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Abstract.  The spectral, kinetic, spatial, and amplitude characteristics of emissions of pressed 

samples of PETN (pentaerythritole tetranitrate) by the first harmonic of a neodymium laser 

(1064 nm, 12 ns) are studied. It is found that at the moment of irradiation of PETN by laser 

pulses, hot spots are formed on the surface of the samples. The energy density of laser radiation 

varies in the range of 0.5–3 J/cm2. The characteristics of hot spots are determined by absorbing 

inhomogeneities and parameters of laser radiation. Multi-pulse excitation leads to the annealing 

of absorbing irregularities and increased threshold of optical breakdown. The received results 

are interpreted on the basis of ideas of the low-threshold optical breakdown as evolving within 

local (defective) regions of the PETN in the electric field of the light wave. 

1. Introduction 

 Laser initiation of brisant explosives opens wide perspectives for the application of the explosion 

energy in various technological fields and blasting technologies. These technologies have been 

intensely studied over the last few years. However, the initial stages of PETN explosive decomposition 

triggered by pulsed laser radiation (LR) are still not studied. Recently, several alternative models of 

laser initiation of pure (without introduced additives) PETN specimens have been suggested [1–6]. 

The thermal spot model is now widely used, which states the impact of power laser radiation on an 

explosive to be accompanied by heating of local micro-regions (defects) termed as hot spots (HS), 

which leads to rapid chemical transformations. However, currently, there are no reliable experimental 

results validating this model.  

The present work is aimed at elaborating immediate experimental evidence of hot spots formation 

in pure PETN samples under the impact of the first harmonic of neodymium laser and determining 

their formation mechanism. 

2. Methods 
The studied specimens of PETN (C5H8N4O12), sugar (С12Н22O11) and MgO were compacted in a steel 

mold under pressure P = 1.2∙108 Pa into 6-mm tablets with the density of about 1.6 g/сm3. The reasons 

to study sugar were its inertness and physicochemical properties being close to those of PETN.  The 

mechanism of laser initiation of PETN was studied by the comparison of threshold, spacial, spectral 

and kinetic characteristics of the emission of the selected materials occurring under power laser 

impact. 
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The excitation source was Q-switching YAG:Nd3+ laser at fundamental frequency (λ = 1.06 μm) 

with pulse width at half maximum of 16 ns. The detailed scheme of the laser testbed for the 

investigation of explosive decomposition of energy-yielding materials is presented elsewhere [7]. A 

part of LR was deflected by glass plates to the calibrated IKT-1N calorimeter (Russia) and FEK 

photoreceiver (Russia) to measure energy, duration and shape of laser pulses. The density of the pulse 

energy (Н) on the surface of sample was measured by QE25LP-S-MB pyroelectric energy meter 

(Gentec-EO, Canada) and varied using calibrated glass filters in the range of (0.1–6) J/сm2. The laser 

beam was focused by a lens (with focal length of 0.3 m) into a 2-mm spot and incident on the plane of 

the open surface of sample at the angle of 75°.  The experiments were performed in atmospheric air. 

The luminance kinetics of the excited target was recorded by H5773-04 photosensor (Hamamatsu, 

Japan) and DPO 3034 oscilloscope (Tektronix, USA). To record the spacial distribution of luminance 

along the irradiated surface of the targets, the testbed was supplemented by a microscope. The 

luminance induced by pulsed irradiation of the samples was captured by Sony Alpha DSLR-A500 

(Sony, Japan) via MPD-10 microscope (Russia). The channels of the photomultiplier tube and 

photoelectric colorimeter were synchronized by the pulse of CdSe crystal two-photon luminescence 

excited by the first harmonic of Nd-laser. The time resolution of the measurement system was ~10 ns, 

while the spacial resolution was ~10 μm. 

3. Results and Discussion 
It was experimentally shown that the irradiation of pure PETN samples by the laser pulse with 

Н = (0.5–3) J/сm2 is accompanied by the formation of bright spots on the background of less intense 

diffused luminance (Figure 1a). 

 

              
(a)                                                (b)                                                    (c) 

Figure 1.Microphotograph of surface luminance of PETN (a), sugar (b) and MgO (c) under the first 

laser irradiation pulse.  а) H = 3 J/сm2; b) H = 2.5 J/сm2; с) H = 3.5 J/сm2. 

 

 A typical oscillogram of local region (HS) luminance (upper oscillogram) in Figure 2 was obtained 

simultaneously with photo capturing. The lower oscillogram in Figure 2 is the pulse of Nd-laser 

generation. The data on spacial distribution of HSs along the irradiated PETN surface, luminance 

kinetic and LR oscillogram were obtained after primary LR pulse. The repeated irradiation of the 

surface of sample by a sequence of pulses decreased the number of HSs and their luminance intensity, 

i.e. HSs were annealed. The increase in Н from 0.5 to 3 J/сm2 for irradiation of the untreated surface of 

the specimen increases the number of HSs, the intensity and duration of their luminance after the first 

excitation pulse. The HS luminance duration at pulse half maximum increases from 20 to 36 ns. 
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Figure 2. Oscillograms of hot spot luminance in PETN after the first irradiation pulse (upper) and 

excitation laser pulse (lower), H = 3 J/сm2. 

There was no damage to the PETN sample surface after the irradiation. At Н > 4 J/сm2, on the 

regions of the brightest HSs there are microcraters with the size of ~100 μm. Interestingly, according 

to early studies [1], the crater formation threshold (Н*) in compacted PETN samples after irradiation 

by the first harmonic of Nd-laser depends on the PETN dispersity and varies in the range of (4 ≤  Н* ≤  

9) J/сm2 with the dispersity changing from 3200 up to 12,000 сm2/g. The authors of [1] have 

associated Н* with the threshold of PETN optical breakdown recorded by the luminance of the laser 

torch and intense sound (click).  However, that work lacks data on the processes taking place in PETN 

at Н < Н*.       
To understand the physical nature of HS luminance occurring in PETN under pulsed irradiation, 

additional experiments were performed using the inert samples (compacted tablets of sugar and MgO). 

During the studies, we have established that in the inert materials and at the energies of 

(0.5 ≤ Н ≤ 3.5) J/сm2, the regularities of formation and annealing of HSs are similar to those in PETN. 

All the above was confirmed experimentally and the results are presented in Figs. 1b and 1c. The 

results state unified character of formation and annealing of HS under pulsed irradiation of compacted 

samples. One can assume that HSs originate in solid bodies due to localization of LR energy on 

absorbing irregularities. According to [8], one of such irregularities in the compacted samples of pure 

PETN are carbon microparticles. To check this assumption, we have studied aged (stored for 20 years) 

PETN samples with 0.1 wt% of carbon.  The photo images of the specimens demonstrated dark 

microparticles (assumably, the agglomerates of carbon particles) with the dimensions from 10 to 

150 μm. We have established that at the moment of pulsed irradiation, HSs are formed in the locations 

of microparticles which dimensions exceed those of the particles (Figure 3a). After LR action, one can 

observe a light patch on the irradiated surface of sample along with the microparticles. Assumably, it 

is caused by the burning of soot particles having the dimensions of less than 10 μm (Figure 3b). 

 

             
(a)                                                            (b) 
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Figure 3.Microphotographs of hot spot luminance formed in PETN subsurface region with addition of 

1 wt% of carbon (а) and surface of sample after single irradiation (b). 

 
The combination of received experimental data (nonuniform surface luminance structure with 

spots, delayed HS luminance maximum in relation to the laser pulse, their increased luminance 

duration at increased laser radiation energy density, annealing effect) and analysis of literature on the 

effect of absorption irregularities on the optical breakdown threshold of various materials [9–10] 

allows concluding that the reason of HS formation in pure PETN samples and studied inert materials is 

low-threshold optical breakdown evolving in local (defective) regions of solid bodies in the electric 

field of the light wave. The host spots are subsurface laser plasma that forms after the evolution of the 

optical breakdown in the vapor of absorbing irregularities. The discovery of the nature of the 

absorbing irregularities responsible for the initiation of the optical breakdown in the studied samples 

requires additional investigation. We assume that one of the origins of absorbing irregularities are 

impurities introduced into the specimens after the compaction in the metal mold. It is confirmed by the 

authors of [11] who have established the absence of HSs for the energy densities of 

0.16 < Н < 2.5 J/сm2 in sugar samples prepared in a glass cell. Separate microzones of white 

luminance, in this case, were detected only for Н ≥ 2.5 J/сm2. 

4. Conclusion 
The studies have demonstrated that the excitation of the compacted samples of studied materials by 

the first harmonic of Nd-laser causes formation of bright hot spots (local micro- and macrozones of 

white luminance) forming after the development of low-threshold optical breakdown on absorbing 

irregularities. The role of absorbing irregularities is played by microparticles introduced into the 

subsurface region of the samples during their compaction in a metal mold. Multi-pulse excitation of 

the samples leads to the evaporation of absorbing impurities (annealing of defects) and increased 

threshold of optical breakdown. 

Thus, we can conclude that the HS formation mechanism in the samples of pure PETN under LR 

pulse is electrical, similarly to the irradiation of explosives and inert materials by high-current electron 

beam [12–13].  Under laser action, the electrical breakdown develops in the subsurface region of the 

sample on absorbing irregularities in the electric field of the light wave, while under electron 

irradiation it happens in the zone of electron beam breakage, in the electric field of volumetric 

negative charge injected into the sample.  Finally, the received results in addition to the scientific 

value bear practical interest, because the significance of the nature and parameters of the absorbing 

irregularities present in energy-yielding materials and possibility of their annealing under sequential 

irradiation enable the adjustment of the explosive material sensitivity to laser radiation.  

Acknowledgement  
The work was funded within the grant of the Programme for Promoting the Competitiveness of Tomsk 

Polytechnic University, project No. VIU_IFVT_73/2017, and partially under the support of agreement 

No. 15592 as of October 1, 2018. 

 

References 

[1] Tarzhanov V I 1998 Collection of publications (Snezhinsk: Press of All-Russian Scientific 

Research Institute of Technical Physics) p 126 (in Russian) 

[2] Bourne N K 2001 R. Soc. Lond. A.. 457 1401-26 

[3] Kuklja M M, Aduev B P and Aluker E D 2000 J. Appl. Phys.  89 7 4156-66 

[4] Aluker E D, Krechetov A G, Loboyko B G et at. 2008 Chem. Physics. 27 5 67-70. (in Russian) 

[5] Aluker E D, Belokurov G M, Krechetov A G et al. 2010 Technical Physics Letters 36 6 80-85 

(in Russian) 

[6] Aduev B P, Nurmukhametov D R, Leeskov I Yu et al. 2014 Combustion and Explosion Physics. 

50 1 124-129 (in Russian) 



HTRA 2018

IOP Conf. Series: Materials Science and Engineering 510 (2019) 012020

IOP Publishing

doi:10.1088/1757-899X/510/1/012020

5

[7] Tsipilev V P 2003 Bulletin of the Tomsk Polytechnic University  306 4 99-103 (in Russian)   

[8] Chernai A V 1996 Combustion and Explosion Physics 32 1 11-19 (in Russian)    

[9] Vorobyov V S 1993 Physics-Uspekhi. 163 12 51-83 (in Russian) 

[10] Assovskiy I G, edit. By A M Lipanov 2005 Combustion physics and internal ballistics (M.: 

Nauka) p 357 

[11]  Oleshko V I, Tsipilev V P, Yakovlev A N, Murastov G V, Alekseev N A 2018 Optics and 

Spectroscopy 124 6 804-807 (in Russian) 

[12]  Oleshko V I, Damamme G, Malys D, Lisitsyn V M 2009  Technical Physics Letters 35 20 55-

61 (in Russian) 

[13]  Oleshko V I, Lisitsyn V M, Skripin A S, Tsipilev V P 2012 Technical Physics Letters 38 9 37-

43 (in Russian) 

 


