-} \operatorname{len}^{\prime}(k,|l|)$. (Recall that $p k$ is of correct length even for adversary keys.)

In both cases, M_{u}^{\prime} sets $c^{*}:=($ enc, $p k, c, r)$, and we get $\left|c^{*}\right|=\operatorname{enc}_{\text {_len }}{ }^{*}(k,|l|)$. Thus c^{*} passes the length test in the outer algorithm encrypt.
Now both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} set $c^{\text {hnd }}:=$ curhnd $_{u}++$ and make a new entry. In $\mathrm{C}_{\mathcal{H}}$, this gives $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ${ }^{++}$, type $:=$enc, arg $:=\left(p k^{\text {ind }}, l^{\text {ind }}\right), h n d_{u}:=c^{\text {hnd }}$, len $:={\text { length, } \text { parsed }_{u}:=}^{=}$ true, word $\left.:=c^{*}\right)$, and additionally $D^{*}[$ size $]$.owner $:=$ honest if $v \in \mathcal{H}$.
The outputs are equal. "Correct derivation" of D_{u} and $c^{c u r h n d}{ }_{u}$ is clear for the new entry, and the counter update in $D^{*}\left[s k^{\text {ind }}\right]$ does not influence this derivation. If $v=\mathrm{a}$, then Enc $\mathrm{c}_{\operatorname{sim}, \mathcal{H}}$ does not change its state and the new entry in D^{*} does not influence Encsim, \mathcal{H} either. If $v \in \mathcal{H}$, the update K.ec++ occurs in both keys and keys*. Further, the new entry in D^{*} leads to an entry $\left(\left(c^{*}[4], l\right), p k^{*}[2], c^{*}[3]\right)$ in ciphers *, which equals the new entry in ciphers.

Among the invariants, "fully defined" and "no unparsed secret keys" are clear. If "word uniqueness" is not fulfilled, then r equals a previous value in an encryption entry. Hence we put the run in an error set Nonce_Coll. "Correct length" was already shown. For "correct arguments", only the public-key equality and the conditions involving o are required in both our cases, which are obvious. "Strongly correct arguments" holds by construction, exactly according to our two cases.

- Decryption: $l^{\text {hnd }} \leftarrow \operatorname{decrypt}\left(s k^{\text {hnd }}, c^{\text {hnd }}\right)$.

Let $s k^{\text {ind }}:=D^{*}\left[h n d_{u}=s k^{\text {hnd }}\right]$.ind and $c^{\text {ind }}:=D^{*}\left[h n d_{u}=c^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[s k^{\text {ind }}\right]$.type \neq ske or $D^{*}\left[c^{\text {ind }}\right]$.type \neq enc. Their tests are equivalent by "correct derivation" and although M_{u}^{\prime} only ensures that $D_{u}\left[c^{\text {hnd }}\right]$ is parsed by "no unparsed secret keys". Otherwise, let $p k^{\text {ind }}:=D^{*}\left[c^{\text {ind }}\right] . \arg [1], c^{*}:=D^{*}\left[c^{\text {ind }}\right]$.word, and $\left(p k^{*}\right) \leftarrow$ parse_enc $\left(c^{*}\right)$. By "correct arguments" for the entry $D^{*}\left[c^{\text {ind }}\right]$, we have $p k^{*}=D^{*}\left[p k^{\text {ind }}\right]$.word.
Next, $\mathrm{TH}_{\mathcal{H}}$ returns \downarrow if $p k^{\text {ind }} \neq s k^{\text {ind }}+1$, while M_{u}^{\prime} sets $p k^{\text {hnd }}:=s k^{\text {hnd }}+1$ and returns \downarrow if $D_{u}\left[p k^{\text {hnd }}\right]$.word $\neq p k^{*}$. This is equivalent to $\mathrm{TH}_{\mathcal{H}}$'s test: We have $u=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$ by key secrecy and because there is the handle $s k^{\text {hnd }}$ for u. Hence if $p k^{\text {ind }}=s k^{\text {ind }}+1$, then by "correct key pairs" we have $D^{*}\left[p k^{\text {ind }}\right] . h n d_{u}=p k^{\text {hnd }}$ and the word is indeed $p k^{*}$. Else by "word uniqueness" it is not.
Now both machines are willing to decrypt. $\mathrm{TH}_{\mathcal{H}}$ uses $l^{\text {ind }}:=D^{*}\left[c^{\text {ind }}\right]$. $\arg [2]$. We have $l^{\text {ind }}=\downarrow$ or $D^{*}\left[l^{\text {ind }}\right]$. type $=$ list, as $D^{*}\left[c^{\text {ind }}\right]$ must have been constructed with the command encrypt or adv_invalid_ciph. Hence $l:=\omega\left(l^{\text {ind }}\right)$ is either \downarrow or, by "correct arguments", a tagged list. We show that M_{u}^{\prime} 's internal result equals l.
M_{u}^{\prime} sets $p k:=p k^{*}[2]$ and $(c, r):=c^{*}[3,4]$ and calls the encryption machine with $l^{*} \leftarrow$ (decrypt, $p k, c$) at port $\mathrm{in}_{\text {enc }, u!\text { !. By "correct derivation" of keys, there is an entry } K=}$ $(u, s k, p k, e c) \in k e y s$, where $s k=s k^{*}[2]$ for $s k^{*}:=D^{*}\left[s k^{\text {ind }}\right]$.word. Enc $\mathrm{s}_{\mathrm{sim}, \mathcal{H}}$ finds exactly this entry because pkenc is a key attribute. Now it decrypts to some l^{*}. We distinguish two cases according to $o:=D^{*}\left[c^{\text {ind }}\right]$.owner, where $o \neq \downarrow$ because $u=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$.

- If $o=$ honest, then by "correct arguments", $l^{\text {ind }} \neq \downarrow$. Thus by "correct derivation", ciphers contains the entry $e:=((r, l), p k, c)$. If there is another entry e^{\prime} with the same $p k$ and c and another attribute $e^{\prime} . m s g$, we put the run in an error set Ciph_Coll. Thus we now assume that $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ finds entry e. Hence it returns (r, l), which passes M_{u}^{\prime} 's tests in decrypt. Hence M_{u}^{\prime} obtains l.
- If $o=\mathrm{adv}$, no entry in ciphers is derived from $D^{*}\left[c^{\mathrm{ind}}\right]$. Typically $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$ will therefore return $l^{*}:=\mathrm{D}_{s k}(c)$. Together with the rest of decrypt this means that M_{u}^{\prime} derives its result as $l^{\prime}:=$ parse_decrypt $\left(s k^{*}, c^{*}\right)$. (The additional length test $\left|l^{*}\right| \leq|c|$ is fulfilled by Section 5.1.2.) "Correct arguments" for this case implies $l^{\prime}=l$.
- If $o=\operatorname{adv}$, there might nevertheless be an entry $\left(\left(r_{1}, l_{1}\right), p k, c\right) \in$ ciphers, derived from another entry in D^{*} with $D^{*}\left[c_{1}^{\text {hnd }}\right]$.owner $=$ honest and (using "word uniqueness"), $D^{*}\left[c_{1}^{\text {hnd }}\right] \cdot \arg [1]=p k^{\text {ind }}, \omega\left(D^{*}\left[c_{1}^{\text {hnd }}\right] \cdot \arg [2]\right)=l_{1}$, and $D^{*}\left[c_{1}^{\text {hnd }}\right] \cdot$ word $=\left(e n c, p k, c, r_{1}\right)$. "Word uniqueness" implies $c_{1}^{*} \neq c^{*}$ and thus $r_{1} \neq r$. Then Enc $\operatorname{cim}_{\text {sim }}$ returns $\left(r_{1}, l_{1}\right)$ and in decrypt, the comparison with r from c^{*} fails. (This is the non-malleability of the encryption system with additional randomization.) Hence M_{u}^{\prime} sets $l:=\downarrow$.
We have to show that also $l^{\text {ind }}=\downarrow$. "Strongly correct arguments" applies to $D^{*}\left[c_{1}^{\text {hnd }}\right]$. Thus c was chosen as $\mathrm{E}_{p k}\left(1^{\left|\left(r_{1}, l_{1}\right)\right|}\right)$. This implies $\mathrm{D}_{s k}(c)=1^{\left|\left(r_{1}, l_{1}\right)\right|}$. Hence for the entry
$D^{*}\left[c^{\text {ind }}\right]$, where "correct arguments" applies, we have parse_decrypt $\left(s k^{*}, c^{*}\right)=\downarrow$ because the intermediate result $l^{*}=1^{\left|\left(r_{1}, l_{1}\right)\right|}$ is not a list. This implies $l^{\text {ind }}=\downarrow$ as desired.

The next part is as in list projection: If $D^{*}\left[l^{\text {ind }}\right] . h n d_{u}$ already exists, both return it. Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds it as $l^{\text {hnd }}:=$ curhnd $_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word l, and thus makes a new entry ($l^{\text {hnd }}, l$, list, ()) with the same handle. (Its test $|l| \leq \max \operatorname{len}(k)$ is true by "correct length" for $D^{*}\left[l^{\text {ind }}\right]$.) Equal outputs are clear, and for "correct derivation" $D^{*}\left[l^{\text {ind }}\right]$.type $=$ list was already shown. By Lemma 7.3.3, this is all we have to show.

- Public-key retrieval: $p k^{\text {hnd }} \leftarrow$ pk_of_enc $\left(c^{\text {hnd }}\right)$.

This works almost exactly as for signatures: Let $c^{\text {ind }}:=D^{*}\left[h n d_{u}=c^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} return \downarrow if $D^{*}\left[c^{\text {ind }}\right]$.type \neq enc. (Indeed M_{u}^{\prime} has parsed the entry.) Otherwise, let $\left(p k^{\text {ind }}, l^{\text {ind }}\right):=D^{*}\left[c^{\text {ind }}\right] . \arg , c^{*}:=D^{*}\left[c^{\text {ind }}\right]$.word, and $\left(p k^{*}\right) \leftarrow$ parse_enc $\left(c^{*}\right)$. By "correct arguments" for the entry $D^{*}\left[c^{\text {ind }}\right]$, we have $p k^{*}=\omega\left(p k^{\text {ind }}\right)$.
If $D^{*}\left[p k^{\text {ind }}\right] . h n d_{u}$ already exists, both return it. Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds it as $p k^{\mathrm{hnd}}:=$ curhnd $_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word $p k^{*}$, and thus makes a new entry ($p k^{\text {hnd }}, p k^{*}$, null, ()) with the same handle. (Its test $\left|p k^{*}\right| \leq$ max_len (k) is true by "correct length" for $D^{*}\left[p k^{\text {ind }}\right]$.) Equal outputs and "correct derivation" are clear. By Lemma 7.3.3, this is all we have to show.

7.6 Send Command from Honest User

We now consider an input send_ $x\left(v, l_{u}^{\text {hnd }}\right)$ at a port in_{u} ? with $u \in \mathcal{H}$. Intuitively, this part of the proof shows that the adversary does not get any information in the real system that it cannot get in the ideal system, because any real information can be simulated indistinguishably given only the outputs from $\mathrm{TH}_{\mathcal{H}}$.

7.6.1 General Aspects

As with basic commands, the length function for the port in_{u} ?, and thus the actual input, is equal in $\mathrm{TH}_{\mathcal{H}}$, and thus $\mathrm{C}_{\mathcal{H}}$, and M_{u}^{\prime}. Then they all increment step $s_{\mathrm{in}_{u}}$? and make the same domain test. Hence from now on, we assume that the input is well-formed. Let $l^{\text {ind }}:=D^{*}\left[h n d_{u}=l_{u}^{\text {hnd }}\right]$.ind. Both $\mathrm{TH}_{\mathcal{H}}$ and M_{u}^{\prime} continue only if $D^{*}\left[l^{\text {ind }}\right]$.type $=$ list. (The conditions are equivalent by "correct derivation" and because M_{u}^{\prime} has parsed the entry.)

Now M_{u}^{\prime} always outputs $l:=D^{*}\left[l^{\text {ind }}\right]$.word (here we used "correct derivation" again) at port net ${ }_{u, v, x}$! without further action. We distinguish two overlapping cases.

Secure Channel: $(u, v, x) \in$ ch_honest. Then $\mathrm{TH}_{\mathcal{H}}$ and $\mathrm{C}_{\mathcal{H}}$ output $l^{\text {ind }}$ at net_id ${ }_{u, v, x}$! without further action. The only invariant that could be affected is correct derivation of secure-channel buffers. This holds by definition for $\operatorname{THSim}_{\mathcal{H}}$. For $\mathrm{M}_{\mathcal{H}}$, we retain net $_{u, v, x}^{*}=\omega^{*}\left(\right.$ net_i $\left.^{*} d_{u, v, x}\right)$ because we already showed $l=D^{*}\left[l^{\text {ind }}\right]$.word .

Output to Adversary: $(u, v, x) \in c h_{-} t o _a d v$. Here net ${ }_{u, v, x}!$ is connected to A, and thus $C_{\mathcal{H}}$ outputs l there like M_{u}^{\prime} at the end. However, it first continues to update the $\mathrm{TH}_{\mathcal{H}}$-part of its state.

If $l^{\text {hnd }}:=D^{*}\left[l^{\text {ind }}\right] . h n d_{\mathrm{a}}$ already exists, $\mathrm{TH}_{\mathcal{H}}$ outputs $\left(u, v, x, l^{\text {hnd }}\right)$ at out ${ }_{\mathrm{a}}$! and schedules it. By Lemma 6.2.5, handles output by $\mathrm{TH}_{\mathcal{H}}$ are always accepted by $\operatorname{Sim}_{\mathcal{H}}$ and the counters steps out $_{\text {a }}$? of
$\operatorname{Sim}_{\mathcal{H}}$ and steps $_{\mathrm{in}_{\mathrm{a}}}$? of $\mathrm{TH}_{\mathcal{H}}$ never reach their bounds. This also holds for the counters in $\mathrm{C}_{\mathcal{H}}$; this follows (inductively) from the equality of these values with the state of $\mathrm{THSim}_{\mathcal{H}}$.

Thus $\operatorname{Sim}_{\mathcal{H}}$ accepts the resulting input. By "correct derivation", $\operatorname{Sim}_{\mathcal{H}}$ finds $D_{\mathrm{a}}\left[l^{\text {hnd }}\right]$.word $=$ $D^{*}\left[l^{\text {ind }}\right]$.word $=l$ and outputs it at net ${ }_{u, v, x}!$. This ensures equal outputs. Also "correct derivation" of the buffers out ${ }_{\mathrm{a}}$ and $i n_{\mathrm{a}}$ and the corresponding counters is clear. The only other invariant that could be affected is "word secrecy". It follows because the output already had an a-handle, so that the flow is within Pub_Var.

Thus the case $D^{*}\left[l^{\text {ind }}\right] . h n d_{\mathrm{a}}=\downarrow$ remains. Here $\mathrm{TH}_{\mathcal{H}}$ assigns $l^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and outputs $\left(u, v, x, l^{\text {hnd }}\right)$ at out ${ }_{\mathrm{a}}!$. As above, this input is accepted by $\operatorname{Sim}_{\mathcal{H}}$. By "correct derivation", $\operatorname{Sim}_{\mathcal{H}}$ finds $D_{\mathrm{a}}\left[l^{\text {hnd }}\right]=\downarrow$. It sets curhnd $_{\mathrm{a}}++$, thus maintaining "correct derivation" of these variables. Then $\operatorname{Sim}_{\mathcal{H}}$ calls $l \leftarrow \operatorname{id} 2$ real $\left(l^{\text {hnd }}\right)$ and outputs l at net ${ }_{u, v, x}!$. It is therefore sufficient to show that id2real together with the commands it inputs to $\mathrm{TH}_{\mathcal{H}}$ retains all invariants and yields $l=D^{*}\left[l^{\text {ind }}\right]$.word .

7.6.2 General Aspects of id2real

We use an inductive proof that id2real retains all invariants and produces the right output. The following lemma defines the weaker conditions that hold for all subcalls, and proves some invariants once and for all.

Lemma 7.5 It is sufficient to show the following for each recursive call $m \leftarrow \operatorname{id} 2$ real $\left(m^{\text {hnd }}\right)$:

- Initially,
$-m^{\text {hnd }} \leq$ curhnd $_{\mathrm{a}}$,
- the entry $e:=D^{*}\left[h n d_{\mathrm{a}}=m^{\text {hnd }}\right]$ has e.type $=$ list or is a component of another entry, and
- the entry e already existed with a \notin owners (e).
- The following invariants hold before every subcall and at the end:
- Weakly correct derivation of D_{a} : We have curhnd $_{\mathrm{a}}=$ curhnd $_{\mathrm{a}}^{*}$ and D_{a} is a subset of D_{a}^{*}.
- Weak word secrecy. Secret information only must not flow into the smaller set Pub_Var' containing only the words $D_{\mathrm{a}}\left[i^{\text {hnd }}\right]$. word instead of all $D^{*}\left[i^{\text {ind }}\right]$. word with $D^{*}\left[i^{\text {ind }}\right] . h n d_{\mathrm{a}} \neq$ \downarrow, and the corresponding secret keys.
- At the end, the following holds:
- Result: The result is $m=m^{*}:=e$.word.
- Progress: If D_{a} and curhnd a_{a} are the values before the call, and D_{a}^{\prime} and curhnd d_{a}^{\prime} those after the call, then D_{a}^{\prime} is a superset of D_{a} and contains entries $D_{\mathrm{a}}^{\prime}\left[m^{\text {hnd }}\right]$ and $D_{\mathrm{a}}^{\prime}\left[x^{\text {hnd }}\right]$ for all curhnd $_{\mathrm{a}}<x \leq$ curhnd $_{\mathrm{a}}^{\prime}$.

The initial conditions and invariants are fulfilled before the outermost call.
Proof. All normal invariants were true before $\mathrm{C}_{\mathcal{H}}$, like $\mathrm{TH}_{\mathcal{H}}$, assigned $D^{*}\left[l^{\text {ind }}\right] . h n d_{\mathrm{a}}:=l^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ before the outermost call. After this assignment, they still hold except that the entry $D_{\mathrm{a}}^{*}\left[l^{\text {hnd }}\right]$ is missing in D_{a}, and that we do not know about "word secrecy" for the entry with the new adversary handle. Thus the weaker invariants of this lemma hold. The initial conditions also
hold because $D^{*}\left[l^{\text {ind }}\right]$.type $=$ list was explicitly verified, and the entry had $D^{*}\left[l^{\text {ind }}\right] . h n d_{\mathrm{a}}=\downarrow$ before the assignment.

As only $D_{\mathrm{a}}^{*}\left[l^{\text {hnd }}\right]$ is missing before the outermost call, "weakly correct derivation" and "progress" imply that normal "correct derivation" of D_{a} holds after this call. This also implies "word secrecy". Furthermore, the result is then $l=D^{*}\left[h n d_{\mathrm{a}}=l^{\text {hnd }}\right]$.word $=D^{*}\left[l^{\text {ind }}\right]$.word , as required.

We now show why the remaining invariants hold automatically. "Correct derivation" of the state of $\mathrm{TH}_{\mathcal{H}}$ holds by definition, as well as of the buffers out t_{a} and $i n_{\mathrm{a}}$ and the corresponding counters. These buffers are empty after the macro-transition by the subroutine behavior within id2real.

In $M_{\mathcal{H}}$ and its encryption machine Enc $_{\text {sim }, \mathcal{H}}$, nothing changes, and nor does it in the derived version because only the command adv_parse is executed in $\mathrm{TH}_{\mathcal{H}}$ during id2real, and it only assigns new adversary handles (recall Lemma 7.3.3).

As $C_{\mathcal{H}}$ only assigns adversary handles in D^{*}, the invariants except for "word secrecy" are unaffected.

Now we consider one of these recursive calls $m \leftarrow \mathrm{id} 2 \mathrm{real}\left(m^{\text {hnd }}\right)$ and show that it retains the invariants of Lemma 7.5. Let $m^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=m^{\text {hnd }}\right]$.ind and $m^{*}:=D^{*}\left[m^{\text {ind }}\right]$.word and $\left(m_{1}^{\text {ind }}, \ldots, m_{j}^{\text {ind }}\right):=D^{*}\left[m^{\text {ind }}\right]$.arg.

7.6.3 Steps 1 and 2: Parsing and Handle Updates

In Step 1, id2real calls (type,$\left.\left(m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right)\right) \leftarrow \operatorname{adv}$ _parse $\left(m^{\text {hnd }}\right)$ at $\mathrm{in}_{\mathrm{a}}!$. By definition, this gives type $:=D^{*}\left[m^{\text {ind }}\right]$.type, and, except if type $=$ enc, also $\left(m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right):=$ ind 2 hnd $_{a}^{*}\left(\left(m_{1}^{\text {ind }}, \ldots, m_{j}^{\text {ind }}\right)\right)$.

We show that the domain expectations of id2real are fulfilled:

- type \in typeset $\backslash\{$ sks, ske, garbage $\}$: For garbage this follows from "strongly correct arguments", because $D^{*}\left[m^{\text {ind }}\right]$ already existed without adversary handle by the preconditions of Lemma 7.5. For sks, ske it follows from key secrecy, because $D^{*}\left[m^{\text {ind }}\right]$ is of type list or a component of another entry.
- $j \leq \max \operatorname{len}(k)$: The only type of entry in D^{*} with multiple arguments is list, and in list generation $\mathrm{TH}_{\mathcal{H}}$, and thus $\mathrm{C}_{\mathcal{H}}$, verifies this condition.
- $m_{i}^{\text {hnd }} \leq$ max_hnd (k) if $m_{i}^{\text {hnd }} \in \mathcal{H} \mathcal{N D S}$ follows from Lemma 6.2.5. (We already showed that it also holds in $\mathrm{C}_{\mathcal{H}}$.)
- Otherwise $\left|m_{i}^{\text {hnd }}\right| \leq \max$ _len (k) holds because arguments that are not handles only occur for the following types: data, where $\mathrm{TH}_{\mathcal{H}}$ verified it when storing; sks, which was excluded; sig, where it is a counter c that can become at most max_skc (k) by "strongly correct arguments", so that $|c| \leq$ max_len (k) follows from the conditions on length functions; enc if the ciphertext length len is output; then it follows from Lemma 4.1.4.

The only resulting change in D^{*} is that new a-handles may have been assigned to some of the entries $D^{*}\left[m_{i}^{\text {ind }}\right]$. (We do not mention the step-counters because we already know "correct derivation" for them and that they do not reach their bounds.) Clearly these handles are in $\mathcal{H N D S}$ and appear in increasing order in ($\left.m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right)$.

Hence Step 2 of id2real updates curhnd ${ }_{\mathrm{a}}$ consistently. This reestablishes "weak correct derivation of D_{a} ". Further, it clearly retains "weak word secrecy".

7.6.4 Step 3: Recursion

In Step 3, id2real considers the values $m_{i}^{\text {hnd }} \in \mathcal{H} \mathcal{N D S}$. For those with $D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right] \neq \downarrow$, it sets $m_{i}:=D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right]$. word without any state changes, so that the invariants are clearly retained. For the others, it makes recursive calls $m_{i} \leftarrow \mathrm{id} 2 \operatorname{real}\left(m_{i}^{\text {hnd }}\right)$.

We have to show that the initial conditions from Lemma 7.5 hold for these calls.

- $m_{i}^{\text {hnd }} \leq$ curhnd $_{\mathrm{a}}$ is clear by the updates of curhnd $_{\mathrm{a}}$ in Step 2 .
- The entries $D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]$ are components of the entry $D^{*}\left[h n d_{\mathrm{a}}=m^{\text {hnd }}\right]$ by definition of components and adv_parse.
- The entry $D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]$ already existed before the outermost call (because no new entries are made). At that time a \notin owners $\left(D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]\right)$ must have been true because normal "correct derivation of D_{a} " held.

Thus by the induction hypothesis, these calls retain the invariants.
We show that they also establish the second "progress" property for our call id2real ($\left.m^{\text {hnd }}\right)$: The first "progress" property of each subcall, the existence of an entry $D_{\mathrm{a}}\left[m_{i}^{\text {hnd }}\right]$, means that entries in D_{a} now exist for all values assigned to curhnd $_{\mathrm{a}}$ directly in our call id2real ($m^{\text {hnd }}$) (in Step 2). The second "progress" property of the subcalls ensures that entries also exist for all further increments they made to curhnd d_{a}. Hence indeed entries exist for all new values of curhnd $_{\mathrm{a}}$ of our call and its subcalls.

By the "result" properties of the subcalls, we obtain $m_{i}=D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]$.word $=$ $D^{*}\left[m_{i}^{\text {ind }}\right]$.word $=\omega\left(m_{i}^{\text {ind }}\right)$ for all $m_{i}^{\text {hnd }} \in \mathcal{H} \mathcal{N D S}$. As id2real sets $m_{i}:=m_{i}^{\text {hnd }}=m_{i}^{\text {ind }}$ for the other i 's, it obtains

$$
\arg ^{\text {real }}:=\left(m_{1}, \ldots, m_{j}\right)=\omega^{*}\left(\arg ^{\text {ind }}\right),
$$

except in certain cases for type =enc, and where argreal equals that in the formulation of "strongly correct arguments".

7.6.5 Step 4: General Aspects of Type-specific Part

Now id2real proceeds depending on type. Each of these variants ends with an assignment to m, which is then output, and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m, a d d_{_} a r g\right)$ for certain arguments add_arg. No further changes to D_{a} are made and $\mathrm{TH}_{\mathcal{H}}$ is not involved.

Lemma 7.6 For the individual types, we only have to show:

- a correct result $m=m^{*}$, where we can assume "strongly correct arguments" for m^{*}, i.e., the entry $D^{*}\left[m^{\text {ind }}\right]$;
- "correct derivation" of add_arg in the new entry, and only for type $\in\{$ pks, pke $\}$;
- "word secrecy" for m, i.e., no flow of secret information into m, where arguments m_{i} are not secret information.

Proof. "Strongly correct arguments" holds for $D^{*}\left[m^{\text {ind }}\right]$ because it had no adversary handle initially by Lemma 7.5. The rest of "weakly correct derivation" follows from the correctness of m and because add_arg is always () for the other types, as required (recall that the types sks and ske are
not possible). The new entry in $D_{\text {a }}$ gives us the missing first part of "progress". For "weak word secrecy", only m is added to Pub_Var. All values m_{i} already belong to Pub_Var: If $m_{i}^{\text {hnd }} \in \mathcal{H N D S}$ they were entered into D_{a} at the latest in Step 3 , and if $m_{i}^{\text {hnd }} \notin \mathcal{H} \mathcal{N} \mathcal{D S}$ they were output by $\mathrm{TH}_{\mathcal{H}}$.

7.6.6 Data, Lists, and Nonces

If type $\in\{$ data, list, nonce $\}$, then id2real sets $m \leftarrow$ make_type (arg $^{\text {real }}$).
"Strongly correct arguments" for these types means that m^{*} also has the probability distribution $m^{*} \leftarrow$ make_type $\left(\right.$ arg $\left.{ }^{\text {real }}\right)$. Thus derivation of D_{a}^{*} gives the same distribution as we get in D_{a}.
"Word secrecy" for m holds for data and list because their generation depends only on the arguments m_{i} (the list elements or the raw data). For nonces it holds since each nonce generation does not depend on prior information.

7.6.7 Public Signature Keys

If type $=$ pks, then id2real sets $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_sig_keypair ()$, m:=p k^{*}$ and add_arg $:=$ (honest, $s k^{*}$).

Let $s k^{\text {ind }}=m^{\text {ind }}-1$ and $\left(s k^{* \text { real }}, p k^{* \text { real }}\right):=\left(D^{*}\left[s k^{\text {ind }}\right]\right.$.word,$\left.m^{*}\right)$. By "strongly correct arguments" $\left(s k^{* \text { real }}, p k^{* \text { real }}\right)$ was chosen with make_sig_keypair(). "Correct key pairs" implies a $\neq \operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$, because otherwise $D^{*}\left[m^{\text {ind }}\right]$ would also have got an a-handle at once. In the derived D_{a}^{*}, we therefore have an entry ($m^{\text {hnd }}, p k^{* \text { real }}$, (honest, $\left.s k^{* \text { real }}\right)$) with the same distribution as id2real's choice.
"Word secrecy" for $m=p k^{*}$ holds since key generation does not depend on prior information, and both $p k^{*}$ and $s k^{*}$ become elements of Pub_Var.

7.6.8 Signatures

If type $=$ sig, "strongly correct arguments" implies that \arg ind is of the form $\left(p k^{\text {ind }}, l^{\text {ind }}, c\right)$ with $c \in \mathbb{N}$. Let $\left(p k^{*}, l, c\right):=a r g^{\text {real }}=\omega^{*}\left(a r g^{\text {ind }}\right)$. First this implies $c \neq$ false, as claimed in id2real. Let $s k^{\text {ind }}:=p k^{\text {ind }}-1$ and $s k^{*}:=\omega\left(s k^{\text {ind }}\right)$. By "strongly correct arguments", m^{*} is distributed as $m^{*} \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$. Furthermore, it implies $a \neq \operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$. By "correct derivation" of D_{a} for the existing entries, this implies $D_{\mathrm{a}}\left[p k^{\mathrm{hnd}}\right] . a d d_{-}$arg $=\left(\right.$honest, $\left.s k^{*}\right)$, where $p k^{\mathrm{hnd}}=D^{*}\left[p k^{\text {ind }}\right]$. This proves the second format claim in id2real, and id2real sets $m \leftarrow$ make_sig $\left(s k^{*}, l, c\right)$. This is the same distribution.

For proving "word secrecy" for m, we only have to consider the parameter $s k^{*}$, because l and c are parameters m_{i} (and make_sig is functional). By definition of "word secrecy", $s k^{*}$ belongs to Pub_Var, but may contain information from the corresponding public key $p k^{*}$. As this is our parameter m_{1}, it belongs to Pub_Var already. This proves "word secrecy".

7.6.9 Public Encryption Keys

If type $=$ pke, then id2real sets $\left(s k^{*}, p k^{*}\right) \leftarrow$ make_enc_keypair ()$, m:=p k^{*}$, and add_arg $:=$ (honest, $s k^{*}$).

Let $s k^{\text {ind }}=m^{\text {ind }}-1$ and $\left(s k^{* \text { real }}, p k^{* \text { real }}\right):=\left(D^{*}\left[s k^{\text {ind }}\right]\right.$.word,$\left.m^{*}\right)$. By "strongly correct arguments" $\left(s k^{* r e a l}, p k^{* \text { real }}\right)$ was chosen with make_enc_keypair(). "Correct key pairs" implies a $\neq \operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$, because otherwise $D^{*}\left[m^{\text {ind }}\right]$ would also have got an a-handle at once. In
the derived D_{a}^{*}, we therefore have an entry $\left(m^{\text {hnd }}, p k^{* \text { real }}\right.$, (honest, $\left.s k^{* \text { real }}\right)$) with the same distribution as id2real's choice.
"Word secrecy" for $m=p k^{*}$ holds since key generation does not depend on prior information, and both $p k^{*}$ and $s k^{*}$ become elements of Pub_Var.

7.6.10 Ciphertexts

If type $=$ enc, then by "strongly correct arguments", $\arg { }^{\text {ind }}$ is of the form $\left(p k^{\text {ind }}, l^{\text {ind }}\right)$ with $l^{\text {ind }} \neq \downarrow$. This proves the format claim in id2real. Let $\left(p k^{*}, l\right):=\omega^{*}\left(p k^{\text {ind }}, l^{\text {ind }}\right), s k^{\text {ind }}:=p k^{\text {ind }}-1, v:=$ owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)$, and $o:=D^{*}\left[m^{\text {ind }}\right]$.owner.
"Strongly correct arguments" further implies that $o \neq \operatorname{adv}$ and m^{*} is of the form (enc, $p k, c, r$) with $p k=p k^{*}[2]$ and r distributed as $r \stackrel{\mathcal{R}}{\leftarrow}\{0,1\}^{\text {nonce- }-\operatorname{len}(k)}$.

Case 1: Ciphertext for Adversary If $v=\mathrm{a}$, no exception occurred in adv_parse and id2real obtained $\arg { }^{\text {real }}=\left(p k^{*}, l\right)$ as usual. Then it sets $m \leftarrow \operatorname{make_ enc}\left(p k^{*}, l\right)$ (for the unmodified make_enc) and add_arg $:=()$.

For m^{*}, "correct arguments" implies $o=\downarrow$. Thus by "strongly correct arguments", c is distributed as $c \leftarrow \mathrm{E}_{p k}((r, l))$. Hence altogether m^{*} is also distributed as make_enc $\left(p k^{*}, l\right)$.
"Weak word secrecy" holds because only parameters m_{i} are used and make_enc is functional.
Case 2: Ciphertext for Honest User If $v \in \mathcal{H}$, the output of adv_parse was $a r g=\left(p k^{\text {ind }}\right.$, len $)$ with len $:=D^{*}\left[l^{\text {ind }}\right] . l e n$, and id2real derived argreal $^{\text {re }}\left(p k^{*}\right.$, len $)$ as claimed. Then it sets $l e n^{*}:=$ list_len($\operatorname{nonce_ len~}(k)$, len $), c^{\prime} \leftarrow \mathrm{E}_{p k}\left(1^{l e n^{*}}\right), r^{\prime} \leftarrow^{\mathcal{R}}\{0,1\}^{\text {nonce_len }(k)}, m:=\left(\right.$ enc $\left., p k, c^{\prime}, r^{\prime}\right)$, and add_arg $:=()$.

For m^{*}, "correct arguments" and $o \neq \operatorname{adv}$ imply $o=$ honest. Thus by "strongly correct arguments", c is distributed as $c \leftarrow \mathrm{E}_{p k}\left(1^{|(r, l)|}\right)$. Here $|l|=$ len by "correct length" for $D^{*}\left[l^{\text {ind }}\right]$, and thus $|(r, l)|=l e n^{*}$. Thus the distributions of c and c^{\prime} are equal, and hence also those of m and m^{*}.

For "weak word secrecy", the variables used in computing m are len, constants, $p k^{*}$, and r^{\prime}, where len is an output of $\mathrm{TH}_{\mathcal{H}}$ and thus already in Pub_Var, $p k^{*}$ is m_{1} and need not be considered, and r^{\prime} is a newly generated nonce r^{\prime} and not stored in other variables. Hence, "weak word secrecy" holds.

7.7 Network Input from the Adversary

We now consider the effects of an input l from A at a port net ${ }_{w, u, x}$? with $(w, u, x) \in c_{-} f r o m _a d v$. Recall that on such an input $\mathcal{C}_{\mathcal{H}}$ acts entirely like $\operatorname{THSim}_{\mathcal{H}}$.

7.7.1 General Aspects

The length function for the port net ${ }_{w, u, x}$?, and thus the actual input, is equal in $\operatorname{Sim}_{\mathcal{H}}$, and thus $\mathrm{C}_{\mathcal{H}}$, and M_{u}^{\prime}. Then they all increment ${\text { steps } s_{\text {net }}^{w, u, x}}$? and only continue if l is a tagged list. Hence from now on, we assume this.

Now $\operatorname{Sim}_{\mathcal{H}}$ and thus $C_{\mathcal{H}}$ call $l_{\mathrm{a}}^{\text {hnd }} \leftarrow \operatorname{real} 2 \operatorname{id}(l)$ to parse the input. We first reduce our goals to properties of this algorithm and its side effects.

Lemma 7.7 To show that network inputs give equal outputs and retain all invariants, it is sufficient to prove the following properties of each call $l_{\mathrm{a}}^{\text {hnd }} \leftarrow \operatorname{real2id}(l)$ with $0<|l| \leq \max \operatorname{len}(k)$ and $l \in P u b_{-}$Var:

- At the end, $D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$.word $=l$ and $D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$.type $\notin\{$ sks, ske $\}$.
- "Correct derivation" of D_{a} and curhnd $_{\mathrm{a}}$.
- The invariants within D^{*} are retained, where "strongly correct arguments" is already clear and "word secrecy" need only be shown for the outermost call (without subcalls) if more entries than $D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$ are made or updated there.

Proof. Correct derivation of entire state for real2id: First we show that the execution of real2id retains the remaining derivations:

For the state of $\mathrm{TH}_{\mathcal{H}}$ this holds by definition, as well as for the buffers out t_{a} and $i n_{\mathrm{a}}$ and the corresponding counters. These buffers are empty after the macro-transition by the subroutine behavior within real2id.

In $\mathrm{M}_{\mathcal{H}}$, nothing changes. We show that its derived counterparts D_{v}^{*} and curhnd d_{v}^{*} with $v \in \mathcal{H}$ are also unchanged. As real2id only uses local commands, handles for these users are not affected. Thus curhnd d_{v}^{*} is indeed unchanged, and D_{v}^{*} can change at most by changes to a non-handle attribute of an existing entry $x \in D^{*}$ with $x . h n d_{v} \neq \downarrow$. By Lemma 7.3.1, this can only happen if $x . t y p e=$ sks and in a sign command. (The changeable attribute $x . e c$ for x.type $=$ ske is not involved in derivations.) However, by "key secrecy" (Lemma 4.1.6), this would imply $x . h n d_{\mathrm{a}}=\downarrow$, and we easily see below that this is not the case in such a sign command.

Nothing changes in Enc $c_{\text {sim }, \mathcal{H}}$ because $\mathrm{M}_{\mathcal{H}}$ is not involved. The derived Enc ${ }_{\text {sim }, \mathcal{H}}$ could only change by updates to secret-key entries with honest owner, which is clearly impossible by commands entered at in_{a} ?, and new entries of type enc with attribute owner $=$ honest, which is also impossible.

Remaining invariants for real2id: "Strongly correct arguments" holds because all new entries in C^{*} due to inputs at in_{a} ? get an adversary handle and do not get the attribute owner $=$ honest, so that nothing is required. For "word secrecy", we need not consider the entry $D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$ because the content l of $D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$.word is already in Pub_Var by a precondition.
Actions after real2id: Now we show that the remaining actions of the macro-transition retain all invariants and produce the same output in all systems. When real2id returns $l_{\mathrm{a}}^{\text {hnd }}, \operatorname{Sim}_{\mathcal{H}}$ outputs and schedules adv_send_ $x\left(w, u, l_{\mathrm{a}}^{\text {hnd }}\right)$ at $\mathrm{in}_{\mathrm{a}}!$. Let $l^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=l_{\mathrm{a}}^{\text {hnd }}\right]$.ind. Then $\mathrm{TH}_{\mathcal{H}}$ verifies that $D^{*}\left[l^{\text {ind }}\right]$.type $=$ list; this is true by "correct arguments" because $D^{*}\left[l^{\text {ind }}\right]$.word $=l$ is a tagged list.

If $l_{u}^{\text {hnd }}:=D^{*}\left[l^{\text {ind }}\right] . h n d_{u} \neq \downarrow, \mathrm{TH}_{\mathcal{H}}$ outputs $\left(w, x, l_{u}^{\text {hnd }}\right)$ at out ${ }_{u}$!. By "correct derivation" of D_{u}, M_{u}^{\prime} finds the same handle when executing $\left(l_{u}^{\text {hnd }}, D_{u}\right): \leftarrow(l$, list, ()) and makes the same output. Then all invariants are clearly maintained.

Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds this handle as $l_{u}^{\text {hnd }}:=$ curhnd $_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word l, and thus makes a new entry $\left(l_{u}^{\text {hnd }}, l\right.$, list, ()) with the same handle. (The test $|l| \leq \max _l e n(k)$ in $: \leftarrow$ is true by the initial domain test.) "Correct derivation" is clear. By Lemma 7.3.3, this is all we have to show.

7.7.2 General Aspects of real2id

We show inductively that for every $m \in\{0,1\}^{+}$with $|m| \leq \max \operatorname{len}(k)$ and $m \in P u b_{-} V a r$, the execution of $m^{\text {hnd }} \leftarrow \operatorname{real2id}(m)$ together with its side effects fulfills the conditions from Lemma 7.7.

If there is already a handle $m^{\text {hnd }}$ with $D_{\mathrm{a}}\left[m^{\text {hnd }}\right]$.word $=m$, real2id returns that. The output condition of Lemma 7.7 is fulfilled by "correct derivation", and the others because no state changes are made.

Otherwise, the word m is not yet present in D_{a}. Then id2real sets $($ type, $\arg):=\operatorname{parse}(m)$. This yields type \in typeset $\backslash\{\mathrm{sks}$, ske $\}$. As parse is a functional algorithm, no invariants are affected. Then id2real calls an algorithm add_arg \leftarrow real2id_type $(m, a r g)$ with side-effects. Finally it sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and $D_{\mathrm{a}}: \Leftarrow\left(m^{\text {hnd }}, m, a d d_{-}\right.$arg $)$.

We therefore have to show the properties from Lemma 7.7 for these type-specific algorithms together with those last two assignments. In the following, we write arg in the form it must have in an output (type, arg) of parse.

7.7.3 Garbage

The algorithm real2id_garbage $(m,())$ calls $m^{\text {hnd }} \leftarrow$ adv_garbage $(|m|)$ at in_{a} ! and sets add_arg $:=()$. Then $\mathrm{TH}_{\mathcal{H}}$ makes a new entry with $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ garbage, arg $:=(), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=|m|$, word $\left.:=m\right)$. (Attributes parsed ${ }_{u}$ are only defined for $u \in \mathcal{H}$ and are all still \downarrow.)
"Correct derivation" is clearly retained, and the new entry is as required in Lemma 7.7. "Fully defined", "correct length", "no unparsed secret keys", and "correct arguments" are obvious. "Word secrecy" is clear as no other entries are involved.

Now assume that "word uniqueness" were not fulfilled. Then there is a prior entry $x \in D^{*}$ with x.word $=m$ and x.type $\notin\{$ sks, ske $\}$. Further, it has $x . h n d_{\mathrm{a}}=\downarrow$ because the word m does not exist in D_{a}. By "correct arguments", it has $x . t y p e \in\{s k s$, ske, garbage $\}$. This leaves only the case garbage, but that is impossible because such entries are only made due to adversary commands and thus with $x . h n d_{\mathrm{a}} \neq \downarrow$.

7.7.4 Data

When the algorithm real2id_data $\left(m,\left(m^{\prime}\right)\right)$ is called, we know that $m=\left(\right.$ data, $\left.m^{\prime}\right)$.
It simply calls $m^{\text {hnd }} \leftarrow$ store $\left(m^{\prime}\right)$ at in_{a} ! and sets add_arg $:=() . \mathrm{TH}_{\mathcal{H}}$ accepts this input because $\left|m^{\prime}\right|<|m| \leq \max \operatorname{len}(k)$ by the preconditions. Then $\mathrm{TH}_{\mathcal{H}}$ checks whether there is an $m^{\text {ind }}$ with $D^{*}\left[m^{\text {ind }}\right]$.type $=$ data and $D^{*}\left[m^{\text {ind }}\right]$.arg $=\left(m^{\prime}\right)$. By "correct arguments", this is equivalent to $D^{*}\left[m^{\text {ind }}\right]$.word $=m$. If this entry exists, it has no a-handle yet, because that would contradict the absence of m in D_{a} by "correct derivation". Thus $\mathrm{TH}_{\mathcal{H}}$ assigns $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. "Correct derivation" together with the new entry in D_{a} is then clear, and the other conditions of Lemma 7.7 clearly hold.

Otherwise, $\mathrm{TH}_{\mathcal{H}}$ verifies data_len* $\left(\left|m^{\prime}\right|\right) \leq$ max_len (k). This holds because data_len* $\left(\left|m^{\prime}\right|\right)=|m|$. Then $\mathrm{TH}_{\mathcal{H}}$ makes a new entry with $m^{\text {hnd }}:=$ curhnd $d_{\mathrm{a}}++$. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size + , type $:=$ data, $\arg :=\left(m^{\prime}\right), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=$ data_len* $\left(\left|m^{\prime}\right|\right)$, word $\left.:=m\right)$. "Correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. "Fully defined", "correct length", and "no unparsed secret keys" are obvious. "Word uniqueness" holds by the preconditions of this case. "Correct arguments" was already written out above. "Word secrecy" is clear as no other entries are involved.

7.7.5 Lists

When the algorithm real2id_list $\left(m,\left(m_{1}, \ldots, m_{j}\right)\right.$ is called, we know that $m=$ (list, $\left.m_{1}, \ldots, m_{j}\right)$ with $m_{i} \in\{0,1\}^{+}$for all i. The precondition $|m| \leq \max \operatorname{len}(k)$ implies $j \leq \max \operatorname{len}(k)$ and
$\left|m_{i}\right| \leq$ max_len (k) for all i. Further $m_{i} \in P u b_{-}$Var for all i because they have been generated from $m \in P u b_{-}$Var by the functional algorithm parse.

Hence when real2id_list starts with recursive calls $m_{i}^{\text {hnd }} \leftarrow \operatorname{real2id}\left(m_{i}\right)$ for $i:=1, \ldots, j$, these calls fulfill the preconditions of Lemma 7.7. Thus each call retains all the invariants and ensures $D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]$.word $=m_{i}$ for $i=1, \ldots, j$. Let $m_{i}^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=m_{i}^{\text {hnd }}\right]$. ind.

Then real2id_list calls $m^{\text {hnd }} \leftarrow \operatorname{list}\left(m_{1}^{\text {hnd }}, \ldots, m_{j}^{\text {hnd }}\right)$ at in ${ }_{\mathrm{a}}$! and sets add_arg $:=() . \mathrm{TH}_{\mathcal{H}}$'s domain expectations $j \leq \max _\operatorname{len}(k)$ and $m_{i}^{\text {ind }} \neq \downarrow$ are fulfilled, and $D^{*}\left[m_{i}^{\text {ind }}\right]$.type $\notin\{$ sks, ske $\}$ is also a consequence of Lemma 7.7.

Thus $\mathrm{TH}_{\mathcal{H}}$ checks whether there is an $m^{\text {ind }}$ with $D^{*}\left[m^{\text {ind }}\right]$.type $=$ list and $D^{*}\left[m^{\text {ind }}\right]$.arg $=$ $\left(m_{1}^{\text {ind }}, \ldots, m_{j}^{\text {ind }}\right)$. By "correct arguments", this is equivalent to $D^{*}\left[m^{\text {ind }}\right]$.word $=m$. If this entry exists, it has no a-handle yet, because that would contradict the absence of m in $D_{\text {a }}$ by "correct derivation". Thus $\mathrm{TH}_{\mathcal{H}}$ assigns one as $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. "Correct derivation" together with the new entry in D_{a} is then clear, and the other conditions of Lemma 7.7 clearly hold.

Otherwise, $\mathrm{TH}_{\mathcal{H}}$ sets length $:=\operatorname{list_ len}{ }^{*}\left(D^{*}\left[m_{1}^{\text {ind }}\right]\right.$.len $, \ldots, D^{*}\left[m_{j}^{\text {ind }}\right]$.len $)$ and verifies length $>$ max_len (k). This holds because by "correct length" length $=$ list_len* $\left(\left|m_{1}\right|, \ldots,\left|m_{j}\right|\right)=|m|$. Then $\mathrm{TH}_{\mathcal{H}}$ makes a new entry with $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size + , type $:=$ list, arg $:=\left(m_{1}^{\text {ind }}, \ldots, m_{j}^{\text {ind }}\right), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=$ length, word $\left.:=m\right)$.
"Correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. "Fully defined" and "no unparsed secret keys" are obvious. "Word uniqueness" holds by the preconditions of this case. "Correct length" was already shown, and "correct arguments" was written out above. "Word secrecy" is clear as no other entries are involved.

7.7.6 Nonces

The algorithm real2id_nonce $(m,())$ calls $m^{\text {hnd }} \leftarrow$ gen_nonce () at in_{a} ! and sets add_arg $:=()$. Then $\mathrm{TH}_{\mathcal{H}}$ makes a new entry with $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=$ nonce, arg $:=(), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=$ nonce_len $^{*}(k)$, word $\left.:=m\right)$.
"Correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. "Fully defined", "no unparsed secret keys", and "correct arguments" are obvious. For "correct length", the tests in parse imply that m is of this length. "Word secrecy" is clear as no other entries are involved.

For "word uniqueness", assume there is a prior entry $x \in D^{*}$ with x.word $=m$. We then put this run in the error set Nonce_Guess. We have $x . h n d_{\mathrm{a}}=\downarrow$ by "correct derivation" of D_{a}, because m is not present in D_{a}. Thus x.word \notin Pub_Var. By "correct arguments", clearly also x.type $=$ nonce.

7.7.7 Public Signature Keys

The algorithm real2id_pks $(m,())$ calls $\left(s k^{\text {hnd }}, m^{\text {hnd }}\right) \leftarrow$ gen_sig_keypair () at in_{a} ! and sets $D_{\mathrm{a}}: \Leftarrow$ $\left(\right.$ curhnd $\left._{\mathrm{a}}++, \epsilon,()\right)$ for the secret key and add_arg := (adv) for the public key.
$\mathrm{TH}_{\mathcal{H}}$ then also makes two new entries with $s k^{\text {hnd }}:=\operatorname{curhnd}_{\mathrm{a}}++$ and $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. In $\mathrm{C}_{\mathcal{H}}$, the secret-key entry results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=\mathrm{sks}$, arg $:=(0), h n d_{\mathrm{a}}:=s k^{\text {hnd }}$, len $:=$ 0 , word $:=\epsilon$). Here "correct derivation" and "fully defined" are clear, nothing is required under "word uniqueness", "correct length", and "correct arguments", nor under "no unparsed secret keys" because the owner is a. "Word secrecy" for this additional entry holds because $D^{*}\left[h n d_{\mathrm{a}}=\right.$ $\left.s k^{\text {hnd }}\right]$. word $=\epsilon$ is a constant.

The public-key entry results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ pks, arg $:=()$, hnd $_{\mathrm{a}}:=$ $m^{\text {hnd }}$, len $:=\operatorname{pks}^{\prime} \operatorname{len}^{*}(k)$, word $:=m$). It fulfills the output conditions of Lemma 7.7. Let
$p k^{\text {ind }}:=$ size. Then "correct derivation" holds because $s k^{\text {ind }}:=p k^{\text {ind }}-1$ designates the secretkey entry with owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=$ a, so that add_arg $=(\mathrm{adv})$ is the correct choice in D_{a}. "Fully defined", "no unparsed secret keys", and "correct arguments" are obvious. For "correct length", the tests in parse imply that m is of this length. "Word secrecy" need not be shown for this entry.

For "word uniqueness", assume there is a prior entry $x \in D^{*}$ with x.word $=m$. We then put this run in the error set Key_Guess. We have $x . h n d_{\mathrm{a}}=\downarrow$ by "correct derivation" of D_{a}, because m is not present in D_{a}. Thus x.word \notin Pub_Var.

7.7.8 \quad Signatures

When real2id_sig $\left(m,\left(p k^{*}, l\right)\right)$ is called, we know from parsing that $p k^{*}$ is of the form (pks, $p k$) and $\left|p k^{*}\right|=$ pks_len* $(k) \leq \max \operatorname{len}(k)$. Further, l is a tagged list and shorter than m, so that also $|l| \leq \max \operatorname{len}(k)$. Moreover, $p k^{*}, l \in$ Pub_Var because they were generated from $m \in$ Pub_Var by the functional algorithm parse.

Hence when real2id_sig starts with recursive calls $p k^{\text {hnd }} \leftarrow \operatorname{real} 2 \mathrm{id}\left(p k^{*}\right)$ and $l^{\text {hnd }} \leftarrow \operatorname{real} 2 \mathrm{id}(l)$, these calls fulfill the preconditions of Lemma 7.7. Thus they retain all invariants and ensure $D^{*}\left[h n d_{\mathrm{a}}=p k^{\text {hnd }}\right]$. word $=p k^{*}$ and $D^{*}\left[h n d_{\mathrm{a}}=l^{\text {hnd }}\right] \cdot$ word $=l$.

Let $p k^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=p k^{\text {hnd }}\right] . i n d, l^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=l^{\text {hnd }}\right] . i n d$, and $s k^{\text {ind }}:=p k^{\text {ind }}-1$. The consequences on $p k^{*}$ and l from parsing m imply that they parse to type pks and list, respectively. Hence "correct arguments" implies $D^{*}\left[p k^{\text {ind }}\right]$.type $=$ pks and $D^{*}\left[l^{\text {ind }}\right]$.type $=$ list, and "correct key pairs" implies $D^{*}\left[s k^{\text {ind }}\right]$.type $=$ sks.

Case 1: Adversary Key If $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right] . a d d_{-} a r g=(\operatorname{adv})$, then real2id_sig sets $s k^{\text {hnd }}:=p k^{\text {hnd }}-1$, calls $m^{\text {hnd }} \leftarrow \operatorname{sign}\left(s k^{\text {hnd }}, l^{\text {hnd }}\right)$ at $\mathrm{in}_{\mathrm{a}}!$ and sets add_arg $:=()$.

By "correct derivation" for $p k^{\text {hnd }}$, this case implies owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=$ a. With "correct key pairs" this further implies $D^{*}\left[s k^{\text {ind }}\right] . h n d_{\mathrm{a}}=D^{*}\left[p k^{\text {ind }}\right] . h n d_{\mathrm{a}}-1=s k^{\text {hnd }}$.

Thus the input passes $\mathrm{TH}_{\mathcal{H}}$'s type checks. Next $\mathrm{TH}_{\mathcal{H}}$ sets length $:=\operatorname{sig}$ len $*\left(k, D^{*}\left[l^{\text {ind }}\right]\right.$.len $)$ and verifies length $\leq \max \operatorname{len}(k)$. This holds because $|m| \leq \max$ len (k) and we know from parsing that $|m|=$ list_len $\left(|\operatorname{sig}|\right.$, pks_len' (k), nonce_len $(k),|l|$, sig_len $\left.^{\prime}(k,|l|)\right)=\operatorname{sig}^{\prime} \operatorname{len}^{*}(k,|l|)$ and from "correct length" that $D^{*}\left[l^{\text {ind }}\right]$.len $=|l|$. As owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=\mathrm{a}, \mathrm{TH}_{\mathcal{H}}$ does not verify the counter size.

Hence $\mathrm{TH}_{\mathcal{H}}$ sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$, obtains $p k^{\text {ind }}$ as $s k^{\text {ind }}+1$, updates the signature counter and makes a new entry. Together with the new entry in D_{a}, this results in $c:=D^{*}\left[s k^{\text {ind }}\right] \cdot \arg [1]++$ and $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size + , type $:=\operatorname{sig}, \arg :=\left(p k^{\text {ind }},,^{\text {ind }}, c\right)$, hnd $_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=$ length, word $\left.:=m\right)$.

The change in the entry $D^{*}\left[s k^{\text {ind }}\right]$ retains "correct derivation". Among the invariants, it can only affect "correct arguments", but for secret keys nothing is required, and "word secrecy", but the update information is from within $\mathrm{TH}_{\mathcal{H}}$ and A .

We now consider the signature entry. "Correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. "Fully defined" and "no unparsed secret keys" are obvious, and so is "correct arguments" given the special definition for type sig. "Correct length" was already shown above. "Word secrecy" need not be shown for this entry.

Finally, we prove "word uniqueness": Assume there were a prior entry $x \in D^{*}$ with x.word $=m$. It has $x . h n d_{\mathrm{a}}=\downarrow$ because the word m does not exist in D_{a}. However, such an adversary signature without a-handle is impossible: "Correct arguments" and "word uniqueness" for $p k^{*}$ and l imply x. type $=$ sig and $x . \arg =\left(p k^{\text {ind }}, l^{\text {ind }}, c^{\prime}\right)$ for some c^{\prime}. Such entries arise only from commands sign and adv_transform_sig in $\mathrm{TH}_{\mathcal{H}}$ and thus in $\mathrm{C}_{\mathcal{H}}$. The latter always gives an a-handle, and so does the former if input at in_{a} ?. If input at in_{u} ? with $u \in \mathcal{H}$, it needs an argument $s k_{u}^{\text {hnd }}$ where
$s k^{\text {ind }}+1=p k^{\text {ind }}$ for $s k^{k^{\text {ind }}}:=D^{*}\left[h n d_{u}=s k_{u}^{\text {hnd }}\right]$.ind. This implies $s k^{\text {ind }}=s k^{\text {ind }}$, and this contradicts "key secrecy" because we know the handle $D^{*}\left[s k^{\text {ind }}\right] . h n d_{\mathrm{a}}=s k^{\text {hnd }}$.

Case 2: Transformed Signature Now let $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right]$.add_arg $=$ (honest, $s k^{*}$). By "correct derivation" for $p k^{\text {hnd }}$, this implies $v:=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$. Further, m can be written as (sig, $p k, r, l, s i g)$ by parsing.

Now assume there exist $s^{\text {hnd }}, r^{\prime}$, and $s i g^{\prime}$ with $m^{\prime}:=D_{\mathrm{a}}\left[s^{\text {hnd }}\right]$.word $=\left(\mathrm{sig}, p k, r^{\prime}, l, s i g^{\prime}\right)$ and $D_{\mathrm{a}}\left[s^{\text {hnd }}\right]$. type $=$ sig. Then real2id_sig calls $m^{\text {hnd }} \leftarrow$ adv_transform_sig $\left(s^{\text {hnd }}\right)$ at in ! and sets add_arg $:=$ ().

Let $s^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=s^{\text {hnd }}\right]$.ind. By "correct derivation", we have $D^{*}\left[s^{\text {ind }}\right]$.type $=$ sig. With the preconditions about m^{\prime}, "correct arguments" for s ind , and "word uniqueness" for $p k^{*}$ and l, this implies $D^{*}\left[s^{\text {ind }}\right] . \arg =\left(p k^{\text {ind }}, l^{\text {ind }}, c\right)$ for some c.

Hence $\mathrm{TH}_{\mathcal{H}}$ sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and makes a new entry. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size + , type $:=\operatorname{sig}, \arg :=\left(p k^{\text {ind }}, l^{\text {ind }}\right.$, false $), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=$ $D^{*}\left[s^{\text {ind }}\right] . l e n$, word $\left.:=m\right)$.
"Correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. "Fully defined" and "no unparsed secret keys" are obvious. "Correct arguments" holds because we showed that the arguments copied from $D^{*}\left[s^{\text {ind }}\right]$ are those that we get by parsing m. "Word uniqueness" is shown exactly as in Case 1 . For "correct length", we use that $D^{*}\left[s^{\text {ind }}\right]$.len $=\left|m^{\prime}\right|$ by "correct length" for $s^{\text {ind }}$. Thus we only have to show $|m|=\left|m^{\prime}\right|$. This holds because both parse as signatures with the same component l. "Word secrecy" need not be shown for this entry.

Case 3: Forged Signature In the final case, we have $D_{\mathrm{a}}\left[p k^{\mathrm{hnd}}\right]$.add_arg $=$ (honest, $s k^{*}$) and thus $v:=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$ as in Case 2 and again $m=:(\operatorname{sig}, p k, r, l$, sig $)$. However, now there exist no $s^{\text {hnd }}, r^{\prime}$, and sig' with $D_{\mathrm{a}}\left[s^{\text {hnd }}\right]$.word $=\left(\operatorname{sig}, p k, r^{\prime}, l, s i g^{\prime}\right)$ and $D_{\mathrm{a}}\left[s^{\text {hnd }}\right]$.type $=s i g$. Here $\operatorname{Sim}_{\mathcal{H}}$ gives up. We distinguish two cases.

If there exists an entry $x \in D^{*}$ and sig' with x. word $=($ sig $, p k, r, l$, sig' $)$ and $x . t y p e=$ sig, we put the run in the error set Nonce_Guess. (The adversary has guessed the nonce-part r.) We have $x . h n d_{\mathrm{a}}=\downarrow$ by "correct derivation" of D_{a}, because in Case 3 no such word is present in D_{a}. Thus x.word \notin Pub_Var.

Otherwise, we put the run in the error set Forge and designate the forgery $(p k,(r, l), s i g)$. Note that test ${ }_{p k}(\operatorname{sig},(r, l))=$ true because this was verified when parsing m, and that $v=$ owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$. Further, "key secrecy" and "strongly correct arguments" for $D^{*}\left[s k^{\text {ind }}\right]$ imply that $p k$ was chosen in gen_sig_keypair together with $s k:=D^{*}\left[s k^{\text {ind }}\right]$.word $[2]$, and thus as $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{S}}\left(1^{k}, 1^{\max -s k c}(k)\right)$.

7.7.9 Public Encryption Keys

The algorithm real2id_pke $(m,())$ calls $\left(s k^{\text {hnd }}, m^{\text {hnd }}\right) \leftarrow$ gen_enc_keypair () at in_{a} ! and sets $D_{\mathrm{a}}: \Leftarrow$ (curhnd $\left.{ }_{\mathrm{a}}++, \epsilon,()\right)$ for the secret key and add_arg := (adv) for the public key.
$\mathrm{TH}_{\mathcal{H}}$ then also makes two new entries with $s k^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$. In $\mathrm{C}_{\mathcal{H}}$, the secret-key entry results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size ++ , type $:=$ ske, arg $:=(), h n d_{\mathrm{a}}:=s k^{\text {hnd }}$, len $:=$ 0 , word $:=\epsilon$). Here "correct derivation" and "fully defined" are clear. Nothing is required under "word uniqueness", "correct length", and "correct arguments", nor under "no unparsed secret keys" because the owner is a. "Word secrecy" for this additional entry holds because $D^{*}\left[h n d_{\mathrm{a}}=\right.$ $\left.s k^{\text {hnd }}\right]$. word $=\epsilon$ is a constant.

The public-key entry results in $D^{*}: \Leftarrow$ (ind $:=$ size ${ }^{++}$, type $:=$pke, arg $:=()$, hnd $_{\mathrm{a}}:=$ $m^{\text {hnd }}$, len $:=$ pke_len* (k), word $:=m$). It fulfills the output conditions of Lemma 7.7. Let $p k^{\text {ind }}:=$ size. Then "correct derivation" holds because $s k^{\text {ind }}:=p k^{\text {ind }}-1$ designates the secretkey entry with owner $\left(D^{*}\left[s k^{\text {ind }}\right]\right)=$ a, so that add_arg $=(\mathrm{adv})$ is the correct choice in D_{a}. "Fully defined", "no unparsed secret keys", and "correct arguments" are obvious. For "correct length", the tests in parse imply that m is of this length. "Word secrecy" need not be shown for this entry.

For "word uniqueness", assume there is a prior entry $x \in D^{*}$ with x.word $=m$. We then put this run in the error set Key_Guess. We have $x . h n d_{\mathrm{a}}=\downarrow$ by "correct derivation" of D_{a}, because m is not present in D_{a}. Thus x.word \notin Pub_Var.

7.7.10 Ciphertexts

When real2id_enc $\left(m,\left(p k^{*}\right)\right)$ is called, we know from parsing that $p k^{*}=$ (pke, $p k$) with $\left|p k^{*}\right|=$ pke_len* $(k) \leq$ max_len (k). Further, $p k^{*} \in$ Pub_Var because it was generated from $m \in P u b_{-}$Var by the functional algorithm parse.

Hence when real2id_enc starts with a recursive call $p k^{\text {hnd }} \leftarrow \operatorname{real} 2 \mathrm{id}\left(p k^{*}\right)$, this call fulfills the preconditions of Lemma 7.7. Thus it retains all invariants and ensures $D^{*}\left[h n d_{\mathrm{a}}=p k^{\mathrm{hnd}}\right]$. word $=$ $p k^{*}$.

Let $p k^{\text {ind }}:=D^{*}\left[h n d_{\mathrm{a}}=p k^{\text {hnd }}\right] . i n d$ and $s k^{\text {ind }}:=p k^{\text {ind }}-1$. The consequences on $p k^{*}$ from parsing m imply that it parses to type pke. Hence "correct arguments" implies $D^{*}\left[p k^{\text {ind }}\right]$.type $=\mathrm{pke}$, and "correct key pairs" implies $D^{*}\left[s k^{\text {ind }}\right]$. type $=$ ske. Let $v:=\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right)$.

In all cases of real2id_enc, only the entry for $m^{\text {hnd }}$ is made, and always with word m and type enc; further always add_arg $=()$. Thus "correct derivation" is clearly retained, and the output condition of Lemma 7.7 fulfilled. Further, "fully defined" and "no unparsed secret keys" are obvious, and "word secrecy" need not be shown for this entry. For "word uniqueness", we put the run in the error set Nonce_Guess if there is a prior entry $x \in D^{*}$ with x.word $=m$. (The adversary has guessed the nonce-part r of m.) We have $x . h n d_{\mathrm{a}}=\downarrow$ because the word m does not exist in D_{a}. Thus x.word \notin Pub_Var. By "correct arguments", clearly also x.type $=$ enc.

Hence in the individual cases, "correct length" and "correct arguments" remain to be shown.
Case 1: Adversary Key If $v=\mathrm{adv}$, then "correct derivation" implies $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right] . a d d_{_}$arg $=$ (adv). Hence real2id_enc calls $m^{\text {hnd }} \leftarrow \operatorname{adv}$ _invalid_ciph $\left(p k^{\text {hnd }},|m|\right)$ at $\mathrm{in}_{\mathrm{a}}!$ and sets add_arg $:=()$.

This input passes $\mathrm{TH}_{\mathcal{H}}$'s domain and type check. Hence $\mathrm{TH}_{\mathcal{H}}$ sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and makes a new entry. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow($ ind $:=$ size++, type $:=$ enc, $\arg :=\left(p k^{\text {ind }}\right), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=|m|$, word $\left.:=m\right)$.
"Correct length" is obvious. For "correct arguments", the general requirement for the publickey argument is clearly fulfilled. The fact $o:=D^{*}[$ size $]$.owner $=\downarrow$ is correct for $v=\mathrm{a}$, and nothing else needs to be shown in this case.

Case 2: Invalid Ciphertext for Honest User If $v \in \mathcal{H}$, then "correct derivation" implies $D_{\mathrm{a}}\left[p k^{\text {hnd }}\right]$.add_arg $=\left(\right.$ honest, $\left.s k^{*}\right)$ with $s k^{*}=\omega\left(s k^{\text {ind }}\right)$. Thus real2id_enc computes $l:=$ parse_decrypt $\left(s k^{*}, m\right)$.

For this case, assume $l=\downarrow$. Then real2id_enc calls $c^{\text {hnd }} \leftarrow \operatorname{adv_ invalid_ ciph}\left(p k^{\text {hnd }},|m|\right)$ at in_{a} ! and sets add_arg := ().

As above, this input passes $\mathrm{TH}_{\mathcal{H}}$'s domain and type check, and $\mathrm{TH}_{\mathcal{H}}$ sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and makes a new entry. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow($ ind $:=$ size++, type $:=$ enc, arg $:=\left(p k^{\text {ind }}\right), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=|m|$, word $:=m$, owner $\left.:=\mathrm{adv}\right)$.
"Correct length" is obvious. For "correct arguments", the general requirement for the publickey argument is clearly fulfilled. The fact $o:=D^{*}[$ size $]$.owner $=\operatorname{adv}$ is correct for $v \in \mathcal{H}$. The resulting requirement on decryption is fulfilled by construction because $l^{\text {ind }}:=\arg { }^{\text {ind }}[2]=\downarrow$, and $l:=$ parse_decrypt $\left(s k^{*}, m\right)=\downarrow$ is the precondition of this case.

Case 3: Valid Ciphertext for Honest User Let $v \in \mathcal{H}$ again and $s k^{*}$ and l be defined as in Case 2, but now $l \neq \downarrow$.

Then real2id_enc makes a recursive call $l^{\text {hnd }} \leftarrow \operatorname{real2id}(l)$. We have to show that this call fulfills the preconditions of Lemma 7.7. First, $|l| \leq \max \operatorname{len}(k)$ because the construction of parse_decrypt implies $|l| \leq|m|$. Secondly, l only depends on $s k^{*}$ and m. By a precondition, $m \in$ Pub_Var. Further, by the definition of Pub_Var, the existence of $D^{*}\left[p k^{\text {ind }}\right] . h n d_{\text {a }}$ implies that also $s k^{*} \in$ Pub_Var. Thus also $l \in P u b_{-}$Var.

Thus the recursive call retains all invariants and ensures $D^{*}\left[h n d_{\mathrm{a}}=l^{\text {hnd }}\right]$.word $=l$. Now real2id_enc calls $c^{\text {hnd }} \leftarrow \operatorname{encrypt}\left(p k^{\mathrm{hnd}}, l^{\mathrm{hnd}}\right)$ at $\mathrm{in}_{\mathrm{a}}!$ and sets $a d d_{-}$arg $:=()$.

The arguments pass $\mathrm{TH}_{\mathcal{H}}$'s domain check and the type check for $p k^{\text {hnd }}$. Further, l is a tagged list by the tests in parse_decrypt, and thus by "correct arguments", $D^{*}\left[l^{\text {ind }}\right]$. type $=$ list for $l^{\text {ind }}:=$ $D^{*}\left[h n d_{\mathrm{a}}=l^{\text {hnd }}\right]$. ind. Thus $\mathrm{TH}_{\mathcal{H}}$ sets length $:=$ enc_len* $\left(k, D^{*}\left[l^{\text {ind }}\right]\right.$.len $)$, where $D^{*}\left[l^{\text {ind }}\right]$. len $=|l|$. The tests made when parsing m and in parse_decrypt imply that length $=|c| \leq \max$ _len (k). Thus $\mathrm{TH}_{\mathcal{H}}$ sets $m^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$ and makes a new entry. Together with the new entry in D_{a}, this results in $D^{*}: \Leftarrow\left(\right.$ ind $:=$ size++, type $:=$ enc, arg $:=\left(p k^{\text {ind }}, l^{\text {ind }}\right), h n d_{\mathrm{a}}:=m^{\text {hnd }}$, len $:=|m|$, word $:=$ length, owner :=adv).
"Correct length" was just shown. For "correct arguments", the general requirement for the public-key argument is clearly fulfilled. The fact $o:=D^{*}[$ size $]$.owner $=\operatorname{adv}$ is correct for $v \in \mathcal{H}$. The resulting requirement on decryption is fulfilled by construction because indeed $\omega\left(l^{\text {ind }}\right)=l$ where l was defined as $l:=$ parse_decrypt $\left(s k^{*}, m\right)$.

7.8 Scheduling of a Secure Channel

Finally, we consider a scheduling signal i from A for a secure channel, i.e., for $(w, u, x) \in$ ch_honest. By "correct derivation", we have net ${ }_{w, u, x}=\omega^{*}\left(\right.$ net_id $\left._{w, u, x}\right)$, where the former is the buffer in $\mathrm{M}_{\mathcal{H}}$ and the latter in $\operatorname{THSim}_{\mathcal{H}}$ and $\mathcal{C}_{\mathcal{H}}$. This implies that the buffers are of the same length i^{\prime}. If $i>i^{\prime}$, nothing happens. Otherwise, $\mathrm{TH}_{\mathcal{H}}$ gets the input $l^{\text {ind }}:=$ net_id $_{d_{w, u, x}}[i]$ and M_{u}^{\prime} gets $l:=$ net $_{w, u, x}[i]=$ $D^{*}\left[l^{\text {ind }}\right.$.word $]$. By "message correctness" (recall Lemma 4.1), we have $D\left[l^{\text {ind }}\right]$.type $=$ list, and thus by "correct arguments", l is a tagged list. Further, $|l| \leq$ max_len (k) by "correct length" and "length bounds". Hence M_{u}^{\prime} accepts l.

If $D^{*}\left[l^{\text {ind }}\right] . h n d_{u}$ already exists, both return it. Otherwise $\mathrm{TH}_{\mathcal{H}}$ adds it as $l^{\text {hnd }}:=\operatorname{curhnd}_{u}++$. By "word uniqueness" and "correct derivation", M_{u}^{\prime} does not find another entry with the word l, and thus makes a new entry ($l^{\text {hnd }}, l$, list, ()$)$ with the same handle. "Correct derivation" is clear. By Lemma 7.3.3, this is all we have to show.

7.9 Error Sets

We now show that the union of all error sets has negligible probability. More precisely, this means sequences of error sets, indexed by the basic security parameter k, such as $\left(\text { Forge }_{k}\right)_{k \in \mathbb{N}}$. We continue to omit the parameter k when it is irrelevant. The proofs rely on the security of the cryptographic primitives.

Recall that we had error sets Nonce_Coll, Key_Coll, Ciph_Coll, Nonce_Guess, Key_Guess, and Forge. This gives a constant number of sequences. Hence, if each sequence has negligible
probability, then so has the sequence of the set unions. Hence we now assume for contradiction that one sequence has a larger probability for certain polynomial-time users H and adversary A .

Recall that the elements of the error sets are runs of the combined system $\mathrm{C}_{\mathcal{H}}$. The proofs rely on the fact that the execution of $\mathrm{C}_{\mathcal{H}}$ with H and A is polynomial-time. $\mathrm{C}_{\mathcal{H}}$ is even polynomial-time on its own, because $\operatorname{THSim}_{\mathcal{H}}$ and $\mathrm{M}_{\mathcal{H}}$ are polynomial-time by Lemmas 4.2.1, 6.1, and 7.2.1, and essentially all actions of $C_{\mathcal{H}}$ occur in one of these systems.

7.9.1 Nonce Collisions

The error set Nonce_Coll occurs in Sections 7.5.6, 7.5.7, and 7.5.8 for the generation of "official" nonces, and the nonce-components r in ciphertexts and signatures. A run is put into this set if a new nonce, created randomly as $r \leftarrow^{\ell}\{0,1\}^{\text {nonce-len }(k)}$, matches an already existing value. Hence for every pair of a new nonce and an old value, the success probability is bounded by $2^{- \text {nonce_len }(k)}$, which we required to be negligible. As there are only polynomially many such pairs, the overall probability is also negligible.

7.9.2 Key Collisions

The error set Key_Coll occurs in Sections 7.5.7 and 7.5.8 for the generation of public signature and encryption keys. We first consider encryption keys. A run is put into this set if a new public key $p k$, created correctly with $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$, matches an already existing value, which may have been chosen by the adversary.

Let $P_{\max , k}$ be the maximum probability of any particular value of $p k$ for security parameter k. Then $P_{\max , k}$ is an upper bound for the collision probability of every pair of an old value and new public key. As there are only polynomially many such pairs, it is sufficient to prove that $P_{\max , k}$ is negligible. Assume for contradiction it were not.

Let an adversary $\mathrm{A}_{\text {enc }}$ on the encryption system, given a key $p k$, independently generate a key pair $\left(s k^{\prime}, p k^{\prime}\right) \leftarrow \operatorname{gen}_{\mathrm{E}}\left(1^{k}\right)$. Then the probability of $p k^{\prime}=p k$ is at least $P_{\text {max }, k}{ }^{2}$, which is still not negligible. In this event, we have $m=\mathrm{D}_{s k^{\prime}}(c)$ for every ciphertext $c \leftarrow \mathrm{E}_{p k}(m)$, i.e., the adversary can decrypt ciphertexts intended for the honest participant, which clearly contradicts the security of the encryption system.

The argument for signature keys is completely analogous, where signatures made with $s k^{\prime}$ pass the test with $p k$.

7.9.3 Ciphertext Collisions

The error set Ciph_Coll occurs in Section 7.5 .8 for the basic command decrypt. A run is put into this set if the encryption machine Enc $\mathrm{sim}_{\mathrm{s}, \mathcal{H}}$ has generated two entries $\left(l_{1}^{*}, p k, c\right)$ and $\left(l_{2}^{*}, p k, c\right)$ with the same public and ciphertext, but $l_{1}^{*} \neq l_{2}^{*}$, in ciphers. In the real encryption machine Enc $\mathcal{H}_{\mathcal{H}}$, this situation is impossible because the ciphertexts are actually under the messages l_{1}^{*} and l_{2}^{*} (while in $E n c_{s i m, \mathcal{H}}$ they are under fixed messages), and decryption is unique for correctly generated key pairs. Indistinguishability of $\mathrm{Enc}_{\mathrm{sim}, \mathcal{H}}$ and $\mathrm{Enc}_{\mathcal{H}}$, and the fact that the content of ciphers is visible externally, implies that the probability of the same event is at most negligible in $\mathrm{Enc}_{\text {sim }, \mathcal{H}}$.

7.9.4 Nonce Guessing

The error set Nonce_Guess occurs in Section 7.7.6, 7.7.8, and 7.7.10. A run is put into this set if the adversary has guessed an existing nonce value that ideally he should not have seen. In all these
cases we showed that the adversary had guessed the word of an entry $x \in D^{*}$ with $x . h n d_{\mathrm{a}}=\downarrow$, x.word $\notin P u b_{_}$Var, and x.type $\in\{$ nonce, sig, enc $\}$.
"Strongly correct arguments" applies to these entries. Thus each of them contains a nonce part generated as $r \underset{\leftarrow}{\mathscr{R}}\{0,1\}^{\text {nonce_len }(k)}$ independently of everything else.
"Word secrecy" means that no information flowed from r into Pub_Var, which is a superset of the information known to the adversary A. Hence for one guess at one value, the success probability is $2^{- \text {nonce_len }(k)}$ and thus negligible, and there are only a polynomially many values and polynomially many opportunities of guessing.

7.9.5 Key Guessing

The error set Key_Guess occurs in Sections 7.7.7 and 7.7.9. A run is put into this set if the adversary has guessed an existing public key that ideally he should not have seen. Similar to nonce guessing, we showed that the adversary had guessed the word of an entry $x \in D^{*}$ with $x . h n d_{\mathrm{a}}=\downarrow$, x.word $\notin P u b_{-}$Var, and x.type $\in\{$ pks, pke $\}$.

As above, word secrecy implies that the adversary had no information at all about the component $p k:=x$.word $[2]$. Hence for one guess at one value, the success probability is bounded by $P_{\max , k}$ as in Section 7.9.2 and thus negligible, and there are only a polynomially many guesses and values.

7.9.6 Signature Forgery

The error set Forge occurs in Section 7.7 .8 for signature forgeries. In the runs put into this set we designated a triple $(p k,(r, l), s i g)$ as a forgery and showed that test ${ }_{p k}(\operatorname{sig},(r, l))=$ true for a key pair chosen correctly as $(s k, p k) \leftarrow \operatorname{gen}_{\mathrm{S}}\left(1^{k}, 1^{\max _s k c(k)}\right)$.

In the combined system $\mathcal{C}_{\mathcal{H}}$, this secret key $s k$ was a component $D^{*}\left[s k^{\text {ind }}\right]$.word $[2]$ with $v=$ $\operatorname{owner}\left(D^{*}\left[s k^{\text {ind }}\right]\right) \in \mathcal{H}$. Thus it is only used if the command sign is entered at port in ${ }_{v}$?, and there within normal signing operations $\operatorname{sig} \leftarrow \operatorname{sign}_{s k, c}((r, l))$, executed with an internal signature counter c which is incremented with each signature and not used otherwise.

Further, if (r, l) had ever been signed with $s k$ before, the command sign would lead to an entry $x \in D^{*}$ with x.type $=\operatorname{sig}$ and x.word of the form (sig, $\left.p k, r, l, \operatorname{sig}^{\prime}\right)$. However, the existence of such an entry was excluded in the conditions for putting the run in the set Forge. Thus we have indeed a valid forgery for the underlying signature system.

This argument was almost a rigorous reduction proof already: We construct an adversary $A_{\text {sig }}$ against the signer machine Sig_{s} from Definition 5.1 with the function $s:=$ max_skc by letting $\mathrm{A}_{\text {sig }}$ execute $\mathrm{C}_{\mathcal{H}}$, using the given A and H as blackboxes. It only has to choose an index $i \stackrel{\mathcal{R}}{\leftarrow}$ $\{1, \ldots, n \cdot \max \operatorname{in}(k)\}$ indicating for which of the up to $n \cdot \max \operatorname{in}(k)$ key pairs generated due to inputs at ports in_{u} ? with $u \in \mathcal{H}$ it uses $p k$ obtained from the signer machine Sig_{s} instead. We showed above that the use of $s k$ can be perfectly rewritten by interaction with Sig_{s}, and that $\mathrm{A}_{\text {sig }}$ obtains a valid forgery if its guess i was correct.

Hence the success probability of $\mathrm{A}_{\text {sig }}$ for each k is at least $(n \cdot \max \operatorname{in}(k))^{-1}$ (from guessing i correctly) times the probability of Forge $_{k}$. Hence the security of the signature scheme implies that the probability of the sets Forge $_{k}$ is negligible.

8 Conclusion

We have presented a faithful abstraction of a crypto-library, which comprises important cryptographic operations like public-key encryption, digital signatures, and nonces. We already showed
that the library can be extended in a modular way by adding symmetric authentication [26] and symmetric encryption [17]. The abstraction is deterministic and does not contain any cryptographic objects, hence it is abstract in the sense needed for theorem provers. Faithful means that we can implement the abstraction securely in the cryptographic sense, so that properties proved for the abstraction carry over to the implementation without any further work. We provided one possible implementation whose security is based on provably secure cryptographic systems.

This faithfulness of the cryptographic library now allows for a meaningful analysis of protocol properties on the abstract level. We already demonstrated this with a proof of the well-known Needham-Schroeder-Lowe public-key protocol [13] as well as several additional well-known protocols that come with a symbolic representation. Further, the abstractness of the library makes such an analysis accessible for formal verification techniques, see, e.g., [75, 10]. Exploring the complexity of our abstraction and further reducing it by developing or adapting currently used data-independence techniques is of independent interest.

As many protocols commonly analyzed in the literature can be expressed with our library, this enables the first formal, machine-aided verification of these protocols which is not only meaningful for Dolev-Yao-like abstractions, but whose security guarantees are equivalent to the security of the underlying cryptography. This bridges the up-to-now missing link between cryptography and formal methods for arbitrary attacks.

Acknowledgments

We thank Andre Adelsbach, Matthias Schunter, and Michael Steiner for interesting discussions.
This work was partially supported by the European IST Project MAFTIA. However, it represents the view of the authors. The MAFTIA project was partially funded by the European Commission and the Swiss Department for Education and Science.

References

[1] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4th International Symposium on Theoretical Aspects of Computer Software (TACS), pages 82-94, 2001.
[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryption. Journal of Cryptology, 15(2):103-127, 2002.
[3] R. Anderson and R. Needham. Robustness principles for public key protocols. In Advances in Cryptology: CRYPTO '95, volume 963 of Lecture Notes in Computer Science, pages 236-247. Springer, 1995.
[4] M. Backes. Quantifying probabilistic information flow in computational reactive systems. In Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of Lecture Notes in Computer Science, pages 336-354. Springer, 2005.
[5] M. Backes. Real-or-random key secrecy of the Otway-Rees protocol via a symbolic security proof. Electronic Notes in Theoretical Computer Science (ENTCS), 155:111-145, 2006.
[6] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically sound security proofs for basic and public-key kerberos. In Proceedings of 11th European Symposium on Research in Computer Security(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 362-383. Springer, 2006. Preprint on IACR ePrint 2006/219.
[7] M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of an electronic payment system. In Proceedings of 18th IEEE Computer Security Foundations Workshop (CSFW), pages 78-93, 2005.
[8] M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of security protocols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607 of Lecture Notes in Computer Science, pages 675-686. Springer, 2003.
[9] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations using composition and formally verified bisimulation. In Proc. 11th Symposium on Formal Methods Europe (FME 2002), volume 2391 of Lecture Notes in Computer Science, pages 310-329. Springer, 2002.
[10] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analysis. In Proceedings of 13th ACM Conference on Computer and Communications Security (CCS), pages 370-379, 2006.
[11] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated verification of the direct anonymous attestation protocol. In IEEE Symposium on Security and Privacy, Proceedings of SSP'08, pages 202-215, 2008. Preprint on IACR ePrint 2007/289.
[12] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano. Symbolic and cryptographic analysis of the secure WS-ReliableMessaging Scenario. In Proceedings of Foundations of Software Science and Computational Structures (FOSSACS), volume 3921 of Lecture Notes in Computer Science, pages 428445. Springer, 2006.
[13] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe public-key protocol. In Proc. 23rd Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2003.
[14] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In Proc. 24th IEEE Symposium on Security \& Privacy, pages 140-152, 2003.
[15] M. Backes and B. Pfitzmann. Computational probabilistic non-interference. International Journal of Information Security (IJIS), 3(1):42-60, 2004.
[16] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe public-key protocol. IEEE Journal on Selected Areas of Computing (JSAC), 22(10):2075-2086, 2004.
[17] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In Proceedings of $1^{\text {rth }}$ IEEE Computer Security Foundations Workshop (CSFW), pages 204218, 2004.
[18] M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of Lecture Notes in Computer Science, pages 178-196. Springer, 2005.
[19] M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy. IEEE Transactions on Dependable and Secure Computing (TDSC), 2(2):109-123, 2005.
[20] M. Backes and B. Pfitzmann. On the cryptographic key secrecy of the strengthened Yahalom protocol. In Proceedings of 21st IFIP International Information Security Conference (SEC), pages 233-245, 2006.
[21] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks -BRSIM/UC-soundness of symbolic encryption with key cycles. In Proceedings of 20th IEEE Computer Security Foundation Symposium (CSF), 2007. Preprint on IACR ePrint 2005/421.
[22] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial liveness. Journal of Computer Security, 12(3-4):589-617, 2004.
[23] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In Proceedings of 10th ACM Conference on Computer and Communications Security (CCS), pages 220230, 2003.
[24] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive system. In Proceedings of 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in Computer Science, pages 336-354. Springer, 2004.
[25] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. IACR Cryptology ePrint Archive, 2004:82, 2004.
[26] M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes. International Journal of Information Security (IJIS), 4(4):242-252, 2005.
[27] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable cryptographic library. International Journal of Information Security (IJIS), 4(3):135-154, 2005.
[28] M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive simulatability/UC of Dolev-Yao models with hashes. In Proceedings of 11th European Symposium on Research in Computer Security(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 404-423. Springer, 2006.
[29] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability framework for asynchronous systems. Information and Computation, 2007. Preprint on IACR ePrint 2004/082.
[30] M. Backes and D. Unruh. Computational soundness of symbolic zero-knowledge proofs against active attackers. In 21st IEEE Computer Security Foundations Symposium, CSF 2008, pages 255-269, 2008. Preprint on IACR ePrint 2008/152.
[31] D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority. Journal of Cryptology, 4(2):75-122, 1991.
[32] G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment protocol: The set purchase phase. In Proc. 9th ACM Conference on Computer and Communications Security, pages 12-20, 2002.
[33] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for publickey encryption schemes. In Advances in Cryptology: CRYPTO '98, volume 1462 of Lecture Notes in Computer Science, pages 26-45. Springer, 1998.
[34] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in ssh: Provably fixing the ssh binary packet protocol. In Proc. 9th ACM Conference on Computer and Communications Security, pages 1-11, 2002.
[35] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in Cryptology: CRYPTO '93, volume 773 of Lecture Notes in Computer Science, pages 232-249. Springer, 1994.
[36] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS. In Advances in Cryptology: CRYPTO '98, volume 1462 of Lecture Notes in Computer Science, pages 1-12. Springer, 1998.
[37] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, $3(1): 143-202,2000$.
[38] R. Canetti. A unified framework for analyzing security of protocols. IACR Cryptology ePrint Archive 2000/067, Dec. 2001. http://eprint.iacr.org/.
[39] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136-145, 2001.
[40] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels (extended abstract). In Advances in Cryptology: EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 337-351. Springer, 2002. Extended version in IACR Cryptology ePrint Archive 2002/059, http://eprint.iacr.org/.
[41] R. Cramer and I. Damgård. Secure signature schemes based on interactive protocols. In Advances in Cryptology: CRYPTO '95, volume 963 of Lecture Notes in Computer Science, pages 297-310. Springer, 1995.
[42] R. Cramer and I. Damgård. New generation of secure and practical RSA-based signatures. In $A d$ vances in Cryptology: CRYPTO '96, volume 1109 of Lecture Notes in Computer Science, pages 173-185. Springer, 1996.
[43] R. Cramer and V. Shoup. Practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In Advances in Cryptology: CRYPTO '98, volume 1462 of Lecture Notes in Computer Science, pages 13-25. Springer, 1998.
[44] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In Proc. 6th ACM Conference on Computer and Communications Security, pages 46-51, 1999.
[45] Z. Dang and R. Kemmerer. Using the ASTRAL model checker for cryptographic protocol analysis. In Proc. DIMACS Workshop on Design and Formal Verification of Security Protocols, 1997. http: //dimacs.rutgers.edu/Workshops/Security/.
[46] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communications of the ACM, 24(8):533-536, 1981.
[47] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In Advances in Cryptology: EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 557-572. Springer, 2000.
[48] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information Theory, 29(2):198-208, 1983.
[49] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In Proc. International Conference on Theorem Proving in Higher Order Logics (TPHOL), volume 1275 of Lecture Notes in Computer Science, pages 121-136. Springer, 1997.
[50] D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw detected by Muhammad Faisal Rauf Danka).
[51] R. Gennaro, S. Halevi, and T. Rubin. Secure hash-and-sign signatures without the random oracle. In Advances in Cryptology: EUROCRYPT '99, volume 1592 of Lecture Notes in Computer Science, pages 123-139. Springer, 1999.
[52] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In Advances in Cryptology: CRYPTO '86, volume 263 of Lecture Notes in Computer Science, pages 104-110. Springer, 1986.
[53] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. In Advances in Cryptology: CRYPTO '90, volume 537 of Lecture Notes in Computer Science, pages 77-93. Springer, 1990.
[54] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28:270-299, 1984.
[55] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosenmessage attacks. SIAM Journal on Computing, 17(2):281-308, 1988.
[56] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract protocol analysis: Message authentication. In Proc. 8th ACM Conference on Computer and Communications Security, pages 186-195, 2001.
[57] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology, 13(1):31-60, 2000.
[58] D. Hofheinz, J. Müller-Quade, and R. Steinwandt. Initiator-resilient universally composable key exchange. In Proc. 8th European Symposium on Research in Computer Security (ESORICS), 2003.
[59] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal of Cryptology, 7(2):79-130, 1994.
[60] P. Laud. Semantics and program analysis of computationally secure information flow. In Proc. 10th European Symposium on Programming (ESOP), pages 77-91, 2001.
[61] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol analysis. In Proc. 5th ACM Conference on Computer and Communications Security, pages 112-121, 1998.
[62] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proc. 2nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147-166. Springer, 1996.
[63] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO '91, volume 576 of Lecture Notes in Computer Science, pages 392-404. Springer, 1991.
[64] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using mur ϕ. In Proc. 18th IEEE Symposium on Security \& Privacy, pages 141-151, 1997.
[65] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers. Communications of the ACM, 12(21):993-999, 1978.
[66] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In Proc. 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in Computer Science, pages 748-752. Springer, 1992.
[67] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryptology, 6(1):85-128, 1998.
[68] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems. Presented at the DERA/RHUL Workshop on Secure Architectures and Information Flow, 1999, Electronic Notes in Theoretical Computer Science (ENTCS), March 2000. http://www.elsevier.nl/cas/tree/store/ tcs/free/noncas/pc/menu.htm.
[69] B. Pfitzmann, M. Schunter, and M. Waidner. Secure reactive systems. Research Report RZ 3206, IBM Research, 2000.
[70] B. Pfitzmann and M. Waidner. How to break and repair a "provably secure" untraceable payment system. In Advances in Cryptology: CRYPTO '91, volume 576 of Lecture Notes in Computer Science, pages 338-350. Springer, 1992.
[71] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In Proc. 7th ACM Conference on Computer and Communications Security, pages 245-254, 2000.
[72] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message transmission. In Proc. 22nd IEEE Symposium on Security \& Privacy, pages 184-200, 2001.
[73] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Advances in Cryptology: CRYPTO '91, volume 576 of Lecture Notes in Computer Science, pages 433-444. Springer, 1992.
[74] P. Rogaway. Authenticated-encryption with associated-data. In Proc. 9th ACM Conference on Computer and Communications Security, pages 98-107, 2002.
[75] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem proving. In Proceedings of 19th IEEE Computer Security Foundations Workshop (CSFW), pages 153166, 2006.
[76] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX Workshop on Electronic Commerce, pages 29-40, 1996.
[77] B. Warinschi. A computational analysis of the needham-schroeder-(lowe) protocol. In Proc. 16th IEEE Computer Security Foundations Workshop (CSFW), page To appear, 2003.
[78] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 80-91, 1982.

[^0]: *An extended abstract of this work appears in Proc. of 10th ACM Conference on Computer and Communications Security (CCS), [23].

[^1]: ${ }^{1}$ For the sake of illustration, let us mention some problems in such proofs: The main ideal key exchange functionality $F_{K E}$ from [40] proved to be impossible to realize [58]. The signature realization from [39] was claimed under a too weak assumption [26]. Further, the line of research started with [39] makes neither the machines nor the actual attackers polynomial-time, while for us, polynomial runtime is one of the most severe problems in system definitions as well as in simulatability proofs.

[^2]: ${ }^{2}$ Memory-less schemes exist with either lower efficiency or based on stronger assumptions (e.g., [52, 44, 51]). We could add them to the library as an additional primitive.
 ${ }^{3}$ The primitives become "committing". This is well-known from individual simulation proofs. It is also the reason why the approach in [2], developed for symmetric cryptosystems, is hard to extend to active attacks.

[^3]: ${ }^{4}$ The set $S_{\mathcal{H}}$ of specified ports is defined as the free ports at the end of the buffers. Hence here it is easier to show its complement, $S_{\mathcal{H}}^{\mathcal{L}}$, which are the ports that H may have to connect to $\mathrm{TH}_{\mathcal{H}}$.

[^4]: ${ }^{5}$ This is similar to the Dolev-Yao model: The arguments are just listed, not evaluated as in a real system.
 ${ }^{6}$ It is computed by $\mathrm{TH}_{\mathcal{H}}$ using the given length functions. For most types, this length could be recomputed when it is needed instead of storing it, but not for the type garbage.

[^5]: ${ }^{7}$ For simulatability, we do not need $\mathrm{TH}_{\mathcal{H}}$ to be polynomial-time; we only need the counters and bounds for the user ports in_{u} ? .

[^6]: ${ }^{8}$ Note that u cannot get the type of entries he does not know because $D^{*}\left[h n d_{u}=x^{\text {hnd }}\right]=\downarrow$ implies $t=\downarrow$.

[^7]: ${ }^{9}$ Hence if the same string m is stored twice, $\mathrm{TH}_{\mathcal{H}}$ reuses the first result. In general $\mathrm{TH}_{\mathcal{H}}$ ensures that two identical pieces of data get the same index. However, encryption or signing always create new entries, because these operations are indeterministic.
 ${ }^{10}$ This implies that $m^{\text {hnd }}$ was created by a store command, as no other command creates entries with type $=$ data. Thus only explicitly stored data can be retrieved and not, e.g., keys or ciphertexts.

[^8]: ${ }^{11}$ This type also exists with $c=$ false due to the command adv_transform_sig.
 ${ }^{12}$ Given the next two commands, signature verification is redundant. This works because for received real alleged signatures, the type sig and the arguments are only assigned after cryptographic verification; otherwise the type becomes garbage.
 ${ }^{13}$ This command implies that real signatures must contain the message, which may seem inefficient. However, the simulator needs this to translate signatures from the adversary into abstract ones. Thus we also offer message retrieval to honest users so that they need not send the message separately.
 ${ }^{14} \mathrm{~A}$ similar operation for retrieving the counter is only for the adversary because not all signature schemes allow it.

[^9]: ${ }^{15}$ This type also has a second format due to the command adv_invalid_ciph.
 ${ }^{16}$ This does not mean that the same garbage is always treated differently, only that the simulation has to ensure that this command is only used for new garbage.

[^10]: ${ }^{17}$ The most efficient implementations of typical signature schemes needing counters also store a path in a tree. Functionally, this or any other function of random values chosen during earlier applications of sign $s k$ is equivalent to just a counter, because all random values needed can be seen as part of $s k$ and chosen initially.
 ${ }^{18}$ For real signature schemes one often gets only upper bounds on these lengths. By appropriate padding one can easily ensure that these bounds are met exactly.

[^11]: ${ }^{19}$ This is mainly useful for the security proof. An implementation may be inline.

[^12]: ${ }^{20}$ This notation is mainly used for reasons of readability. Both algorithms can be formalized as $\arg \leftarrow \operatorname{parse}_{D_{u}}\left(m^{\text {hnd }}\right)$ and parse_cond $D_{D_{u}}\left(m^{\text {hnd }}\right)$ (with side effects).
 ${ }^{21}$ We need not parse the inputs because parsing never gives types from \{sks, ske\}, and garbage in lists is allowed.

[^13]: ${ }^{22}$ The argument 0 of the secret key is the counter and will change.

[^14]: ${ }^{23}$ The actual signature test is already performed when $s^{\text {hnd }}$ is parsed. We simply return false if a test is attempted with another public key or message than those contained in the signature.
 ${ }^{24}$ This means that one never tries to decrypt with respect to another public key than the one contained in the ciphertext.

[^15]: ${ }^{25}$ Here m is a new public key from the adversary. $\mathrm{TH}_{\mathcal{H}}$ sets $s k^{\text {hnd }}:=\operatorname{curhnd}_{\mathrm{a}}++; p k^{\text {hnd }}:=$ curhnd $_{\mathrm{a}}++$, while $\operatorname{Sim}_{\mathcal{H}}$ does not know a real secret key. $\operatorname{Sim}_{\mathcal{H}}$ therefore makes an "empty" entry in D_{a} for the secret key, while the public key is entered in D_{a} by the last step of real2id as for all other data types.

[^16]: ${ }^{26} \mathrm{TH}_{\mathcal{H}}$ typically uses another counter value c for this signature than that used in the real adversary signature. Honest users cannot notice this because there is no basic command to retrieve c. Neither can A retrieve c with adv_parse, because $\operatorname{Sim}_{\mathcal{H}}$ only uses that command when constructing signatures it has not seen before.
 ${ }^{27}$ This is the case of a forged signature on a new message, and no command of $\mathrm{TH}_{\mathcal{H}}$ allows that. It is easy to see that an adversary against $\operatorname{Sim}_{\mathcal{H}}$ indeed forged a signature here. However, in the real system such a signature may already exist, but not be available to the adversary. Thus the proof that this case is cryptographically impossible is more complicated; see Section 7.9.6.
 ${ }^{28}$ In the real system, this ciphertext is not necessarily invalid. However, it was made by A with its own public key. (If it had been produced by an honest participant, $\operatorname{Sim}_{\mathcal{H}}$ would have first entered it into $D_{\text {a }}$ upon a send command.) Thus no real machine M_{v} will try to decrypt it, so that the honest users do not notice the difference. Further, if they send it back to A, then $\operatorname{Sim}_{\mathcal{H}}$ sends the original.

[^17]: ${ }^{29}$ If two entries with this condition existed, the notation in [72] would lead to a non-deterministic choice, while we get \downarrow. However, the proof in [72] immediately yields that m in all such entries would be equal, and our definition of databases as sets joins equal entries.

[^18]: ${ }^{30}$ Here one sees that the bisimulation is probabilistic, i.e., we actually consider distributions of states before and after a transition. This invariant says that in such a state distribution, and given the mentioned arguments, m is distributed as described independent of other state parts.
 ${ }^{31}$ These secret keys are included because information from them flows into the public keys, signatures, and decryptions, but they do not get adversary handles when those values are published. Note that we do not use this analysis for security proofs about the signature and encryption systems.

